EPJ Web of Conferences 214, 01010 (2019) https://doi.org/10.1051/epjcont/201921401010
CHEP 2018

DAQBroker - A general purpose instrument monitoring
framework

Anténio Dias'2*, Anténio Amorim?:, Anténio Tomé>, and Jodo Almeida!

'CERN CH-1211 Geneva 23 Switzerland
2Faculdade de Ciéncias, Universidade de Lisboa, Campo Grande 016, 1749-016 Lisboa
3Universidade da Beira Interior Rua Marqués D’ Avila e Bolama 6201-001 Covilhd

Abstract. The current scientific environment has experimentalists and system
administrators allocating large amounts of time for data access, parsing and
gathering as well as instrument management. This is a growing challenge since
there is an increasing number of large collaborations with significant amount of
instrument resources, remote instrumentation sites and continuously improved
and upgraded scientific instruments. DAQBroker is a new software framework
adopted by the CLOUD experiment at CERN. This framework was designed to
monitor CLOUD’s network of various architectures and operating systems and
collect data from any instrument while also providing simple data access to any
user. Data can be stored in one or several local or remote databases running
on any of the most popular relational databases (MySQL, PostgreSQL, Ora-
cle). It also provides the necessary tools for creating and editing the meta data
associated with different instruments, perform data manipulation and generate
events based on instrument measurements, regardless of the user’s know-how
of individual instruments. This submission will present an overview of each of
DAQBroker’s components as well as provide preliminary performance results
of the application running on high and low performance machines.

1 Introduction

Data acquisition (DAQ) systems are a constantly evolving medium, ubiquitous in any
field of science [1-3]. All modern scientific instruments either possess or require some
sort of DAQ system ranging from simple hardware buffers [4] to fully implemented
control and monitoring systems [5]. Instruments with different measurement purposes
are often used together to produce a better understanding of the underlying process being
measured [6, 7]. This is becoming common as collaborations between different scientific
institutes are increasing [8]. With the proliferation of Internet and Internet of Things
(IoT) devices, information is now expected to be available with only a few clicks [9].
However, the growing number of instruments, multi-instrument sites and collaborations
will often have data being stored in instrument files [10] and in a best-case scenario, us-
ing specific software tailored only to the instrument set available to the collaboration [11, 12].

An alternative approach to DAQ systems must exist to provide the following functionali-
ties for any instrument user [13]:

*e-mail: amcbd89 @ gmail.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 01010 (2019) https://doi.org/10.1051/epjconf/201921401010
CHEP 2018

o Universal data storage - identify, collect and store data from any instrument and ideally
from any data source,

¢ Universal data monitoring - tools to visualize the instrument’s data output even if users
are not familiar with the instrument,

¢ Primitives for instrument data access - functions to integrate with existing systems for
access of other instruments’ data,

¢ Primitives for instrument control - allow the sending of specific commands, ideally via
any of the instrument’s communication channels, in order to change relevant instrument
settings and operation method.

Several software packages exist that can be used for scientific instrument data acquisition
[14-16]. However, they suffer from problems that make them unfit to be used as universal
scientific instrument DAQ systems, be it limited scope, closed source, or not being designed
with scientific instruments in mind. Thus, developing a single, open-source, device inde-
pendent application for handling, collecting, storing and serving data from a universal set
of instruments is not only a worthwhile endeavor, it will eventually become a necessity in a
scientific world with massively increasing data, formats, hardware and protocols. This paper
introduces the DAQBroker framework [17] as an attempt to tackle all the aforementioned
requirements.

2 DAQBroker framework

DAQBroker is a Python-based [18] web framework that focuses on instrument monitoring
and aims to provide monitoring and control methods for any instrument. The framework itself
focuses on three major components: Communication, strategies for conveying information
from an instrument to a centralized repository; Storage, methods for collecting, organizing
and storing instrument data; Inferface, solutions for data access and manipulation.

Despite their interconnectivity, each component presents clearly defined challenges for
scientific instrument DAQ. Most of DAQBroker’s code is written in Python with the exception
of the supplied web interface, which uses the standard HTML, Javascript and CSS.

2.1 Communication

DAQBroker allows instrument data to be gathered from either a single machine or from a
network of machines. Network communication is guaranteed via a server/client architecture
that emphasizes minimizing the load on the client machine. The protocol used was built over
TCP, but provides a more relaxed communication scheme to handle slow or malfunctioning
machines. The communication protocol consists in communication between a server that
consistently checks the experiments’ meta data for new instruments/data to be collected and
an agent that receives the requests and routes data back to the server, which in turn will also
be responsible for its storage. This protocol is run over the high level distributed messaging
library ZeroMQ [19] and is illustrated in Figure 1.

2.2 Storage

Storage of data in DAQBroker is divided into two types. User and server data is stored in
a local file database and instrument data is stored in one or several user provided databases
running any type major consumer SQL engine'. Instrument data comes in a wide variety of

ICurrently tested using, MySQL, PostgresSQL and OracleDB

EPJ Web of Conferences 214, 01010 (2019) https://doi.org/10.1051/epjcont/201921401010
CHEP 2018

Server Agent

|
Process IooE

Listener

1
]
|
to be sent 1 Message decoded
P genordet e fresne secosed]
1 " Retu™ ports /
Tastrume

1 1
1 1 1
1 1 !
1 1
1 1 1
1 1 H
1 1 [
1 1 H
1] S1 Created || 1 |Giciosed] H

1 1
1 : T

1 1
: Message decoded s : Message interpreted 1

1 1
1 en, 1 V
1 / H S {r So1, ! H
! [52 Closed | 1 0 o 1 1
: 1 ase H 1
H . . : ! S2 Created !
1 essaée mlerére\e

1 | Brsve—m—
! Listener I S2 i __Interpreter 1

Database state change

Figure 1. Illustration of the communication between a server and agent applications. The full commu-
nication requires the creation of 2 sockets (S1 & S2) between a total of 4 independent processes evenly
divided between the server and agent applications.

formats, sources and granularity. However, there is one common quantity to all data gathering
instruments, the time at which measurements were taken. Time allows data from different
instruments to be compared, or even manipulated to create new measurements. Time is thus
the best common parameter to base data storage and searches on, within a single or multiple
instrument set. To that end, a top-down design concept of instrument data warehousing is
introduced where the instrument is the atomic unit. The basic model for the instrument is
divided into smaller more specific blocks:

¢ Instrument block - The most general block that encompasses all others. Includes the
basic information about an instrument (name, operator info and contact details). This block
allows separation between different instruments’ data.

e Data source block - Provides information about a specific data source from an instrument.
This block allows DAQBroker to decide what data gathering method to use and what in-
formation to feed to said method (ex: file data gathering requires a folder, file format and
extension info).

e Data channel block - The most specific block of an instrument, each channel is associated
to a data source block and is related to a single stream of unit information (ex: number or
string). Data for each channel are associated with a specific time value or range.

It is also worth noting that a DAQBroker database is not geographically bound to a
location as long as different instrument locations have access to a specific database engine
(e.x: AWS RDS, institution server).

The most difficult task of this framework is to accommodate data collection from any
source. This is a near impossible task with ever changing and emerging data and time formats,
transfer protocols and instrument hardware to name a few of the challenges that DAQBroker
faces. The open source nature of DAQBroker and the underlying Python language allows
users to easily integrate their own data collection methods with the storage and visualization
methods already existing in DAQBroker.

2.3 Interface

The last major component of the DAQBroker framework is one of great importance, as it
provides users with the tools and visual methods of interacting with the instrument environ-
ment provided by DAQBroker. Since in a shared instrument environment, most users will

EPJ Web of Conferences 214, 01010 (2019) https://doi.org/10.1051/epjconf/201921401010
CHEP 2018

not be familiar with all instruments, a simple interface is required to access the relevant data
from each instrument in a universal way. In order to provide off-the-shelf functionalities to
users from a wide spectrum of programming experience, a web application was designed to
query and interact with DAQBroker databases. This web application consists of the following
elements:

¢ Front-end interface - the main user interface contains several different tabs that provide
users with the ability to query and interact with the instrument environment viewable by
the server machine as well as tabs with settings and/or administrative tools. Depending on
the type of user that is connected, some tabs may have their functionalities limited or even
be off limits, raising an error to the user in case he decides to attempt access.

o RESTful API - a comprehensive API based on HTTP calls to manage and alter the instru-
ment environment. The endpoints of the API are divided into separate types of actions to
be preformed. These actions range from viewing a single instrument’s information to col-
lecting a wide range of data from several instrument data channels. Each call is required to
provide proper user authentication before any changes can be attempted. The most recent
version of the API can be found at http://dagbroker.com/documentation.html.

3 DAQBroker performance

As discussed previously, an application with the scope of monitoring sets of scientific instru-
ments requires not only a comprehensive and simple to use interface, but is also required to
be optimized to handle a changing and often growing set of instruments and variable hard-
ware requirements. This section will be dedicated to testing the performance of the current
version of DAQBroker by applying a set of tests designed to mimic examples of real-world
instrument sets. Two machines were chosen for the following tests to represent low (LP) and
high (HP) computational power machines, which are compared in Table 1:

Table 1. Computational resources of each testing machine

Resource High-power (HP) Low-power (LP)
CPU 8 core hyperthreading, 3.00GHz 4 core, 1.2GHz
RAM 32GB DDR4 (3200 MHz) 1GB LPDDR2 (900 MHz)
Network Intel Gigabit LAN 10/100 Ethernet
ROM 500GB SSD 16GB microSD

When relevant, tests will be duplicated first using a local database engine and a remote
AWS (Amazon Web Services) free tier database [20] to study the effect of decentralizing
the database engine. All machines are running on the same network served by a TP-LINK
AC1200 Gigabit Router [21]. Randomized instrument data will be collected from a separate
low power machine. The results of these tests and more can be found on an interactive
application hosted on https://dagbroker.com/benchmark.

3.1 Number of instruments

For the LP machine, each instrument produces a single source 10 channel file and updates
data every second. For the HP machine, another single source, this time with 100 channels, is
considered. Each instrument data container is pre-filled with entries of artificially generated
data, to emulate an instrument already containing data. Each instrument is also set up to
collect new data every 10 seconds. For each set of instruments, 30 minutes of continuous

4

EPJ Web of Conferences 214, 01010 (2019) https://doi.org/10.1051/epjcont/201921401010
CHEP 2018

monitoring is preformed, during which CPU utilization, RAM usage, disk I/O and network
requests are recorded.

Figure 2 presents the collection time of instrument data as a function of the number of
instruments being monitored. This figure shows that under a local database engine, there
is a decrease in the average collection time of instrument data when more instruments are
monitored, with that decrease being more pronounced on the LP machine. This behavior is
counter-intuitive to the expected behavior of the application, although the variability of the
collection time increases with the number of monitored instruments, thus it is possible that
with more instruments being monitored the system is less stable in terms of these metrics,
which is more in line with the expected behavior of the application.

Under a remote database engine there is no discernible trend as a function of monitored
instruments for the LP machine, while in the HP machine there seems to be a gradual in-
crease of the collection time. This behavior is more in line with the expected behavior of the
application but may be connected to the underlying cloud service used and the limitations of
the database engine and storage tier used.

16+ 3 Local DB 161 @ Local DB
[0 Remote DB 8 Remote DB

14 14
ORERL $z 12 *
v v
PRI T | IREEEY] FhorE T
=]
Y é%%%% 5 *g{'-}{"} 3
© i1
2 LoTEErzzas Frezddd
S 8

44 4

2 2

0ié:l})‘léé%éé1‘01‘11‘21‘31‘41‘51‘61‘71‘81‘9 12345678 910111213141516171819

Instruments Instruments
(x 10 channels) (x 100 channels)

Figure 2. Instrument collection time versus number of monitored instruments in a single DAQBroker
server on a LP machine (left) and a HP machine (right).

Figure 3 shows the disk usage of as a function of monitored instruments. Regardless of
machine and database engine, a clear increasing trend exists for both read and writes per
second (RPS and WPS, respectively), with a local database producing more variability and
overall larger values of both metrics, which would be expected of using local resources over
remote ones. This trend seems to show that DAQBroker is IO-bound for both machines. This
is not surprising, as the bulk of DAQBroker’s operations are reading and writing to files or
file-like resources.

3.2 Rate of data generation

For this test, a single instrument from a remote machine with a single file source of 10 data
channels is created with variable data creation periods ranging from 1 to 1073 s. For each
period a fixed 10 minutes of monitoring is preformed using DAQBroker. During this time a
program running on the instrument’s machine will simultaneously record every second the
timestamp of the last record in the reference file and the timestamp of the last value stored in
the DAQBroker database. While DAQBroker is able to store the instrument’s data in a timely
fashion, the difference between the aforementioned timestamps should always be smaller

5

EPJ Web of Conferences 214, 01010 (2019) https://doi.org/10.1051/epjconf/201921401010
CHEP 2018

250

700
200

i |
jzgééé%%éé% Szaﬁé%ié !

=3

c) 2001 d)
500 175
150
400
Ul 125
w
a 300 H| 100
200 75
50
100
3 % 25
JedBIlica Janil
123456 7 8 910111213141516171819 123456 7 8 910111213141516171819
Instruments Instruments
(x 10 channels) (x 100 channels)

Figure 3. Disk usage versus number of monitored instruments in a single DAQBroker server on a LP
machine (@) and ¢) and a HP machine (b) and d). The top plots (a) and b) show writes per second and
the bottom plots show reads per second (c) and d).

than the data collection period (10 s) of that instrument.

Figure 4 shows the timestamp differences as a function of time for the different data
generation rates. It can be seen that for the LP machine, a local database engine struggles
to monitor instruments with creation periods lower or equal to 1072 seconds (100 Hz). This
limitation is mitigated by the use of a remote database, allowing data generation periods
of 1072 seconds to be monitored. For the HP machine, however, a local database engine
struggles to keep up with periods as low as 10~* seconds (1000 Hz) while a remote database
engine simply cannot handle the same data generation period.

Figures 2 and 4 illustrate the need for carefully choosing the database engine location. A
remote engine, while freeing local resources to handle more computation costs, trades more
CPU performance for less network performance which can be at times more damaging for the
monitoring of very fast data generating instruments, while at other times, freeing resources is
what is needed to accommodate large amounts of slower DAQ.

4 Conclusions and future work

This contribution has introduced DAQBroker as a framework that tackles the growing
need for open source universal instrument data acquisition and monitoring tools and the
challenges posed by modern scientific instrument sets. The framework has been performance
tested under low and high powered machines. It was shown that the framework can handle
acquisition and monitoring of over 20 instruments with 100 data channels each under a
high computational power machine while under a lower powered machine the framework
begins to struggle at 16 instruments with 10 data channels each. Regarding data acquisition

6

EPJ Web of Conferences 214, 01010 (2019) https://doi.org/10.1051/epjcont/201921401010
CHEP 2018

w
o

a) 1x1073s
1x1072%s
1x107ts

1ls

b)

N
(%]

uHu’J1MMHIHHH“H‘I‘HH

N
o

Delay (s)
=
w

|
] 1 1)

c)
25

20

Delay (s)
=
w

10

Minutes Minutes

Figure 4. Current to stored timestamp differences versus time for different machines and data genera-
tion periods. The left plots (a) and ¢) show the LP machine performance and the right plots (b) and d)
show the HP machine performance. The top plots (a) and b) show the use of a local database engine
while the bottom plots (¢) and d) show the use of a remote database engine.

speed the framework has the ability to handle real time data acquisition of up to 1000 Hz
on the high powered machine, while on the lower powered machine it is limited to 100 Hz.
The use of a remote database engine can be used to increase the number of instruments
monitored, as it was shown that the framework itself is mostly IO bound. The same use of
the remote database engine, however, can be detrimental when fast real time acquisition is
required since the high powered machine cannot handle 1000 Hz using a remote database.
DAQBroker has been implemented in the CLOUD experiment at CERN and was used to
collect data for it’s 2017 experimental efforts.

Several features are planned to be introduced to DAQBroker in the future. One such
feature would increase the flexibility of the virtual instrument with the creation of a
"skeleton instrument file" . This file would contain all the information relevant to creating
an identical instrument container in a server running DAQBroker, allowing instruments
to be easily moved between sites running DAQBroker. Another set of features consist
in the introduction of several statistical methods that could be applied to stored time
series data in order to provide users with knowledge of stationarity of the data, compari-
son of different time series for similarity and even information events occurring in time series.

In conclusion, DAQBroker provides a solution for data acquisition and monitoring of an
ever expanding and interchangeable set of scientific instruments. It has been proven to operate
in machines with comparable differences in computational power. This makes DAQBroker

7

EPJ Web of Conferences 214, 01010 (2019) https://doi.org/10.1051/epjconf/201921401010
CHEP 2018

ideal for use in sites that are constrained in computational power or in large networks of
instruments and even in sites that require large interchangeability of their instruments.

References

[1] P. Agnes, 1. Albuquerque, T. Alexander, A. Alton, K. Arisaka, D.M. Asner, M. Ave,
H.O. Back, B. Baldin, K. Biery et al., Journal of Instrumentation 12, P12011 (2017)

[2] M. Ergeneci, K. Gokcesu, E. Ertan, P. Kosmas, IEEE transactions on biomedical circuits
and systems 12, 68 (2018)

[3] B.Li, J.Li, X. Lan, Y. An, W. Gao, Y. Jiang, International journal of medical informatics
112, 114 (2018)

[4] D. Svirida, D. Collaboration et al., Physics of Particles and Nuclei 49, 84 (2018)

[5] R. Abbasi, M. Ackermann, J. Adams, M. Ahlers, J. Ahrens, K. Andeen, J. Auffenberg,
X. Bai, M. Baker, S. Barwick et al., Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
601, 294 (2009)

[6] J.P. Grotzinger, J. Crisp, A.R. Vasavada, R.C. Anderson, C.J. Baker, R. Barry, D.F.
Blake, P. Conrad, K.S. Edgett, B. Ferdowski et al., Space science reviews 170, 5 (2012)

[7]1 X. Liu, L.G. Huey, R.J. Yokelson, V. Selimovic, I.J. Simpson, M. Miiller, J.L. Jimenez,
P. Campuzano-Jost, A.J. Beyersdorf, D.R. Blake et al., Journal of Geophysical Re-
search: Atmospheres 122, 6108 (2017)

[8] C.S. Wagner, T.A. Whetsell, L. Leydesdorff, Scientometrics 110, 1633 (2017)

[9] J. Oliveira e Sa, J.C. S4, J.L. Pereira, F. Pimenta, M. Monteiro (2017)

[10] T. Hey, S. Tansley, K.M. Tolle et al., The fourth paradigm: data-intensive scientific
discovery, Vol. 1 (Microsoft research Redmond, WA, 2009)

[11] C. Currey, A. Bartle, C. Lukashin, C. Roithmayr, J. Gallagher, Remote Sensing 8, 902
(2016)

[12] D. Tescaro, A. Loépez-Oramas, A. Moralejo, D. Mazin et al.,, arXiv preprint
arXiv:1310.1565 (2013)

[13] Z. Hons, arXiv preprint arXiv:1508.01379 (2015)

[14] N. Instruments, What is labview?, accessed: Mar 2018, http://www.ni.com/en-us/
shop/labview.html

[15] G.Labs, Grafana - the open platform for analytics and monitoring, accessed: Mar 2018,
https://grafana.com/

[16] OPeNDAP, Opendap - advanced software for remote data retrieval, accessed: Mar
2018, https://www.opendap.org/

[17] A.Dias, Dagbroker, accessed: Mar 2019, https://www.dagbroker. com/

[18] P.S. Foundataion, Python, accessed: Mar 2019, https://www.python.org/

[19] P. Hintjens, ZeroMQ: messaging for many applications (" O’Reilly Media, Inc.", 2013)

[20] Amazon, Amazon rds free tier - amazon web services (aws), accessed: Mar 2018,
https://aws.amazon.com/rds/free/

[21] TP-Link, Archer c5 | ac1200 wireless dual band gigabit router, accessed: Mar 2018,
https://www.tp-1link.com/us/products/details/cat-9_Archer-C5.html

