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Abstract

We study gravitational waves propagating on a warped Minkowski space-time
with D − 4 compact extra dimensions. While Kaluza–Klein scales are typically
too high for any current detection, we analyse how the warp factor changes the
Kaluza–Klein spectrum of gravitational waves. To that end we provide a complete
and explicit expression for the warp factor, as well as the Green’s function, on a
d-dimensional torus. This expression differs from that of braneworld models and
should find further uses in string compactifications. We then evaluate the Kaluza–
Klein spectrum of gravitational waves. Our preliminary numerical results indicate
not only a deviation from the standard toroidal spectrum, but also that the first
masses get lowered due to the warp factor.
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1 Introduction

The observation of gravitational waves of astrophysical origin by the LIGO and Virgo collab-
oration [1] has opened a new era where we have at hand an independent experimental device
to scrutinize nature and test our theories. The prospects of gravitational wave observations
are flourishing: much is expected from the advanced LIGO and Virgo, but also from the
upcoming KAGRA, IndIGO, SKA, eLISA, as well as the awaited results of PTAs, BICEP3,
etc. It is then legitimate to ask ourselves whether new fundamental physics can be probed
through these observations [2–7]. Here, we are interested in the question of extra dimen-
sions. Consider gravitational waves that have been emitted in a D-dimensional space-time,
and now propagate away from the source. A generic choice for the propagation background
is then a warped four-dimensional (4d) maximally symmetric space-time, e.g. Minkowski,
parameterized by xµ, together with D− 4 extra dimensions parameterized by yp, with metric

ds2
D = e2A(y) g̃µνdxµdxν + ĝpqdy

pdyq , (1.1)
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where the warp factor H(y) is a power of e2A which depends on the setup. In this framework,
three types of effects due to extra dimensions on 4d gravitational waves can be identified
[8]. First, gravitational waves along the extra dimensions can appear in 4d as extra vector
and scalar fields, which can couple and affect the 4d gravitational waves; in particular, a
corresponding massless scalar field was shown in [8] to affect the polarization.1 Secondly,
the dependence on the extra coordinates leads to Kaluza–Klein towers of fields. However, in
standard models, the Kaluza–Klein 4d gravitational waves have a mass or frequency too high
to be detected with current instruments: the observational upper bound of 10−4 m (about
10−3 eV) on the size of an extra dimension leads to a frequency 108 times bigger than the LIGO
sensitivity bound [8,16]. Thirdly, the warp factor allows for new couplings and leads to further
modifications. In this paper, we are interested in the last two effects: in particular, what is
the impact of the warp factor on the Kaluza–Klein spectrum? We want to evaluate deviations
from the standard spectrum due to the warp factor,2 and see whether its contribution could
lower the Kaluza–Klein masses enough, so that 4d Kaluza–Klein gravitational waves become
observable. Most likely, the contribution will not be enough to reach LIGO frequency range,
but it could be interesting for high energy primordial gravitational waves to be detected by
eLISA, as discussed in section 5.

Models with warped extra dimensions are numerous, ranging from braneworld models à
la Randall-Sundrum [17, 18] to string compactifications [19–21]. Generally, the warp factor
accounts for the backreaction of an extended object like a brane, and typically its singular
locus coincides with the position of the object in its transverse space. Expressions for the
warp factor in braneworld models or stringy frameworks are however very different. For
the former, the warp factor is usually explicitly given, typically an exponential of an extra
dimension coordinate; its impact on gravitational waves has been discussed in e.g. [22–27].
For stringy models, the warp factor usually comes from p-brane solutions: these solutions of
supergravity-like theories, describing extended objects, connect to Dp-branes in string theory.
The warp factor is defined as the solution to a Poisson equation, that relates it to Green’s
functions. For non-compact extra dimensions, Green’s functions are usually well-known and
so is the warp factor. It is however not the case for compact extra dimensions with branes,
despite the fact that all these ingredients are appealing for realistic phenomenology. As a
consequence, in explicit string compactifications towards 4d Minkowski [21, 28], the warp
factor is not given: its defining equation is known, (2.12), but not solved explicitly, even
though there is no doubt on the existence of a solution (see also [29–31]). The warp factor
on compact spaces, and the throats it generates, however play a crucial role in many aspects
of (string) phenomenology, as for instance in the recent developments regarding de Sitter
solutions [32–37]; we come back to these applications in section 5. An intermediate task in
this paper is therefore to determine explicitly the (stringy or p-brane) warp factor for compact
extra dimensions, and we will do so for a transverse d-dimensional torus Td.

We first provide in section 2 all relevant equations to determine the Kaluza–Klein spec-
trum of gravitational waves propagating on a 4d warped Minkowski background with extra

1Since then, interesting prospects on constraints from polarization were discussed in [9, 10], while obser-
vational constraints remained so far very weak [11, 12]. By providing a light mass to the scalar, further
interesting setups and constraints were discussed in e.g. [13, 14], while a possibility for scalar waves emission
was pointed-out in [15].

2The spectrum will be compared to both the Kaluza–Klein spectrum for a constant warp factor, and the one
corresponding to an average (warped) internal length; both will turn out to be the same here. The deviation
and lowering of the spectrum will then be due to the non-constant part of the warp factor.
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dimensions. We follow [38] and [8] to obtain the eigenvalue equation that gives the spectrum:
it generalizes the standard Laplacian equation with a dependence on the warp factor. We
further recall p-brane solutions in D-dimensional space-times for non-compact or compact
extra dimensions, and provide the defining equation for the warp factor H. A solution to the
latter is then given in terms of generalized Green’s functions, the source charges (e.g. generic
dipoles, or D-branes and orientifolds in a stringy framework), and a constant H0. In section
3, we provide an explicit expression for generalized Green’s functions on a torus Td, inspired
by Courant-Hilbert [39] and recent proposals [40, 41]. From this expression, we reproduce
analytically the expected flat space behaviour close to the source in appendix A.1. For d = 2,
we observe in appendix A.2 a perhaps surprising matching with a different expression known
from string amplitudes. To complete the warp factor expression, we discuss the constant H0,
which turns out to play a crucial role. We propose a prescription to fix it, and compute it
in some cases. We finally turn to the Kaluza–Klein gravitational wave spectrum in section
4. We characterize analytically what choices of parameters (the constant H0, the size of Td,
etc.) would lead to a deviation from the standard Kaluza–Klein spectrum without warp factor
(i.e. a constant one), while staying in a physically relevant regime (e.g. typical lengths bigger
than the fundamental length ls). We then evaluate numerically the Kaluza–Klein spectrum
with the above warp factor generated by D-branes and orientifolds, or analogous sources in
D dimensions. We do so for d = 1, 2, 3 transverse dimensions, with different values of the
parameters. For d = 1, this analysis is completed in appendix B by an alternative method,
used already in [42]. The spectrum evaluation quantifies the deviations from the standard
Kaluza–Klein spectrum. We summarize and discuss the results in section 5, in particular the
observability of these deviations.

2 Kaluza-Klein gravitational waves and p-brane backgrounds

In this section, we first introduce four-dimensional Kaluza–Klein gravitational waves on a
warped Minkowski background with extra dimensions. We identify the eigenfunction equation
relevant to determine their spectrum. We then present the p-brane solutions that will serve
as the background. We consider non-compact or compact extra dimensions, and discuss the
related definitions of the warp factor. We first give them in a D = 10 string context, and then
more generally in arbitrary D dimensions. We finally rewrite the eigenfunction (spectrum)
equation on such backgrounds with toroidal extra dimensions.

2.1 Spectrum for a warped background

We consider the following metric of a D-dimensional space-time

ds2
D = e2A (ηµν + hµν) dxµdxν + ĝpqdy

pdyq , (2.1)

where xµ=0,...,3 are coordinates of R1,3, yp those of the (D − 4)-dimensional “internal” space
M with metric ĝpq, and the warp factor (a power of eA) depending only on the yp. Over
the background metric e2Aηµν and ĝpq, we consider four-dimensional (4d) metric perturba-
tions hµν(x, y). Equations describing their dynamics at linear order were obtained in [38],
generalizing [43] (see also [8]). First, these perturbations can be decomposed into a tower of
Kaluza–Klein modes

hµν(x, y) =
∑
N

hNµν(xµ)ψN (yp) . (2.2)
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The ψN ’s are orthonormal (weighted) eigenfunctions of a modified Laplacian of M with
eigenvalues M2

N :

− 1√
ĝ
∂p

(√
ĝ ĝpqe4A ∂qψN

)
= M2

N e
2A ψN , (2.3)

with ĝ the determinant of ĝpq. The Kaluza–Klein modes hNµν(x) in the expansion (2.2) are

taken transverse and traceless (TT) in 4d, i.e. ηκλ∂κh
N
λµ = 0, ηµνhNµν = 0. Then they obey

the Pauli-Fierz equation for a massive spin-2 field of mass MN in R1,3(
ηκλ∂κ∂λ −M2

N

)
hNµν = 0 . (2.4)

Indeed, provided the unperturbed or background metric is a solution of the D-dimensional
theory (in Einstein frame), [38] shows that the D-dimensional linearized Einstein equations
are satisfied as just described. Interestingly, this is argued to hold independently of the form
of the energy-momentum tensor for the “matter” fields (i.e. all fields other than the metric).
This is because one considers a maximally symmetric 4d space-time, thus constraining possible
contributions to the matter energy momentum tensor. The above equations are then relevant
to describe the propagation of 4d (Kaluza–Klein) gravitational waves on a warped Minkowski
background with D − 4 extra dimensions, for any matter content of the theory; this is the
question of interest here. Physically, this is an appropriate description away from the source
where gravitational waves have been emitted.

As a side a remark, note that a more general analysis was made in [8] by allowing further
metric fluctuations hpq and hµq. As shown in appendix A.2 therein, setting hpq = hµq = 0 and
choosing the 4d TT gauge for hµν makes the D-dimensional equations reduce to those above.
In other words, the fluctuations considered above are an ansatz that provides a consistent
truncation of the fully fluctuated D-dimensional theory, meaning that solutions to the above
would also be (linear) solutions to the D-dimensional theory with all metric fluctuations. This
point could be of interest for extensions of the present work.

To have normalisable spin-2 excitations, the corresponding eigenmodes ψN of the modified
Laplacian (2.3) should verify ∫

M
dD−4y

√
ĝ e2A |ψN |2 <∞ . (2.5)

Moreover [38] shows that M2
N ≥ 0, with the lower bound saturated, M0 = 0, if and only

if the corresponding eigenmode is constant: ψ0 = const. This mode corresponds physically
to the standard (massless) 4d gravitational wave. Requiring it to be present gives in turn a
constraint on the warp factor, by imposing the finiteness of the integral (2.5) with a constant
ψ0: we come back to this constraint in section 3.3. To go further, we now need to specify
the background metric, and in particular determine the warp factor. Warp factors typically
account for the backreaction of extended objects like branes, so we turn to p-brane solutions
in the next section.

2.2 p-branes in D = 10

The p-brane solutions exist in any dimension D (see e.g. [44] and section 6.1 of [45] for a
review). We first present them here in D = 10, where their relation to Dp-branes of string
theory can most easily be established, providing precise values for their tension and charge and
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fixing our conventions. We also emphasize differences between non-compact or compact extra
dimensions. In the next section, we briefly generalize to any D, and use such backgrounds
for our original gravitational waves problem.

The p-brane solutions in D = 10 are most easily expressed in string frame: they are then
solutions to the action S = Sbulk + Ssources where

Sbulk =
1

2κ2
10

∫
d10x

√
|g10|

(
e−2φ(R+ 4|dφ|2)− 1

2
|Fp+2|2

)
, (2.6)

with g10 the determinant of the 10d metric gMN , φ the dilaton, and the abelian (p+ 2)-form

field strength Fp+2 = dCp+1. The square of a q-form Aq is |Aq|2 = AqM1...Mq A
M1...Mq
q /q!,

lifting indices with gMN . In addition, we have

Ssources = −Tp
∫

Σp+1

dp+1ξ e−φ
√
|ı∗[gD]|+ µp

∫
Σp+1

ı∗[Cp+1] , (2.7)

where Σp+1 is the source world-volume with coordinates ξi=0...p, and ı∗[·] the pull-back to
it. These actions can be promoted, at least for trivial embedding, to 10d ones including
appropriate δ-functions over the transverse space (see e.g. conventions in appendix A of [46]).
The gravitational constant and the tension are given in D = 10 by

2κ2
10 = (2π)7(α′)4 , T 2

p =
π

κ2
10

(4π2α′)3−p , (2.8)

where we take α′ = l2s with string length ls. For BPS sources as here, one has for the charge
µp = Tp. The p-brane solutions in D = 10 in string frame are then given by (see e.g. [47])

ds2 = H−
1
2 ηijdx

idxj +H
1
2 δmndymdyn

eφ = eφ0 H−
p−3
4 ; Cp+1 = (H−1 − 1) e−φ0 volp+1 ,

(2.9)

with xi=0...p for the parallel space with volp+1 = dx0 ∧ . . . ∧ dxp, and ym=p+1...9 for the
transverse space. The constant eφ0 = gs determines the string coupling. The function H(~y)
is what we call the warp factor; it obeys

δmn∂m∂nH(~y) = Q̃ δ(~y − ~y0) , Q̃ ∝ gsκ2
10Tp , (2.10)

where the brane is located thanks to the Dirac δ-function at ~y0 in the (unwarped) transverse
space R9−p, and the numerical factor in the charge Q̃ will be specified below. In that case
where the extra dimensions, especially the transverse space, are non-compact, H is a well-
known Green’s function in flat space.

These solutions find generalizations in string flux compactifications, where the extra di-
mensions are compact. In D = 10 type II supergravities, the solution of [21] for p = 3 got
generalized to a large class of Minkowski solutions in [28], where the metric in 10d string
frame is given by

ds2
10 = H−

1
2 (ηµνdxµdxν + ds̃2

6||) +H
1
2 ds̃2

6⊥ . (2.11)

This is the same as the p-brane (2.9) except that the 6 extra dimensions are now compact,

and so far not necessarily flat. In these solutions one has again eφ = gsH
− p−3

4 , and a similar
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expression for the sourced flux Fp+2, that gives rise to the following defining equation for the
warp factor

∆H + C =
1
√
g

∑
i

Qi δ(~y − ~yi) . (2.12)

This involves analogous ingredients to the non-compact counterpart (2.10): ∆ is the Laplacian
on the (unwarped, compact) transverse space to the sources, of dimension d = 9 − p, with
metric determinant denoted g; Qi are charges due to branes Dp or orientifolds Op localised
by the δ-functions at ~yi; C is a positive quantity, typically a constant due to extra fluxes
or internal curvature. Further needed conventions are as follows: the volume form on the
(unwarped) transverse space is denoted vol⊥, and we use the shorthand notation V =

∫
vol⊥

for the volume. We take here as a convention
∫

d9−py δ(~y − ~yi) =
∫

vol⊥√
g δ(~y − ~yi) = 1. The

function H is usually considered well-behaved enough such that the integral of (2.12) on the
compact space gives C = 1

V

∑
iQi. Finally, we have

QDp = −2κ2
10Tpgs = −(2πls)

7−pgs , QOp = −2p−5QDp . (2.13)

While in the non-compact case, solutions to (2.10) are well-known Green’s functions in flat
space, H in the compact case is most of the time undetermined, e.g. in string compactifica-
tions. A first idea could be to start from the non-compact situation and identify periodically
the transverse y-coordinates to get a torus. It is however easily seen that in a compact case,
(2.10) cannot be solved for a non-vanishing Q̃, by integrating both sides of that equation.
This is because on a compact space without boundary, the flux of a point charge has nowhere
to go. So one needs at least an opposite charge, and adding it in (2.10), leads essentially to
(2.12). In a string theory context, it is well-known [48] that due to compactness, Op need
to be included to compensate the charges of the Dp, hence the sum over sources in (2.12).
However, a Green’s function is defined with only one δ-function, so one introduces a so-called
generalized Green’s function G that solves

∆G(~y) =
δ(~y)
√
g
− 1

V
(2.14)

On a compact space, one can integrate to zero both sides thanks to the extra constant on
the right-hand side, contrary to the standard Poisson equation. The need for this extra
background charge can also be understood from the fact that the Laplacian on a compact
space without boundary can only be inverted on the space of functions orthogonal to the
constant mode (which is the eigenfunction of the Laplacian corresponding to zero eigenvalue).
In terms of such generalized Green’s function, a solution to (2.12) for the warp factor is then
given by

H =
∑
i

QiG(~y − ~yi) +H0 (2.15)

with some constant H0. We come back to the problem of determining the generalized Green’s
function G and the constant H0 for the compact case in section 3.
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2.3 General D and gravitational wave background

The p-brane solutions just presented can serve as a Minkowski background with warp factor,
to study the propagation of gravitational waves as described in section 2.1.3 To that end, an
extra step is to express the solution in Einstein frame, since the relevant equations in section
2.1 were derived there. We also generalize the previous solutions to D-dimensional ones.

In D dimensions, the string and Einstein frames are related thanks to the change of metric

gMN = e
4(φ−φ0)
D−2 gEMN , giving the relation

1

2κ2
D

∫
dDx

√
|gD| e−2φ

(
R+ 4|dφ|2

)
=

1

2κ2
Dg

2
s

∫
dDx

√
|gE |

(
RE −

4

D − 2
|dφ|2E

)
. (2.16)

The p-brane metric in D = 10 (2.9) becomes

ds2
E = H

p−7
8 ηijdx

idxj +H
p+1
8 δmndymdyn , (2.17)

which gets generalized in D dimensions [44] to

ds2
E = H−

D−p−3
D−2 ηijdx

idxj +H
p+1
D−2 δmndymdyn . (2.18)

We turn to the case of compact extra dimensions, and focus in the following on an unwarped
transverse space being a d-dimensional torus, d = D − p− 1. In the case D = 10, the string
frame metric (2.11) becomes in Einstein frame

ds2
E = H

p−7
8 (ηµνdxµdxν + ds̃2

6||) +H
p+1
8 δmndymdyn . (2.19)

If we also restrict the unwarped parallel extra dimensions to be toroidal, i.e. ds̃2
6|| = δijdx

idxj ,

we get (locally) the same metric as the non-compact p-brane one: the Einstein frame metric
(2.17), generalized to (2.18) in D dimensions, for that toroidal case.

We now match the above to the metric (2.1) in the unperturbed case and get

e2A = H−
D−p−3
D−2 , (2.20)

and for the metric on the (D − 4)-dimensional space M

ĝpqdy
pdyq := H−

D−p−3
D−2 δijdx

idxj +H
p+1
D−2 δmndymdyn , (2.21)

in the compact toroidal case. We then compute in this (xi, ym) coordinate basis
√
ĝ =

H
2D−5−p
D−2 . The eigenfunction equation (2.3) remarkably simplifies to

− δij∂i (H∂jψN )− δmn∂m∂nψN = HM2
N ψN . (2.22)

The first term deals with the dependence on xi, i.e. parallel directions, and the second one on
ym, i.e. transverse dependence. As mentioned in section 2.2, H only depends on the latter.

3While it is obvious that the brane metric is appropriate for a warped background of interest, one may
wonder about the additional ingredients. Concerning the latter however, we know that such a background can
be used thanks to the argument of [38] regarding the generic matter contribution to the energy-momentum
tensor, recalled in section 2.1. As a further check, an explicit computation of the matter contribution on a
similar background was made in appendix B of [8].
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The first term therefore only contributes to the eigenvalues M2
N by shifts due to δij∂i∂jψN .

With toroidal parallel directions, we can decompose the x-dependence of ψN as Fourier series,
and M2

N are then shifted by the standard discretized constants. For simplicity, we take from
now on the zero-mode of that decomposition, in other words we restrict to ψN (ym). Upon
this minor restriction, the eigenfunction equation boils down to

−δmn∂m∂nψN = HM2
N ψN (2.23)

where H and ψN depend only on ym, coordinates of the d-dimensional unwarped transverse
torus, with d = D − p− 1.

Solving the previous equation will give us the desired Kaluza–Klein spectrum of gravita-
tional waves. To that end, we need the warp factor H (2.15), given in terms of generalized
Green’s functions solving (2.14) on a d-dimensional torus, a constant H0 and source charges.
We will determine the first two in section 3, and we now define the last ingredient, namely
the charges QDp in a general dimension D. Building on (2.13) and [44], we express the
D-dimensional physical constants naturally (using dimensional analysis and the actions) in
terms of a fundamental length ls and a numerical constant gs related to eφ0 , as follows

2κ2
D =

(2πls)
D−2

2π
, T 2

p =
π

κ2
D

(2πls)
D−4−2p = (2π)2(2πls)

−2(p+1) , (2.24)

and define
QDp = −2κ2

DTpgs = −(2πls)
D−p−3gs , QOp = −2p−D+5QDp , (2.25)

where QOp is defined this way for further convenience. The interpretation of ls and gs as a
string length and string coupling is most relevant in D = 10; similarly, the Dp and Op do
not necessarily have the same interpretation outside of a string, D = 10, context. For more
phenomenological models, the latter can simply be viewed as two sources needed to create
dipoles.

3 Generalized Green’s functions and the warp factor

To determine the warp factor H (2.15) with compact toroidal extra dimensions, we are now
interested in solving (2.14), i.e. identify the generalized Green’s functions, on a torus Td.
We take for simplicity the same radii L, i.e. each toroidal coordinate obeys the identification
ym ∼ ym + 2πL. We introduce coordinates σm = ym/(2πL) ∈ [−1

2 ,
1
2 ], the torus metric is

then
ds2

Td = δmndymdyn = δmn4π2L2dσmdσn . (3.1)

As a warmup, we consider in section 3.1 a d = 3 toy model where the warp factor is sourced
by dipoles. We present an inspiring solution obtained by Courant and Hilbert. We then turn
to a general solution for generalized Green’s functions in section 3.2. We finally discuss the
warp factor constant in section 3.3.

3.1 Warmup: warp factor from dipoles with d = 3

We consider branes that fill out the 4d space-time and are transverse to d = 3 dimensions,
e.g. p = 3 in D = 7 or p = 6 in D = 10. The compact transverse space is T3 and we include
both positive- and negative-tension objects so as to ensure that the total charge vanishes.
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To determine the warp factor H solving (2.12), here with C = 0 and Qi = ±1, we follow
the presentation by Courant and Hilbert [39] (see p.378); our H is simply called there the
(total) Green’s function. One considers the rectangular parallelepiped bounded by the planes
y1 = ±a/2, y2 = ±b/2 and y3 = ±c/2. The aim is to compute the Green’s function due to
a unit charge at the point (y1

0, y
2
0, y

3
0), as well as all image charges obtained by reflecting the

charge (with a sign flip after each reflection) across the planes of the lattice generated by the
parallelepiped. The resulting configuration is a lattice of dipoles consisting of one positive
unit charge placed at (y1

0, y
2
0, y

3
0) and one negative unit charge at (a−y1

0, y
2
0, y

3
0), together with

all other dipoles generated from that one by translation by any number of lattice vectors. To
fit to our setup, we set a = b = c = 1 and 2πL = 1. One obtains eight charges (four dipoles)
inside the unit T3. The total Green’s function for this configuration reads [39]

H~y0(~y) =

∫ ∞
0

dt
( [
θ3

(
y1

0 + y1, 4iπt
)
− θ3

(
y1

0 − y1, 4iπt
)]
×[

θ3

(
y2

0 + y2, 4iπt
)
− θ3

(
y2

0 − y2, 4iπt
)]
×[

θ3

(
y3

0 + y3, 4iπt
)
− θ3

(
y3

0 − y3, 4iπt
)] )

,

(3.2)

where the θ3-function is defined in (3.7).

Remarkably, the expression (3.2) can be obtained making use of the generalized Green’s
function G (3.6), that we will discuss below. A positive/negative unit charge at ~y0 contributes
±G(~y− ~y0) to the total Green’s function or warp factor H (2.15). In the configuration above
there are four positive unit charges placed at (y1

0, y
2
0, y

3
0), (1−y1

0, 1−y2
0, y

3
0), (1−y1

0, y
2
0, 1−y3

0),
(y1

0, 1−y2
0, 1−y3

0) and four negative unit charges at (1−y1
0, y

2
0, y

3
0), (y1

0, 1−y2
0, y

3
0), (y1

0, y
2
0, 1−y3

0),
(1−y1

0, 1−y2
0, 1−y3

0). Summing up all eight contributions as in (2.15), taking (3.6) and (A.5)
into account, leads to (3.2). We thus verify that in the T3 case, the generalized Green’s
function (3.6) leads to the correct result established by Courant and Hilbert [39].

3.2 Generalized Green’s functions

A first naive solution to (2.14) on a torus Td is obtained using Fourier series, since the
functions should be periodic. Using the coordinates introduced in (3.1), we obtain

G(~σ) = − 1

(2πL)d−2

∑
~n∈Zd ∗

e2πi~n·~σ

4π2~n2
, (3.3)

where Zd ∗ is Zd without ~0. One may however express doubts on this expression, because the
sum is not absolutely convergent for d ≥ 2. Indeed, for d = 2, one has

∑
(m,n)∈N2 ∗

1

m2 + n2
≥

∑
(m,n)∈N2 ∗

1

(m+ n)2
=
∑
k∈N∗

∑
m+n=k

1

k2
=
∑
k∈N∗

k + 1

k2
∼
∑
k∈N∗

1

k
, (3.4)

and this gets generalized for d > 2 using this and n2
1 + · · ·+n2

d ≤ n2
1 + (n2 + · · ·+nd)

2. Given
this issue, the following regularization was proposed in [40,41]: one first uses

1

4π2~n2
=

∫ ∞
0

dt e−4π2~n2t , (3.5)
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and further interchanges in (3.3) the order of the integral and the sum. This last operation
is a priori not allowed, since the series does not converge uniformly in the neighborhood of
t = 0 [39], but this is precisely what brings the regularization. This manipulation leads to

G(~σ) = (2πL)2−d
∫ ∞

0
dt
(

1−
d∏

m=1

θ3(σm|4πit)
)

(3.6)

with the theta function θ3 = θ00 given by

θ3(σ|τ) =
∑
n∈Z

e2πi(nσ+n2

2
τ) = 1 + 2

∞∑
n=1

qn
2

cos(2πnσ) , with q = eiπτ . (3.7)

We loosely use the same symbol for this “regularized” generalized Green’s function, and the
above Fourier series expression; the distinction, if needed, should be clear from the context.
One is free to add a constant to G, since only its derivatives enter (2.14). Such a constant
will not play a role in the following (in H (2.15) in particular) where we will mostly consider∑
Qi = 0, so we discard here this possibility.

While we are interested in using the proposal (3.6) in the warp factor H (2.15), we may
first check it in various manners. A first crucial test is that the H obtained this way matches
the rigorous derivation by Courant and Hilbert [39] for d = 3, as explained at the end of
section 3.1. It is easy to see that the sum of triple products of θ3 in (3.2) are reproduced
by summing the proposed generalized Green’s functions (3.6) for d = 3, the constant terms
given by 1 in the integral canceling out with the various signs of the charges. The derivation
of Courant-Hilbert [39] discusses precisely the interchange of integral and sum, and conclude
in a well-defined result: this gives us confidence in using the warp factor H (2.15) with the
proposal (3.6) for any d.

Another test is the behaviour of the proposed generalized Green’s function (3.6) close to
the Dp or Op sources, for which one expects the same behaviour as in flat space. We show
analytically in appendix A.1 that one precisely recovers this behaviour from the expression
(3.6), modulo the introduction of some cut-off in the cases d = 1, 2. This study is illustrated
in Figure 1 with plots of G (3.6) for various dimensions: the behaviour close to the source is
apparent, as well as the periodicity of the function.

11
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Figure 1: Green’s function (2πL)d−2 G(~σ) given in (3.6) for dimensions d = 1, 2, 3, 6, plotted
along σ1 ∈ [−1

2 ,
1
2 ]. The range of the frames are the same for d = 2, 3, 6, allowing a direct

comparison of the different behaviours close to the source at ~σ = ~0. More comments can be
found in appendix A.1.

Finally, the generalized Green’s function on a torus for d = 2 is well-known in other
contexts in the string literature, see e.g. [49]. The expression is given in (A.21), and is not
obviously matching the proposed one (3.6) for d = 2. We compare in appendix A.2 the two
expressions, and conclude that they are very likely to match, at least for τ1 = 0, as illustrated
in Figure 6.

These various checks are successful, so we use the generalized Green’s function G (3.6) on
Td in the warp factor H (2.15). There remains one missing ingredient in H, the constant H0,
that we now turn to.

3.3 Normalisation of H: the constant piece

As pointed out in section 2.2, the warp factor H (2.15) includes a constant H0 that is not
fixed by the differential equation (2.12). It turns out to related to the normalisation of H as
we now see. We use the torus Td with metric (3.1) as the unwarped transverse space, and
compute an average of H on it through the following integral∫ 1

2

− 1
2

dd~σ H =
∑
i

Qi

∫ 1
2

− 1
2

dd~σ G(~σ − ~σi) +H0 =

(∑
i

Qi

)
×
∫ 1

2

− 1
2

dd~σ G(~σ) +H0 , (3.8)

where one uses the periodicity of G in σm ∼ σm+1. The d-dimensional integral of G is finite:
at the source where G diverges for d ≥ 2, one verifies, thanks to the results of appendix A.1,

12



that the d-primitive (indefinite integral) without constant actually vanishes. Therefore we
obtain

For
∑
i

Qi = 0 :

∫ 1
2

− 1
2

dd~σ H = H0 . (3.9)

For
∑

iQi = 0, often considered in the following, the average of H is simply the constant H0:
this gives more physical significance to that constant.

An important occurrence of this integral is the following.4 We recall from section 2.1 that
the integral (2.5) for N = 0 should be finite and non-zero to have a normalisable zero-mode,
and thus ensure the existence of a standard (massless) 4d gravitational wave. To compute
this integral, we use the warp factor (2.20), the Einstein frame metric (2.21) with transverse
torus (3.1) to get∫

dD−4y
√
ĝ e2A =

∫
dD−4−dx

√
|g̃||| × (2πL)d

∫ 1
2

− 1
2

dd~σ H , (3.10)

where
√
|g̃||| = 1 in the toroidal case. Remarkably, all warp factors conspire to leave us with

the integral of H. With a compact parallel internal space and
∑

iQi = 0, we get as wished a
finite integral, and deduce the following requirement for a non-vanishing integral

H0 6= 0 . (3.11)

There is another important reason to have a non-zero constant in H. The warp factor
enters the metric, through powers of it and their inverse, so H should not vanish, to avoid
unwanted singularities and possible signature changes. This is reflected e.g. in (2.20) where

H
D−p−3
D−2 = e−2A > 0. Adding a constant in H and modifying this way its normalisation should

help getting it of definite sign, as we will see. In standard non-compact p-brane solutions,
the constant H0 is fixed by asymptotics, while the sign of H is guaranteed beyond a horizon.
But there is no notion of asymptotics on a compact space. In the following, we then propose
a natural prescription to fix the constant H0, sticking to the idea of having H > 0. For future
convenience, we introduce the dimension-dependent constant hd as follows

H =
∑
i

QiG(~y − ~yi) +H0 , H0 = gs hd . (3.12)

To fix hd, we study the sign of H and start with d ≥ 2.

Fixing the constant for d ≥ 2

The study of appendix A.1 shows that the generalized Green’s function G becomes divergent
close to its source, say at |~σ| = 0. Close to this point, H is dominated by the corresponding

4One may also consider the 4d Planck mass M4: using the D = 10 string frame metric (2.11) and dilaton,
one obtains

M2
4 =

1

2κ2
10

∫
d6y

√
|g6|e−2φH−

1
2 =

1

(2π)7l8sg2s

∫
d6y

√
|g̃6| H =

2π

(2π)2l2sgs

∫
d6−dx

√
|g̃6|||

(2πls)6−d
Ld

lds

1

gs

∫ 1
2

− 1
2

dd~σ H

where the last H−
1
2 factor came from the 4d piece of the action. Interestingly, this expression involves the

integral of H itself. But it cannot be fixed in this manner since the integral also depends on the unwarped
parallel space volume.
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G’s, which are negative, as can be seen in (A.10) and (A.14) or in Figure 1. The Op charge
being positive, such a source then leads to a risk that H becomes negative in this region,
contrary to the case of a Dp. To avoid this, we propose to require that H remains positive at
a distance to the source bigger than ls, i.e. L|~σ| > ls; beyond this point, there is no reason to
trust the supergravity solution over string effects anyway.5 This idea amounts to setting the
size of a horizon close to an Op. So we fix the constant formally as follows

H0 = gs hd =−Min~y

{∑
i

QiG(~y − ~yi)

}
s.t. ym

2πL ∈ [−1
2 ,

1
2 ] and ∀j |~y − ~yj | ≥ 2πls (3.13)

=−Minj

{∑
i

QiG(~y − ~yi)||~y−~yj |=2πls

}
.

As explained for d ≥ 2, this is roughly given only by the orientifold contribution at one ~yj .
Using (2.25), (A.10) and (A.14), this becomes

hd≥3 '−
QOp
gs

G(~σ)|L|~σ|=ls = 22−dπ−
d
2 Γ

(
d−2

2

)
,

i.e. h3 '
1

2π
, h4 '

1

(2π)2
, h5 '

1

24π2
, h6 '

1

24π3
,

and hd=2 '
2

π
ln

(
L

ls

)
.

(3.14)

To get the estimates (3.14), we first considered in (3.13) only an orientifold contribution, at
ls distance from it, meaning that we assumed other sources to be at a much larger distance.
Since G is negligible away from its source compared to the divergence (see e.g. Figure 1), the
single Op contribution would dominate. In practice, the other sources are placed at distances
being fractions of L, so this assumption requires L � ls. Secondly, we used the behaviours
(A.10) and (A.14) of G close to the source to get estimates: this requires again L� ls since
we consider G(~σ)||~σ|=ls/L. The approximation L � ls can be physically well-justified as we
will discuss around (4.14): in that case, (3.14) are then good estimates of (3.13), allowing to
get H > 0 as desired.

To illustrate the above, we consider a dipole toy model with D = 10 and p = 6, i.e. d = 3,
with one object of charge QO6 at ~σO = (±1

2 , 0, 0) and one of opposite charge at ~σ = (0, 0, 0).
We obtain

H

gs
= 2

ls
L

(2πLG(~σ − ~σO)− 2πLG(~σ)) +
1

2π
. (3.15)

This warp factor is depicted in Figure 2 for two values of the ratio ls
L . The domination of the

O6 contribution close to ~σO and the appropriate sign of H are well illustrated there.

5We use here the unwarped metric (3.1) for the notion of distance (to the source) and its comparison to ls. A
proper distance should however include the warp factor itself. For simplicity we stick here to this prescription.
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Figure 2: Warp factor H× 1
gs

given in (3.15) for one charge QO6 at σ1 = ±1
2 and the opposite

charge at σ1 = 0, plotted along σ1 ∈ [−1
2 ,

1
2 ] for two different values of L

ls
. We verify that

H > 0 until an approximate distance ∆σ1 = ls
L to the charge QO6 .

Fixing the constant for d = 1

The situation is different for d = 1: the corresponding generalized Green’s function G is
depicted in Figure 1a. One can see that G does not diverge at the source at σ = 0, as also
noticed through its behaviour obtained in (A.17). Even though G(0) remains the minimum,
it does not differ much from the value away from the source: we computed around (A.17)
that G(±1

2) = −1
2G(0) = 2πL

24 . Therefore, the contribution of other sources to the total H is
not negligible anymore. To ensure H > 0, we then simply propose the prescription

gs h1 = −Min~y

{∑
i

QiG(~y − ~yi)

}
, (3.16)

for which there is in general no easy estimate.

Let us compute this constant in the following relevant example. We consider the case of
orientifolds in D = 10 with d = 1, i.e. p = 8: these O8 are placed at σ = 0,±1

2 . To compensate
their charge 2QO8 (studying a

∑
iQi = 0 case), we need 16 D8: we place them all at σ = 0.

The minimum of the function is thus at σ = ±1
2 (see e.g. the different source contributions

in Figure 3a), so we get from (3.16)

gs h1 = −
(

16QD8G(±1

2
) +QO8G(±1

2
) +QO8G(0)

)
= −QO8

(
G(0)−G(±1

2
)

)
,

i.e. h1 =
L

ls
. (3.17)

In short, we obtain in that example the following warp factor

H × ls
gsL

= 8

(
(2πL)−1G(σ − 1

2
)− (2πL)−1G(σ)

)
+ 1 . (3.18)

We note from (3.18) that this source configuration eventually amounts to a dipole. This warp
factor is depicted in Figure 3b, from which we verify H > 0.
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Figure 3: Warp factor H × ls
gsL

given in (3.18) for one O8 at σ = 0, one at σ = ±1
2 and 16 D8

at σ = 0. The separate source contributions to H are shown in Figure 3a: the bottom blue
curve is that of the O8, while the top orange curve is that of the D8. The overall warp factor
(3.18), including the constant, appears in Figure 3b.

As a curiosity, one can prove that the warp factor (3.18) is equal to the triangle function
f(σ) = −4|σ|+ 2 as seen on Figure 3b. For d = 1, we can actually use the Fourier series (3.3)
which does not suffer from the problem (3.4). We compute from it and (3.18) the expression

H × ls
gsL

= 1 +
4

π2

∑
n∈2Z+1

e2πinσ

n2
. (3.19)

This can easily be verified to be the Fourier series of the periodic f(σ) by computing its
Fourier coefficients.

4 Kaluza–Klein spectrum of gravitational waves

Four-dimensional gravitational waves propagating on a 4d warped Minkowski background
with toroidal extra dimensions admit a Kaluza–Klein mass spectrum MN determined from
equation (2.23). We rewrite it here in terms of coordinates σm on the transverse torus,
introduced in (3.1), and get

− δmn ∂

∂σm
∂

∂σn
ψN = H (2πLMN )2 ψN . (4.1)

Solutions ψN to this equation are in one-to-one correspondence with 4d Kaluza–Klein gravita-
tional waves of mass MN as discussed in section 2.1. Having determined in section 3 the warp
factor H on a transverse torus Td, in terms of generalized Green’s functions and a constant
H0 as in (3.12), we now proceed to determine the spectrum from (4.1).

We first need to be more specific about the D-dimensional background to fix completely
H: the formalism developed so far allows e.g. to have the warp factor generated from dipoles
of charges QDp and QOp or from stringy D-branes and orientifolds; we restrict in this section
to the latter and give an explicit example in section 4.1. We then make a first analysis of the
spectrum in section 4.2, discussing the standard Kaluza–Klein spectrum and deviation from
it, and finally provide in section 4.3 a numerical evaluation of the spectrum.
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4.1 Stringy background: a type IIB example

Restricting to a stringy background specifies that the charged objects are stringy D-branes
and orientifolds. This has one important consequence (beyond fixing D = 10 and the value of
charges): the number and placement of the orientifolds is fixed. For

∑
iQi = 0, this in turn

fixes the number of D-branes. We illustrate this situation here with an example for d = 6,
connecting to backgrounds presented in section 2.2; another example was given after (3.16)
with d = 1.

We focus on the case of p = 3 branes and orientifolds in D = 10, as described in type
IIB supergravity. We consider a well-known solution of the form R1,3 ×T6 (warped product)
with 16 D3’s and 64 O3’s [49, 50], which has been used in different contexts in e.g. [21, 51],
and is a particular solution in the family of [28] presented in section 2.2. Orientifolding
acts on the transverse space T6 as a parity-reversing Z2 involution, ~y → −~y. There are as
many orientifolds as there are fixed points under the involution, namely 26. Therefore the
16 D3-branes ensure that the total charge vanishes as it should, since the O3 tension and
charge is −1

4 that of the D3. The location of the orientifolds is at all points ~yi = (y1
i , . . . , y

6
i ),

i = 1 . . . 64, where ymi = 0 or ymi = πL. The location of the D3-branes on the other hand is
arbitrary, and we place them for simplicity all at the origin ~y = ~0.6 Moreover, the metric,
the dilaton and the five-form field-strength are all invariant under the orientifold involution,
i.e. they are parity-even. The D = 10 metric in string frame is given in (2.11) with a flat
toroidal metric on the internal space, and the dilaton is eφ = gs. The solution is completely
determined by the function H(~y): it is given from (3.12) and (2.13) as follows

H(~y) = 16QD3 G(~y)− 1

4
QD3

∑
i

G(~y − ~yi) + gs h6 , QD3 = −4QO3 = −(2πls)
4gs , (4.2)

where ~yi parameterizes the 26 orientifold locations as discussed above; we can also introduce
~σi = ~yi/(2πL). The generalized Green’s function on the right-hand side is that of (3.6) with
d = 6. Using this solution as the gravitational wave background, its Einstein frame version
(see (2.17)) leads as shown in section 2.3 to the eigenfunction equation (2.23), rewritten
in (4.1), that determines the gravitational wave mass spectrum MN . We give in the next
section a general analysis of this spectrum and will evaluate it on analogous backgrounds
with d = 1, 2, 3 in section 4.3.

4.2 Standard Kaluza–Klein spectrum, deviation, and physical regime

We recall from (2.18) and (3.1) that the Einstein frame metric is

ds2
E = H−

D−p−3
D−2

(
ηijdx

idxj +H L24π2δmndσmdσn
)
, (4.3)

which indicates that the physically relevant length or toroidal radius is given by
√
HL; the

same can be seen from the string frame metric. In absence of sources, i.e. for Qi = 0, one

has H = H0, while in presence of sources, we recall from (3.9) the average
∫ 1

2

− 1
2

dd~σ H = H0.

Therefore, the standard Kaluza–Klein spectrum to be considered here, i.e. the one obtained

6One may also consider “smearing” them with some density ρ(~y) in the transverse space subject to the
constraint

∫
T6 d6y ρ(~y) = 16, ρ(~y) = ρ(−~y).
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in absence of sources, but also the one generated by the constant piece of the warp factor, or
its average, is the spectrum obtained on a torus of radius

√
H0L, namely

Standard KK spectrum: M̊2
N =

N2

H0L2
, N = |~m| , ~m ∈ Zd . (4.4)

To measure the effect of a (non-constant) warp factor on the Kaluza–Klein spectrum, we
need to compare it to the standard spectrum (4.4). A deviation from the latter would only
be due to the non-constant piece of the warp factor, or equivalently, to the sources. In other
words, looking at H in (3.12), the standard spectrum (4.4) will be reproduced if H0 = hdgs
dominates over the QiG. We can give a rough condition on the parameters in the model for
this to happen: (2πL)d−2G given in (3.6) gives pure numbers, independent of parameters,
and from (2.25) one has Qi ∼ (2πls)

d−2gs. So we obtain the following condition

hd �
(
ls
L

)d−2

⇒ standard KK spectrum . (4.5)

The above intuition is verified comparing Figure 2a and 2b: for a high L/ls ratio, the warp
factor is much closer to a constant than for a smaller ratio, for which the non-constant con-
tribution clearly appears. By introducing the tools needed to evaluate the spectrum, we are
now going to rederive the condition (4.5), and give further comments.

The Kaluza–Klein spectrum is determined by equation (4.1), for any D and d = D−p−1.
Perhaps the simplest approach to solving this equation is to use Fourier series on the transverse
torus Td. Let us first expand

ψN (~σ) =
∑
~m∈Zd

e2πi~m·~σc~m . (4.6)

Using (3.12) for H and substituting (3.3) for the generalized Green’s functions,7 together
with (4.6) into equation (4.1), we obtain an infinite system of equations,

∀~m ∈ Zd ,
(

~m2

L2M2
N

−H0

)
c~m +

1

(2πL)d−2

∑
~n∈Zd ∗

∑
iQie

−2πi~n· ~σi

(2π~n)2
c~m−~n = 0 , (4.7)

where we consider MN 6= 0. We introduce for each source located at ~σi a number qi = Qi/QDp ,
i.e. qi = 1 for a Dp and −24−d for an Op; we also use the charges given in (2.25). We then
rewrite the system of equations (4.7) as O~m

~pc~p = 0, with a matrix operator O given by

O~m
~p =

(
~m2

L2M2
N

− gshd
)
δ~p~m − gs

(
ls
L

)d−2 ∑
~n∈Zd ∗

∑
i qie

−2πi~n· ~σi

(2π~n)2
δ~p~m−~n . (4.8)

Since ψN is assumed normalisable (see (2.5)), its Fourier expansion converges, in particular
c~n → 0 for |~n| → ∞. We may then truncate to c~m = 0 for |~m| > m0, where m0 is some

7One may worry about using the Fourier expansion for the generalized Green’s function, given that we
argued in favor of a regularization in section 3.2. In the present approach, the regularization will be effectively
provided by cutting off the infinite sum of Fourier modes of ψN . This is justified by the fact that ψN is assumed
normalisable, as discussed around (2.5).
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positive number. The error thus committed becomes arbitrarily small as m0 → ∞. As a
result of this truncation, the infinite system of equations O~m

~pc~p = 0 reduces to a finite set
of homogeneous equations for the coefficients c~p with |~p| ≤ m0, and the operator O can be
taken as a finite size matrix. This system of equations admits non-trivial solutions only when
imposing det(O) = 0, which in turn would select discrete values of M2

N , corresponding to
the allowed Kaluza–Klein masses. This will serve as the numerical method to evaluate the
spectrum in section 4.3. Before doing so, let us take a closer look at this matrix.

We want to compare the various coefficients of O, especially the off-diagonal ones due to
the non-constant piece of H and the contribution H0 to the diagonal ones. For each ~n ∈ Zd ∗,
one has, using

∑
iQi = 0,∣∣∣∣∑i qie

−2πi~n· ~σi

(2π~n)2

∣∣∣∣ ≤ ∑i |qi|
(2π)2

=
2
∑

Op
|QOp |

(2π)2|QDp |
=

23

π2
. (4.9)

The last equality is obtained by considering that the charges QOp are placed at the 2d fixed
points, as for instance in the string theory setting described in section 4.1. We then get the
comparison of coefficients minimized as follows

gshd ×

∣∣∣∣∣gs
(
ls
L

)d−2 ∑
i qie

−2πi~n· ~σi

(2π~n)2

∣∣∣∣∣
−1

≥
(
L

ls

)d−2

hd
π2

23
. (4.10)

Therefore, if (L/ls)
d−2 hd � 1, the contribution of H0 to the diagonal terms dominates the

off-diagonal coefficients. In other words, the off-diagonal coefficients of O in (4.8) can in that
case be neglected to get the spectrum:(

L

ls

)d−2

hd � 1 ⇒ O~m
~p '

(
~m2

L2M2
N

− gshd
)
δ~p~m . (4.11)

It is then easy to read the spectrum with det(O) = 0

M2
N '

N2

H0L2
, (4.12)

with N = |~m| labelling the Kaluza–Klein masses. This is precisely the standard Kaluza–
Klein spectrum M̊N (4.4), and the condition to obtain it, given in the left-hand side of (4.11),
matches exactly the one obtained in (4.5) by a rough estimation. This analysis implies that
obtaining a deviation from the standard spectrum, which would be physically more interesting,
requires the contrary to (4.5), namely

Deviation from standard KK spectrum ⇒ hd .

(
ls
L

)d−2

(4.13)

Before commenting further on that condition, let us discuss another one. It is a standard
requirement, for the classical solutions to be trusted, to ask for the fundamental length ls to
be much smaller than the typical, or average, size of the extra dimensions: this can be written
here as

√
H0L� ls, meaning

Physically relevant regime: hd �
1

gs

(
ls
L

)2

(4.14)
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The two conditions just derived, and conclusions to be drawn, might be disputed away from a
string-theory-like context. For instance, in a more phenomenological model, the charges may
not obey the definition (2.25) used, or the length entering those may not be understood as a
fundamental length. Also, we use in the following a stringy interpretation to require gs < 1,
but this might not apply in a different context. With these limitations in mind, let us now
combine the two above conditions, to see whether we have a chance to get a deviation from
the standard Kaluza–Klein spectrum while remaining in a physically relevant regime. We
deduce combining (4.13) and (4.14)

Non-standard spectrum in a physically relevant regime⇒
(
ls
L

)d−4

� 1 (4.15)

The first conclusion is that this will not be reached for d = 4. For d ≥ 5, we obtain
the requirement ls/L � 1, which from (4.14) gives hd � 1. It is difficult to know whether
this situation can agree with the prescription (3.13) for hd proposed in section 3.3. There
we only evaluated hd to the explicit values (3.14) in the opposite case ls/L � 1. Different
prescriptions remain possible, but go beyond the scope of this paper.

For d ≤ 3, we obtain ls/L � 1, for which we can use the hd values (3.14): for d = 3 and
d = 2, we got h3 ' 1

2π and h2 ' 2
π ln(L/ls); This only gives little room to deviate from the

standard spectrum (4.13) in both cases, when combined with ls/L� 1. Finally for d = 1, the
prescription (3.16) gives h1 = L/ls in an example of interest (3.17). Then, one will always get
a deviation from the standard spectrum (4.13), and this will be physically relevant as long as
ls/L� 1. We now verify these claims for d = 1, 2, 3, and get the precise deviations from the
standard Kaluza–Klein spectrum (4.4), thanks to a numerical evaluation.

4.3 Numerical evaluation of the spectrum for d = 1, 2, 3

We evaluate numerically the Kaluza–Klein spectrum of gravitational waves propagating on a
4d warped Minkowski background with toroidal extra dimensions, by solving equation (4.1).
We use string motivated D-dimensional backgrounds, where the warp factor is due to objects
analogue to D-branes and orientifolds, whose transverse space is a d-dimensional torus. The
stringy input is the number and placement of orientifold-like sources (see e.g. the background
in section 4.1), and the inspiration for theD-dimensional expression of their charges (2.25); the
discussion of a physically relevant regime in section 4.2 also uses such an input, e.g. through
the requirement gs < 1. One may still consider different models where the number of sources
or their charges are different; for this reason our spectrum evaluation will go beyond a stringy
physically relevant regime. We evaluate the spectrum only for d = 1, 2, 3, for reasons displayed
at the end of section 4.2 but also because a higher d would require increased computational
power.

The tools and strategy relevant to this spectrum evaluation were introduced in section
4.2, with the operator O in (4.8) and the text below. To proceed further it is convenient to
consider the following operator

O~m
~p × 1

gs

(
L

ls

)d−2

= O′~m
~p =

(
~m2

µ2
N

− ηd
)
δ~p~m −

∑
~n∈Zd ∗

∑
i qie

−2πi~n· ~σi

(2π~n)2
δ~p~m−~n , (4.16)
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where we have defined

ηd = hd

(
L

ls

)d−2

, µ2
N = M2

NL
2 × gs

(
ls
L

)d−2

. (4.17)

The eigenvalue equation (4.1) can be rewritten in terms of the new parameters as

− δmn ∂

∂σm
∂

∂σn
ψN = H ′ (2π µN )2 ψN , (4.18)

with H ′ given by

H × 1

gs

(
L

ls

)d−2

= H ′ = −(2πL)d−2
∑
i

qiG(~y − ~yi) + ηd . (4.19)

Provided the values µN are calculated by solving the system O′~m
~pc~p = 0, the corresponding

Kaluza–Klein spectrum MN is obtained, normalised to the standard Kaluza–Klein spectrum
M̊N (4.4) in absence of sources; in other words we obtain the following ratio

MN

M̊N

= fN , with fN =

√
ηd
N

µN . (4.20)

The quantities fN are phenomenologically interesting as they measure the deviation from the
standard spectrum (4.4).

Without sources, the eigenfunctions for d = 1 can be decomposed into odd and even
functions, namely ψN ∝ sin(2πNσ) and ψN ∝ cos(2πNσ); in higher d, this gets generalized
to antisymmetric (a) or symmetric (s) functions under ~σ → −~σ. There is thus a degeneracy
in the standard Kaluza–Klein spectrum, that we denote as µaN = µsN . We will observe that
this degeneracy gets lifted after the inclusion of sources, i.e. with a non-constant warp factor,
with typically µaN < µsN , and we will distinguish both spectra. In a stringy context, this
becomes even more important because of the orientifold projection: the metric being even
under an orientifold involution, the odd or antisymmetric eigenfunctions should eventually be
projected-out. We will come back to this point in the following.

In the following we list numerical results concerning the first few Kaluza–Klein modes in
dimensions d = 1, 2, 3. On top of the number and location of the sources, the operator O′
(4.16), and therefore the spectrum, depends a priori on ηd = hd (L/ls)

d−2: we take for hd the
values obtained in section 3.3 and specify the value of the ratio L/ls. We then present the
antisymmetric and symmetric spectrum.

Case d = 1

We consider 2 O8 placed at σ = 0, 1
2 and 16 D8 all placed at σ = 0, such that the total

charge vanishes:
∑

iQi = 0. This configuration has been discussed around (3.17): from
the prescription there, we deduce that η1 = 1 is independent of the ls/L ratio, making it a
special case. The spectrum is then unique and given in Table 1. It is obtained by solving the
linear system corresponding to the operator O′ (4.16), truncating c~m = 0 for |~m| > m0 = 20,
following the strategy explained below (4.8). However the system of equations converges
remarkably fast: truncating at m0 = 1, the error compared to the truncation at m0 = 20
is of order 10%; truncating at m0 = 2, the same error is only of order 0.01%. Last but not

21



N 1 2

a/s a s a s

µN 0.9800 1.1397 2.0368 2.2047

fN 0.9800 1.1397 1.0184 1.1024

Table 1: The first modes of the Kaluza–Klein spectrum for d = 1, in terms of their deviation
fN (4.20) from the standard spectrum.

least, we present in appendix B an alternative numerical method for d = 1 to determine the
eigenvalues, that goes back to the work of Hartree [52]: the spectrum of Table 1 is reproduced.

In addition to the Kaluza–Klein eigenvalues, the solution of the system (4.16) allows us to
determine the Fourier coefficients of the corresponding eigenfunctions. Figure 4 depicts the
eigenfunctions corresponding to the eigenvalues of Table 1. As expected from general theory,
an N -th eigenfunction ψN has 2N zeros.
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(a) Odd eigenfunctions corresponding to
µa
1 (2 zeros) and µa

2 (4 zeros)
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(b) Even eigenfunctions corresponding to
µs
1 (2 zeros) and µs

2 (4 zeros)

Figure 4: Odd and even eigenfunctions corresponding to the eigenvalues of Table 1.

We recall from the above general discussion that the orientifold would project out the odd
eigenfunctions, leaving only the s entries in Table 1.

As can be seen from the fN in Table 1, the spectrum is different than the standard Kaluza–
Klein spectrum (4.4), as anticipated at the end of section 4.2. But the deviation remains mild:
this can be understood from (4.13), where the value h1 = L/ls only saturates the inequality.

Case d = 2

We consider 4 O7 placed at ~σ = (0, 0), (0, 1
2), (1

2 , 0), (1
2 ,

1
2) and 16 D7 all placed at ~σ = ~0, so

that the total charge vanishes. Here we have η2 = h2 = 2
π ln(Lls ). The operator O′ and thus

the spectrum now depend on L/ls, and we consider below different values for this ratio.8 The
spectrum is obtained by truncating c~m = 0 at m0 = 2

√
2. Its is given in Table 2. We see

that the truncation only captures the first two antisymmetric eigenfunctions. In contrast to

8We took for h2 the value (3.14) computed from the prescription (3.13) in the approximation L/ls � 1.
Some values of this ratio considered here are very mildly in that regime, in which case the same value for h2

is still used but may not correspond to the previous prescription anymore.
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the d = 1 case, the truncation we have imposed, for computational reasons, might be too
restrictive, and causing the program to miss some of the low-lying symmetric modes, namely
the first symmetric eigenfunctions. Another possibility would be that the latter correspond to
higher eigenvalues. In any case, their absence is not very satisfactory if one imposes further
the orientifold involution that projects out the antisymmetric eigenfunctions.

N 1
√

2

L/ls a/s a s a s

µN 1.3946 3.9954

1 fN 0 0

µN 1.2196 2.8020

1.5 fN 0.6196 1.0066

µN 1.1196 2.3298

2 fN 0.7438 1.0944

µN 0.7804 1.2211

10 fN 0.9448 1.0454

µN 0.5749 0.8357

102 fN 0.9844 1.0118

µN 0.4735 0.6778

103 fN 0.9930 1.0051

µN 0.4113 0.5857

104 fN 0.9960 1.0028

Table 2: The first modes of the Kaluza–Klein spectrum for d = 2, in terms of their deviation
fN (4.20) from the standard spectrum. An empty cell means that the mode has not been
found within the search range.

With h2 = 2
π ln(Lls ) and the conditions (4.5) or (4.13), we deduce that the bigger L/ls

the closer the spectrum is to the standard Kaluza–Klein spectrum (while remaining in a
physically relevant regime (4.14)). We verify this with the a modes in Table 2, as the faN
get closer to 1 as L/ls increases. On the contrary, L/ls = 2 giving h2 ' 0.44 is an example
of the situation mentioned at the end of section 4.2, where one gets a mild deviation from
the standard spectrum, verified here with fa1 , while being still barely in a physically relevant
regime (4.14). We cannot go lower in the ratio values than L/ls = 1, due to the expression
used here for h2. In that limit, we still obtain finite µN , and we reach the maximal deviation
from the standard spectrum with fN = 0.

Case d = 3

We consider 8 O6 placed at ~σ = (0, 0, 0), (0, 0, 1
2), . . . , (1

2 ,
1
2 ,

1
2) and 16 D7 all placed at ~σ = ~0,

so that the total charge vanishes. We have η3 = 1
2π

L
ls

. As for d = 2, the operator O′ and

the spectrum depend on L/ls, for which we then consider different values.9 The spectrum is
obtained by truncating c~m = 0 at m0 =

√
3. Its is given in Table 3, and illustrated in Figure 5.

9The same remark as in footnote 8 can be made on the h3 value and the prescription (3.13) to compute it.
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Contrary to d = 2, the truncation, if to be trusted, captures some symmetric eigenfunctions,
even though not the first ones. Those would remain after imposing the orientifold projection.

For d = 2, 3, we had to identify the N for each mode. This N is the level of a corresponding
mode in the standard spectrum, to which we compare. For high L/ls ratios, we are sufficiently
close to the standard spectrum to allow for such an identification, as indicated in (4.5): we
can either find N such that fN ' 1, or evaluate Fourier coefficients of an eigenfunction and
compare it to products of cos and sin, or also count the number of zeros of the eigenfunction
along each direction. Getting to lower L/ls makes any comparison to standard spectrum
modes, and the N identification, more difficult. It is thus the continuity of the µN and fN
values starting from high L/ls that guides us in the identification of the modes. The order in
which the eigenmodes appear may also help, even though as explained, the truncation may
lead to miss some of them.

N 1
√

2

L/ls a/s a s a s

µN 1.2075 2.4515

0 fN 0 0

µN 1.2074 2.4510

10−3 fN 0.0152 0.0218

µN 1.2066 2.4466

10−2 fN 0.0481 0.0690

µN 1.1988 2.4040

10−1 fN 0.1512 0.2145

µN 1.1265 2.0706

1 fN 0.4494 0.5841

µN 1.0576 1.8223

2 fN 0.5967 0.7270

µN 0.7288 1.1168 1.0685

10 fN 0.9194 0.9962 0.9531

µN 0.2504 0.3515 0.3543

102 fN 0.9991 0.9914 0.9993

µN 0.0793 0.1120 0.1121

103 fN 1.0000 0.9991 1.0000

Table 3: The first modes of the Kaluza–Klein spectrum for d = 3, in terms of their deviation
fN (4.20) from the standard spectrum. An empty cell means that the mode has not been
found within the search range.
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Figure 5: Kaluza–Klein spectrum M2
N (×H0L

2) with d = 3 for a non-trivial warp factor
(plain lines), compared to the standard spectrum for a constant warp factor (dashed lines),
depending on the parameter value log10(L/ls). The bottom (blue) lines correspond to a-modes
with N = 1, the upper lines to s-modes with N =

√
2, as given in Table 3.

With both the symmetric and antisymmetric modes, we verify with the fN in Table 3
or the illustration in Figure 5 the behaviour discussed at the end of section 4.2: the bigger
L/ls, the closer we get to the standard Kaluza–Klein spectrum, and the safer we are in terms
of a physically relevant regime, at least in a stringy framework. L/ls = 2 is again close
to the boundary value on these aspects. On the contrary, the smaller L/ls, the bigger the
deviation from the standard spectrum. This holds until the limit of maximal deviation with
fN = 0, where we verified that the µN reach a finite value. Justifying the physical relevance
of the parameter values with small L/ls would amount to consider a different framework or
model, e.g. with different source charges, as discussed at the beginning of this section. Let
us emphasize that the smaller L/ls values lead to the phenomenologically most interesting
deviations from the standard Kaluza–Klein spectrum: the fN get indeed much smaller than 1,
i.e. the first Kaluza–Klein masses get noticeably lowered, bringing them closer to observability
bounds.

5 Summary and discussion

In this work, we have studied 4d gravitational waves propagating on a D-dimensional back-
ground made of a 4d warped Minkowski space-time and D − 4 extra dimensions. The latter
lead to a tower of Kaluza–Klein 4d gravitational waves, whose mass spectrum is affected by
the non-trivial warp factor H, as can be seen in the eigenvalue equation (2.23). Contrary to
braneworld models mentioned in the Introduction, the warp factor is due to Dp-branes and
orientifold Op-planes sources, or analogous p-dimensional objects in D-dimensions, and deter-
mined as a solution to a Poisson equation (2.12). As such, H is given in terms of generalized
Green’s functions G, the source charges Qi, and a constant H0, as in (2.15). These various
ingredients are however typically not given explicitly for compact extra dimensions, so we
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determine them here in section 3 for a transverse d-dimensional torus Td, d = D− p− 1. We
provide an expression for G in (3.6), inspired by Courant-Hilbert [39] and proposals of [40,41];
illustrations of G are provided in Figure 1. This expression passes further non-trivial tests:
in appendix A, we reproduce analytically from it the expected behaviour close to the source,
and indicate a matching to a different expression known for d = 2 in the context of string
amplitudes. We turn to the constant H0 which plays a crucial role: it corresponds to the
average of H over Td, in the case

∑
iQi = 0 mostly considered here. It is also required to be

non-zero to guarantee a standard massless gravitational wave, and to maintain in addition
H ≥ 0, avoiding a signature change in the extra dimensions. Based on the latter, we propose
a prescription (3.13) that fixes H0 = gshd, and compute hd in some cases. Resulting warp
factors are depicted in Figure 2 and 3. We turn in section 4 to the analysis of the 4d grav-
itational waves Kaluza–Klein spectrum on such warped backgrounds: those include string
compactifications, but our formulation in D-dimensions with free parameters allows for more
general models. The standard Kaluza–Klein spectrum for a trivial, i.e. constant, warp factor
is given in (4.4) (see also footnote 2). We analyse in section 4.2 what values of the parameters
L/ls and hd allow for a deviation from this spectrum (4.13), while remaining in a (stringy
motivated) physically relevant regime (4.14); L is the radius of the unwarped Td and ls is
the fundamental length, e.g. string length. We finally evaluate numerically this spectrum for
d = 1, 2, 3, with various values of L/ls, and quantify the deviation from the standard spectrum
by the number fN (4.20) for each mode N . The degeneracy of the spectrum into symmetric
(s) and antisymmetric (a) modes gets lifted. The spectrum and deviations obtained for the
first few modes are given in Table 1, 2 and 3, and the spectrum for d = 3 is depicted in Figure
5.

Observability of Kaluza–Klein gravitational waves

As recalled in the Introduction, standard Kaluza–Klein spectra lead to gravitational waves
of frequencies far too high to be detected by current ground-based observatories. However,
such a detection could be made possible in the future with eLISA, through the observation
of the stochastic gravitational waves background (SGWB) of cosmological origin. Indeed,
gravitational waves produced at high energies (in particular with high mass or frequency) in
the early universe would benefit from the cosmological redshift to be observed today [53,54].
It would be interesting to have more precise bounds on the frequency and amplitude for such
detectable primordial Kaluza–Klein gravitational waves.

Coming back to our results, the first point is that we observe a deviation due to a non-
trivial warp factor with respect to the standard spectrum: this deviation is even independent
of the parameter L/ls for d = 1, and present for some range of values of L/ls for d = 2, 3.
Therefore, if Kaluza–Klein gravitational waves are ever observed, the discrepancy of these
spectra is interesting. Secondly, in physically relevant regimes for a string framework (4.14),
namely for L/ls & 10, the deviation is unfortunately not big for the cases considered: we
obtained that the lowest Kaluza–Klein mass is at best a half of the standard one. The fact
the mass gets lowered with a non-trivial warp factor is encouraging, but so far not enough to
be observed. There are however few caveats or possible improvements in this answer to our
initial question, regarding the constant H0, the dimensions d considered and the need of more
computational power; we come back to those at the end of this section. In addition, let us
emphasize that different parameter regimes, e.g. L/ls � 1 for d = 3, lead to huge deviations
and lowering of the masses. Such regimes could maybe be justified in different models, or with
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different prescriptions for the constant H0; further possibilities are again mentioned below.

An explicit warp factor for string compactifications

Another important result in this paper is to provide an explicit expression for a warp factor,
that applies (in particular) to string compactifications. As mentioned in the Introduction, this
is usually not done explicitly, especially to the extent of solving generalized Green’s functions
and fixing the constant H0. Even though one may argue that phenomenological cases of
interest go beyond a torus Td or

∑
iQi = 0 as considered here, several important ideas

and constructions in string phenomenology could already be tested thanks to this explicit
expression. We list here a few, hoping to come back to them in the future:
- The physics close to the sources: it plays a crucial role in recent discussions on de Sitter
solutions, e.g. in [33,36] that we relate here to Figure 3, or through the study of local physics
in the throats [32, 34, 35, 37] (see also [55, 56]). In particular, the discussion related to the
prescription on H0 (3.13) could be relevant: there we propose a horizon cut close to orientifolds
to maintain H > 0. A similar cut should be imposed close to D-branes to maintain a finite
integral of H, i.e. prevent from an infinite volume and infinite internal distances. This is
reminiscent of singularity resolutions in throats.
- The validity of the smearing approximation: see e.g. [57,58] and some possible implications
for de Sitter solutions in [59]. Here for instance, the warp factor would replaced by its average
(constant) value and sources contributions by the C constant.
- Effective field theories with warp factors: formal results can be found in [60–67], in which
one could now replace the warp factor by its explicit expression.

Going further

To get a lower Kaluza–Klein spectrum, an idea is to introduce a different scale in the problem,
bigger in length than the average internal radius. This is a standard question for moduli
stabilization in string theory, or in attempts to obtain interesting phenomenology, and usual
possibilities involve fluxes and curvature. Here, these options would translate into having a
C = 1

V

∑
iQi 6= 0, or the first non-zero eigenvalues of the Laplacian small compared to the

inverse internal radius. This last situation occurs for one-forms on nilmanifolds as shown
in [68]: the smallest non-zero eigenvalue is related to the curvature of the manifold, which
introduces a different scale than the average radius. It would then be interesting to analyse
the warp factor and spectrum on a curved manifold instead of the torus, or with C 6= 0. Let
us also recall that the average of H is modified if C 6= 0, which makes the interpretation
of H0 more difficult. So far though, few numerical tests have shown little difference on the
spectrum for C 6= 0, but we hope to examine these ideas more thoroughly in the future.

Finally, it would be interesting to combine effects of the warp factor to that of the other
fields coming from extra dimensions, namely the vectors and scalars as discussed in the
Introduction. The setting considered here, 4d TT (Kaluza–Klein) gravitational waves, is
known to be a consistent truncation of the fully fluctuated D-dimensional theory [8], as
recalled in section 2.1. This should help to extend the study to the other fields. In particular, it
would be interesting to see how the effect on the polarization due to the massless scalar field [8]
is modified. One may also wonder whether the Kaluza–Klein spectrum of the remaining fields
is altered.
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More on the spectrum evaluation

Last but not least, we end here with some technical points that could improve the current
spectrum evaluation, or help to get new spectra, e.g. with d = 4, 5, 6 or a different constant
H0. The spectrum has been evaluated by a numerical resolution of the eigenvalue equation
(4.1) or (4.18), following a method presented in section 4.2 and 4.3 (see also appendix B for
d = 1). It required a truncation to an integer m0 (for a finite size matrix) that appeared
very reliable for d = 1, but maybe more problematic for d = 2, 3. For the latter, it might
cause in particular to miss some of the low-lying Kaluza–Klein modes, as discussed in section
4.3. A first improvement would be to either find a different resolution method, or more
computational power to allow for a bigger m0 and a better control on the truncation.

More computational power would also be needed to evaluate the spectrum for d = 4, 5, 6.
The cases d = 5, 6 especially could lead to very interesting results as argued at the end of
section 4.2. On general grounds, we expect the deviation from the standard Kaluza–Klein
spectrum to be much bigger for d = 5, 6 because the non-constant part of the warp factor is
much stronger: see e.g. Figure 1.

Finally, as pointed out at the end of section 4.2, the value of the constant H0 is crucial. The
prescription (3.13) we proposed is a minimal choice of H0 to guarantee H ≥ 0: H vanishes at
a horizon distance from the source (or at the source for d = 1). One could consider a different
prescription, in particular one making H more positive, i.e. a bigger H0.10 Having a big H0

or hd however does not seem to help in terms of deviations from the standard Kaluza–Klein
spectrum, as can be seen in (4.13), but a bigger value than the one computed in (3.14) appears
nevertheless necessary for d = 5, 6 as mentioned at the end of section 4.2. Before going to a
different prescription for H0, we should also recall that we computed hd only for L/ls � 1 in
(3.14), and we used these values all along; it would be interesting to first compute hd from
our prescription (3.13) in different regimes. These various technical points are simple ideas
to improve and extend the spectrum evaluation and we hope to come back to them in the
future.
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A Study of the generalized Green’s function

We proposed in section 3.2 the expression (3.6) for the generalized Green’s function G on a d-
dimensional torus, following a prescription by [40,41]. This expression allows us to reproduce
a rigorous result by Courant-Hilbert [39] for d = 3, presented in section 3.1. We study here
this expression further by first determining the behaviour of G close to the source, and then
focusing on the d = 2 case for which another expression is known.

A.1 Behaviour close to the source

We expect the behaviour of G(~σ) (3.6) close to the source at ~σ = ~0 to match the one obtained
in a non-compact flat space. To verify this, we first introduce a primitive function (indefinite
integral) F (~σ, t) of 1−

∏d
m=1 θ3(σm|4πit) with respect to t such that formally, i.e. if everything

is well-defined, one gets

(2πL)d−2 G(~σ) = F (~σ,∞)− F (~σ, 0) . (A.1)

We first study the behaviour at t→∞: one has∣∣∣∣∣1−
d∏

m=1

θ3(σm|4πit)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
~n∈Zd ∗

e2πi~n·~σ−4π2~n2t

∣∣∣∣∣∣ ≤
(∑
n∈Z∗

e−4π2n2t

)d
≤

(∑
n∈Z∗

e−4π2nt

)d
(A.2)

i.e. ∣∣∣∣∣1−
d∏

m=1

θ3(σm|4πit)

∣∣∣∣∣ ≤
(

e−4π2t

1− e−4π2t

)d
∼t→∞ e−4π2dt + o(e−4π2dt) . (A.3)

We deduce that −e−4π2dt ≤ 1−
∏d
m=1 θ3(σm|4πit) ≤ e−4π2dt up to terms o(e−4π2dt), and since

primitives on both sides go to zero at t→∞, independently of ~σ, we conclude

F (~σ,∞) = 0 . (A.4)

There is no definition issue on this side of the integral. We turn to the other side, t→ 0. Let
us first recall properties of the θ3-function (3.7)

θ3(−σ|τ) = θ3(σ|τ) , θ3(σ + 1|τ) = θ3(σ|τ) , θ3(σ|τ) =
e−

iπσ2

τ

(−iτ)
1
2

θ3

(
−σ
τ

∣∣− 1

τ

)
. (A.5)

Thanks to the last property, namely modularity, on τ = it, one obtains

θ3(σ|it) =
e−

πσ2

t

√
t

(
1 + 2

∞∑
n=1

e−
πn2

t cosh

(
2πnσ

t

))
=

1√
t

∑
n∈Z

e−
π
t

(σ+n)2 , (A.6)

where we clearly see the periodicity in σ. Restricting for our purposes to σ ∈ [−1
2 ,

1
2 ], we

deduce from the above the behaviour when t→ 0

θ3(σ|4πit) ∼t→0
e−

σ2

4t

√
4πt

. (A.7)
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This term dominates any other in the sum, except on the boundaries σ = ±1
2 where it

becomes equal to the neighbouring terms: this is expected from continuity and periodicity.
The following should then be understood away from σ = ±1

2 , in particular close to σ = 0.
We infer that

(2πL)d−2 G(~σ) = −F (~σ, 0) ∼~σ2→0
1

4π
d
2

Primitive

[
1

T
d
2

e−
~σ2

T

]
(T = 0) . (A.8)

Since e−
~σ2

T ∼T→∞ 1 for any ~σ, one has limT→∞ Primitive

[
1

T
d
2
e−

~σ2

T

]
= limT→∞ T

1− d
2 = 0 for

d > 2, so we rewrite the above as

d > 2 : (2πL)d−2 G(~σ) ∼~σ2→0 −
1

4π
d
2

∫ ∞
0

dT
1

T
d
2

e−
~σ2

T = − 1

4π
d
2

∫ ∞
0

duu
d
2
−2e−~σ

2u , (A.9)

for which we use known integrals. We obtain

d ≥ 3 : (2πL)d−2 G(~σ) ∼~σ2→0 −
1

4π
d
2

Γ
(
d−2

2

) 1

|~σ|d−2
(A.10)

where for d = 3 we used a different integral than for d ≥ 4, but expressions eventually
match.11

For d = 2, we rewrite (A.8) as

d = 2 : G(~σ) ∼~σ2→0 −
1

4π
Primitive

[
1

u
e−~σ

2u

]
(u→∞) . (A.11)

This value is however problematic in the limit ~σ2 → 0; even bounds we can obtain to char-
acterise the behaviour of the function are ill-defined in that limit, because contrary to the
above, they are not independent of ~σ. To capture the physics of this particular limit, an idea
is to subtract possible divergences, by comparing to any finite constant value u = λ > 0, for
any ~σ2 6= 0 (possibly close to 0). We get

d = 2 : G(~σ) ∼~σ2→0 −
1

4π

∫ ∞
λ

du
1

u
e−~σ

2u = − 1

4π

∫ ∞
λ~σ2

dv
1

v
e−v = − 1

4π
E1(λ~σ2) , (A.12)

where −E1(−x) = Ei(x) is the exponential integral function. Using its series expansion, one
obtains for ~σ2 ∼ 0, with γ being the Euler-Mascheroni constant,

G(~σ) ∼~σ2→0
1

4π
(γ + ln |λ~σ2| − λ~σ2 + o(~σ2)) . (A.13)

In other words, given the Green’s function is defined up to a constant, we obtain the following
dominant contribution

d = 2 : G(~σ) ∼~σ2→0
1

2π
ln |~σ| (A.14)

For d = 1, we proceed similarly: we first write

(2πL)−1 G(~σ) ∼~σ2→0 −
1

4π
1
2

Primitive

[
1

u
3
2

e−~σ
2u

]
(u→∞) =

~σ2

2π
1
2

Primitive

[
1

u
1
2

e−~σ
2u

]
(u→∞) ,

11A different method for d = 3 was proposed in [69].
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where we have done an integration by parts. We then introduce as above a finite value u = λ
and get

(2πL)−1 G(~σ) ∼~σ2→0
~σ2

2π
1
2

∫ ∞
λ

du
1

u
1
2

e−~σ
2u =

|~σ|
π

1
2

∫ ∞
λ|~σ|

dve−v
2

(A.15)

=
|~σ|
π

1
2

(∫ ∞
0

dve−v
2 −
√
π

2
erf(λ|~σ|)

)
=
|~σ|
2

(1− erf(λ|~σ|)) .

Since the function erf is linear close to zero, we deduce the following dominant contribution

d = 1 : (2πL)−1 G(~σ) ∼~σ2→0
|~σ|
2
. (A.16)

While we complete below the study of the d = 1 case, we conclude already that for all d,
we recover the expected behaviour near the source. The cases d = 1, 2 have required the
introduction of some cutoff to reach this conclusion.

We have studied generalized Green’s functions up to constants, since those do not enter
the defining differential equation (2.14). For d ≥ 2, additional constants in G do not matter
close to the source since the function is divergent there: the behaviour is then dominated by
the divergence. However for d = 1, the behaviour is finite: the expression given in (A.16)
even vanishes at the source. An additional constant would then matter. For d = 1, the
Fourier series expression (3.3) of the Green’s function is actually well-defined since the sum
converges; it does not suffer from the problem specified in (3.4) for d ≥ 2. This makes us
confident that we can equally use the Fourier series expression for d = 1. We compute this
way the constant of interest: since (A.16) vanishes at the source, we compute it there and
get (2πL)−1 G(0) = −2

∑
n∈N∗

1
4π2n2 = − 1

12 . We compute similarly the following value:

(2πL)−1 G(±1
2) = −2

∑
n∈N∗

(−1)n

4π2n2 = 1
24 , for later convenience. We conclude

d = 1 : (2πL)−1 G(~σ) ∼~σ2→0 −
1

12
+
|~σ|
2

(A.17)

We illustrate this study by plotting in Figure 1 in section 3 the Green’s function (3.6) for
various dimensions: the different behaviours close to the source become apparent. We also
see that the function is periodic at ±1

2 . Finally, we successfully check for d = 1 the values at
0 given by − 1

12 ∼ −0.083, and at ±1
2 given by 1

24 . The slope of 1
2 near the source is also well

verified.

A.2 The d = 2 case

An expression for the generalized Green’s function on a d = 2 torus is known in the string
theory literature. We follow [70] with slightly different conventions than those used so far.
We consider a torus with coordinates σi=1,2 ∈ [0, 1], identified as σi ∼ σi + 1. The metric is
ds2 = gijdσ

idσj with τ = τ1 + iτ2, τi being real, τ2 > 0, and

g =
1

τ2

(
1 τ1

τ1 |τ |2
)
, g−1 =

1

τ2

(
|τ |2 −τ1

−τ1 1

)
, det(g) = 1 . (A.18)

This matches our previous conventions for 2πL = 1 on our side and here τ = i. One can
introduce the complex coordinate z = σ1+τσ2 that admits the identifications z ∼ z+1 ∼ z+τ .
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One rewrites ds2 = 1
τ2
|dσ1 + τdσ2|2, and the Laplacian is ∆ = gij∂σi∂σj = 1

τ2
|τ∂σ1 − ∂σ2 |2.

The following equation is considered

∆G =
1

τ2
(δ(~σ)− 1) , (A.19)

which is at first solved using a Fourier series with ~n = (p, q), ~n · ~σ = pσ1 + qσ2, and

G = −
∑
~n∈Z2 ∗

e2πi~n·~σ

4π2|τp− q|2
, (A.20)

up to a constant. As explained in (3.4), the sum is not absolutely convergent, and one may
consider a ζ-function regularization. The final generalized Green’s function is given by

G̃ =
1

2π
ln |θ1(z|τ)| − (Im(z))2

2Im(τ)
+ f(τ) , (A.21)

where coefficients are usually adjusted according to normalisations and charges (we take here
an overall −π factor with respect to the expression given in [70], even though we agree on the
Fourier expansion). This expression can be motivated by considering the expected behaviour
in ln |z| near the source, and further asking for invariance under the torus symmetries, which
brings the θ1-function and the additional phase term.

We now proceed as in section 3.2 to get the generalized Green’s function (3.6), starting
from (A.20): we obtain

G =

∫ ∞
0

dt
(

1−
∑

~n=(p,q)∈Z2

e2πi~n·~σ−4π2|τp−q|2t
)
. (A.22)

Let us first consider τ1 = 0. In that case, we easily reconstruct a formula analogous to (3.6),
namely

τ1 = 0 : G =

∫ ∞
0

dt
(

1− θ3(σ1|4πitτ2
2 ) θ3(σ2|4πit)

)
. (A.23)

For τ1 6= 0, it is more difficult to separate into two θ3-functions. One can still rotate the
vector ~n = (p, q) by an angle ϕ towards (p̃, q̃), with

cos2 ϕ = 1
2

(
1 + 1−|τ |2√

(1+|τ |2)2−4τ22

)
, (A.24)

such that |τp−q|2 = λ1p̃
2 +λ2q̃

2. Doing the same rotation within ~n ·~σ then gives separability
into a product of two sums on p̃ and q̃. But those are not necessarily integers, so we do not
reconstruct the θ3-functions. We leave to future investigations this more general case.

The question is now whether, at least in the case τ1 = 0, the two expressions G̃ (A.21)
and G (A.23) match. We started from the same Fourier expansion, but then proceeded
with seemingly different regularizations. It would be interesting to study and compare both
procedures in more depth. The alternative expression (A.23) may then have applications
beyond the present paper, within e.g. string amplitudes. A first promising check is the
comparison of the two graphs, which perfectly match, as displayed in Figure 6.
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Figure 6: Comparison of the graphs of the two Green’s function expressions G̃ (A.21) and G
(A.23) along ~σ = (σ1, 0), for τ = i. The lower orange curve is G and the upper blue curve
is G̃ − G̃(σ1 = 1

2) + G(σ1 = 1
2) + 0.05. The constant between the functions is adjusted by

the value at σ1 = 1
2 and we add on the graph a shift of 0.05 to be able to see both curves;

without the latter, they are simply indistinguishable. The same perfect match is observed
along ~σ = (σ, σ) for which we do not display the graph here.

B Alternative numerical method for the d = 1 spectrum

In section 4.3, we determine the first eigenvalues µN in equation (4.18). For d = 1, we present
here an alternative numerical method that goes back to the work of Hartree [52], and was used
for the determination of a Kaluza–Klein spectrum for the first time in [42]. The idea goes as
follows: the eigenvalue problem (4.18) only has solutions for discrete values µN of µ. Indeed,
for an arbitrary µ we may obtain a unique solution ψ (up to a normalisation by an overall
constant) by imposing appropriate boundary conditions at σ = 0. For the same µ we may
obtain another unique solution ψ̃ (up to normalisation) by imposing boundary conditions at
σ = 1

2 . The two solutions thus obtained will be independent unless their Wronskian vanishes

W [ψ, ψ̃] = ψψ̃′ − ψ̃ψ′ = 0 , (B.1)

at some σ0 ∈ [0, 1
2 ], in which case it vanishes identically for all σ. Let us now evaluate W [ψ, ψ̃]

at some fixed σ0 and view it as a function of µ. The Kaluza–Klein spectrum will then be
given by the values µ = µN for which the Wronskian vanishes.

The case at hand was first studied in section 3.3: the warp factor H was given in (3.18).
The corresponding function H ′ (4.19) entering equation (4.18) is given by

H ′ = 1− (2πL)−1
(
8G(σ)− 8G(σ − 1

2)
)
, (B.2)

and turns out to be equal to the triangle function, as depicted in Figure 3b and shown around
(3.19). We then use the triangle function, and solve (4.18) as explained above, imposing
appropriate boundary conditions for the functions ψ. More precisely, at σ = 0, 1

2 we have
imposed ψ(σ) = 0 or ψ′(σ) = 0 for an odd or even function, respectively. We plot the
Wronskian at σ = 0 as a function of µ, for odd functions on Figure 7a and even ones on
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Figure 7b. We find that the zeros of the Wronskian are in agreement with the Kaluza–Klein
spectrum given in Table 1.
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Figure 7: The Wronskian as a function of µ is depicted for odd or even functions. Its zeros
µ = µN give the spectrum of Table 1.
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[28] D. Andriot, J. Bl̊abäck and T. Van Riet, Minkowski flux vacua of type II supergravities,
Phys. Rev. Lett. 118 (2017) 011603 [arXiv:1609.00729]

[29] D. Andriot, New supersymmetric vacua on solvmanifolds, JHEP 02 (2016) 112
[arXiv:1507.00014]

[30] N. T. Macpherson and A. Tomasiello, Minimal flux Minkowski classification, JHEP 09
(2017) 126 [arXiv:1612.06885]

36

https://arxiv.org/abs/1904.09003
http://arxiv.org/abs/1904.09003
https://arxiv.org/abs/1903.07080
http://arxiv.org/abs/1903.07080
https://arxiv.org/abs/1910.09557
http://arxiv.org/abs/1910.09557
https://arxiv.org/abs/hep-ph/9905221
http://arxiv.org/abs/hep-ph/9905221
https://arxiv.org/abs/hep-th/9906064
http://arxiv.org/abs/hep-th/9906064
https://arxiv.org/abs/hep-th/9605053
http://arxiv.org/abs/hep-th/9605053
https://arxiv.org/abs/hep-th/9908088
http://arxiv.org/abs/hep-th/9908088
https://arxiv.org/abs/hep-th/0105097
http://arxiv.org/abs/hep-th/0105097
https://arxiv.org/abs/hep-ph/9909255
http://arxiv.org/abs/hep-ph/9909255
https://arxiv.org/abs/gr-qc/0408032
http://arxiv.org/abs/gr-qc/0408032
https://arxiv.org/abs/astro-ph/0610470
http://arxiv.org/abs/astro-ph/0610470
https://arxiv.org/abs/1603.09550
https://arxiv.org/abs/1710.05188
https://arxiv.org/abs/1711.06628
http://arxiv.org/abs/1609.00729
http://arxiv.org/abs/1609.00729
http://arxiv.org/abs/1507.00014
http://arxiv.org/abs/1507.00014
https://arxiv.org/abs/1612.06885
http://arxiv.org/abs/1612.06885


[31] F. Apruzzi, J. C. Geipel, A. Legramandi, N. T. Macpherson and M. Zagermann,
Minkowski4 × S2 solutions of IIB supergravity, Fortsch. Phys. 66 (2018) 3 1800006
[arXiv:1801.00800]

[32] I. Bena, E. Dudas, M. Grana and S. Lust, Uplifting Runaways, Fortsch. Phys. 67 (2019)
1800100 [arXiv:1809.06861]
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[46] D. Andriot and J. Bl̊abäck, Refining the boundaries of the classical de Sitter landscape,
JHEP 03 (2017) 102 [arXiv:1609.00385]

[47] C. V. Johnson, D-brane primer, [hep-th/0007170]
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