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The measurement of the anomalous magnetic moment of the muon and its prediction allow for a
high-precision test of the Standard Model (SM). In this proceedings article we present ongoing
work combining lattice QCD and continuum QED in order to determine an important SM contri-
bution to the magnetic moment, the hadronic light-by-light contribution. We compute the quark-
connected contribution in the Mainz position-space approach and investigate the long-distance
part of our data using calculations of the π0-pole and charged pion loop contributions.
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1. Introduction

One of the most stringent tests of the Standard Model (SM) arises from the measurement of the
anomalous magnetic moment of the muon aµ . A tension of about three standard deviations persists
between the SM prediction for this quantity and its experimentally measured value. The theory and
experimental uncertainties are comparable and at the sub-ppm level, but new experiments such as
the “E989 Muon g-2” at Fermilab and the “Muon g-2/EDM” at JPARC expect an improvement in
precision by about a factor four in the next few years; see [1] and references therein. It is necessary
to reduce the theoretical uncertainty by a comparable amount in order to discern whether the current
discrepancy between theory and experiment is a sign of Beyond the Standard Model physics.

The theoretical uncertainty for aµ is currently dominated by hadronic contributions, namely
the hadronic vacuum polarization (HVP) as well as the hadronic light-by-light (HLbL) scatter-
ing. It is the latter of these contributions that we will focus on in this proceedings article. We
will summarize the methodology and present some preliminary results for the contribution of the
quark-connected diagrams to aHLBL

µ as well as a discussion of finite-volume effects and our use of
continuum models to describe the long-distance part of our data. To this end, continuum computa-
tions of the π0-pole and charged pion loop contributions are presented.

2. Position-space method

To compute the HLbL contribution, we make use of the Mainz position-space method, see also
references [2, 3, 4, 5, 6]. It divides the problem into a QED part and a QCD part. The QED part is
described by a kernel function L̄ , that is computed in the continuum and infinite volume, and the
QCD part is given by a four-point function iΠ̂, that is to be obtained with the help of Lattice QCD.
The master formula that allows one to compute the HLbL contribution to aµ reads

aHLbL
µ =

me6

3

∫
d4y
[∫

d4xL̄[ρ,σ ];µνλ (x,y)︸ ︷︷ ︸
QED

iΠ̂ρ;µνλσ (x,y)︸ ︷︷ ︸
QCD

]
. (2.1)

iΠ̂ρ;µνλσ (x,y) =
∫

d4z (−zρ)Π̃µνσλ (x,y,z), Π̃µνσλ (x,y,z) =
〈

jµ(x) jν(y) jσ (z) jλ (0)
〉
, (2.2)

where m is the mass of the muon and the jµ(x) are the quark electromagnetic currents.
The kernel L̄ is not unique. Other valid kernels can be obtained by adding or subtracting terms

that vanish after the x and y integrations in the master formula (2.1). Such subtractions were first in-
troduced in [7], where it was shown that discretization effects can be drastically reduced by choos-
ing kernels that vanish when some of the vertices coincide. Exploiting

∫
x iΠ̂(x,y) =

∫
y iΠ̂(x,y) = 0 ,

we have tested the usefulness of the subtracted kernels L (1−3),

L (0) =L̄ (x,y) , (standard kernel) (2.3)

L (1) =L̄ (x,y)− 1
2
L̄ (x,x)− 1

2
L̄ (y,y) , (2.4)

L (2) =L̄ (x,y)− L̄ (0,y)− L̄ (x,0) , (2.5)

L (3) =L̄ (x,y)− L̄ (0,y)− L̄ (x,x)+ L̄ (0,x) , (2.6)
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Figure 1: The integrand for the π0-pole contribution based on the standard kernel L (0) and the
subtracted kernels L (1,2,3) at mπ = 300MeV, using method 1 (left panel) and method 2 (right
panel). In the right-hand plot, the L (3) curve is hidden behind the L (2) curve. The continuum
calculation is performed using the VMD model for the pion transition form factor.

that obey the following properties:

L (0)(0,0) = 0 , L (1)(x,x) = 0 , L (2)(0,y) = L (2)(x,0) = 0 , L (3)(x,x) = L (3)(0,y) = 0 .
(2.7)

The left panel of Fig. 1 displays the integrands f (|y|) of the final integration over |y| correspond-
ing to the different kernels, for the neutral pion pole contribution with a vector-meson-dominance
(VMD) model of the pion transition form factor. Compared to the standard kernel, L (2) and L (3)

have less pronounced peaks at short distances and approach zero faster at long distances. We ex-
pect these subtracted kernels to have smaller lattice artifacts and therefore to be favorable in lattice
computations.

The quark-connected part of the four-point function iΠ̂, involves three different contractions.
Computing all three of them and applying Eq. (2.1) amounts to what we call ‘method 1’. In a lattice
implementation of this method, for N evaluations of the y integrand, 1+N propagators and 6(1+N)

sequential propagators are needed. If Π
(1)
µνσλ

(x,y,z)≡−2ReTr{S(0,x)γµS(x,y)γνS(y,z)γσ S(z,0)γλ},
where the S(x,y) are propagators, represents one of the Wick contractions of the quark-connected
part Π̃c

µνσλ
(x,y,z), we can write (for any given background gauge field)

Π̃
c
µνσλ

(x,y,z) = Π
(1)
µνσλ

(x,y,z)+Π
(1)
νµσλ

(y,x,z)+Π
(1)
νσ µλ

(y,z,x). (2.8)

Note that ∂µ(x)Π̃c
µνσλ

(x,y,z) = 0 for all x. The computation can be arranged in a different way,

such that only the contraction Π(1) is computed and the others are implemented by permuting the
way that the photons are attached to the vertices of the four-point function. We call this method 2,
which reads

aHLbL,c
µ =

me6

3

∫
y,x,z

(
[L̄[ρ,σ ];µνλ (x,y)+ L̄[ρ,σ ];νµλ (y,x)− L̄[ρ,σ ];λνµ(x,x− y)](−zρ)Π

(1)
µνσλ

(x,y,z)

+ L̄[ρ,σ ];λνµ(x,x− y)(−xρ)Π
(1)
µνσλ

(x,y,z)
)
. (2.9)
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Figure 2: (a) Contractions needed to compute g−2. Upper row: The three connected Wick contrac-
tions needed in method 1. Bottom row: In method 2 the different contraction types are implemented
in the QED part of the diagram. (b) Comparison of the integrands for method 1 and method 2 for
the neutral pion pole contribution with a transition form factor given by the VMD model.

A diagrammatic representation and the integrands for both methods are shown in Figs. 1 and 2.
While method 2 requires the calculation of far fewer propagators, its integrand receives contribu-
tions from the exchange of resonances odd under charge conjugation, which cancel out upon fully
integrating over x,y,z.

3. Lattice results

The results described in this section are obtained with kernel L (2), which we expect to reduce
lattice artifacts. For our lattice calculations, which are based on the ensembles listed in Table 1,
we use method 2 to reduce the number of required inversions of the Dirac operator. From Fig. 3,
we observe that we achieve good statistical precision for small |y|, but at larger distances the signal
degrades rapidly.

The ensembles N203 and H102 have a similar pion mass of about 350 MeV but differ by their
lattice spacing and the physical volume of the boxes. At this pion mass, the discretization effects
can be resolved, cf. Fig. 3a. As the ensembles N203, N200, and D200 all have the same lattice
spacing, comparing them allows us to explore the pion-mass dependence of aµ , which exhibits a
mild increase with decreasing pion mass, see Fig. 3c. Finite-volume effects become more relevant
at long distances and precise knowledge of the long-distance tail is very important. As H105 and
N101 differ only in their physical volume, a comparison of their long-distance behavior allows us
to understand the magnitude of our finite-volume effects. These two ensembles seem roughly con-
sistent at large distances in Fig. 3b, although their error bars indicate that more statistics are needed.

4. Pion mass dependence and finite-size effects

The lattice results presented in the previous section exhibit a mild upward trend for decreasing
pion mass. For the neutral pion pole prediction calculated in finite volume we obtain a similar

3
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Label L3×T a [fm] mπ [MeV] mπL L [fm] #confs

H102 323×96 0.08636 354(5) 5.0 2.8 900
H105 323×96 284(4) 3.9 2.8 1000
N101 483×128 282(4) 5.9 4.1 400

N203 483×128 0.06426 345(4) 5.4 3.1 750
N200 483×128 282(3) 4.4 3.1 800
D200 643×128 200(2) 4.2 4.1 1100

Table 1: CLS N f = 2+1 ensembles used in this work.
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Figure 3: (a) Discretization effects on the lattices H102 and N203. (b) Finite-size effects on the
H105 and N101 lattices. (c) Pion-mass dependence on the N203, N200 and D200 lattices. (d)
Pion-mass dependence and finite-size effects for the π0-pole contribution. The curves represent
infinite-volume and the points finite-volume results.

behavior. However in infinite volume the integral extends to longer distances and correspondingly
shows a stronger increase as mπ is reduced; see Fig. 3d. This illustrates the importance of under-
standing the tail of the integrand semi-analytically.
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Figure 4: Left: comparison between the integrand from ensemble N203 and the integrand for the
π0-pole contribution, both computed with method 2 and kernel L (2). The infinite-volume band
covers the normalization factors from 3 to 34/9 [8], the π0 finite-volume points are normalized
with the factor 34/9. Right: pion-pole contribution with a VMD transition form factor (red) and
charged pion loop contribution in scalar QED (blue) to aHLbL

µ , using method 1.

We have thus identified two sources of finite volume effects: one is the truncation of the y-
integral, and the other comes from the finite-size effect on the lattice integrand itself. Both artifacts
can be corrected for by semi-analytic continuum computations (Fig. 3d). In the small-distance
regime the corrections are small and the lattice data can be used directly. For longer distances,
where the finite-size effect becomes larger, the π0-pole contribution becomes increasingly domi-
nant and we can use the continuum computation to model the long-distance tail of the y integrand.

Figure 4 shows the lattice integrand for the N203 lattice and the corresponding integrand for
the π0-pole contribution, also computed with method 2. We note that Π

(1)
µνσλ

(x,y,z) does not
contain the pion-level diagram in which the π0 propagates between the pair (0,y) and the pair
(x,z) of vertices, and that the normalization of the two other π0-pole diagrams is such that Π̃c

µνσλ

contains the same π0 contribution as Π̃µνσλ , enhanced (in the SU(2)f case) by the charge factor
34/9. In Fig. 4 we observe effects that are not described by the π0-pole prediction at short distances.
At larger distances, we need to collect more statistics to test against the π0-pole prediction. The
data lie below the prediction, suggesting that there may be a negative contribution to the integrand
that is non-negligible at |y|= 1.5fm.

One contribution to aHLbL
µ that is known to be negative is the charged pion loop. It is also

parametrically leading in the chiral limit. Starting from scalar QED in Euclidean space,

LE = (∂µ + ieAµ)φ
∗(∂µ − ieAµ)φ +m2

φ
∗
φ +

1
4

FµνFµν , (4.1)

we have performed such a computation in our position-space formulation and successfully repro-
duced the known charged pion loop contribution [9]. The integrand corresponding to method 1 is
shown in the right panel of Fig. 4 for physical pion masses. Indeed the pion loop contribution is
of comparable size and opposite in sign to the neutral pion pole contribution. It is also of shorter
range, and if it were further suppressed by realistic form factors, it would be unlikely to produce
the negative contribution suggested by the left panel of Fig. 4.
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5. Conclusions

The Mainz position-space approach is a method for computing aHLbL
µ using continuum, infinite-

volume QED combined with lattice QCD. The correctness of the kernel has by now successfully
been tested on the fermion loop, the pion loop as well as on the neutral pion pole contribution.
Semi-analytic computations based on the π0-pole contribution in finite volume are important to
control the artifacts that stem from the finite size of the box.

The freedom one has in choosing the QED kernel without affecting aHLbL
µ allows for a suppres-

sion of certain discretization effects via subtractions; see Eqs. (2.5–2.6). However, the finite-size
effects then turn out to be challenging. Therefore we are investigating the benefit of a new class of
kernels

L
(2,λ̄ )

ρσ ;µνλ
=L

(0)
ρσ ;µνλ

(x,y)−∂
(x)
µ

(
xα e−λ̄m2

µ x2/2
)

L
(0)

ρσ ;ανλ
(0,y)−∂

(y)
ν

(
yα e−λ̄m2

µ y2/2
)

L
(0)

ρσ ;µαλ
(x,0),
(5.1)

which reduces to L (2) for λ̄ = 0, shares its property of vanishing whenever x or y does, but does
not qualitatively alter the long-distance behavior of the original kernel L (0).
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