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cDipartimento di Fisica, Università di Bari, Via G. Amendola 173, 70126 Bari, Italy,

and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy
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Abstract. We present two new covariant and general prescriptions for averaging scalar ob-

servables on spatial regions typical of the observed sources and intersecting the past light-cone

of a given observer. One of these prescriptions is adapted to sources exactly located on a given

space-like hypersurface, the other applies instead to situations where the physical location of

the sources is characterized by the experimental “spread” of a given observational variable.

The geometrical and physical differences between the two procedures are illustrated by com-

puting the averaged energy flux received by distant sources located on (or between) constant

redshift surfaces, and by working in the context of a perturbed ΛCDM geometry. We find

significant numerical differences (of about ten percent or more, in a large range of redshift)

even limiting our model to scalar metric perturbations, and stopping our computations to

the leading non-trivial perturbative order.
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1 Introduction

The choice of a correct procedure for averaging physical observables in a curved space-time is

not only an important formal problem for any geometric theory of gravity, but also a crucial

ingredient of observational cosmology.

For instance, the possible impact of small scale inhomogeneities on the large scale dy-

namics cannot be properly addressed without using a well-posed prescription for averaging

their contribution to the cosmological equations. In addition, recent results in the context of

numerical relativity have stressed the need for a full theoretical control on the choice of the

averaging procedure [1]. Starting with the right choice is crucial for reaching the sought level

of precision (or, more ambitiously, for writing the correct numerical code) in the context of

modern cosmological simulations [2–5].

In view of the many theoretical and phenomenological implications of these problems,

several motivated proposals have been presented and discussed, during the last years, for

averaging cosmological observables on both space-like and null (hyper)surfaces [6–15] (see

also the reviews [16, 17] and references therein). In such a context, for an unambiguous and

well-posed prescription, various peculiar aspects of the problem have to be considered and

clearly specified. For instance:

• Which physical observables we are considering.

• Who is performing observations and in which state of motion.

• Which type of messengers the observer is receiving.
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• Where are the sources located when they emit the messenger.

All the above ingredients provide indeed crucial contributions to the definition of the average

integral and, in particular, to the specification of the window function selecting the appro-

priate integration domain in the given space-time manifold. Leaving details to the following

Sections, let us briefly introduce here the basic idea.

Suppose, for instance, that we want to average an observable S which is measured

through the light-like signals emitted by sources lying on a space-like hypersurface Σ(A),

defined by the condition A(x) = A0 = const (where A is a scalar field with time-like gradient).

Clearly, the light-like signals will originate from the (co-dimension 2) intersection of such

hypersurface with the past light-cone of the observer, the latter being specified by the value

of a scalar field V (x) = V0 with a light-like gradient. The corresponding average prescription

is thus defined on a two-dimensional surface (if we are in four space-time dimensions), and

is naturally characterized by an integration measure proportional to the proper area of the

above-mentioned surface. The latter can be written in general, for the intersection of two

(or more) arbitrary hypersurfaces (see Eq. (2.10) of [11]), in the form of a general-covariant

integral over the space-time manifold M4, and reduces, in the case at hand, to [11]:∫
M4

d4x
√
−g δ(V0 − V )δ(A0 −A) |∂µV ∂µA| . (1.1)

As we will discuss in the next Section, this first kind of average can still take different

explicit forms, and leads to the first class of general averaging prescriptions proposed in this

paper. To be more explicit, let us give also a very simple example concerning the observation

of standard-candle sources. If we can measure their redshift we can then consider a free-

falling observer receiving photons emitted from sources that are located on constant-redshift

surfaces. On the other hand, if we can also measure the angular size of those sources, we

can relate their luminosity to their angular sizes. In that case we can still consider a free-

falling observer, receiving photons, however, from sources that now lie on constant angular-

distance surfaces. When averaging the corresponding observational data we find that the two

setups lead to different window functions selecting different integration domains, and thus

corresponding to different averaging integrals. In principle, there is also the possibility of

receiving different messengers from the same source: the fact that such signals may travel

along different paths [18] may lead, again, to different window functions, different average

integrals and thus different averaged results, even if the properties of the source and of the

observer are the same.

There is however a different direction in which we can generalize the above prescription,

and which leads to the second class of averaging procedures proposed in this paper. This

is directly inspired by a close contact with the observational approach, and is motivated

by a (possibly realistic) experimental situation where the effective location of the sources,

differently from Eq. (1.1), is not exactly specified by a given, geometrically well-defined
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hypersurface but is controlled instead by the unavoidable range of “spread” of a physical

observational variable. As a consequence, the sources are in general confined within a thin

space-time layer bounded by two very close hypersurfaces. The differences from the first

average prescription also survive in the limit in which the data bin typical of the spread is

very small, and the thickness of such layer tends to zero. This second prescription reproduces,

in a particular case, the averaging procedure recently discussed in [13, 19].

To be more explicit let us also recall that in general, for a finite layer of thickness ∆,

the averaging prescription was also essentially given in [11] as:∫
M4

d4x
√
−g δ(V0 − V )Θ(A0 + ∆−A)Θ(A−A0)

|∂µV ∂µA|√
−∂νA∂νA

, (1.2)

where, with respect to Eq. (2.7) of [11], we have added a second Heaviside Θ-function to

restrict the integration to the layer. One could naively expect that, by going to the ∆ → 0

limit, Eq. (1.2) would go smoothly over to Eq. (1.1) but this turns out to be incorrect: the

product of the two Θ-functions does go the Dirac δ-function of (1.1), but a non-trivial extra

weight factor remains (as will be explicitly shown in Sect. 2). Essentially, this means that

the infinitesimal width of the layer is non necessarily constant all along Σ(A), effect that is

lost if we go directly to the zero-width limit.

We shall apply both prescriptions to averaging the distance-redshift relation in a per-

turbed cosmological background, considering in particular the effects of scalar metric per-

turbations on the radiation flux received from distant astrophysical sources. In that case it

will be shown that the two prescriptions give the same results only when limiting ourselves

to contributions arising from the second radial derivatives of the velocity potential (more

precisely, from the so-called effect of “redshift space distortion”), while there are differences

already to the first perturbative order when considering all leading contributions (including,

in particular, the so-called Doppler terms). This clearly demonstrates the physical difference

between the two prescriptions.

This paper is organized as follows. In Sect. 2 we define the two new averaging prescrip-

tions. In Sect. 3 we specialize them to the case of constant redshift hypersurfaces, and we

explicitly write their expressions using for the metric the Geodesic Light-Cone (GLC) gauge

[11]. In Sect. 4 we apply the two averaging prescriptions to a cosmological geometry including

scalar perturbations to the leading non-trivial order. We explicitly compute the average and

the fractional corrections of the radiation flux received from distant astrophysical sources as

a function of their redshift z, taking into account all the leading order effects such as Doppler,

lensing, and redshift space distortion. In Sect. 5 we present a further example illustrating

the possible role of non-geometric weight factors included into the integral measure of the

averaging prescriptions. Sect. 6 is devoted to our conclusive remarks. In the Appendix A

we finally provide the technical details needed for the numerical evaluation of the leading

contributions to the average integrals.
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2 General prescriptions for light-cone averaging

In this paper we are mainly interested in defining covariant average procedures that are

relevant for cosmological observations based on light-like signals. To this purpose we need to

specify the following main ingredients.

• A scalar field S(x) whose average we are interested in.

• A scalar field ρ(x) which specifies an additional weight factor associated with the av-

eraging of the variable S(x) (such as, for instance, the total matter density).

• A scalar field A(x), with timelike gradient, often conveniently associated with a chosen

free-falling observer whose four-velocity is given by nµ = −∂µA/|∂νA∂νA|1/2.

• A scalar field V (x), with lightlike gradient1, that identifies the past light-cones centered

on the observer, and spanned by the null momenta kµ = ∂µV of the photons emitted

by the sources (kµk
µ = 0).

• A scalar field B(x) which identifies the space-like (hyper)surfaces on which the sources

are located.

• Finally, a scalar field C(x) whose normalized gradient mµ = −∂µC/|∂νC∂νC|1/2 de-

fines, as better specified below, the flow lines along which we may consider the varia-

tion of the volume integral on the hypersurface identified by B through the embedding

higher-dimensional space-time.

It should be noted that the choice of the scalar fields B and C is closely related to

the geometrical background and to the type of (averaged) observations we are performing.

We may be interested, for instance, in sources lying on constant-redshift spheres if we want

to study the distance-redshift relation. In that case the natural choice is B = kµnµ, which

specifies the redshift z of the emitted photons as measured by the free-falling observer (we

recall that 1 + z = (kµnµ)/(kµnµ)o, where “o” denotes the observer position). The simplest

physical situation suggests the choice C = A, corresponding to mµ = nµ. But other choices

for B and for C are also possible if we are interested in different types of measurements

and/or we are working in different physical contexts.

Given the above ingredients, we can now introduce a covariant prescription for averaging

a physical (scalar) observable S on the two-dimensional spacelike region Σ(Bs), defined by

the intersection of the source hypersurface B = Bs with the given observer’s past light-cone,

V = Vo. Starting with the covariant four-volume integral, and following the same procedure

already illustrated in [11] (but with a more general window function), we then define the

average

〈S〉Σ(Bs) =
I(S, ρ, Vo, A,Bs, C)

I(1, ρ, Vo, A,Bs, C)
, (2.1)

1In the case of massive messenger, of course, we should consider a field V with timelike gradient.
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where

I(S, ρ, Vo, A,Bs, C) =

∫
M4

d4x
√
−g Sρnµ∇µΘ(Vo − V )mµ∇µΘ(Bs −B)

=

∫
M4

d4x
√
−g Sρ δ(Vo − V )δ(Bs −B)

∂µA∂µV

|∂αA∂αA|1/2
∂νC∂νB

|∂βC∂βC|1/2
,

(2.2)

and where we have used the properties of the Heaviside step function Θ and of the Dirac

δ-function.

Note that for ρ = 1 and A = B = C one exactly recovers the averaging prescrip-

tion adopted in [11] (see Sect. 3), which is covariant and also invariant under the general

reparametrization A → Ã(A, V ) and V → Ṽ (A, V ). The generalized prescription (2.2), on

the contrary, is covariant but invariant only under separate reparametrization of the different

scalar fields, A → Ã(A), B → B̃(B), C → C̃(C) and V → Ṽ (V ). We shall consider and

discuss possible physical choices of C and B in the following section.

Let us now consider a second (and different) covariant averaging prescription, motivated

by a – possibly more realistic – experimental situation where the physical location of the

sources is not exactly specified by the hypersurface B = Bs, but is characterized by a “spread”

of the variable B within a bin ∆Bs, with ∆Bs � R(B), where R(B) is the size of the whole

range of B. In that case we are led to define a new average for our observable S as

〈S〉∆Bs =
J(S, ρ, Vo, A,Bs,∆Bs)
J(1, ρ, Vo, A,Bs,∆Bs)

, (2.3)

where

J(S, ρ, Vo, A,Bs,∆Bs) =

∫
M4

d4x
√
−g Sρnµ∇µΘ(Vo−V )Θ(Bs+∆Bs−B)Θ(B−Bs). (2.4)

With such a new window function we are limiting the integration volume to a region

corresponding to a finite range of the scalar field B, namely to Bs < B < Bs + ∆Bs. For

∆Bs � R(B), in particular, we can expand the step function Θ(Bs + ∆Bs − B) and we

obtain, in the limit ∆Bs → 0,

Θ(B −Bs)Θ(Bs + ∆Bs −B) ' ∆Bs δ(Bs −B) +O(∆B2
s ). (2.5)

The average integral (2.4) thus reduces to

J(S, ρ, Vo, A,Bs,∆Bs) = ∆Bs

∫
M4

d4x
√
−g Sρ δ(Vo − V )δ(Bs −B)

∂µA∂µV

|∂αA∂αA|1/2
. (2.6)

Obviously, the constant factor ∆Bs drops out in the ratio defining the averaging prescription

(2.3), and we are lead to a final surface integral defined on the intersection between the

light-cone and the hypersurface B = Bs, exactly as before. As before, the integral (2.6) is

covariant and separately invariant under the scalar reparametrizations A→ Ã(A), B → B̃(B)
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and V → Ṽ (V ). However, the surface integration of Eq. (2.6) is weighted by a factor which

is different in general from that of Eq. (2.2), and the two averaging prescriptions (2.1), (2.3)

may coincide, in general, only if the expression

∂νC∂νB/ |∂µC∂µC|1/2 (2.7)

factorizes out of the integrals, and thus simplifies in the ratio defining the averaging prescrip-

tion (2.1).

Some physical differences between the two averages (2.1) and (2.3) will be illustrated in

the following sections. We shall first concentrate on the geometric ingredients of the average

integrals putting everywhere ρ = 1, and we will discuss some possible interpretations of the

scalar fields B and C working in the context of the convenient Geodesic Light-Cone (GLC)

gauge [11] (see also [20] for a pedagogical introduction to the GLC coordinates). An example

of averages including a non-trivial scalar field ρ(x) will be finally illustrated in Sect. 5 of this

paper.

3 Averages on constant-redshift surfaces in the GLC gauge

From now on we shall consider sources localized on or between constant-redshift surfaces,

z = zs (with a possible spread controlled by a redshift bin ∆z � z). Hence, we have to select

a field B which can be directly associated with the redshift z of the observed sources.

In such a context we can conveniently use the so-called GLC coordinates xµ = (τ, w, θ̃a),

a = 1, 2, where the most general cosmological metric can be parametrized in terms of the six

arbitrary function Υ, Ua, γab = γba, and the line element takes the form [11]

ds2
GLC = −2Υdwdτ + Υ2dw2 + γab

(
dθ̃a − Uadw

)(
dθ̃b − U bdw

)
. (3.1)

The corresponding inverse metric gµνGLC (that we report here for later use) is given by

gµνGLC =

 −1 −Υ−1 −U b/Υ
−Υ−1 0 ~0

−(Ua)T /Υ ~0T γab

 . (3.2)

We recall that w is a null coordinate, that photons travel along geodesics with constant w

and θ̃a, and that τ coincides with the time coordinate of the synchronous gauge [21]. In

the GLC gauge we can thus perform averages defined on the past light-cone of a free-falling

observer, according to the prescriptions of Sect. 2, by simply identifying [11] A = τ and

V = w.

In that case we obtain nµ = −δτµ, kµ = ∂µw and (using the metric 3.1) nµkµ = Υ−1.

It follows that the redshift z of a signal received at the time τo, and traveling along the

light-cone w = wo, is controlled by the ratio

1 + z =
Υo

Υ
, (3.3)
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where Υo = Υ(τo, wo, θ̃
a) and Υ = Υ(τ, wo, θ̃

a). In the so-called “temporal gauge” of the GLC

coordinates [20], where τo = wo and Υo = 1, we can thus relate the field B to the redshift

parameter z simply by choosing B = Υ−1 (similarly, when dealing with observational angles,

it would be useful to further specify the GLC gauge according to Ref. [22]). Finally, by

computing the determinant of the metric (3.1), we obtain
√
−g = Υ

√
γ where γ = det γab,

and we can rewrite the integral prescription (2.2) as follows:

I(S, wo, τ, zs, C) =

∫
M4

dτdw d2θ̃
√
γ S δ(wo − w)δ(zs − z)mν∂νΥ−1 (3.4)

where we have set ρ = 1, as anticipated. The vector field mµ(C) is left unspecified for the

moment.

The integration on dτ , on the other hand, can be transformed into an integral over the

redshift variable by using Eq. (3.3), which gives (recalling that both w and θ̃a are constant

along the relevant null geodesics)

dτ = − Υ2

∂τΥ
dz. (3.5)

Eq. (3.4) thus reduces to

I(S, wo, zs, C) =

∫
Σs

d2θ̃

[
√
γ S m

ν∂νΥ

∂τΥ

]
wo,zs

, (3.6)

where Σs is the two-dimensional surface determined by the intersection of the past light-cone

w = wo with the redshift sphere z = zs, and all the integrated functions are to be evaluated

at w = wo, z = zs.

We have still to specify C, in order to explicitly compute the vector field mµ =

∂µC/|∂νC∂νC|1/2. Let us consider here two motivated possibilities.

• A first possibility is C = A = τ . In that case sources and observer evolve through the

embedding spacetime along flow lines generated by the same (timelike) tangent vector

field, mµ = nµ ≡ −gµτGLC . Using the metric (3.2) the integral (3.6) thus becomes

I(S, wo, zs, τ) =

∫
Σs

d2θ̃

[
√
γ S

(
1 +

1

Υ

∂wΥ

∂τΥ
+
Ua

Υ

∂aΥ

∂τΥ

)]
wo,zs

. (3.7)

• A second possibility is C = B = 1 + z. In that case the flow lines describing the

evolution of the constant-redshift hypersurfaces are generated by the gradients of the

redshift field itself, i.e. mµ = ∂µΥ−1/
∣∣∂νΥ−1∂νΥ−1

∣∣1/2. The integral (3.6) becomes

I(S, wo, zs, z) =

∫
Σs

d2θ̃

[
√
γ S

∣∣gµνGLC ∂µΥ∂νΥ
∣∣1/2

∂τΥ

]
wo,zs

, (3.8)

and, using the metric (3.2), it can be explicitly rewritten as

I(S, wo, zs, z) =

∫
Σs

d2θ̃

[
√
γ S

∣∣∣∣1 +
2

Υ

∂wΥ

∂τΥ
+

2Ua

Υ

∂aΥ

∂τΥ
− γab∂aΥ∂bΥ

(∂τΥ)2

∣∣∣∣1/2
]
wo,zs

.

(3.9)
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Clearly, the two averages corresponding to Eqs. (3.7) and (3.9) are in general different

at the level of exact integral prescriptions; however, they both give the same result for a

perturbed cosmological metric, at the first perturbative order. In fact, by expanding the

small perturbations of the cosmological geometry around the zeroth-order (homogeneous,

isotropic) background, one finds non-vanishing contributions to ∂wΥ, ∂aΥ and Ua only by

including perturbations to linear (or higher) order (see Sect. 4); on the contrary, ∂τΥ is non-

vanishing already on the background (see e.g. [11] for the explicit expression of the FLRW

metric in GLC coordinates). Hence, Eqs. (3.7) and (3.9) lead, to first order, to the same

approximate integral (see also Sect. 4):∫
Σs

d2θ̃

[
√
γ S

(
1 +

1

Υ

∂wΥ

∂τΥ

)]
wo,zs

+ · · · (3.10)

It may be important to note, at this point, that if we are working at the first perturbative

order then the average integral of Eq. (2.2) is always independent on the field C, for any

possible choice of of the scalar fields A, B, C specifying our averaging prescription. In fact,

starting with the general form of Eq. (2.2) (with ρ = 1), and expanding as before the

geometry described by the metric (3.1), we obtain, to first order,

I(S, ρ, Vo, A,Bs, C) =

∫
M4

d4x
√
−g S nµ∇µΘ(Vo − V )mµ∇µΘ(Bs −B)

=

∫
Σs

d2θ̃

[
√
γ S

(
1− 1

Υ

∂wA

∂τA
+

1

Υ

∂wB

∂τB

)]
wo,Bs

+ · · · (3.11)

where ΣS is now the two-dimensional surface where the given scalar field B takes constant

values. Such a first-order result holds quite independently of the choice of the scalar field C.

Eq.(3.10), in particular, is immediately recovered by identifying A with τ and B with the

redshift parameter.

It is also interesting to compare the above results in Eqs. (3.10) and (3.11) with the

much simpler surface integral ∫
Σs

d2θ̃ (
√
γ S)wo,zs

, (3.12)

obtained in the context of a similar prescription for light-cone averages, proposed in [11] and

studied in previous papers [21, 23–26]. The result (3.12) can be exactly reproduced (even

if B is not identified with the redshift parameter) within the more general approach of this

paper (i.e., starting from Eq. (2.2)) by choosing ρ = 1, V = w and A = B = C. Indeed, in

that case, none of the additional terms depending on the gradients of Υ (and present in both

Eqs. (3.7) and (3.9)) can be generated, and Eq. (2.2) immediately leads to the pure (and

invariant under general reparametrizations) surface integral (3.12).

Note that the Eq. (3.12) represents an exact, non-perturbative result once one assumes

A = B = C. On the contrary, in order to recover the same result at the first perturbative

order, the choice A = B is already enough (see Eq. (3.11)). See also Fig. 1 for a simple

graphical illustration of different possible choices of the averaging scalar fields A, B and C.
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Figure 1. We consider a constant-time (black curve) and a constant-redshift (red curve) hypersurface.

The arrows represent the respective variation fields at a given time or redshift. When specifying an

averaging prescription, we have to choose from which hypersurface we are starting, and along which

field we are moving. The case B = 1 + z, C = A = τ discussed in this section (see Eq. (3.7)) refers

to constant-redshift hypersurfaces with a flow driven by time gradients (red curve and black arrows,

not shown in the picture). The case C = B = 1 + z (see Eq. (3.9)) refers instead to constant-redshift

hypersurfaces connected by redshift gradients (red curve and red arrows). The black curve with

black arrows, on the contrary, represents constant-time hypersurfaces connected by time gradients,

i.e. C = B = τ .

In order to conclude this section, let us also present the explicit form assumed in the

GLC gauge by the integral (2.6), defining the light-cone average (2.3) for sources characterized

by an observational bin ∆Bs.

When applying the prescription (2.6) there is no ambiguity due to the choice of the C

field, and we can follow exactly the same procedure adopted for the integral (2.2). We thus

identify V = w, A = τ , B = Υ−1, and the integral (2.6) (with ρ = 1) becomes

J(S, wo, zs,∆zs) = −∆zs

∫
Σs

d2θ̃

[
√
γ S Υ2

∂τΥ

]
wo,zs

. (3.13)

Again the result in Eq. (3.13) is different in general from the former prescription (3.12), and

different as well from the generalized prescriptions (3.7) and (3.9).

To make contact with previous papers let us note that the above result (3.13), with the

weight ρ included and identified with the density ρs of the sources, may exactly coincide (in

an appropriate limit) with the so-called number-count average used in [13, 19]. Consider in

particular the following integral measure [19]:

ρs∆z d
2
A

(1 + z)H||
dΩ, (3.14)

where all quantities are evaluated on the past light-cone and at constant redshift zs (see

Eqs. (2.11) and (2.12) of [19]). Here ∆z is the (small) finite bin of redshift data, ρs is the

related volume density of sources, dA their angular distance and dΩ the corresponding angular

integration measure. Finally, H|| is the local longitudinal expansion parameter defined in

general by H|| = (1 + z)−2kµkν∇µuν , where kµ is the (usual) photon momentum, and uµ the

local velocity of the matter sources.
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Let us move now to the coordinates of the GLC gauge, where [25] d2
A dΩ =

√
γ d2θ̃ (see

also [27] for an explicit expression of the number-count in the GLC metric). Also, let us

consider the particular case in which the velocity field uµ appearing in the definition of H||

may be chosen to be the same as (or proportional to) the velocity nµ of our class of free-falling

observers. In that case, and in the GLC gauge where uµ = nµ = −δτµ and kµ = gµw we then

obtain, using Eq. (3.3):

H|| = −
1

Υ2
o

∂τΥ

Υ
. (3.15)

Using as before the temporal gauge Υo = 1, the expression (3.14) thus reduces to

− d2θ̃

[
∆z ρs

√
γ

Υ2

∂τΥ

]
wo,zs

, (3.16)

which clearly coincides with our averaging prescription (3.13), for any given observable S,

provided we include the additional weight factor ρs (see Sect. 5 for an explicit numerical

example).

It should be stressed, finally, that all the new averages based on the integrals (3.7),

(3.9) and (3.13) may coincide with the old prescription of Ref. [11], based on Eq. (3.12),

only if we are working in a homogeneous and isotropic FLRW metric background, but for

a more general perturbed geometry they are all different, in principle, already at the first

perturbative order. Possible observable consequences of the differences among the various

averaging prescriptions will be illustrated in the following sections.

4 Comparing different averaging prescriptions

In this section we will compare the averaging prescriptions based on the integrals (3.10),

(3.12) and (3.13) in a cosmological geometry which includes scalar metric perturbations.

As will be explained below (see in particular the discussion following Eq. (4.9)), for the

computations to be performed in this paper, concerning the geometric contributions to the

integration measure appearing in the various averaging prescriptions, it will be enough to

limit ourselves to the first perturbative order. Assuming the absence of anisotropic stresses

we can parametrize the scalar perturbations with a single Bardeen potential ψ, so that the

linearly perturbed metric in the Poisson gauge, using polar angles (θ, φ) and conformal time

η, takes the form

ds2
PG = a2(η)

[
− (1 + 2ψ) dη2 + (1− 2ψ)

(
dr2 + r2dθ2 + r2 sin2 θdφ2

)]
. (4.1)

For an explicit computation of the average integrals (3.10)–(3.13) we need to express the

perturbed geometry (4.1) in the GLG gauge. To this purpose, following [26], it is convenient

to introduce the coordinate system yµ = (η, η+, θ, φ), where η+ = r + η, so that the metric

(4.1) becomes

ds2
PG = gPGµν dy

µdyν ≡ a2(η)
[
−4ψ dη2 + (1− 2ψ)(dη+2 − 2dηdη+)

− (1− 2ψ) (η+ − η)2
(
dθ2 + sin2 θdφ2

)]
. (4.2)
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Considering the coordinate transformation xµ → yµ(x) (where xµ = (τ, w, θ̃a) are GLC

coordinates) we have

gµνPG(y) =
∂yµ

∂xα
∂yν

∂xβ
gαβGLC(x), (4.3)

where gαβGLC is the metric (3.2), while gµνPG is the inverse of the metric tensor (4.2).

We have to compute, in particular, the three different integration measures appearing

in Eqs. (3.10)–(3.13), including in the geometry (expressed in GLC form) all contributions

arising from the Bardeen potential ψ, up to first order. Following the procedure (and the

results) of previous papers (see in particular [26], where similar computations have been

performed by consistently including all second order perturbative contributions) we thus

expand the coordinate transformation as yµ(x) = yµ(0) +yµ(1) + · · · , and linearize the perturbed

GLC metric by defining Υ = Υ(0)+Υ(1), Ua = Ua(0)+U
a
(1), γab = γ

(0)
ab +γ

(1)
ab . The (unperturbed)

background quantities are given by (see e.g. [11, 26]):

η(0)(τ) =

∫ τ

τin

dτ ′

a(τ ′)
, η+ (0) = w, θa(0) = θ̃a,

Υ(0) = a(τ), Ua(0) = 0, γ
(0)
ab = a2r(τ, w)2diag(1, sin2 θ̃1). (4.4)

Here r(τ, w) = w− η(0)(τ), and τin corresponds to an early enough time when perturbations

were negligible.

The integral measure (3.12), in particular, is completely specified by the element of

proper area d2µ = d2θ̃| det γab|1/2, whose explicit perturbed expression has already been

computed in [21, 23–25]. Hence, for the new averaging prescriptions of this paper, we only

need to take into account the corrections to the above measure as they appear under the two

integrals (3.10) and (3.13).

By exploiting the results of a detailed computations of the various components of Eq.

(4.3), presented in [26], we obtain in particular that the measure correction of Eq. (3.10) can

be written to first order as follows:(
1 +

1

Υ

∂wΥ

∂τΥ

)
wo,zs

= 1− v‖s +
1

Hs

[
∂rv‖s + ∂rψs + 2∂ηψs + 2

∫ ηo

ηs

dη ∂2
ηψ (η, ηo − η, θa)

]
+O(ψ2), (4.5)

where the subscript s denotes that all the variables are evaluated at the source coordinates

ηs, rs. Here H = a′/a (the prime denotes differentiation with respect to η), and v‖s is the

so-called velocity perturbation (or Doppler term), projected along the (unperturbed) radial

direction connecting source and observer. This is given by

v‖s = −∂rη(1)
s , η(1)

s = −
∫ ηs

ηin

dη
a(η)

a(ηs)
ψ(η, rs, θ

a). (4.6)

Following [26] (see also [18]) we have neglected in Eq. (4.5) perturbative contributions from

the peculiar velocity and from the gravitational (Bardeen) potential evaluated at the observer
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position. Indeed, the first type of terms can always be removed by going to the CMB frame.

The second type of terms is important to regularize the formal infrared divergence of super-

horizon fluctuations (as shown in [28] for the variance of the luminosity distance-redshift

relation). In this work this problem is avoided by imposing a physical infrared cutoff at the

horizon scale (see below, Eq. (4.24)), which leaves us with negligible contributions at the

observer positions.

Similarly, and with the same assumptions as before about the perturbative contributions

evaluated at the observer position, the measure correction of Eq. (3.13) can be written to

first order as follows:(
Υ2

∂τΥ

)
wo,zs

=
a2
s

Hs

[
1 + ψs +

1

Hs
(
∂rv‖s + ∂ηψs

)
−

−
(

1− H
′
s

H2
s

)(
v‖s + ψs + 2

∫ ηo

ηs

dη ∂ηψ (η, ηo − η, θa)
)]

+O(ψ2). (4.7)

This last result is in perfect agreement with the evaluation independently performed in [27]

with a different approach. Note that the homogeneous term a2/H, multiplying the square

brackets in the above equation, factorizes out of the integral (3.13) and obviously drops

out in the ratio (2.3) defining the final averaging prescription. The physical differences

from the previous measure (4.5) are thus entirely due to the contribution of the first-order

perturbations.

We are now in the position of discussing the physical differences among the various

averaging procedures, induced by their different geometric ingredients.

4.1 Example: fractional corrections to the flux average

The averaging prescription (3.12) has been applied in previous papers [21, 24, 25] to estimate

the geometric backreaction due to metric perturbations, arising in the computation of the

averaged luminosity distance 〈dL〉(z). Working with the associated observation variable,

namely the received flux Φ(z) ∼ d−2
L (z), we have computed in previous papers [21, 25] the

ensemble (or statistical) average (denoted by an overbar) of the geometric light-cone average

(denoted by brackets) of the flux: namely, the quantity 〈Φ〉. Such results for the averaged

flux may also represent a starting point for the computation of the averaged flux drift effect

(see e.g. [29]), which we are planning to study in a future paper.

Let us recall, in this respect, that by working in a more general geometric context

perturbed up to second order [21], by expanding the flux variable as Φ ' ΦFLRW (1 +

δΦ(1) + δΦ(2) + · · · ), and using the “old” integral measure of Eq. (3.12), expanded as d2µ '
d2µ(0)(1+δµ(1) +δµ(2) + · · · ), the result for 〈Φ〉 can be written, to second perturbative order,

as follows

〈Φ〉(z) = ΦFLRW [1 + fΦ(z)] . (4.8)
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Here ΦFLRW is the unperturbed value of Φ computed in the FLRW metric background, and

the corresponding fractional correction fΦ(z) is given by [21]

fΦ(z) = 〈δΦ(2)〉0 + 〈δµ(1)δΦ(1)〉0 − 〈δµ(1)〉0〈δΦ(1)〉0 , (4.9)

where 〈· · · 〉0 denotes standard angular average performed with respect to the unperturbed

measure d2µ(0) of the FLRW geometry, and we have used the fact that ensemble averages

do not factorize, i.e. AB 6= A B. As clearly stressed by the above result, it turns out

that, even working at the second perturbative order, there are contributions to the fractional

correction fΦ from the second-order perturbations of the averaged variable, δΦ(2), but not of

the integration measure [21] (namely, no contributions from δµ(2)). Hence, for the purpose

of this paper of comparing the possible physical differences due to different definitions of the

average integral, the perturbed results for the integration measures consistently computed

up to first order, and reported in Eqs. (4.5) and (4.7), will be enough (as we have anticipated

at the beginning of Sect. 4). See also Appendix A for more details on the ensemble average

procedure applied to a stochastic background of scalar perturbations.

The above result for fΦ(z), computed with the averaging prescription of Eq. (3.12), has

already been plotted in [24, 25] for a perturbed CDM and ΛCDM cosmological geometry,

including also the contributions of perturbations evaluated at the observer position2. Let us

now compute the same fractional correction, 〈Φ/ΦFLRW 〉 − 1, in the same geometry, using

however for the light-cone average the two new prescriptions (2.1) and (2.3) proposed in this

paper, and specified in particular by the integration measures of Eqs. (3.10) and (3.13).

The perturbative expansion of the flux variable is the same as before, and the only dif-

ference is an additional, first-order contribution of the perturbed geometry to the generalized

integration measures, which now can be expanded as follows:

d2µ ' d2µ(0)(1 + δµ(1) + δm(1) + · · · ), (4.10)

where δµ(1) is the same term appearing in Eq. (4.9), arising from the perturbations of the

measure (3.12). The new terms δm(1), coming from the first-order perturbations of the

modified measures, is given by our previous results (4.5) and (4.7). In particular, for the

averaging prescription (2.1) we have, from Eq. (4.5):

δm
(1)
Σ(Bs) = −v‖s +

1

Hs

[
∂rv‖s + ∂rψs + 2∂ηψs + 2

∫ ηo

ηs

dη ∂2
ηψ (η, ηo − η, θa)

]
. (4.11)

For the averaging prescription (2.3) we have, from Eq. (4.7):

δm
(1)
∆Bs

= ψs +
1

Hs
(
∂rv‖s + ∂ηψs

)
−
(

1− H
′
s

H2
s

)[
v‖s + ψs + 2

∫ ηo

ηs

dη ∂ηψ (η, ηo − η, θa)
]
.

(4.12)

2In this paper we will not include such contributions in the expression for fΦ(z), in order to be consistent

with the assumption made in Eqs. (4.5) and (4.7).
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The new fractional corrections for the averaged flux variable, computed according to the

standard procedure illustrated in [21], but using the averaging prescriptions (3.10), (3.13) –

namely, using the generalized measure perturbations of Eq. (4.10) – can be finally expressed

as follows:

〈Φ/ΦFLRW 〉Σ(Bs) − 1 = fΦ(z) + bΣ(Bs)(z), (4.13)

for the light-cone average (3.10), and

〈Φ/ΦFLRW 〉∆Bs
− 1 = fΦ(z) + b∆Bs(z), (4.14)

for the light-cone average (3.13). We have used for fΦ(z) the previous result given in Eq.

(4.9), and we have defined

bΣ(Bs) ≡ 〈δm
(1)
Σ(Bs)δΦ

(1)〉0 − 〈δm(1)
Σ(Bs)〉0〈δΦ(1)〉0 , (4.15)

b∆Bs ≡ 〈δm
(1)
∆Bs

δΦ(1)〉0 − 〈δm(1)
∆Bs
〉0〈δΦ(1)〉0 , (4.16)

using the measure perturbations δm(1) of Eqs. (4.11) and (4.12).

We are now in the position of comparing the different fractional corrections of Eqs.

(4.9), (4.13) and (4.14), and to discuss their possible physical differences induced by the

different embedding in the external geometry of the various averaging prescriptions.

What we need, first of all, is the explicit expression of δΦ(1), to be combined with

δm
(1)
Σ(Bs) and δm

(1)
∆Bs

in the above average integrals. Following the general results already

reported in [23, 25], and including all first order contributions but dropping, as before, the

terms evaluated at the observer position, we can write δΦ(1) as follows[
δΦ(1)

]
wo,zs

= 2κs + 2 Ξs

[
v‖ s + 2

∫ ηo

ηs

dη ∂ηψ(η, ηo − η, θa)
]

+ 2 (1 + Ξs)ψs

− 4

ηo − ηs

∫ ηo

ηs

dη ψ(η, ηo − η, θa) , (4.17)

where we have defined Ξs = 1− 1
Hs(ηo−ηs) and we have introduced the so-called lensing term

κs, defined by

κs =
1

ηo − ηs

∫ ηo

ηs

dη
η − ηs
ηo − η

∆2ψ(η, ηo − η, θa), (4.18)

with ∆2 the standard Laplacian operator on the unit 2-sphere, ∆2 ≡ ∂2
θ+cot θ ∂θ+(sin θ)−2∂2

φ.

In order to compute the averaged expressions (4.15) and (4.16) we have now to express

the Bardeen potential as an integral in Fourier space over its spectral components ψk(η), so

that we can apply the ensemble-average conditions [21, 25] (see Appendix A), assuming that

our stochastic background of scalar perturbations is statistically homogeneous and isotropic.

We obtain in this way that 〈κs〉0 = 0 and 〈v‖ s ∂rv‖ s〉0 = 0. Limiting our computation to the

observationally relevant range of values 0 < z < 5, and including all terms which may give

dominant contributions in that redshift range, we find that we can neglect all those terms not
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containing at least two spacelike gradients (see Appendix A for more details on the relative

importance of the various terms induced by the perturbed geometry). The new geometric

contributions to the fractional correction (i.e. bΣ(Bs) and b∆Bs) can thus be analytically

expressed, to leading order, as follows:

bΣ(Bs) =
2

Hs
〈∂rv‖ sκs〉0 − 2 Ξs 〈v2

‖ s〉0 − 2〈v‖ sκs〉0 +
2

Hs
Ξs 〈∂rψs v‖ s〉0 +

2

Hs
〈∂rψs κs〉0

+
2

Hs
(1 + Ξs) 〈∂rv‖ s ψs〉0 −

2

Hs
Ξs 〈∂rv‖ s〉0〈v‖ s〉0 + 2 Ξs 〈v‖ s〉20

− 2

Hs
Ξs 〈∂rψs〉0〈v‖ s〉0 , (4.19)

and

b∆Bs =
2

Hs
〈∂rv‖ sκs〉0 − 2 Ξs

(
1− H

′
s

H2
s

)
〈v2
‖ s〉0 − 2

(
1− H

′
s

H2
s

)
〈v‖ sκs〉0

+
2

Hs
(1 + Ξs) 〈∂rv‖ s ψs〉0 −

2

Hs
Ξs 〈∂rv‖ s〉0〈v‖ s〉0

+2 Ξs

(
1− H

′
s

H2
s

)
〈v‖ s〉20 . (4.20)

See Appendix A for the explicit form and a discussion of the other, non-vanishing but non-

leading, first-order contributions to bΣ(Bs) and b∆Bs which are not explicitly included into

the above equations. In the Appendix we also provide a single compact form to express both

Eqs. (4.19) and (4.20).

All the averaged quantities appearing in the above equations are explicitly given in

Appendix A in terms of integrals performed over the (dimensionless) power spectrum of

scalar perturbations, PΨ(k, η), defined by

PΨ(k, η) =
k3

2π2
|ψk(η)|2 ≡

[
g(η)

g(ηo)

]2

PΨ(k, ηo), (4.21)

where the function g(η) controls the time evolution of the Bardeen potential as ψ(η, x) =[
g(η)/g(ηo)

]
ψo(x).

The two results (4.19) and (4.20) are very similar. In particular – as anticipated in the

Introduction – it may be noted that the above contributions to the fractional correction of the

flux, induced by two different averaging procedures, are exactly identical (at least, at the first

perturbative order) provided we limit ourselves to considering the effects of redshift space

distortion, i.e. to considering only the contribution of those terms containing the average

of ∂rv‖ s. In addition (as shown in Appendix A), all the averaged contributions of Eq.

(4.19) containing ∂rψs (and apparently absent from Eq. (4.20)) can be replaced by similar

contributions expressed in terms of v‖ s, and also present in Eq. (4.20). However, as will be

shown in the Appendix where we compare the numerical plots of all leading contributions,

the effects of all the additional terms (besides redshift space distortion) present in Eqs. (4.19)

and (4.20) are also non-negligible (at least in the redshift range that we are considering).
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Figure 2. We plot the absolute value of the fractional correction fΦ is compared with the absolute

values of the geometric contributions bΣ(Bs) and b∆Bs
of Eqs. (4.15) and (4.16), induced by the two

averaging prescriptions suggested in this paper. Dashed curves correspond to negative values, solid

curves to positive values. The plots have been numerically obtained for a ΛCDM model described by

the parameters of Eqs. (4.22)–(4.26).

As a consequence, there are significant differences (in both absolute value and sign, and

in an appropriate range of redshift) between the two results (4.19) and (4.20). In order to

display such differences, as well as the differences with the old result for fΦ, the absolute value

of the old and new contributions to the fractional correction of the flux has been numerically

computed and plotted as a function of z in Figs. 2 and 3. We have assumed, in particular,

a model of ΛCDM geometry with a spectrum of scalar perturbations parametrized as in Eq.

(4.21), where

PΨ(k, ηo) = A

(
k

k0

)ns−1 9

25

[
g(ηo)

g∞

]2

T 2

(
k

13.41 keq

)
, (4.22)

and where T (k) is the so-called transfer function which takes into account the sub-horizon

evolution of modes re-entering the horizon during the radiation era. We have expressed T (k)

in the Hu and Eisenstein [30] parametrization, given by:

T (q) =
L0(q)

L0(q) + q2C0(q)
, L0(q) = log(2 e+ 1.8 q), C0(q) = 14.2 +

731

1 + 62.5 q
.

(4.23)

We have integrated over the spectral distribution of frequency modes using the following

infraredd (IR) and ultraviolet (UV) cutoff values:

kIR = 3× 10−4 hMpc−1, kUV = 0.1× hMpc−1. (4.24)

They roughly correspond to the present horizon scale and to the limiting scale of the linear

spectral regime, respectively. Finally, we have used for the function g(η) the standard ap-

proximated expression given in terms of the current values of the critical density parameters
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Ωm0 and ΩΛ (see e.g. [31]), namely

g(η) =
5

2
g∞

Ωm

Ω
4/7
m − ΩΛ +

(
1 + Ωm

2

) (
1 + ΩΛ

70

) , Ωm =
Ωm0(1 + z)3

Ωm0(1 + z)3 + ΩΛ 0
, (4.25)

where Ωm + ΩΛ = Ωm0 + ΩΛ0 = 1, and where g∞ is a normalization constant fixed in such

that g(ηo) = 1. The numerical values of the parameters appearing in Eqs. (4.22), (4.23) and

(4.25) have been chosen, according to recent cosmological observations [32], as follows:

A = 2.2× 10−9, ns = 0.96, k0 = 0.05 Mpc−1,

keq = 0.07h2 Ωm0, h = 0.678, Ωm0 = 0.315 . (4.26)
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Figure 3. We plot the absolute value of the three fractional corrections to the averaged flux 〈Φ〉(z)
defined by Eqs. (4.8), (4.13) and (4.14), and associated, respectively, with the averaging prescriptions

(3.12), (3.10) and (3.13). Dashed curves correspond to negative values, solid curves to positive values.

The parameters of the considered ΛCDM model are specified in Eqs. (4.22)–(4.26).

As shown in particular in Fig. 3, the differences among the three results for the fractional

correction computed with the different averaging prescriptions of this paper are rather small

at small redshift values (at least for the example of the flux variable that we have considered).

Such differences tend to be enhanced at higher redshifts, in particular around the redshift

window 2 <∼ z <∼ 3, where it is clear that there are different results for the average of the

flux variable. The numerical values of the fractional correction to the observed flux, however,

tend to be very small ( <∼ 10−5 − 10−6) in that regime.

5 Including non-geometric weight factors in the averaging prescription

Let us finally provide an explicit example illustrating the possible role of a (non-trivial) non-

geometric field ρ(x), when included into the general averaging prescription according to Eqs.

(2.1) and (2.3).
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We can think of such a situation as if we were working with a generalized integral

measure, d2µ → ρ d2µ. Hence, following the procedure of Sect. 4.1 and expanding ρ up to

first order, ρ ' ρ(0)
(
1 + δρ(1)

)
, we simply obtain a new contribution nΦ(z) to the fractional

correction of the flux, to be linearly added to Eqs. (4.13) and (4.14) as

〈Φ/ΦFLRW 〉X − 1 = fΦ(z) + bX(z) + nΦ(z) , (5.1)

where we define

nΦ(z) ≡ 〈δρ(1) δΦ(1)〉0 − 〈δρ(1)〉0〈δΦ(1)〉0 , (5.2)

and we have used the symbol X to denote either the averaging prescription labelled by Σ(Bs)

or the one labelled by ∆Bs . Note that the contribution of ρ to the fractional correction,

when computed to the lowest perturbative order, is completely independent on which type

of prescription we are adopting for the geometric average.

We can now introduce a specific choice for the field ρ(x). Let us adopt here for ρ the

density of matter sources, as in [19, 27], so that for the case of averages over a given redshift

bin ∆z we recover the average over the number density of the sources.

The first-order contributions to the perturbations of the matter density, in the geometry

described by the metric (4.1), are well known [33–35]: including all terms (but dropping, as

before, those evaluated at the observer position) we can write3[
δρ(1)

]
wo,zs

= 3v‖ s + 3ψs + (δρm)s + 6

∫ ηo

ηs

dη ∂ηψ(η, ηo − η, θ). (5.3)

On the other hand, the linear fluctuations of the matter density, δρm, are related as usual to

the Bardeen potential ψ by the Poisson-like equation, so that

(δρm)s =
2

3

∇2ψs
H2
s

, (5.4)

where ∇2 is the standard 3-dimensional Laplacian operator. By inserting the perturbations

(5.3) and (4.17) into the averages of Eq. (5.2) we can then apply exactly the same procedure

used in Sect. 4.1 to compute bΣ(Bs) and b∆Bs . Neglecting, as before, terms without at least

two spacelike gradients, as well as terms containing time derivatives and time integrals of the

Bardeen potential (see the Appendix), and using the identities 〈κs〉0 = 0, 〈δρmsv‖ s〉0 = 0,

we obtain

nΦ(z) = 6 Ξs 〈v2
‖ s〉0 + 6 〈v‖ sκs〉0 + 2 〈δρmsκs〉0 + 2 (1 + Ξs) 〈δρms ψs〉0

−6 Ξs 〈v‖ s〉20 − 2 Ξs 〈δρms〉0〈v‖ s〉0. (5.5)

The relative importance of such a contribution with respect to the contributions fΦ(z)

and bX(z), already discussed in the previous section, is illustrated in Fig. 4. As shown by

3We have assumed in Eq. (5.3) an evolution-bias parameter bevo = −3, and a scale-dependent bias

bscale = 1 (see e.g. [33–35]). The parameter bscale multiplies δρm, while bevo multiplies all the other terms of

Eq. (5.3). See also [35] for the possible impact of other systematics.
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Figure 4. We plot the absolute value of the fractional corrections to the flux obtained by including

the matter density as a non-geometric weight factor in the average integrals. The various possible

components are defined in Eq. (5.1). Dashed curves correspond to negative values, solid curves to

positive values. The numerical parameters used for the plots are those specified in Eqs. (4.22)–(4.26).

the picture when compared with Fig. 3, including the matter density as physical weight

factor in the geometric averaging prescriptions seems to have relevant effects only at large

enough redshifts, z >∼ 1. In that regime, the presence of the weight ρ seems to “compensate”

the geometric contributions of the new averages proposed in this paper, in such a way as to

approach the result fΦ computed with our original proposal of light-cone average [11].

A similar integral prescription for averaging the flux in the small redshift-bin limit, with

the matter density ρ as non geometrical weight factor, has been presented also in [19] (see

also the discussion of Sect. 3). The numerical results, however, are different, for two reasons.

First of all we have included here the contribution of all interference terms (like the last two

in Eq. (4.20) and the last one in Eq. (5.2)), which have been not taken into account in [19].

Second, the matter fluctuations have been evaluated here through the Poisson equation (5.4),

whereas in [19] they have been approximated by using a different method, which may lead

to a numerical underestimation of the related effects, thus possibly explaining the differences

between our results and the ones plotted in [19] at higher redshifts4.

As a final remark, we emphasize that the different prescriptions we have proposed can be

tested by numerical N-body codes such as gevolution [2]. In particular, among all the possible

choices of S as a power of the luminosity distance dL, only the average of flux (namely d−2
L )

is maximally sensitive in the redshift range z >∼ 0.1 to the measure adopted in the average

(see also [25, 26]). This is because the averages we have proposed contain a
√
γ (which is

nothing but d2
L) in the measure. Therefore, the dominant lensing corrections cancel in the

second-order expression of the flux [24–26] making this case more sensitive to the adopted

4We thank Pierre Fleury for discussions about this point.
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prescription. Interestingly, the recent results from gevolution do average different power laws

of the luminosity distance (see Fig. 1 of [1]). Unfortunately, the plot shown there for d−2
L

does not look precise enough for a precise comparison with our analytical results.

6 Conclusion

In this paper we have presented and formally defined two general and covariant averaging

prescriptions, adapted to cosmological observations based on light-like signals.

The first prescription applies to sources exactly localized on a given space-like hyper-

surface, and may describe a general physical situation where the flow lines along which we

consider the variation of the average integral do not necessarily coincide with the world lines

of the chosen observers. Also, the location of the sources does not necessarily coincide with

the hypersurfaces normal to the observer world line. The second prescription applies to

sources whose localization is controlled by the physical “spread” of a given observational

variable, and can in general be confined within a thin space-time layer bounded by two very

close hypersurfaces. We have explicitly written the two different average integrals for sources

located on, or between, constant redshift surfaces, and for a general cosmological geometry

conveniently described by an exact metric in the GLC gauge.

In order to illustrate the possible differences among the two types of averaging we have

discussed an (important) physical example. We have computed the ensemble average of the

geometric light-cone average of the received radiation flux, 〈Φ〉, as a function of the redshift

of the emitting sources. We have adopted a simple model of ΛCDM geometry including

scalar metric perturbations to the leading, non trivial order, without anisotropic stresses.

In that case, the corresponding fractional corrections (namely, the differences between the

averaged results for 〈Φ〉 and the value Φ of the flux computed in the homogeneous FLRW

background geometry) are fully controlled by the Bardeen potential ψ, its gradients and its

time integrals.

Including all leading contributions we have found that there are important differences

already to the first perturbative order among the two averaging prescriptions, due to the

different inclusion of the geometry into the integration measures. Such differences are ana-

lytically controlled by the factor ΓXs (see the Appendix, in particular Eq. (A.15)), which

directly depends on the background geometry. From the numerical point of view it can be

shown, by plotting the ratio of the results provided by the two averaging prescriptions, that

such differences – at least for the examples considered in this paper – are of the order of ten

percent or more in a large range of redshift values, while they tend to disappear in the limit

of very small redshifts (z < 0.1).

We have also numerically evaluated the possible impact of including into the average

prescriptions, as a physical non-geometric weight factor, the total density ρ of the matter

sources. By computing again the fractional corrections of the received flux we have found

that the presence of ρ seems to have relevant effects (as before) only at large enough redshift
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values, z >∼ 1: in that regime, it seems to compensate the effects of the contributions arising

from the perturbations of the geometric part of the integration measure (see Fig. 4). Fi-

nally, we have discussed the differences between the numerical results obtained in this paper

by including ρ into the average integral, and previous results obtained with an equivalent

averaging procedure, but applied with different approximation methods [19].

In conclusion, we believe that the appropriate choice and the correct application of a

well-posed averaging prescription is in principle of crucial importance for the correct compar-

ison of theoretical cosmological models with increasingly precise current (and forthcoming)

observational data.
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A Appendix. Light-cone and ensemble averages of the flux perturbations

Let us consider a stochastic background of metric perturbations, described by the scalar field

ψ(x). Assuming that the perturbations are statistically homogeneous and isotropic, ψ can

be decomposed in Fourier space as

ψ(η, ~x) =
1

(2π)3/2

∫
d3k E(~k)ψk(η)ei

~k·~x, (A.1)

where the mode ψk(η) is only dependent on k = |~k|, and E(~k) is a unit random variable

satisfying E∗(~k) = E(−~k) as well as the following ensemble-average conditions:

E(~k) = 0, E(~k)E(~k′) = δ
(
~k + ~k′

)
. (A.2)
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We can then decompose the space like gradients of ψ, appearing in Eqs. (4.11), (4.12) and

(4.17), as follows (see also [21, 25]):

∂rψ (η, ~x) =
1

(2π)3/2

∫
d3k E(~k)ψk (η) ik cos θ ei~x·

~k,

∂2
rψ (η, ~x) =

1

(2π)3/2

∫
d3k E(~k)ψk (η) (ik cos θ)2 ei~x·

~k,

∆2ψ (η, ~x) = − 1

(2π)3/2

∫
d3k E(~k)ψk (η)

(
k2r2 sin2 θ + 2 i kr cos θ

)
ei~x·

~k,

∇2ψ(η, ~x) = − 1

(2π)3/2

∫
d3k E(~k)ψk(η) k2ei~x·

~k , (A.3)

where we have called θ the angle between ~k and ~x.

The above derivative terms can now be inserted into the averages of Eqs. (4.15) and

(4.16), following the same computational procedure already used in [21, 25]. Using the con-

ditions (A.2), and noting that the unperturbed light-cone average 〈· · · 〉0 simply corresponds,

in our case, to the (normalized) angular integration over the unit homogeneous 2-sphere cen-

tered on the observer position (with measure (sin θ dθdφ)/4π), we then find that 〈κs〉0 = 0

and that 〈v‖ s ∂rv‖ s〉0 = 0. It turns out, in particular, that all leading contributions appear-

ing in Eqs. (4.19) and (4.20) can be expressed in terms of the following quadratic averaged

expressions:

〈v2
‖ s〉0 =

1

3

(∫ ηs

ηin

dη
a(η)g(η)

a(ηs)g(ηo)

)2 ∫ dk

k
k2 PΨ(k, ηo), (A.4)

〈v‖ s κs〉0 =
1

2

∫ ηs

ηin

dη

∫ ηo

ηs

dη′
a(η)

a(ηs)

(η′ − ηs)
ηo − ηs

g(η)g(η′)

g2(ηo)

×
∫
dk

k
PΨ(k ηo) k

3

[
(ηo − η′) I2(k(η′ − ηs)) +

2

k
I3(k(η′ − ηs))

]
, (A.5)

〈∂rv‖ s κs〉0 = −1

2

∫ ηo

ηs

dη

∫ ηs

ηin

dη′
a(η′)

a(ηs)

η − ηs
ηo − ηs

g(η)g(η′)

g2(ηo)

∫
dk

k
k4 PΨ(k, ηo)

×
[
(ηo − η) I4(k(η − ηs)) +

2

k
I5(k(η − ηs))

]
, (A.6)

〈∂rv‖ s〉0〈v‖ s〉0 = −1

2

(∫ ηs

ηin

dη
a(η)g(η)

a(ηs)g(ηo)

)2 ∫ dk

k
PΨ(k, ηo)k

3I3(k(ηo − ηs))I6(k(ηo − ηs)),

(A.7)

〈v‖ s〉20 =

(∫ ηs

ηin

dη
a(η)g(η)

a(ηs)g(ηo)

)2 ∫ dk

k
PΨ(k, ηo) k

2 I2
6 (k(ηo − ηs)) , (A.8)

〈∂rv‖ s ψs〉0 = −1

3

g(ηs)

g(ηo)

∫ ηs

ηin

dη
a(η)g(η)

a(ηs)g(ηo)

∫
dk

k
k2 PΨ(k, ηo) (A.9)
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where we have defined

I2(x) = 12
sinx

x4
− 12

cosx

x3
− 4

sinx

x2
, I3(x) = 4

sinx

x3
− 4

cosx

x2
− 2

sinx

x
,

I5(x) = 12
sinx

x4
− 12

cosx

x3
− 6

sinx

x2
+ 2

cosx

x
, I6(x) =

sinx

x2
− cosx

x
,

I4(x) = 48
sinx

x5
− 48

cosx

x4
− 20

sinx

x3
+ 4

cosx

x2
. (A.10)

Similarly, the leading contributions appearing in Eq. (5.5), and not included in the above

equations, can be written explicitly as follows:

〈δρms ψs〉0 = − 2

3H2
s

(
g(ηs)

g(ηo)

)2 ∫ dk

k
k2 PΨ(k, ηo), (A.11)

〈δρms〉0〈v‖ s〉0 =
2

3H2
s

g(ηs)

g(ηo)

∫ ηs

ηin

dη′
a(η′)g(η′)

a(ηs)g(ηo)

∫
dk

k
k3PΨ(k, ηo) j0(k(ηo − ηs))I6(k(ηo − ηs)),

(A.12)

〈δρms κs〉0 =
4

3H2
s

∫ ηo

ηs

dη
g(ηs)g(η)

g2(ηo)

∫
dk

k
k3 PΨ(k, ηo) I6(k(η − ηs)), (A.13)

where j0 is the spherical Bessel function.

It should be noted that in the above equations we have not included terms with the

explicit averages of ∂rψs (in spite of the fact that such derivatives clearly contribute to the

measure perturbations of Eq. (4.11), and that they also appear among the leading terms of

Eq. (4.19)). Interestingly enough, the reason is that all the light-cone and ensemble averages

of ∂rψs can be expressed in terms of average integrals involving v‖ s. For any operator Xs we

have indeed, according to our definition (4.6),

〈∂rψsXs〉0 = Es 〈v‖ sXs〉0 , Es ≡
[∫ ηs

ηin

dη
a(η)g(η)

a(ηs)g(ηs)

]−1

. (A.14)

The same occurs for terms like 〈∂rψs〉0〈Xs〉0. Thanks to Eq. (A.14), Eqs. (4.19) and (4.20)

can be written in identical form as follows

bXs =
2

Hs
〈∂rv‖ sκs〉0 − 2 Ξs (1− ΓXs) 〈v2

‖ s〉0 − 2 (1− ΓXs) 〈v‖ sκs〉0

+
2

Hs
(1 + Ξs) 〈∂rv‖ s ψs〉0 −

2

Hs
Ξs 〈∂rv‖ s〉0〈v‖ s〉0 + 2 Ξs (1− ΓXs) 〈v‖ s〉20 , (A.15)

where Xs can be either ∆Bs or Σ(Bs), and where we obtain, correspondingly, Γ∆Bs = H′s/H2
s

and ΓΣ(Bs) = Es/Hs. It may be interesting to consider the behaviour of ΓXs at high enough

redshifts, when the Universe is in the phase of matter domination with g = constant and

a ∼ η2. In that regime we have Γ∆Bs = −1/2 whereas ΓΣ(Bs) = 3/2, and we find that it is just

the different value of these coefficients which almost entirely controls the different behavior

of the two average prescriptions in the redshift range corresponding to matter domination.

The same is true if we include the density of the matter sources in the average integrals,

because its contribution is independent of the coefficient ΓXs .
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Figure 5. We compare absolute value and sign of the six different types of term contributing to bΣ(Bs)

as written in the form of Eq. (A.15). Each contribute is plotted by including the exact z-dependent

coefficient controlling the relative weight of the averaged objects with respect to the other averages.

Dashed curves correspond to negative values, solid curves to positive values.

Using Eqs. (A.4)–(A.14) of this Appendix, the results for the new geometric averaged

contributions to the fractional corrections of the flux can be written as in Eqs. (4.19),

(4.20) and (5.5). The single contributions of the six different types of term present in Eqs.

(4.19), (4.20) and (5.5) are explicitly illustrated (both in absolute value and sign, and for the

whole redshift range z < 5) in Figs. 5, 6 and 7, respectively. The sum of all contributions

clearly reproduces, respectively, the behaviour of bΣ(Bs) and b∆Bs reported in Fig. 2, and the

behavior of nΦ(z) reported in Fig. 4.

We have explicitly computed also the non-leading contributions to Eqs. (4.15), (4.16)

and (5.2), and arising, in particular, from the average of terms containing the Bardeen

potential ψs, its time derivatives and its time integrals. Such terms are indeed present in the

first-order perturbations of the integration measure, of the flux, and of the matter density

(see Eqs. (4.11), (4.12), (4.17) and (5.2)).

Let us first consider the quadratic averages of these terms coupled to the lensing effect

described by the function κs(z). Since 〈κs〉0 = 0 all averages of the form 〈κs〉0〈Xs〉0 are
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Figure 6. We compare absolute value and sign of the six different types of term contributing to b∆Bs

as written in Eq. (A.15). Each contribution is plotted by including the exact z-dependent coefficient

controlling the relative weight of the averaged objects with respect to the other averages. Dashed

curves correspond to negative values, solid curves to positive values.

vanishing (for any X), and we are left with the following possible contributions:

〈κs ψs〉0 = −2

∫ ηo

ηs

dη
g(η)g(ηs)

g2(ηo)

∫
dk

k
kPΨ(k, ηo) I6(k(η − ηs)),

〈κs ∂ηψs〉0 = −2

∫ ηo

ηs

dη
g(η)g′(ηs)

g2(ηo)

∫
dk

k
kPΨ(k, ηo) I6(k(η − ηs)),

〈κs
∫ ηo

ηs

dη ψs〉0 = −2

∫ ηo

ηs

dη

∫ ηo

ηs

dηx
g(η)g(ηx)

g2(ηo)

(η − ηs) (ηo − ηx)

(η − ηx) (ηo − ηs)

×
∫
dk

k
kPΨ(k, ηo) I6(k(η − ηx)),

〈κs
∫ ηo

ηs

dη ∂ηψs〉0 = −2

∫ ηo

ηs

dη

∫ ηo

ηs

dηx
g(η)g′(ηx)

g2(ηo)

(η − ηs) (ηo − ηx)

(η − ηx) (ηo − ηs)

×
∫
dk

k
kPΨ(k, ηo) I6(k(η − ηx)),

〈κs
∫ ηo

ηs

dη ∂2
ηψs〉0 = −2

∫ ηo

ηs

dη

∫ ηo

ηs

dηx
g(η)g′′(ηx)

g2(ηo)

(η − ηs) (ηo − ηx)

(η − ηx) (ηo − ηs)

×
∫
dk

k
kPΨ(k, ηo) I6(k(η − ηx)), (A.16)

We have numerically integrated and plotted the contributions of these terms to the

fractional correction of the flux, in the redshift range z < 5, and we have explicitly checked

that (in spite of the presence of two spacelike derivatives) they are always negligible with
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(Eq. (5.5)). Each contribute is plotted by including the exact z-dependent coefficient controlling the

relative weight of the averaged objects with respect to the other averages. Dashed curves correspond

to negative values, solid curves to positive values.

respect to the leading contributions reported in Eqs. (4.19), (4.20) and (5.5). In particular,

the maximal amplitude of their contribution is bounded by the condition <∼ 10−8, in the

whole range of z we have considered. This is not because of the coefficients controlling the

relative weight of the various averaged terms, but because of the k-modulation of the average

integrals due to the presence of the function I6, which is nothing but the spherical Bessel

function j1.

In the same way, the quadratic averages of the Bardeen potential coupled to the “redshift

space distortion”, ∂rv‖s, could produce, in addition to the leading term 〈∂rv‖ s ψs〉0 already

included into Eqs. (4.19), (4.20) and (5.5), also other terms like:

〈∂rv‖
∫ ηo

ηs

dηψ〉0 =
1

2

∫ ηo

ηs

dηx
g(ηx)

g(ηo)

∫ ηs

ηin

dη
a(η)

a(ηs)

g(η)

g(ηo)

∫
dk

k
k2 PΨ(k, ηo) I3 (k (ηx − ηs)) ,

〈∂rv‖
∫ ηo

ηs

dη ∂ηψ〉0 =
1

2

∫ ηo

ηs

dηx
g′(ηx)

g(ηo)

∫ ηs

ηin

dη
a(η)

a(ηs)

g(η)

g(ηo)

∫
dk

k
k2 PΨ(k, ηo) I3 (k (ηx − ηs)) .

(A.17)

But, as before, an explicit computation shows that their contribution to the fractional correc-

tion of the flux is always subleading in the range z < 5, being suppressed by the modulation

of the k integrals induced by the function I3(k).

Differently from the lensing case, the contribution of terms like 〈∂rv‖s〉0〈Xs〉0, where

X contains the potential ψ and its time integrals, is not identically vaninsing. However, we

have numerically checked that their amplitude is low, and their contribution to the fractional

corrections is never comparable with those of the leading terms, The same is even more true
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for all other possible quadratic averaged terms which contain less than two spatial derivatives,

and that we have not even reported in this Appendix.
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