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1 Introduction

The production of pairs of photons in hadronic collisions has attracted interest from both

the experimental and the theory side for several decades. Most prominently, the diphoton

final state served as one of the key discovery channels for the Higgs boson [1, 2], which

can decay into two photons. As a very clean experimental channel, it is also well suited

for precision studies of the Standard Model (SM) and in particular the Higgs sector. For

example, there is the possibility to constrain the Higgs boson width from interference effects

of the continuum gg → γγ spectrum with the signal gg → H → γγ [3–10]. Furthermore,

various New Physics models predict the production of photon pairs, where the study of

angular correlations between the decay photons can provide information about the spin of

the underlying resonances [11, 12].

Another interesting aspect of diphoton production is the possibility of measuring the

top quark mass via the top quark pair production threshold effects manifest in the diphoton

invariant mass spectrum [13, 14]. While current LHC measurements [1, 2] are not yet able

to provide the necessary statistics for such a threshold scan, the feasibility at the High-

Luminosity LHC, and even more so at a future 100 TeV collider, is worth investigating.

Direct diphoton production1 in hadronic collisions occurs via the leading order (LO)

α0
s process qq̄ → γγ. The next-to-leading order (NLO) QCD corrections to this process,

1We denote by “direct photons” the photons produced directly in the hard scattering process, as opposed

to photons originating from a hadron fragmentation process.

– 1 –



J
H
E
P
0
4
(
2
0
2
0
)
1
1
5

including fragmentation contributions at NLO, were implemented in the public program

Diphox [15].

The loop induced gg → γγ process enters as a next-to-next-to-leading order (NNLO)

QCD (order α2
s) correction to the pp → γγ cross section. The process gg → γγ has been

calculated at LO including both massless and massive quark loops in ref. [3] and is included

in Diphox at one loop for massless quark loops. Even though the gg → γγ contribution

is a higher-order correction to the total pp → γγ cross section, its contribution is similar

in size to the LO result at the LHC, due to the large gluon luminosity. A calculation that

includes also the effects of transverse-momentum resummation to direct photon production

is implemented in the program ResBos [16].

NLO QCD corrections to the gluon-fusion channel with massless quarks, i.e. O(α3
s)

corrections, have been first calculated in refs. [17, 18] and implemented in the code 2γMC [18]

as well as in MCFM [19]. Very recently, the NLO QCD corrections to the gluon-fusion

channel including massive top quark loops have become available [20], where the master

integrals have been calculated numerically based on the numerical solution of differential

equations [21, 22]. Analytic results for the planar two-loop box integrals with massive

top quarks have been presented in refs. [23, 24]. Regarding the non-planar contributions,

3-point topologies containing elliptic integrals have been calculated in refs. [25, 26]. Other

3-point topologies have been calculated earlier in the context of Higgs production and

decay [27, 28].

The NNLO QCD corrections to the process pp→ γγ were first calculated in ref. [29],

including the gg → γγ contribution at order α2
s with massless quark loops. For a phe-

nomenological study see also ref. [30]. The NNLO QCD corrections to pp→ γγ have also

been calculated and implemented in MCFM in ref. [31], supplemented by the gg initiated

loops proportional to nf at LO and NLO for five massless quark flavours, and at LO for

massive top quark loops. Diphoton production at NNLO with massless quarks is also

available in Matrix [32].

The aim of this paper is twofold. Firstly, we provide an independent calculation of the

QCD corrections to the process gg → γγ including massive top quark loops, confirming

the results of ref. [20] for the central scale choice. Secondly, we combine our results with

threshold resummation as advocated in ref. [14], such that the top quark pair production

threshold region in the diphoton invariant mass spectrum can be predicted with high

accuracy. The calculation can thus serve as a starting point for investigating the possibility

of a top quark mass measurement from the diphoton invariant mass spectrum.

This work is structured as follows. In section 2 we describe our calculation of the

NLO corrections including both massless and massive fermion loops. Section 3 contains a

description of our treatment of the top quark pair production threshold region. In section 4

we present our numerical results. Finally, in section 5 we summarise and present an outlook

on the possibility of measuring the top quark mass from the diphoton spectrum.
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2 Building blocks of the fixed order calculation

We consider the following scattering process,

g(p1, λ1, a1) + g(p2, λ2, a2)→ γ(p3, λ3) + γ(p4, λ4), (2.1)

with on-shell conditions p2
j = 0, j = 1, . . . , 4. The helicities λi of the external particles are

defined by taking the momenta of the gluons p1 and p2 (with colour indices a1 and a2,

respectively) as incoming and the momenta of the photons p3 and p4 as outgoing. The

Mandelstam invariants associated with eq. (2.1) are defined by

s = (p1 + p2)2 , t = (p2 − p3)2 , u = (p1 − p3)2 . (2.2)

2.1 Calculation of the virtual amplitudes

Projection operators. We define the tensor amplitude Mµ1µ2µ3µ4 by extracting the

polarisation vectors from the amplitude M,

M = εµ1λ1(p1) εµ2λ2(p2) εµ3,?λ3
(p3) εµ4,?λ4

(p4)Mµ1µ2µ3µ4(p1, p2, p3, p4), (2.3)

where the εµiλi denote the polarisation vectors. The amplitude is computed through pro-

jection onto a set of Lorentz structures related to linear polarisation states of the external

massless bosons. An appropriate set of D-dimensional projection operators is constructed

following the approach proposed in ref. [33], which has been applied recently in the calcu-

lation of ref. [34], and which we will summarise briefly in the following.

A physical polarisation vector ε(p) of a massless vector boson with (on-shell) momen-

tum p fulfils the transversality and (imposed) normalisation conditions,

ε(p) · p = 0, ε(p) · ε(p) = −1. (2.4)

These conditions fix two components of the polarisation vectors in four space-time dimen-

sions. Now we construct explicitly a basis of the space of polarisation states defined by (2.4)

for the external massless vector bosons. First, we introduce a polarisation basis vector εX ,

valid for both intial-state gluons, which can be written in terms of the linearly independent

momenta of the process

εµX = cX1 pµ1 + cX2 pµ2 + cX3 pµ3 , (2.5)

where the Lorentz invariant coefficients cXi are determined by the system of equations

εX · p1 = 0, εX · p2 = 0, εX · εX = −1. (2.6)

Note that the conditions above constitute a gauge choice in which the reference momentum

of either incoming gluon is set to be the momentum of the other gluon. A polarisation

vector εT for both outgoing photons can be constructed analogously:

εT · p3 = 0, εT · p4 = 0, εT · εT = −1. (2.7)
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A third basis vector εY , pointing out of the scattering plane, is needed to span the space

of all possible polarisation vectors for this process:

εY · pi = 0, i ∈ {1, . . . , 4} . (2.8)

In four dimensions, such a vector can be constructed using the Levi-Civita tensor:

εµY = εµνρσp1ν p2ρ p3σ. (2.9)

Since we consider only QCD corrections to a QED process, neither γ5 nor Levi-Civita

tensors are introduced by the relevant Feynman rules. Consequently, a completely D-

dimensional tensor decomposition of this scattering amplitude can be expressed solely in

terms of metric tensors and external momenta. Therefore, a contraction of the tensor

amplitude with an odd number of εY evaluates to zero. A product of two Levi-Civita

tensors, however, can be rewritten in terms of metric tensors using

εµνρσ εαβκλ = det




δµα δ
µ
β δ

µ
κ δ

µ
λ

δνα δ
ν
β δ

ν
κ δ

ν
λ

δρα δ
ρ
β δ

ρ
κ δ

ρ
λ

δσα δ
σ
β δ

σ
κ δ

σ
λ


 , (2.10)

which has a straightforward D-dimensional continuation. For a detailed discussion of the

subtleties related to the manipulation of Levi-Civita tensors in the construction of projec-

tors for more general cases we refer to ref. [33].

Applied to the scattering process (2.1), this construction leads to eight projectors

εµ[X,Y ]ε
ν
[X,Y ]ε

ρ
[T,Y ]ε

σ
[T,Y ], (2.11)

where the square bracket [·, ·] means either entry and where only the combinations con-

taining an even number of εY are considered. Let us emphasize again that, in order to

avoid possible ambiguities in the application of these projectors, all pairs of Levi-Civita

tensors are replaced according to the contraction rule (2.10) before being used for the

projection of the amplitude. Then the aforementioned projectors are expressed solely in

terms of external momenta and metric tensors whose open Lorentz indices are all set to be

D-dimensional.

The usual helicity amplitudes can be constructed as circular polarisation states from

the linear ones using the relations

ε±(p1)µ =
1√
2

(
εµX ± iε

µ
Y

)
,

ε±(p2)ν =
1√
2

(ενX ∓ iενY ) ,

ε±(p3)ρ =
1√
2

(
ερT ± iε

ρ
Y

)
,

ε±(p4)σ =
1√
2

(εσT ∓ iεσY ) .

(2.12)
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Analytic results for the LO amplitudes of (2.1) were obtained quite some time ago

in refs. [35–37] for massless quark loop contributions and in refs. [38, 39] with massive

quark loop contributions. With the linear polarisation projectors defined in (2.11), we re-

computed these LO amplitudes analytically, with both massless and massive quark loops.

These expressions were implemented in our computational setup for the NLO QCD cor-

rections to the considered process, which we describe below.

UV renormalisation. The bare scattering amplitudes of the process (2.1), denoted by

M̂, beyond LO contain poles in the dimensional regulator ε ≡ (4 − D)/2 arising from

ultraviolet (UV) as well as soft and collinear (IR) regions of the loop momenta. In our

computation, we renormalise these UV divergences using the MS scheme, except for the

top quark mass which is renormalised on-shell.

The bare virtual amplitude M̂ is a function of the bare QCD coupling α̂s and the bare

top quark mass m̂t. The UV renormalisation of M̂ is achieved by the replacement

α̂s µ̂
2ε Sε = αs µ

2ε
R Za , m̂t = mt Zm, (2.13)

and by renormalising the gluon wave function. Here, Sε = (4π)ε e−εγE , with γE the Euler

constant. The strong coupling is given by αs = g2
s/(4π) and µ̂ is an auxiliary mass-

dimensionful parameter introduced in dimensional regularisation to keep the coupling con-

stants dimensionless. The usual renormalisation scale is denoted µR, and we will use

µ̂ = µR in the following.

Both the bare virtual amplitudes and the UV renormalisation constants are expanded

in as ≡ αs(µR)/(4π). We may write the renormalisation constants as

Zi = 1 + as δZi +O(a2
s), i = a,A,m. (2.14)

Under the MS scheme for αs with nf massless quark flavours and top-quark loops renor-

malised on-shell, the renormalisation constants needed in our computation read

δZa = −1

ε
β0 +

(
µ2
R

m2
t

)ε
4

3ε
TR,

δZA =

(
µ2
R

m2
t

)ε (
− 4

3ε
TR

)
,

δZm =

(
µ2
R

m2
t

)ε
CF

(
−3

ε
− 4

)
, (2.15)

with

β0 =
11

3
CA −

4

3
TR nf . (2.16)

We write the scattering amplitude for the process gg → γγ, up to second order in as, in

the following form

M̂ = âsM̂B(m̂t) + â2
sM̂V (m̂t) +O(â3

s)

= asMB,ren(mt) + a2
sMV,ren(mt) +O(a3

s), (2.17)
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where

MB,ren(mt) = S−1
ε M̂B(m̂t)

MV,ren(mt) = S−2
ε M̂V (m̂t)−

β0

ε
S−1
ε M̂B(m̂t) + δZm M̂CT (m̂t). (2.18)

Here, MB,ren(mt) and MV,ren(mt) are the one-loop and UV renormalised two-loop am-

plitudes, respectively, with the Born kinematics given in (2.1). The mass counter-term

amplitude M̂CT (m̂t) is obtained by inserting a mass counter-term into the heavy quark

propagators

Πδm
ab (p) =

iδac

/p−m
(−iδZm)

iδcb

/p−m
, (2.19)

where a, b, c are colour indices in the fundamental representation. The mass counter-term

can also be obtained by taking the derivative of the one-loop amplitude with respect to m̂t.

Definition of the IR-subtracted virtual part. The UV renormalised virtual ampli-

tude MV,ren still contains divergences arising from soft and collinear configurations of the

loop momenta, which appear as poles in the dimensional regulator. We employ the FKS

subtraction approach [40] to deal with the intermediate IR divergences, as implemented in

the POWHEG-BOX-V2 framework [41–43].

For the process gg → γγ, the corresponding integrated subtraction operator is given by

I1(µ2
R, s) =

S−1
ε

Γ(1− ε)

[
2CA
ε2

+
2β0

ε
+

2CA
ε

ln

(
µ2
R

s

)]
. (2.20)

To second order in as the UV renormalised and IR subtracted virtual amplitude is given by

MB =MB,ren,

MV =MV,ren + I1(µ2
R, s) MB,ren. (2.21)

Note that the LO amplitude MB,ren needs to be computed to O(ε2) as it is multiplied by

coefficients containing 1/ε2 poles.

In practice, we need to supply only the finite part of the born-virtual interference,

under a specific definition [43] in order to combine it with the FKS-subtracted real radiation

generated within the GoSam/POWHEG-BOX-V2 framework. Explicitly, we compute

Vfin(µR) = a2
s(µR) Re

[
MVM†B

]
. (2.22)

The renormalisation scale dependence of Vfin can be derived from the above definitions,

it is given by

Vfin (µR) = Vfin (µ0)

(
as(µR)

as(µ0)

)2

+

[
CA log 2

(
µ2

0

s

)
− CA log 2

(
µ2
R

s

)]
a2
s(µR) |MB|2 ,

(2.23)

where µ0 stands for an arbitrarily chosen initial renormalisation scale.
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Figure 1. Examples of diagrams contributing to the virtual corrections.

Evaluation of the virtual amplitude. For the two-loop QCD diagrams contributing

to our scattering process there is a complete separation of quark flavours due to the colour

algebra and Furry’s theorem. Consequently we have nf + 1 sets of two-loop diagrams

which can be treated separated from each other. The two-loop amplitude has been ob-

tained with the multi-loop extension of the program GoSam [44] where Reduze 2 [45] is

employed for the reduction to master integrals. In particular, each of the linearly polarised

amplitudes projected out using (2.11) is eventually expressed as a linear combination of

39 massless integrals and 171 integrals that depend on the top quark mass, distributed

into three integral families. All massless two-loop master integrals involved are known

analytically [17, 37, 46], and we have implemented the analytic expressions into our code.

Regarding the two-loop massive integrals which are not yet fully known analytically, we

first rotate to an integral basis consisting partly of quasi-finite loop integrals [47]. Our

integral basis is chosen such that the second Symanzik polynomial, F , appearing in the

Feynman representation of each of the integrals is raised to a power, n, where |n| ≤ 1 in

the limit ε→ 0. This choice improves the numerical stability of our calculation near to the

tt̄ threshold, where the F polynomial can vanish. The integrals are then evaluated numer-

ically using pySecDec [48, 49]. Examples of contributing two-loop Feynman diagrams are

shown in figure 1.

The phase-space integration of Vfin is achieved by reweighting unweighted Born events.

The accuracy goal imposed on the numerical evaluation of the virtual two-loop amplitudes

in the linear polarisation basis in pySecDec is 1 per-mille on both the relative and the

absolute error. We have collected 6898 phase space points out of which 862 points fall

into the diphoton invariant mass window mγγ ∈ [330, 360] GeV. We have also calculated a

further 2578 phase space points restricted to the threshold region.

2.2 Computation of the real radiation contributions

The real radiation matrix elements are calculated using the interface [50] between

GoSam [51, 52] and the POWHEG-BOX-V2 [41–43], modified accordingly to compute the real

radiation corrections to loop-induced Born amplitudes. Only real radiation contributions

– 7 –



J
H
E
P
0
4
(
2
0
2
0
)
1
1
5

Figure 2. Examples of diagrams contributing to the real radiation part.

which contain a closed quark loop at the amplitude level are included. We also include the

qq̄ initiated diagrams which contain a closed quark loop, even though their contribution is

numerically very small. Examples of Feynman diagrams contributing to the real radiation

amplitude are shown in figure 2. The diagrams in which one of the photons is radiated off

a closed fermion loop and the other photon is radiated off an external quark line vanish

due to Furry’s theorem.

3 Treatment of the threshold region

When the partonic centre-of-mass energy is close to the threshold for the production of

a tt̄ pair, the top quarks are produced with a non-relativistic velocity such that Coulomb

interactions between the top quarks can play a significant role. In the case of the top-loop

induced contribution to diphoton production, the Coulomb singularity appears in the form

of a logarithmic dependence on the velocity first at two-loop order, due to the exchange of a

soft gluon between the top quarks in the loop. To overcome this issue and correctly describe

the threshold, we employ the so-called non-relativistic QCD (NRQCD) [53–56], which is an

effective field theory designed to describe non-relativistic heavy quark-antiquark systems

in the threshold region.

3.1 NRQCD amplitude

To the order which we consider here, the amplitude can be expressed as a coherent sum of

light quark loop contributions and the top quark loop contributions,

M(pi, λi, a1, a2) = 8αeαs TR δ
a1a2

[(∑

q

Q2
q

)
Mq(s, t) +Q2

t Mt(s, t)

]
, (3.1)

where αe = e2/(4π) and Qq denotes the electric charge of quark q. In our computation,

the NRQCD expansion of the amplitude Mt near the tt̄ threshold is performed according

to the formalism explained in more detail in refs. [14, 57]. Near the production threshold

of an intermediate tt̄ pair, mγγ ' 2mt, we define

E ≡ mγγ − 2mt, β ≡
√

1− 4m2
t /m

2
γγ + iδ, (3.2)

and the scattering angle is given by

cos θ = 1 + t (1− β2)/(2m2
t ). (3.3)

– 8 –
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Close to threshold, the amplitude Mt can be parametrised as [14, 57]

MNR
t = At(θ) + Bt(β)G(~0; E) +O(β3), (3.4)

where E = E+ iΓt includes the top-quark decay width Γt.
2 Note that the P-wave contribu-

tion Bt,P (β)GP (~0; E) starts at O(β3). In this parametrisation, the amplitude MNR
t is split

into two parts: Bt(β)G(~0; E), which contains the tt̄ bound state effects, and At(θ), which

does not. The term Bt(β)G(~0; E) contains the effects from resumming the non-relativistic

static potential interactions, where the Green’s function G(~0; E) is obtained by solving the

non-relativistic Schrödinger equation describing a colour-singlet tt̄ bound state:

(
−∇

2

mt
+ V (r)− E

)
G(~r; E) = δ(~r), (3.5)

with the QCD static potential [59, 60]

V (r) = −CF
αs(µ)

r

(
1 +

αs(µ)

4π

(
2β0 (ln(µ r) + γE) +

31

9
CA −

10

9
nf

))
+O(α3

s) . (3.6)

The mass mt appearing in (3.5) is the pole mass of the top quark. G(~0; E) is the r →
0 limit of the Green’s function G(~r; E). The real part of the NLO Green’s function at

r = 0 is divergent and therefore has to be renormalised. We adopt the MS scheme, thus

introducing a scale µ into the renormalised Green’s function [61–64]. The coefficient Bt(β)

can be obtained from the Wilson coefficients of the ggtt̄ and γγtt̄ operators [14] in the

NRQCD effective Lagrangian for the process gg → γγ. The term At(θ) encompasses the

non-resonant corrections, resulting from quark loops with large virtuality which can be

systematically computed order by order in αs.

Both At and Bt can be expanded perturbatively in αs. For the process gg → γγ,

corrections to Bt have been calculated up to O(αs) and O(β2) in ref. [14], where explicit

expressions of Bt at the leading order for all relevant helicity configurations can be found.

Here we repeat for completeness the expressions for the S-wave tt̄ resonance we are con-

sidering. For the S-wave the Bt coefficients are independent of the scattering angle. We

use the notation G(β) ≡ G(~0;E) and

MNR
t,{λi} = At,{λi}(θ) + Bt,{λi}(β)G(β)

=MNR,(0)
t,{λi} +

αs
π
MNR,(1)

t,{λi} +O(α2
s) . (3.7)

Note that an overall factor of αs already has been extracted from the amplitude (see

eq. (3.1)), such that the O(αs) term in the expression (3.7) contains the two-loop amplitude.

The NLO part of MNR
t , denoted by MNR,(1)

t , can be expanded as

MNR,(1)
t = A

(1)
t (θ) +B

(1)
t (β)G(0)(β) +B

(0)
t (β)G(1)(β). (3.8)

2It has been shown in ref. [58] that in the non-relativistic limit the top width can be consistently

included by calculating the cross section for stable top quarks supplemented by such a replacement up to

next-to-leading-order according to the NRQCD power counting.

– 9 –
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The expression for B
(n)
t can be further expanded in β,

B
(n)
t (β) = b(n) + β2 b̃(n) +O(β3), (3.9)

where [14, 65–67]

b
(0)
{λi} = −4π2

m2
t

λ1λ3 δλ1λ2δλ3λ4 ,

b̃
(0)
{λi} = −16π2

3m2
t

λ1λ3 δλ1λ2δλ3λ4 ,

b
(1)
{λi} = b

(0)
{λi} b1, b̃

(1)
{λi} = b̃

(0)
{λi} b1,

b1 = CF

(
−5 +

π2

4

)
+
CA
2

(
1 +

π2

12

)
+
β0

2
ln

(
µ

2mt

)
. (3.10)

The expansion of the Green’s function in αs is given by

G(β) =G(0)(β) +
αs
π
G(1)(β, µ) +O(α2

s), (3.11)

where [64, 68]

G(0)(β) = i
m2
t

4π
(β + β3) +O(β5), (3.12)

G(1)(β, µ) =
m2
t

8
CF

(
1− 2 ln(−iβ) + 2 ln

(
µ

2mt

)
+ β2

[
1− 4 ln(−iβ) + 4 ln

(
µ

2mt

)]

+iβ3 16

3π

[
2cus + 2 ln(−iβ)− ln

(
µ

2mt

)])
+O(β4), (3.13)

cus =− 7

4
+ ln 2.

For At(θ), we can make use of a partial-wave decomposition in terms of Wigner func-

tions dJhh′(θ),

At,{λi}(θ) =

∞∑

J=0

(2J + 1)AJt,{λi}d
J
hh′(θ), (3.14)

where h = −λ1 + λ2 and h′ = λ3 − λ4.

3.2 NRQCD-improved calculation

Matched amplitude. We would like to retain NRQCD resummation effects and, at the

same time, keep the cross section accurate up to NLO in the fixed-order power counting.

We define the “NRQCD-matched” amplitude as [14]

Mmatch
t ≡ Mt + BtG(~0; E)−MOC, (3.15)

where the first term is the fixed-order amplitude, the second term describes the threshold

according to NRQCD and the third term MOC ≡ BtG(~0;E) subtracts double counted

contributions included in both the fixed-order amplitude and NRQCD contribution. The
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MOC term in a fixed-order computation should be expanded to the same order as the

fixed-order amplitude.

Expanding (3.15) to next-to-leading order, we have

Mt = Mt,B +
αs
π

Mt,V +O(α2
s),

MOC = M
(0)
OC +

αs
π

M
(1)
OC +O(α2

s), (3.16)

with

M
(0)
OC = B(0)

t G(0)(~0;E),

M
(1)
OC = B(1)

t G(0)(~0;E) + B(0)
t G(1)(~0;E). (3.17)

Inserting into the matched amplitude we obtain,

Mmatch
t =

[
BtG(~0; E) + (Mt,B −M

(0)
OC)

]
+
αs
π

[
Mt,V −M

(1)
OC

]
+O(α2

s). (3.18)

The NLO-matched cross section is obtained by squaring the matched amplitude and adding

the corresponding real-radiation. Upon squaring the matched amplitude we obtain,

|Mmatch
t |2 =

∣∣∣BtG(~0; E) + (Mt,B −M
(0)
OC)

∣∣∣
2

+
αs
π

2Re
[
M†t,B(Mt,V −M

(1)
OC)

]
(3.19)

+
αs
π

2Re
[
(BtG(~0; E)−M

(0)
OC)†(Mt,V −M

(1)
OC)

]
+O(α2

s). (3.20)

Expanding the (BtG(~0; E) −M
(0)
OC) term we note that the last line is formally of order α2

s

(i.e. beyond NLO accuracy) and we do not include it in our calculation. However, in the

first line, we retain the full BtG(~0; E) term, which describes the threshold behaviour. The

fixed-order massless quark contribution can be included by replacing the top-quark only

amplitude, Mt, with the full amplitude and restoring overall factors extracted from the

top-only amplitude.

Matched cross section. We define our NLO-matched cross section as follows

σmatch
LO ≡ a2

s(µR)

∫ 1

τmin

dτ
dLgg(µF )

dτ
Ngg

∫
dΦ2

∣∣∣MB + c
(
B(µ)G(~0; E , µ)−M

(0)
OC

) ∣∣∣
2
,

σmatch
NLO ≡ σmatch

LO

+a3
s(µR)

∫ 1

τmin

dτ
dLgg(µF )

dτ
Ngg

∫
dΦ2 2 Re

[
M†B

(
MV (µR)− c M

(1)
OC(µ)

)]

+a3
s(µR)

∫ 1

τmin

dτ
∑

ij

dLij(µF )

dτ
Nij

∫
dΦ3

∣∣∣MR,[ij](µR)
∣∣∣

2
+ σC (µF , µR) ,

(3.21)

where Nij contains the flux factor and the average over spins and colours of the initial

state partons of flavour i and j, e.g. Ngg = 1
2s

1
64

1
4 . And we have introduced the luminosity
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factors Lij , defined by

σ(S) =

∫ 1

τmin

dτ
∑

ij

∫ 1

τ

dx

x
fi(x, µF ) fj(

τ

x
, µF )σij(s = τS)

≡
∑

ij

∫ 1

τmin

dτ
dLij
dτ

σij(s = τS), (3.22)

where fi(x, µF ) is the parton distribution function (PDF) of a parton with momentum

fraction x and flavour i (including gluons) and µF is the factorisation scale. The 2- and

3-particle phase-space integration measures are denoted by dΦ2 and dΦ3. The symbol

c ≡ 32π αeQ
2
t TR δ

a1a2 collects constants which have been extracted in the definition of

Mt. The real-radiation contributions with the factors of as extracted are symbolically

denoted byMR,[ij] and the collinear-subtraction counterterm is denoted by σC . We do not

include resummation effects in the real-radiation because it is suppressed by a factor of β.

The M
(0)
OC and M

(1)
OC(µ) denote the LO and NLO double-counted part of the amplitude as we

discussed above. Note that the explicit dependence of M
(1)
OC(µ) on the scale µ stems from the

renormalisation of the Green’s function G(~0;E), while µR comes from the renormalisation

of UV divergences in MV (µR) and µF from initial-state collinear factorisation.

For the numerical evaluation of eq. (3.21), we expand M
(0)
OC and M

(1)
OC to respectively

O(β3) andO(β2) using the expressions stated in section 3.1. At the two-loop order, the UV-

renormalised and IR-subtracted fixed-order amplitude Mt has a Coulomb singularity which

is logarithmically divergent in the limit β → 0. This singularity is, however, subtracted

by the expanded term MOC, while a resummed description of the Coulomb interactions

is added back by the term BtG(~0; E). For this purpose, we evaluate the Schrödinger

equation (3.5) numerically [69] to obtain G(~0; E), where we include O(αs) corrections to

the QCD potential [59, 60]. Unlike the calculation in [14], we also include O(αs) corrections

to Bt as listed above.

4 Results

Our numerical results are calculated at a hadronic centre-of-mass energy of 13 TeV,

using the parton distribution functions PDF4LHC15 nlo 100 [70–73] interfaced via

LHAPDF [74], along with the corresponding value for αs. For the electromagnetic cou-

pling, we use α = 1/137.035999139. The mass of the top quark is fixed to mt = 173 GeV.

The top-quark width is set to zero in the fixed order calculation, and to Γt = 1.498 GeV

in the numerical evaluation of the Green’s function G(~0; E , µ) in accordance with ref. [14].

We use the cuts pmin
T,γ1

= 40 GeV, pmin
T,γ2

= 25 GeV and |ηγ | ≤ 2.5. No photon isolation cuts

are applied.

The factorisation and renormalisation scale uncertainties are estimated by varying

the scales µF and µR. Unless specified otherwise, the scale variation bands represent the

envelopes of a 7-point scale variation with µR,F = cR,F mγγ/2, where cR, cF ∈ {2, 1, 0.5}
and where the extreme variations (cR, cF ) = (2, 0.5) and (cR, cF ) = (0.5, 2) have been

omitted. The dependence on the scale µ introduced by renormalisation of the Green’s

function G(~r; E) in our NRQCD matched results is investigated separately.
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4.1 Validation

Fixed-order calculation. We have validated the massless NLO cross section by compar-

ison to MCFM version 9.0 [19, 75] and find agreement within the numerical uncertainties

for all scale choices. We also compared against the results shown in [20] and found agree-

ment for the central scale choice, however we found a smaller scale uncertainty band than

in the originally published version of ref. [20]. The authors of ref. [20] meanwhile have sent

us an updated version of their figures, where we find agreement.

We remark that the helicity amplitudes can also be computed via first performing

the Lorentz tensor decomposition, using the form factor projectors given in ref. [37], and

then evaluating contractions between the corresponding Lorentz structures and external

polarisation vectors in 4 dimensions using the spinor-helicity representations. This amounts

to obtaining helicity amplitudes defined in the t’Hooft-Veltman scheme [76]. We confirm

numerically that the same finite remainders are obtained for all helicity configurations at a

few chosen test points (while the unsubtracted helicity amplitudes do differ starting from

the subleading power in ε).

As a further cross check, we evaluate our amplitude with t ↔ u interchanged and

confirm that the helicity amplitudes are permuted as expected.

NRQCD amplitude. Numerical values for the coefficients AJt,{λi} at leading-order in

αs up to J = 4 are given in ref. [14]. We have used them as a check of our numerical

calculation of the Born amplitude.

We also evaluated the massive two-loop amplitude at 615 phase space points with

mt = 173 GeV in the ranges 0 < cos (θ) < 1 and 0.001 ≤ β ≤ 0.2, using the program

pySecDec [48, 49]. The amplitude can numerically be fitted to a suitable ansatz in β

and cos θ. We have compared the coefficients of terms proportional to ln (β) to the known

analytical results based on expanding equation (3.8) and find good agreement. Note that

the coefficients of terms not proportional to ln (β) receive contributions from the unknown

term A(1)(θ) and can therefore not be checked this way.

4.2 Invariant mass distribution of the diphoton system

The distribution of the invariant mass of the photon pair is shown in figure 3 for invariant

masses up to 1 TeV, where we show purely fixed order results at LO, at NLO with five

massless flavours and at NLO including massive top quark loops. The ratio plots show

the K-factor including the full quark loop content and the ratio between the full and the

five-flavour NLO cross-section. We observe that the scale uncertainties are reduced at

NLO, and that the top quark loops enhance the differential cross section for mγγ values far

beyond the top-quark pair-production threshold, asymptotically approaching the nf = 6

value [31].

In figure 4 we zoom into the threshold region, still showing fixed order results only. We

can clearly see that after the top quark pair production threshold, the full result shows a

dip and then changes slope, which is due to the fact that the two-loop amplitude contains

the exchange of a Coulomb gluon (see top left diagram of figure 1), as explained in section 3.

In ref. [14] it was suggested that this characteristic “dip-bump structure” could be used
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Figure 3. Diphoton invariant mass distribution (fixed order calculation), comparing the result

with nf = 5 to the result including massive top quark loops. The lower panels show the ratios

NLO(full)/LO(full) and NLO(full)/NLO(nf = 5). The shaded bands show the envelope of the

7-point scale variation as explained in the text. In the ratio plots, only the scale of the numerators

is varied, while the scale of the denominators is fixed to µR = µF = mγγ/2. The bars indicate the

uncertainty due to the numerical evaluation of the phase-space and loop integrals.

for a determination of the top quark mass which is free from top quark reconstruction

uncertainties, at least at the FCC where the statistical uncertainties for this process would

be very small, and the systematic uncertainty due to the finite resolution of the photon

energies and angles should be at least as good as at the LHC, where it is at the sub-percent

level [77, 78].

In figure 5 we show the mγγ-distribution in the threshold region which results from a

combination of the fixed-order NLO (QCD) calculation with the resummation of Coulomb

gluon exchanges as described in section 3.2. The scale band in this figure are produced

by varying only µ, the scale associated to the renormalisation of the Green’s function. We

observe that the dependence on the scale µ is considerably reduced at NLO compared to

the leading-order matched cross-section. The scale band at NLO is comparable to the size

of our numerical uncertainties. Further, our leading-order matched cross-section shows a

milder dependence on µ than the one presented in [14]. This is due to the inclusion of

NLO-terms in the coefficient Bt(β), which have been omitted in [14].

We do not consider the effects from a colour-octet tt̄ state because the corresponding

Green’s function is monotonically increasing in the resonance region [67] and therefore not

expected to move the position of the dip significantly.

– 14 –



J
H
E
P
0
4
(
2
0
2
0
)
1
1
5

0.2

0.3

0.4

d
σ

d
m
γ
γ

[
fb

G
eV

]
NLO (full)

NLO (nf = 5)

LO (full)

LO (nf = 5)

330 335 340 345 350 355 360

mγγ [GeV]

1.2

1.4

N
L

O
/
L

O

Figure 4. Zoom into the threshold region of the diphoton invariant mass distribution (fixed order

calculation), showing the nf = 5 and full result separately. The shaded bands indicate the scale

uncertainties, while the bars indicate uncertainties due to the numerical evaluation of the phase-

space and loop integrals. The ratio plot in the lower panel shows the ratios NLO(full)/LO(full)

(red) and NLO(nf = 5)/LO(nf = 5) (green), with the scale variation bands obtained by varying

the scale in the numerators only.

Now let us address the prospects to measure the top quark mass from the threshold

behaviour of the mγγ distribution. In ref. [14] it was argued that the characteristic dip-

bump structure does not change its location in the mγγ spectrum under scale variations,

only the overall normalisation is changing. It was also anticipated that the inclusion of

the fixed order two-loop amplitude would reduce this uncertainty. Indeed we find that the

NLO corrections reduce the scale uncertainties due to 7-point µR, µF -variations from about

20% at LO to just below the 10% level at NLO.

The treatment of the top quark width included in the NRQCD calculation could be

refined by including higher order corrections to the width. We have investigated how a

change of the width affects the height and the location of the dip-bump-structure. We

have performed the calculation with three different values for Γt: our default LO value

of Γt = 1.498 GeV, an NLO value of Γt = 1.367 GeV, obtained using the expressions of

ref. [79], and an “extreme” value of Γt = 0.5 GeV. The result is shown in figure 6. We

observe that the amplitude of the dip-bump-structure is quite sensitive to the width, with

small widths giving a larger dip-bump-amplitude. This feature might offer the possibility

to constrain the top quark width based on a template fit to the mγγ distribution, similar
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Figure 5. Zoom into the threshold region of the diphoton invariant mass distribution, comparing

results with and without NRQCD. The shaded bands indicate the scale uncertainty by varying

the scale µ by a factor of 2 around the central scale µ = 80 GeV. The renormalisation and the

factorisation scales are set to µR = µF = mγγ/2 and not varied in this plot. The bars indicate

uncertainties due to the numerical evaluation of the phase-space and loop integrals.

to what has been performed in ref. [80] for the mlb distribution. Furthermore, we found

that at LO, the dip-bump-structure is less broad for smaller top quark widths, while with

1 GeV binnings this is not visible at NLO.

Our results show that the description of the region which is critical for the top quark

mass measurement sensitively depends on the theoretical modelling. Therefore, without

calculating even higher orders, it is diffcult to assess how large the uncertainties due to the

theoretical description really are.

The experimental resolution at the LHC is estimated to be about

10%/
√
Eγ [GeV] [77, 78]. A resolution of the photon energy scale of about 0.5% or

better leads to a systematic uncertainty on mt of about 1 GeV [14]. Such an uncertainty

is not competitive with current measurements from top quark pair production [81].

Therefore such a top quark mass determination has to wait for measurements at a future

collider if at all feasible. In order to assess from the theory side whether the shape change

present in our best theoretical prediction would be sufficient to measure the top quark

mass, it would be useful to perform the current study for various top quark masses, which

would enter an experimental template fit. However such an analysis is beyond the scope

of this paper and we postpone it to future work.
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Figure 6. Effect of the top quark width on the dip-bump-structure at LO and NLO. The solid

lines correspond to Γt = 1.367 GeV, the dashed to Γt = 1.498 GeV and the dotted to Γt = 0.5 GeV.

The corresponding scale bands are also shown in the upper plot.

5 Conclusions and outlook

We have calculated the production of a photon pair in gluon fusion at order α3
s, including

massive top quark loops. This calculation, which is NLO for the gluon initiated channel, is

formally part of the N3LO corrections to the pp→ γγ process. However, the gluon channel

is important at the LHC due to the large gluon luminosity. The top quark loops have a

considerable impact on the diphoton invariant mass spectrum, at values of mγγ larger than

about 800 GeV they enhance the mγγ differential cross section by more than 50%.

The region around the top quark pair production threshold in the diphoton invariant

mass spectrum is particularly interesting. The fixed order amplitude has a divergence

starting at two loops due to Coulomb gluon exchange. We have used NRQCD methods to

resum the bound state effects in order to obtain a more reliable description of the threshold

region. Matching the resummed calculation to our fixed order NLO calculation we observe

a reduction of the renormalisation and factorisation scale uncertainties in the threshold

region by more than a factor of two, and an even more drastic reduction of the scale

uncertainty related to the renormalised NLO Green’s function.

These results are promising in view of the possibility of measuring the top quark mass

from the characteristic behaviour of the diphoton invariant mass spectrum around the top

quark pair production threshold. In ref. [14], it was found that the LO resummed result
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shows a characteristic “dip-bump” structure and the conclusion was that this would allow

a precise measurement of the top quark mass with the statistics and photon resolution

projected for the FCC, once an NLO calculation is available such that the scale uncertain-

ties are reduced. Now we indeed found that at NLO, the scale uncertainties are reduced.

Furthermore, the characteristic “dip-bump” structure at NLO remains stable when switch-

ing from a LO value to an NLO value for the top quark width. A detailed assessment of

whether this structure and the change in slope is pronounced enough for a top quark mass

measurement once all channels contributing to this observable are included deserves further

study. It also requires a detailed study of the prospective experimental uncertainties.

Furthermore, it would be interesting to investigate other top quark mass schemes, as

well as the possibility to constrain the top quark width from this process. However this is

beyond the scope of this paper and therefore we defer it to future work.
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