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Abstract. We show that standard candles can provide some valuable information about the density
contrast, which could be particularly important at redshifts where other observations are not available.
We use an inversion method to reconstruct the local radial density profile from luminosity distance
observations assuming background cosmological parameters obtained from large scale observations.
Using type Ia Supernovae, Cepheids and the cosmological parameters from the Planck mission we
reconstruct the radial density profiles along two different directions of the sky. We compare these
profiles to other density maps obtained from luminosity density, in particular Keenan et al. 2013 and
the 2M++ galaxy catalogue. The method independently confirms the existence of inhomogeneities,
could be particularly useful to correctly normalize density maps from galaxy surveys with respect to
the average density of the Universe, and could clarify the apparent discrepancy between local and
large scale estimations of the Hubble constant. When better observational supernovae data will be
available, the accuracy of the reconstructed density profiles will improve and will allow to further
investigate the existence of structures whose size is beyond the reach of galaxy surveys.
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1 Introduction

The standard cosmological model has reached a high level of accuracy and self-consistency, accom-
modating in one unified theoretical framework different types of observations such as the cosmic
microwave background (CMB), type Ia supernovae (SNe) and baryon acoustic oscillations (BAO).
The population of SNe, historical probe of the cosmological constant Λ, is now comprising a large
number of objects with 740 spectroscopically confirmed ones at redshifts 0.05 < z < 1.0 (c.f. [1]).
Thanks to many progresses, the precision on cosmological parameters is now approaching the percent
level. Nevertheless, one parameter seems to create controversy in this consistent picture by showing
a 2-3σ tension between the different probes, and this is today’s Hubble parameter H0. Recently in
Riess et al. ([2], abbreviated as R16) H0 was re-evaluated with the best Cepheid calibration so far
(details in [3, 4]), and it was found H0 = 73.24 ± 1.74 km s−1 Mpc−1, hence raising the tension to
3.4σ against the 66.93±0.62 km s−1 Mpc−1 value derived from the CMB observation of Planck [5],
denoted in the rest of the paper as Planck. It is thus important to explain this discrepancy.

Several ideas have been tested against data in order to resolve this problem. One possibility is to
modify our early-time picture of the Universe by changing our interpretation of CMB measurements
[6]. It has also been proposed that the tension itself needs to be reinterpreted (c.f. [7]).

A more conservative idea is to consider that different probes do not measure the same H0. In
this spirit, inhomogeneous geometries have been tested with SNe data from the very start [8, 9], with
perturbative [10, 11] and non-perturbative models like the Lemaı̂tre-Tolman-Bondi (LTB) model [12–
17] or the swiss-cheese model [18, 19]. However, viable models must explain not only the magnitudes
of SNe, but also pass constraints from other cosmological probes [15, 20–23].

It has been shown that [24] in the linear pertubative regime local inhomogeneities could resolve
the apparent tension as the distance to the last scattering surface in negligibly affected by local struc-
tures, while at low redshift the local estimation ofH0 can be strongly affected. In the non perturbative
regime the distance to the last scattering can be significantly affected by a local inhomogeneity, and
in this case both the effects on local and large scale observations should be taken into account in
order to determine if the tension can be partially resolved. In order to differentiate between the two
measurements, from now on we denote the local value of the Hubble parameter asH loc

0 , and the large
scale value as HLS

0 .
The statistical estimation of how much the H loc

0 value could vary among different regions of
the Universe due to inhomogeneities was studied in [25] and more recently in [11, 26], where it was
shown that there could be an uncertainty on H loc

0 of the same order of its current experimental errors.
Nevertheless it should be noted that all these “cosmic variance” analyses involve an angular average
which may underestimate the effects of anisotropy of local structure. Anisotropic effects could in fact
play an important role [24, 27, 28] because of the anisotropic distribution of SNe, even if the angular
average of the effects on H loc

0 is not large enough to explain the tension.
This directional effect is mainly due to the assumption made in R16 that the effect of inhomo-

geneities has been fully removed by the redshift correction based on 2M++ density map. This is not
necessarily the case as the density maps used to perform the correction are limited by the observa-
tional depth. Notice that an isotropic inhomogeneity extending in all directions beyond the depth of
2M++ density map is unlikely according to the ΛCDM structure formation predictions. However,
an anisotropic inhomogeneity extending only in some directions where most of SNe are located is a
different case, and the probability estimation for the existence of such anisotropic inhomogeneities
requires further investigations.

Local inhomogeneities explaining the tension between H loc
0 and HLS

0 could be tested indepen-
dently using local density measurements and may also be related to the tensions in the estimation
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of the density parameter Ωm0 and the amplitude of the linear power spectrum σ8 (c.f. [29, 30]).
Considerable progress has been achieved in studying the bulk flow (e.g. [31–34]), with most studies
converging on a velocity of several hundreds of km s−1 in a direction close to the CMB dipole of
[35]: 384 ± 78 (stat) ± 115 (syst) km s−1 pointing to the direction (l, b) = (264◦, 48◦) in galactic
coordinates.

Analyses are in general consistent with the ΛCDM model[36, 37] and it is well established
observationally the existence of inhomogeneities extending in some directions up to a few hundred
megaparsecs [20, 38, 39]. In particular, Keenan et al. ([39], abbreviated as K13) reports an under-
density in some direction of the sky that extends up to z ∼ 0.07 and suggests that a rescaling of the
density map derived from the 2M++ catalogue [40] is necessary. Direct measurements of H(z) will
probably help constraining H0 in the future as well (c.f. [41–43]).

In this paper we improve and apply the inversion method derived in [24] and [44] to obtain
the local density map from standard candles luminosity distance observations. The inversion method
requires as input a smooth function for the luminosity distance DL(z) which we obtain with a model
independent fit of a combination of Cepheids-hosting galaxies from R16 and low redshift (z < 0.4)
SNe from the UNION 2.1 catalogue of [45]. The fit is based on radial basis functions (RBFs) and
MCMC sampling. Because we are interested in a possible angular dependence of data and we want
to establish a comparison with galaxy surveys, we consider 3 fields of view (F1,F2,F3) from K13,
to which we compare our results. All SNe in a given field give rise to a radial profile averaging
over the corresponding window. Assuming that lensing effects can be neglected relative to peculiar
velocities [46], which is expected to be a valid approximation at small redshift [47], we reconstruct
the radial density profile for each field based on the inversion method described in [44], with some
modifications necessary to take into account the corrections to the growth rate due to the cosmological
constant.

As the analyzed SNe are at small redshift, we also account for their galaxy plane motion by
adding a constant 250 km s−1 velocity dispersion on SNe, and by comparing our results with K13
and 2M++. We also consider the velocity dispersion of Cepheids-hosting galaxies and show that its
effect is negligible, and that the fit quality is acceptable even without it, contrary to the assumption
made inR16.

Our work reveals that in one field of view (F1) there is an under-density whose effect can
partially account for the H0 estimation discrepancy, due to the large number of low redshift SNe
located along that direction. The reconstructed density profile is in agreement with 2M++ rescaled
according to K13. The reconstructed density profile along F3 also shows the presence of a large
under-density in agreement with rescaled 2M++.

Our results show that SNe data can be a unique tool to probe structures whose size is larger than
the depth of other observations such as the galaxy catalogues. Any deviation of cosmological param-
eters from their large scale estimation can consequently be interpreted as the evidence of structures
whose size is beyond the reach of presently available astronomical data from which peculiar veloci-
ties and associated redshift corrections are derived. Once more SNe data will become available, they
could be a valuable source of information about large scale structures and especially for the correct
estimation of background density, complementary to the density maps from galaxy surveys.

The paper is organized as follows. In section 2 we present the data employed in this study. This
includes supernovae from the UNION 2.1 catalogue, the latest Cepheids from R16, and the 2M++
catalogue. In section 3 we explain the theoretical framework in which we interpret the data and
describe the methods adopted in our statistical and numerical analysis. Section 4, 5 and 6 are devoted
to the presentation of our results, the physical interpretations and the comparison with the analyses
of K13, R16 and 2M++. In section 7 we present some further discussions about the results, their
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limitations and possible improvements. In section 8 we summarize our conclusions. Complementary
results and our dataset are presented in appendices A, B, C and D.

2 Data

We are interested in the effects of inhomogeneities on the luminosity distance of low-redshift SNe and
Cepheids-hosting galaxies, referred together as standard candles. At low redshift peculiar velocity can
be important and produce an important contamination of the Hubble flow, and we will indeed devote a
lot of attention to the problem of distinguishing appropriately between them. Two different sources of
the peculiar velocity are investigated. First for the velocity dispersion within the bounded structures,
unlike the 250 km s−1 dispersion universal to all standard candles in R16, we differentiate between
SNe and Cepheids-hosting galaxies. Second, for the bulk flow due to large scale inhomogeneities we
reconstruct the density map from the luminosity distance of standard candles, and compare it with
the map obtained from galaxy catalogues to test their consistency.

2.1 Supernovae Ia and Cepheids-hosting galaxies

The supernovae dataset is extracted from the full UNION 2.1 catalogue 1 of [45] (Supernova Cos-
mology Project) with a redshift cut z < zmax, where zmax is either 0.2 or 0.4 (for reasons explained
in section 2.2), and the exclusion of “bad” data points corresponding to types ‘p’, ‘f’ and ‘d’ re-
spectively: bad light curve fittings, long first phases after B-band maximum and SNe observed only
less than 5 times (c.f. [48], table 13 therein). For other types among the remaining SNe, we give a
more detailed account in appendix D. We additionally remove 3 SNe with unconventional names2, for
which we cannot find the sky positions (see after), and rename two others 3. Concerning the redshift
z, distance modulus µ and its error ∆µ, we prefer the values from the short UNION 2.1 list4 (more
precise), otherwise we take them from the full catalogue (less precise). To this dataset consisting of
288 (zmax = 0.2) or 372 (zmax = 0.4) SNe, we add 20 Cepheids-hosting galaxies from table 5 of
R16. Except the masers-hosting anchor NGC 4258, each of Cepheids-hosting galaxies also hosts a
type Ia supernova, among which 7 SNe can be found in UNION 2.1 (though only 3 in the fields we
considered, see after). We use the redshift of the host galaxies given from the NED database.5

We are interested in the possible angular dependence of SNe due to local inhomogeneities. To
study this dependence we consider 3 fields of view employed by K13, to which we will compare
our results. These fields are defined in table 1, shown in figure 1, and their total area of 6172 deg2

contains about half of the SNe. We extract the sky positions of all the UNION 2.1 SNe and R16
Cepheids-hosting galaxies automatically from the SIMBAD database6 of [50]. These positions are
right ascension (R.A.) and declination (Dec.) expressed in the International Celestial Reference Sys-
tem (ICRS), written in decimal (degrees). We find more precisely for zmax = 0.2 (zmax = 0.4)
that only 123 (203) SNe out of the 288 (372) UNION 2.1 SNe are present in Fields 1, 2, and 3, as
shown in table 1 and illustrated in figure 1. As we can see only Fields 1 and 3 (abbreviated as “F1”
and “F3”) have enough data to be exploited, hence Field 2 (“F2”) is excluded from our analysis.
Among all these SNe, 1 in F2 and 2 in F3 belong to the Cepheids-hosting galaxies of R16 (denoted
as “+1” and ”+2”). These 3 SNe will be considered as independent data points from the host in the

1http://supernova.lbl.gov/union/
2Their names in the UNION 2.1 dataset are 4064, 6968 and 10106.
3These are e020 and k429 that become respectively 2003kk and 2004hm thanks to [49].
4http://supernova.lbl.gov/union/figures/SCPUnion2.1_mu_vs_z.txt
5https://ned.ipac.caltech.edu/
6http://simbad.u-strasbg.fr/simbad/
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Figure 1. Sky map in ICRS coordinates of all SNe and Cepheids-hosting galaxies in our dataset. Three fields
are specified according to K13 as the regions with luminosity density data. Our targets of interest are F1 and
F3 which contain enough data points to fit the luminosity distance curve. For the sake of clarity we use (here
and later on) the same colors as K13, i.e. green for F1 and orange for F3.

statistical analysis, for the reasons discussed at the end of this subsection and at the beginning of
section 2.2. Cepheids-hosting galaxies associated to these 3 SNe are denoted through their type by
‘∗’ in appendix D. There are five other Cepheids-hosting galaxies in the fields we are interested in (1
in F1, 4 in F3) whose associated SNe are not included in UNION 2.1, and they are denoted by ‘†’ in
appendix D.

Field ICRS coordinates (deg) Number of SNe Cepheids-hosting
N◦ R.A. Dec. zmax = 0.2 zmax = 0.4 galaxies ofR16
1 [300, 360] ∪ [0, 80] [−3, 4] 69 144 1
2 [130, 250] [−3, 2] 4+1 4+1 1
3 [110, 255] [2, 36] 47+2 52+2 6
/ Whole Sky 288 372 20

Table 1. Fields of K13 and number of standard candles they contain from our dataset. [A,B] stands for the
angular range between A and B (including the boundaries).

The UNION 2.1 data contains no information about the absolute SNIa magnitudes. For this
reason we convert the relative UNION 2.1 magnitudes into absolute magnitudes by calibrating with
the 7 SNe common to the R16 and UNION 2.1 datasets. It should be noted that the light curves fits
of UNION 2.1 are obtained assuming a homogeneous model, and a full model independent analysis
would require to also include the effects of inhomogeneities in the light curves fits or to consider
different types of fitters [51–53], but this would go beyond the scope of this paper. At low redshift
the distance-modulus is given by

µ ≡ m−M = 25− 5 log10H
loc
0 + 5 log10

(
H loc

0 DL

)
≈ 25− 5 log10H

loc
0 + 5 log10 cz , (2.1)

where H loc
0 is the local Hubble parameter fitted with low-redshift standard candles. Keeping the
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Figure 2. µ(R16) - µ(Union 2.1) plot with 7 host galaxies common to R16 Cepheids and UNION 2.1 SNe.
The black line represents the shift of 5 log10

(
73.24/HU2.1

0

)
according to eq. (2.2).

redshift fixed, we expect

µ(R16) = µ(UNION 2.1)− 5 log10

(
73.24

70

)
. (2.2)

This is what we obtain by fitting µ(UNION 2.1)−µ(R16) with a difference of 5 log10

(
73.24/HU2.1

0

)
(where HU2.1

0 is the only parameter of the fit), based on the 7 SNe common toR16 and UNION 2.1,
and weighted by ∆µ2(UNION 2.1) + ∆µ2(R16), as shown in figure 2. More precisely, we find
HU2.1

0 = 70.05±2.20 km s−1 Mpc−1, very close to the value 70 km s−1 Mpc−1 assumed by UNION

2.1 (and the value we keep). The uncertainty of the calibration is propagated to the covariance matrix
Ṽ of the shifted distance modulus of UNION 2.1 SNe with components given by

Ṽij = ∆µ2
i (UNION 2.1) δij + Variance (µ(UNION 2.1)− µ(R16)) . (2.3)

In the remaining of this paper we will denote as µ the combination of shifted UNION 2.1 SNe and
R16 Cepheids-hosting galaxies data, as V −1 the inverse covariance matrix of the combined data, and
as ∆µ−2 the diagonal part of V −1..

Despite that the R16 measurements of the distance modulus are almost the same as the cor-
rected UNION 2.1 moduli in eq. (2.2) (difference always < 0.3 mag among the 7 SNe), the values of
the error in µ are quite different due to precise luminosity distance measurements of Cepheids-hosting
galaxies. Hence we choose to treat these sources as different. In practice though, the large uncertainty
on the UNION 2.1 values makes them less relevant to the fit that will be described in section 3. On
the other hand, we do not have z for Cepheids-hosting galaxies, so we take z from NED and combine
it with (µ,∆µ) fromR16. More details about our SNe dataset are presented in appendix D.

2.2 Velocity dispersion, galaxy surveys and density maps

SNe and Cepheids-hosting galaxies are not isolated objects as they are located within bounded struc-
tures, and consequently inherit rotational motions that should not be attributed to large scale inho-
mogeneities. These additional sources of noise are described as velocity dispersions that affect the
distance modulus through

∆µv.d. ≈
5

log 10

∆v

cz
, (2.4)
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where ∆µv.d. is the additional dispersion in the distance modulus, ∆v is the velocity dispersion, and
cz is the recession velocity at small redshifts. Following R16 we will add a velocity dispersion of
250 km s−1 to SNe in order to account for their galactic plane motion, shown in the ∆µ250 column
of tables in appendix D. In addition, since Cepheids-hosting galaxies are included in our dataset, we
will discuss about a∼ 40 km s−1 intra-filament velocity dispersion observed in [54] and [55], and its
effect in section 5.1.

We compare the results of our density field reconstruction to the luminous density data of the
2M++ galaxy redshift catalog [40, 56]. This catalogue extends the Two-Micron All-Sky Redshift
Survey (2MRS), presenting photometry from 2MASS-XSC and redshifts of 2MRS, SDSS-DR7, and
6dFGRS (see references in these two papers). It covers almost the whole sky except for the zone
of avoidance near the Milky-Way’s galactic plane. Notice that in 2M++ data measured in redshift
space are re-expressed in comoving coordinates and the (normalized) density contrast of observed
galaxies δ∗g(~r) is transformed into matter density contrast δ(~r) by δ∗g(~r) = b∗δ(~r), with b∗ the linear
bias factor. δ(~r) is smoothed with a Gaussian filter of 4h−1Mpc. To visualize the distribution of the
standard candles within the large scale inhomogeneities, the density maps of 2M++ averaged along
the declination are shown for F1 and F3 in figure 3.

Peculiar velocities are obtained from the galaxy density through an equation of the form

v(~r) =
β∗

4π

∫ Rmax

0
d3~r′ δ∗g(~r

′)
~r′

r′3
, (2.5)

where β∗ = 0.43 is a best fit value and the upper limit of integration is the depth of the survey
Rmax = 200h−1Mpc, i.e. z = 0.067. Therefore 2M++ does not take into account the possibility
of an inhomogeneity extending on scales larger than its depth, except for a dipole accounting for an
external bulk flow. We remove this bulk flow so that peculiar velocity corrections are expressed in the
CMB frame. The lack of observations outside the depth of 2M++ could lead to a wrong estimation
of the background density, the associated density contrast and consequently the peculiar velocity. It
is therefore important to consider K13 as well since it is probing the density field on scales larger
than 2M++.

We compare our reconstructed density profiles to K13 analysis results (c.f. figure 11 of [39]),
which are based on galaxies from the UKIDSS Large Area Survey and their spectroscopy taken from
SDSS, 2DFGRS, and GAMA (c.f. references in [39]). For a better comparison with this study, we
choose to do our fits up to a maximum redshift z ≤ zmax = 0.2. A second value of zmax = 0.4 is
considered to see how the fit stabilizes when considering the farthest farther SNe, while remaining
close enough for not having to consider weak lensing dispersion (cf. [57]). The under-density profiles
presented in figure 11 of K13 extend up to z ∼ 0.07 (∼ 300h−1

70 Mpc), with an over-dense shell
surrounding at least F2 and to a lesser extent F3. Since according to K13 there are evidences of
inhomogeneities extending beyond the depth of 2M++, we will not apply the 2M++ peculiar velocity
correction to the data in section 6, contrary to what was done inR16. We will discuss more about the
difference between K13 and 2M++ and especially the choice of the average density in section 7.2.

3 Methodology

This section is devoted to the description of our statistical method employed to fit the distance modu-
lus, and the description of the inversion method used to reconstruct the density profile along different
directions. We also discuss the role of peculiar velocities in our study.
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(a) Field 1

(b) Field 3

Figure 3. Density map from 2M++ in Fields 1 and 3 of K13, averaged along declination direction in ICRS
coordinates. Gray squares correspond to Cepheids-hosting galaxies and black dots to SNe, using peculiar-
velocity-corrected redshifts (see section 3.4). White arcs correspond to z = 0.01, 0.02, . . . , 0.06 respectively,
gray contours indicate iso-density lines of δC = −0.5, 0, 2, 4.

3.1 Model independent distance modulus fitting

We follow a systematic procedure to obtain model independent fits of the distance modulus data
(zi, µi, V

−1
ij ) by minimizing the χ2 for the deviation from a homogeneous model prediction δµi =
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µi − µPlanck (zi)

χ2 =
∑
ij

(
f (zi)− δµi

)
V −1
ij

(
f (zj)− δµj

)
, (3.1)

where f is the fitting function that will be defined in eq. 3.2, and µPlanck(z) is the ΛCDM theoretical
value of distance modulus at z computed using Planck cosmological parameters.

By model independent fit we mean that we do not make any a-priori assumption about the
geometry of space-time and consequently about the functional form of the distance modulus. For
example since we do not assume homogeneity, we consider fits more complicated than what was
considered in R16, i.e. a simple shift. In this way the existence and the shape of inhomogeneities
can be tested by comparing different fitting functions that we have no prior bias except for the degrees
of freedom analysis presented at the end of this subsection.

Our model independent approach is based on decomposing the fitting function f(z) with respect
to a set of radial basis functions (RBFs) according to 7

f(z) = w0 + w−1 z +

NNL∑
m=1

wm Φ (|z − pm|) , (3.2)

where Φ is a very simple monotonic template function known as the radial basis function (RBF), here
chosen to be Φ(r) = r3, pm are the non-linear parameters or “centers” of the RBFs, wm the linear
parameters, and NNL the number of RBFs. A fitting model is thus classified by a set of parameters
(N0, N−1, NNL), where

• N0 = 1 when the intercept parameter w0 6= 0, and N0 = 0 otherwise

• N−1 = 1 when the slope parameter w−1 6= 0, and N−1 = 0 otherwise

• NNL is the number of RBFs .

The total number of parameters for a (N0, N−1, NNL) model is thus N0 + N−1 + 2NNL. In our
analysis we will fit the function f(z) =

(
µobs − µPlanck

)
(z) as defined in eq. (3.1), where µobs is

the observed distance modulus. In the multi-dimensional case one could replace the redshift with
the position vector, the centers pm with vectors ~pm, and w−1 with a vector identifying a plane. The
“model parameters” determining the fitting function, e.g. Φ(r) and NNL, are fixed for a given fitting
model. But as explained later, we test and compare different models, with different numbers of RBFs,
with/without the inclusion of w0 (intercept) and/or w−1 (slope) parameters.

To find the best fit and the confidence band of a given model, we utilize Monte Carlo (MC), local
optimization (LO) and linear regression (LR) for different types of parameters. For linear parameters
w ≡ (w−1 , . . . , wNNL

) we use the simple Moore-Penrose pseudo-inverse method, and for non-
linear parameters p ≡ (p1 , . . . , pNNL

) we use a MC random sampling method and a LO algorithm,
specifically Newton algorithm. In order to speed up the MC process and make sure that the confidence
band is fully exploited, we use a Monte Carlo Markov Chain (MCMC) algorithm to explore the non-
linear parameter space. The different steps of the MCMC algorithm are illustrated in figure 4 and
described in details in the following paragraphs.

3.1.1 Details of the Monte Carlo Markov Chain method

These are the steps of the MCMC method we employ for data fitting.

7It is known as the radial basis function network.
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STEP 0 — INITIALIZATION: Due to the monotonic nature of RBFs, the initial distribution of
the centers for the following MCMC analysis can be determined according to the positions of data
points in z space. We take redshifts of our SNe data points, using a Gaussian smoothing function
specified in the next step to generate an identical distribution for each RBF center pm. To generate an
identical distribution for each RBF center pm, we construct an initial input set {pa}0 for the Gaussian
smoothing function by considering all possible combinations of redshifts from the data points

{pa}0 ≡ {zi}
⊗NNL
D , (3.3)

where { }D is the data set, zi is the redshift of the i-th data points, {zi}D is the set of redshifts of all
the data points, NNL is the number of RBFs, A⊗n is the tensor product of A by n times, and pa in
{pa}0 is the a-th combinatorial vector inside {zi}⊗NNL

D , e.g. (z3 , z5 , z3 , . . .). {pa}0 is sent to the
next step for distribution creation.

STEP 1 — DISTRIBUTION CREATION: We create the distribution for MC by applying a Gaussian
smoothing function acting on the input set {pa} with a bandwidth specified by the Silverman’s rule.
The Gaussian function is of the form

P (p) =
1

N
∑
{pa}

e−
1
2
|(p−pa)/B|2 , (3.4)

where P is the probability in p space,N is the normalization factor, B is the bandwidth, and {pa} is
a set of points in p space, being either {pa}0 (from STEP 0) or {pa}j (from STEP 5).

STEP 2 — MC SAMPLING AND LOCAL OPTIMIZATION: (A) We use the distribution to gen-
erate random sampling points in p space, and (B) select only the best few percent according to the
associated χ2 computed using linear parameters w given by Moore-Penrose pseudo-inverse. Then
these selected sampling points are further refined slightly by the local optimization program using a
multiple-step Newton algorithm.

STEP 3 — SAMPLES COMBINING AND SELECTION: (A) The sampling points produced in STEP
2B and the set of sampling points {pa}n−1 from the last ((n − 1)-th) loop are combined together
to form a new set {pa}n. Notice that the initial set {pa}0 should not be included in {pa}1. (B) We
then keep sampling points with χ2 (computed like in STEP 2B) lower than the threshold defined as
χ2

thres = t98% min
{pa}n

(χ2), where t98% is the 98th percentile of the student-t distribution with degrees

of freedom of the system.

STEP 4 — OUTPUT OR STORING IN THE STACK: (A) If the program takes too much time or the
set of sampling points is large enough, the program terminates and the set {pa}n will be the output
of the whole MCMC program. (B) If this is not the case, the set is stored in a stack consisting of all
the previous sets, plus the initial one generated in STEP 0. For the newly stored list, we will assign a
weight of 1 to it if the lowest χ2 in STEP 3B comes from the newly added samples, or 0 otherwise.
The initial set {pa}0 has higher weight (3).

STEP 5 — SELECTION OF SAMPLES FOR DISTRIBUTION GENERATION: One of the sets in the
stack ({pa}j) is selected as the input for STEP 1, with probability proportional to the weights set in
STEP 4B, and we go back to STEP 1 and start it all over again.
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Figure 4. Illustration of the different steps employed in our MCMC fitting method for non-linear parameters
(centers) p. Each dot in the figure corresponds to a specific pa, plus the associated wa and χ2 given by Moore-
Penrose pseudo-inverse. Red dots are points in p space, randomly sampled according to the probability density
P from eq. (3.4), green dots are those selected for local optimization (LO), blue dots are points refined by LO
algorithm, yellow dots are those from the previous loop, and orange dots are the points discarded according
to the χ2 threshold. Green circles correspond to the threshold for local optimization. Orange and blue circles
correspond to the selection threshold for the previous loop and the current one respectively. Numbers from 1 to
n are labeling the sets {pa}j inside the stack in the chronological order. Circled numbers illustrate the weights
assigned to each of these sets. Although the number of sampling points is growing in the case represented in
the diagram above, it can also decrease (in which case the time constraint plays an important role, as described
in STEP 4A).

3.1.2 Meta-fitting, F-test and the PRESS statistics

To determine the model parameters in eq. (3.2) we utilize the F-test

(1− Threshold) `1−`2 ≤ PF
(
`1 − `2 , `2 ,

χ2
1 − χ2

2

`1 − `2
/
χ2

2

`2

)
, (3.5)

PF ≡ 1− CDF
(
F (`1 − `2 , `2) ,

χ2
1 − χ2

2

`1 − `2
/
χ2

2

`2

)
, (3.6)

where `A is the number of degrees of freedom corresponding to model A, Threshold is the likelihood
of model 2 having improvement over model 1 (set to ∼ 95% in our case), F (n1, n2) is the F-Ratio
distribution of {n1, n2} parameters, CDF (D, x) is the cumulative probability of the distribution D
at x, and CDF stands for the cumulative distribution function. We perform a step-wise regression by
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gradually increasing the number of fitting parameters and stop when the F-test fails.8

We also consider the predicted residual error sum of squares (PRESS) statistics in conjunction
with the F-test to make our model selection even more robust. The PRESS is defined as

PRESS =
∑
ij

(
fi (zi)− δµi

)
V −1
ij

(
fj (zj)− δµj

)
, (3.7)

where fi (zi) is the best fit function fitted using the data without the i-th entry, evaluated at that data
point. The PRESS is a measure of the predictability of a model. Lower PRESS value indicates high
predictive power and vice versa. In addition to different model parameters, we consider the effect of
“method parameters” such as number of steps in local optimization, by taking results from different
methods and combining them together (bagging). The bagging process stabilizes the outcome by
further reducing the likelihood of falling into local minima.

3.2 Inhomogeneity model and inverted density profile

We will reconstruct the radial density profiles in different directions using an inversion method which
was developed in [44] for an observer at the center of an isotropic and inhomogeneous pure dust
universe, modeled by a LTB metric. This is justified by the fact that at low redshift the dominant
linear order perturbative effect on the luminosity distance is the Doppler effect due to the component
of the peculiar velocity along the line of sight, as shown for example in [24, 58]. If we choose a
spherical coordinates system centered at our position, the along the line of sight component of the
peculiar velocity is simply the radial component, which at linear order is mainly affected by the
radial distribution of matter. In appendix B we show that up to the first order in the gravitational
potential the luminosity distance can be approximately expressed in terms of the density along the
line of sight, if lensing contribution are negligible, as supported by observations[59–64], and that the
relation between the density contrast along the line of sight and the gravitational potential in a generic
space is the same as for a central observer in a symmetric space. This justifies mathematically the
use of a central observer in a LTB metric, which should be a good approximation as long as the non
linear effects of lensing contributions are negligible.

We do not assume in any way that the local structure is spherically symmetric respect with our
position, and in fact we reconstruct different density profiles along different directions. In other words
we are not assuming to be located at the center of spherical symmetry, since no center of symmetry is
assumed, but at the center of a spherical coordinates system. The central position of the observer in
a LTB metric is just a convenient choice of coordinates to compute the effects along the line of sight.
Using an off-center observer would not give the same result because it would also add an unwanted
peculiar velocity for the observer, which has already been removed by considering observational data
in the CMB frame.

The spherical symmetry and the central position of the observer are not posing any relevant
restriction since the radial profile in any given direction is indeed a one dimensional quantity, and
different profiles are taken along different directions. There is no fine tuning of the position of the
observer, since at low redshift inhomogeneities along the transverse direction are expected to have
negligible effects on the observed luminosity distance and there is no assumption about a global
spherical symmetry. In other words the local structure can be anisotropic and there is no assumption
about the existence of center of spherical symmetry. The local structure is modeled as a set of different
radial density profiles along different directions as functions of the radial coordinate with respect to

8Although it is known that step-wise regression underestimates the likelihood, we choose a very stringent threshold that
compensates this effect.
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the same point, i.e. the point from which we observe the Universe, which is just at the center of
our spherical coordinate system but not a center of symmetry. Analyzing different data in different
regions of the sky thus allows to probe the radial density profile in different directions, reconstructing
the local structure and its anisotropy.

However, the presence of the cosmological constant enforces to modify the aforementioned
dust model. Since we are interested in the low redshift SNe and Cepheids, the modification can
be treated perturbatively. According to [24], the cosmological constant at zeroth order only affects
the background density, and therefore the growth rate f of the inhomogeneity. This introduces a
rescaling of the density contrast δC ∝ f−1 = Ω−0.55

m0 . At first order, one needs to consider two
dominant effects. The first one comes from the modification of the deceleration parameter q0 =
−1 + 3 Ωm0/2 that changes the expansion history, resulting in a slight modification on growth rate
of the inhomogeneity. The second one comes from the modification of the luminosity distance itself,
directly affecting the density profile. Once these 3 effects are taken into account, a pure CDM model
suffices to explain the observational data at small redshifts, as further detailed in appendix A.

The LTB metric and the associated Einstein field equations (EFEs) can be written as

ds2 = dt2 − a2

[(
1 +

a,r r

a

)2 dr2

1− k(r)r2
+ r2dΩ2

2

]
, (3.8)(

ȧ

a

)2

= −k(r)

a2
+
ρ0(r)

3a3
, ρ(t, r) =

(ρ0r
3),r

3a2r2(ar),r
, (3.9)

where a ≡ a(t, r) plays the role of a scale factor (and will be called this way in the following), ar is
the angular diameter distance, k(r) can be interpreted as the spatial curvature, and the dot refers to
the differentiation with respect to t. We adopt, without loss of generality, a system of coordinates in
which ρ0 is constant. The solution of the EFEs in eq. (3.9) can be expressed in terms of the conformal
time η =

∫ t
dt′/a (t′, r) as

a (η, r) =
ρ0

6k(r)

[
1− cos

(√
k(r)η

)]
, (3.10)

t (η, r) =
ρ0

6k(r)

[
η − 1√

k(r)
sin
(√

k(r)η
)]

+ tb(r) , (3.11)

where tb(r) is called bang function, defining the time of big bang at different locations. In terms of
cosmological perturbation theory the bang functions is related to decaying modes and, since these
are tightly constrained by early Universe observations such as the cosmic microwave background
radiation, we will assume tb = 0.

The luminosity distance DL for a central observer in a LTB spacetime is

DL(z) = (1 + z)2 r(z) a (η (z) , r (z)) , (3.12)

where η (z) and r (z) are the solutions of the radial ingoing null geodesic equations, and the redshift
z is defined by

fs
fo

=
1 + zs
1 + zo

= exp

(
∂ts

∫ o

s

dt

dr

)
, (3.13)

where f is the frequency, the subscripts s and o stand for the source and the observer positions
respectively, and ts is the time at the source. To obtain r (z), η (z) and k (z), the relation in eq. (3.12)
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needs to be inverted and solved together with the radial null geodesic equations, i.e. we need to solve
an inversion problem.

In order to fix the initial conditions of the the differential equations of the inversion problem we
need to use physically observable quantities and relate them to the functions parametrizing the LTB
metric. For this purpose it is convenient to use the low red-shift Taylor expansion of the luminosity
distance for a central observer in a LTB metric [15] and match it to that of a FRW metric, which
in our case we will assume to correspond to the Planck background cosmological parameters. The
matching of the two Taylor expansions is in fact an approximate solution of the inversion problem at
the center, and for this reason provides the correct initial conditions for the numerical solution of the
inversion problem. The matching of the first and second order terms of the red-shift expansions leads
to the conditions

HFRW
0 ≡

(
dDL

dz

)−1 ∣∣∣
z=0

= a−1∂ta
∣∣∣
z=0
≡ HLTB

0 , (3.14)

qFRW0 ≡ 1−HFRW
0

d2DL

dz2

∣∣∣
z=0
≈ −a (∂ta)−2 ∂t∂ta

∣∣∣
z=0
≡ qLTB0 , (3.15)

where in the second equation we have assumed that k′(0) � 1, a condition which is consistent with
observational data and with the reconstructed density profiles, since a large value of k′(0) would lead
to an unrealistic central spike of the density contrast. This approximation is indeed quite accurate as
shown in figure 12. Note that, as discussed in [15], HLTB

0 and qLTB
0 are just convenient mathematical

quantities introduced to parametrize the LTB metric and to compute the luminosity distance, but do
not have a direct physical meaning.

The inversion problem [44] can then be reduced to the solution of this system of three 1st-order
ODEs:

dk

dz
=

√
1− S2

3(1 + z)S

2k tan(τ/2)A
3− τ csc(τ)(2 + cos(τ))

, (3.16)

dη

dz
=

1

(1 + z)
√
k

(
csc(τ)B −

√
1− S2

3S
A

)
, (3.17)

dr

dz
=

√
1− S2

(1 + z)
√
k

(
cos(τ) + 3τ csc(τ)− 4

3− τ csc(τ)(2 + cos(τ))

csc(τ)A
3

+ tan(τ/2)

)
, (3.18)

where we have defined

τ ≡
√
kη , S ≡

√
kr , A = 1− cos(τ) + B , (3.19)

B =
2

S

(a0H0)−3 (1 + z)k3/2

1− tan(τ/2)
√

1− S2/S

(
1− 1 + 2q0

4 (1 + q0)2

)−1 d

dz

(
H0DL (z)

(1 + z)2

)
. (3.20)

and for simplicity we are denoting HLTB
0 , qLTB

0 as H0, q0. A detailed derivation of these equations is
given in [44]. Notice that ρ0 and the initial conditions k(z = 0), η(z = 0) are fixed from the values
of to a0, H0 and q0. From the solution of this ODEs system, the density in eq. (3.9) can be expressed
as

ρ(z) = ρ (t (z) , r (z)) =
a−3ρ0

1 + r ∂r ln a|t
=

a−3ρ0

1 + r
(
∂r ln a|η −

∂t
a∂r∂η ln a

∣∣
r

) , (3.21)

where ρ0 = 3H2
0

[
1− 1+2q0

4 (1 + q0)−2
]

is the background density at the current time.
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In appendix A it is shown that the density contrast δC w.r.t. the background homogeneous
Universe can be approximated as

δC = f−1

(
ρinv (DL, z)

ρinv

(
DPlanck
L , z

) − 1

)
. (3.22)

in which we denote with DL the observed luminosity distance, with DPlanck
L the theoretical ΛCDM

luminosity distance corresponding to Planck parameters, and with f the growth rate of the density
contrast

f =
d ln δC (a, ~x)

d ln a
≡
d ln

[
D (a) δnow

C (~x)
]

d ln a
=
d lnD (a)

d ln a
, (3.23)

where ~x is the comoving coordinate, δC (a, ~x) ≡ D (a) δnow
C (~x), and δnow

C (~x) is the density contrast
at present time. The density contrast defined here accounts for the cosmological constant through
the three corrections proposed at the beginning of this subsection, namely the rescaling of the growth
rate f , the matching of the deceleration parameter q0 and the normalization w.r.t. the background
ρinv

(
DPlanck
L , z

)
. More details about the derivation and the validity of eq. (3.22) are presented in

appendix A.
Notice that while the inversion is mathematically always possible as long as the equations admit

a solution, in some cases the density contrast can be smaller than -1. These cases should be interpreted
as the indication that no physically viable inhomogeneity could explain the deviation between the
observed DL and DPlanck

L , and consequently unphysical reconstructed density profiles are excluded
from the analysis.

3.3 Confidence bands and invertible bands

The confidence band of the distance modulus, and the corresponding confidence band of the inverted
density contrast are obtained according the the scheme described below.

STEP 1 Sample the parameters space for the distance modulus model using the MCMC algorithm
described in section 3.1, keeping the samples with χ2 lower than the threshold defined by the student-t
distribution, and obtain the confidence bands.

STEP 2 Reconstruct the density contrast from the distance modulus fitting functions obtained in
STEP 1. If a fitting function corresponds to an inverted density contrast smaller than -1, then the
function is discarded as non-physical, otherwise is accepted and is called invertible. The set of all
invertible fitting functions is shown in the plots as the invertible band. The set of inverted density
contrasts of all invertible fitting functions is shown in the plots as the confidence band of the inverted
density contrast.

Since some of the samples may be discarded during STEP 2, the invertible bands are thus
narrower than their corresponding confidence bands obtained in STEP 1. In later plots we show both
the 68% and 95% confidence bands and their associated invertible bands.

3.4 Peculiar velocity correction

The effect of perturbations on the luminosity distance can be computed using different gauges or
methods (c.f. [46, 57, 65–67]). The dominant effect at low redshift is due to the peculiar velocity
of sources (c.f. [24, 46, 57]), which can be computed by appropriately correcting the background
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cosmological redshift. The typical whole-sky averaged variance of the distance modulus due to this
peculiar velocity is & 0.02 mag for z . 0.2, & 0.1 mag for z . 0.05, and even larger when averaging
over certain sky windows. At low redshifts, one can remove the effects of the peculiar velocities by
correcting the observed redshift according to z̄ = zobs − vs · n, where vs is the peculiar velocity
of the SNe and n is a unit vector in the direction of propagation from the emitter to the observer.
The observed redshift zobs is the UNION 2.1 value (simply called z) and z̄ is the adjusted value that
corresponds to the background redshift. At small redshift the luminosity distance is approximately
given by

DL =
zobs

H0

(
1− vs · n

zobs

)
+O(z2

obs) =
z̄

H0
+O(z̄2) . (3.24)

The supernovae redshifts of UNION 2.1 are expressed in the CMB frame, thus our observer peculiar
velocity vo is already taken into account (and as such does not appear in the above equation).

If interested in background cosmological parameters, one could thus correct the luminosity dis-
tance for the peculiar velocities effects according to the procedure explained above. Relying on the
2M++ catalogue, which is limited in depth, we could define the total peculiar velocity of standard
candles as vpec

s = v2M++
s (z < 0.067) + v>s (z > 0.067), where the first term corresponds to the

velocity field which can be inferred from 2M++ and the second one corresponds to velocities associ-
ated to inhomogeneities larger than the depth of 2M++. Finding the redshift correction of an object,
hence deducing its real position, requires an iterative process for which we evaluate the velocity at
each intermediary position (see appendix B of [40]). The corrected data can then bring a different
value of H loc

0 with respect to CMB.

It was shown in [24] that in the linear perturbative regime the distance to the last scattering
surface is not significantly affected by t local structure because the effect is proportional to the volume
average of the density contrast over a sphere of radius equal to the comoving distance, which is
asymptotically negligible. The same effect can on the contrary be important for objects located
inside the inhomogeneity, since it modifies their luminosity distance with respect to a homogeneous
Universe, introducing a local modification of the Hubble flow velocity. If the peculiar velocity with
respect to the Hubble flow was perfectly known then its non-relativistic effects on the luminosity
distance at low redshift could be removed by applying the redshift corrections. On the other hand,
if the peculiar velocity field is obtained from density maps extending to scales smaller than the size
of the inhomogeneity, like it is the case here with 2M++, then the corresponding contribution to the
peculiar velocity cannot be determined and the redshift corrections will not remove the effects of this
large scale inhomogeneity.

As a consequence H0 could be miss-estimated, since it would include a contribution from local
structure, which on sufficiently larger scales is negligible as explained above, leading to an apparent
tension between local and large scale estimations. We will thus use uncorrected redshifts and directly
compare our density profiles with the ones obtained from the independent observations of 2M++
and K13. We will also apply the 2M++ redshift correction to test if it is enough to remove the
effects of inhomogeneities, for example when checking the consistency with other previous analyses
such as R16. In that study the redshift correction was in fact applied under the assumption that no
other structure was present, and that the corrected data were completely free from the effects of local
inhomogeneities, and could thus be used to estimate background parameters such asH0. Our analysis
shows that 2M++ redshift correction does not completely remove the effects of inhomogeneities,
hinting to the existence of inhomogeneities extending on scales larger than its depth.
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4 Setup

Before proceeding to our reconstruction of radial density profiles from luminosity distance observa-
tions, we need to build the input functions by fitting distance modulus observations according to the
methodology explained in section 3. A ΛCDM model with Planck parameters is chosen as our back-
ground and we fit the difference between the observed distance modulus µobs and the background
distance modulus µPlanck accordingly. Notice that the choice of a different background would di-
rectly affect the resulting density contrast. Since the results presented in section 5 and 6 are always
assuming a background with Planck parameters, we may arrive at different density contrast and dif-
ferent conclusion fromR16 even with a similar dataset. The effect of choosing different backgrounds
is discussed in detail in section 7.2.

The distance modulus dataset we use contains both R16 Cepheids-hosting galaxies and SNe
from UNION 2.1 with 250 km s−1 velocity dispersion added to SNe, cut at zmax = 0.2 for most
cases, as explained in section 2.1. The only exception for the redshift cut is the directional analysis
along subregion F3, where zmax = 0.4 is also considered. Another exception is that in section 5.1 we
also add varying amounts of velocity dispersion to Cepheids-hosting galaxies.

We perform two separate analyses of the data: one applying peculiar velocity correction of
2M++, in section 5 and one without correction in section 6. The motivation for performing both
analyses is that the 2M++ density maps may not be correctly normalized with respect to the average
density of the Universe, while the inversion method is by construction correctly normalized, so that
the comparison of inverted density profiles obtained from uncorrected data can clarify the issue of
normalization with respect to 2M++ and K13. The corrected distance modulus is denoted as µcor,
different from the uncorrected µobs.

We recall that a fitting model is given by the set of parameters (N0, N−1, NNL), as explained in
Sec. 3.1, which we use to identify our models. Notice that a (1, 0, 0) model, i.e. f(z) = µobs(z) −
µPlanck(z) = w0 , corresponds to a locally homogeneous model with an apparent value of the Hubble
parameter given by

H loc
0 ≡ HPlanck

0 10−f(z=0)/5 = HPlanck
0 10−w0/5 = 10−w0/5( 66.93 km s−1 Mpc−1) . (4.1)

In the rest of the paper we will call these models locally homogeneous, but it is important to note that
these are local inhomogeneities with respect to the background density of the Universe corresponding
to the larges scale Planck cosmological parameters. They are homogeneous in the sense that their
radial density profile is constant within the inhomogeneity, which in the case of spherical symmetry
are also called Hubble Bubble.

However for models more complicated than a (1, 0, 0) model, the local Hubble parameter de-
fined in eq. (4.1) represents the observed Hubble parameter at z = 0, and is therefore different from
the one inR16 where SNe with 0.0233 < z < 0.15 are considered.

In section 6 a selection of outliers is necessary in order to find sufficiently smooth distance
modulus fits to be inverted into density profile. We do this selection considering the list of potential
outliers L = {NGC 4536, NGC 4424, NGC 3447, NGC 3370, NGC 3021, 1999cl, 2007bz, 2006x,
2005ag, 2004gu, 2001v, 2008bf} and select the best model according to a F-test Threshold around
95%. Additionally, since we are trying to obtain the confidence band of the inverted density contrast,
the invertibility of the best fit is also considered as a physical requirement.

5 Fitting of the distance modulus with 2M++ peculiar velocity corrections

In this section we demonstrate that even after considering the 2M++ peculiar velocity corrections
(PVC), some evidence of additional anisotropy and inhomogeneity of the local Universe still persist,
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especially along the subregion F3. This is a hint that 2M++ density maps cannot fully explain
the observed luminosity distance, contrary to the assumption of R16. Notice that the evidence of
this inhomogeneity not captured by 2M++ relies on the Cepheids data of R16, and their superior
precision compared to SNe.

5.1 Full sky analysis

As a preliminary consistency test of our method, we fit the data of the 20 Cepheid-hosting galaxies
from R16 together with UNION 2.1 dataset with zmax = 0.2 after the calibration given in eq. (2.2),
and the 2M++ peculiar velocity correction.

5.1.1 Locally Homogeneous fits

Assuming local homogeneity, i.e. as previously explained a (1, 0, 0) model for the distance modulus
fit, and adding the effect of the 250 km s−1 velocity dispersion to both SNe and Cepheid-hosting
galaxies, we obtain H loc

0 = 75.17 ± 2.12 (stat.) km s−1 Mpc−1, as shown in figure 5(b), in good
agreement with the 73.24 ± 1.61 (stat.) ± 0.66 (sys.) km s−1 Mpc−1 value of R16. This can be
considered a consistency check of our data analysis method but it is not an evidence of homogeneity,
since other inhomogeneous models fit better the data as we will show later, depending on the value
of the velocity dispersion of the Cepheids-hosting galaxies vc.

Considering that every Cepheids-hosting galaxy of R16 contains hundreds of Cepheids scat-
tered over the whole galaxy plane, the same 250 km s−1 velocity dispersion should not be applied
to both Cepheids-hosting galaxies and SNe. In fact, as explained in section 2.2, a vc = 40 km s−1

dispersion is estimated from the intra-filament motion (local sheet in [54] and Leo Spur in [55]). We
therefore consider it in our analysis, in addition with the case of vc = 0 km s−1 as a reference.

As shown on the left column of figure 5, when gradually reducing vc the lower redshift data
points become more and more dominant, leading to an increasing χ2

R from 1.48 (vc = 250 km s−1),
to 4.12 (vc = 40 km s−1) and to 12.1 (vc = 0 km s−1) for the (1, 0, 0) model.

5.1.2 Inhomogeneous fits

When no a-priori assumption about the model is made and inhomogeneous models are included in
the analysis, the F-test always gives preference to inhomogeneous models for vc < 250 km s−1.
Examples are given in figures 5(d) and 5(f). It is difficult to identify a best fit model because adding
new parameters keeps increasing their F-test likelihood. This kind of behavior hints to two important
conclusions:

• the homogeneous model is clearly not the best model even after applying redshift correction,
which implies that some other structure which 2M++ cannot detect is affecting luminosity
distance observations,

• the monopole component of local structure is not sufficient to model the observed data, and for
this reason the best fit of the spherically symmetric model is difficult to identify.

These are good motivations to proceed further with directional analysis.

5.2 Directional analysis

To investigate the anisotropy of the local structure we consider 3 particular subsets of SNe + Cepheids-
hosting galaxies defined in section 2.1: F1 up to zmax = 0.2, F3 up to zmax = 0.2 and zmax = 0.4.
The choice of these regions is made in order to compare with the previous luminosity density analysis
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(a) Dataset with vc = 250 km s−1 (b) Best fit of 5(a) with (1, 0, 0) model

(c) Dataset with vc = 40 km s−1 (d) Best fit of 5(c) with (0, 1, 3) model

(e) Dataset with vc = 0 km s−1 (f) Best fit of 5(e) with (1, 1, 3) model

Figure 5. The effects of different Cepheids-hosting galaxies velocity dispersions vc are shown in different
cases. Left: Full sky datasets up to zmax = 0.2, with peculiar velocity corrections, a 250 km s−1 velocity
dispersion added to SNe, and a varying amount of vc. More opaque/transparent points correspond to standard
candles with lower/higher ∆µ (according to the legends shown on the top right corner of the figures), while
different colors represent the sky position: subregions F1 (green), F2 (blue), F3(orange), and none of the above
(gray). Right: Best models with respect to the corresponding datasets on the left, according to the F-test. The
best fit (black), 68% (gray) and 95% (light gray) confidence bands are shown. The dashed red line is plotted as
a reference and corresponds to µRiess − µPlanck = −5 log10 (73.24/66.93).

of K13 along the same directions, pointing to the existence of inhomogeneities with sizes larger than
the scales probed by 2M++. As a consequence these structures could affect the luminosity distance
even after 2M++ redshift corrections. Making use of Cepheids-hosting galaxies precision and the
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(a) F1 (1, 0, 0) (b) F3 with zmax = 0.2 and NGC4536 removed (0, 1, 3)

Figure 6. F1/F3 standard candles distance modulus data (up to zmax = 0.2, with peculiar velocity corrections,
and with 250 km s−1 velocity dispersion for SNe) are plotted with their best fit (black), 68% (gray) and 95%
(light gray) confidence bands according to the method of section 3. The dashed red line is plotted as a reference
and corresponds to µRiess − µPlanck = −5 log10 (73.24/66.93). The field, removed data points (if any), and
the model parameters are shown in the sub-captions. Right: The removed outlier is shown as a darker data
point. NGC 4424 is outside of the top left corner of the plot.

evidence from last section for vc < 250 km s−1, we chose vc = 0 km s−1 rather than 40 km s−1 in
order to appreciate their full contribution. We in fact find evidence of these residual effects of the
local structure, since the inhomogeneous models fit better the data.

For F1, the best fit we get is from a simple (1, 0, 0) model with H loc
0 = 74.06 ± 1.81

km s−1 Mpc−1 and χ2
R = 1.00, presented in figure 6(a). The next best one (F-test Threshold < 40%)

is given by a (1, 1, 10) model with χ2
R = 0.72.

For F3, as shown in table 2, the best model is a (0, 1, 6) model regardless of taking zmax = 0.2
or zmax = 0.4, with an associated χ2

R = 2.88 in zmax = 0.2 case and a χ2
R = 6.02 in zmax = 0.4 case.

For zmax = 0.4 case a (1, 0, 0) model is also suggested when the F-test Threshold is above 85%, with
χ2
R = 17.6 and H loc

0 = 78.73± 3.56. The staggeringly high χ2
R of the homogeneous model and the

suggestion of complicated models are mainly due to NGC 4536. After removing it the resulting best
case is a (0, 1, 3) model for both zmax = 0.2 and zmax = 0.4 cases, as shown in figure 6(b). A close
inspection reveals that NGC 4424 is the main cause of the preference for this inhomogeneous model.
Since after peculiar velocity correction its redshift is extremely close to zero, we naturally consider
removing it as well. Unsurprisingly, after removing these 2 outliers the best model is finally a (1, 0, 0)
model with H loc

0 = 69.14 ± 1.16 km s−1 Mpc−1 and an associated χ2
R = 1.92 for zmax = 0.2 case,

and H loc
0 = 69.15± 1.14 km s−1 Mpc−1 with χ2

R = 1.87 for zmax = 0.4.
The fact that two fields lead to two H loc

0 with ∼ 3σ difference suggests that the luminosity
distance is affected by some additional structure which has size larger than the scale probed by 2M++,
which is in fact evident even after peculiar velocity correction. To test the claim we first compute χ2

R

of the combined dataset of F1 and F3 using a (1, 0, 0) model, and compare it to the combined χ2
R of

a (1, 0, 0) model for F1 and a (0, 1, 6) model for F3. The resulting χ2
R is 8.88 for the simple (1, 0, 0)

model and 1.71 for the combined model, suggesting that indeed there is a directional inhomogeneity.
In total, there are 4 evidences suggesting that 2M++ velocity correction is not enough to remove
completely the effects of local structure:

• The directional fit is much better than a full sky fit.

• There is a ∼ 3σ difference between F1 and F3 in terms of H loc
0 of the (1, 0, 0) model.
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• For F3 the (0, 0, 0) model leads to extremely high χ2
R and inhomogeneous models are clearly

preferred by the F-test Threshold.

• Though not evident in this section, by comparing same models in tables 2 (with peculiar veloc-
ity correction) and 3 (without), the peculiar velocity correction does not decrease χ2

R.

According to the four arguments above , in next section we will reconstruct the density profile directly
from the distance modulus, without applying any peculiar velocity correction.

zmax χ2
R Threshold PRESS Param. Removal

0.2

19.1 Not Preferred 1456 78.72± 3.72
2.88 20 ∼ 100% 1518 (0, 1, 6)
5.31 94.2 ∼ 100% 292.3 (0, 0, 0)

NGC 4536
2.04 23 ∼ 94.1% 308.7 (0, 1, 3)
2.02 94.3 ∼ 100% 107.1 (0, 0, 0)

+ NGC 4424
1.92 66 ∼ 94.2% 113.5 69.14± 1.16

0.4

17.6 86 ∼ 100% 1462 78.73± 3.56
6.02 16 ∼ 85% 3979 (0, 1, 6)
4.98 95.0 ∼ 100% 293.7 (0, 0, 0)

NGC 4536
2.00 22 ∼ 94.9% 298.2 (0, 1, 3)
1.96 94.8 ∼ 100% 113.8 (0, 0, 0)

+ NGC 4424
1.87 63 ∼ 94.9% 120.1 69.15± 1.14

Table 2. Distance modulus best fit model parameters with progressive removal of the outliers for F3, with
peculiar velocity corrections from 2M++. The Threshold column shows the F-test threshold of the model. In
the Param. column, if the model is homogeneous, i.e. a (1, 0, 0) model, we give the value of H loc

0 as defined
in eq. (4.1) and its standard deviation.

6 Reconstruction of density profiles using standard candles distance moduli

As discussed in the previous sections the large improvement of χ2
R from homogeneous to inhomo-

geneous models shows that applying peculiar velocity corrections from 2M++ cannot remove com-
pletely the effects of inhomogeneities on the distance modulus. We have also noted in section 3.4 that
peculiar velocity corrections based on 2M++ cannot account for the effects of structures as the one
detected in K13.

We now employ the fitting method on data uncorrected from peculiar velocities, and compare
our inverted radial density profile with 2M++ and K13. In order to compare with 2M++ we perform
an angular average of the 2M++ density fields within the regions of interest (F1 or F3). However as
shown in figure 3, there are substructures within each of the 2 fields which would affect the luminosity
distance, and the angular-averaged density does not take that into account. Thus one should not
expect the inverted density to reproduce every feature of K13 and 2M++ density profiles.. The
angular averages of the density maps from galaxy catalogs are rather serving as a useful quality and
consistency test of the SNe/Cepheids data and inversion algorithm. We include in the analysis the
effects of a velocity dispersion of 250 km s−1 to account for SNe host rotation, and no dispersion for
Cepheids-hosting galaxies, i.e. vc = 0. It can also be interesting to estimate how the results change
if vc = 40, and we report this in appendix C.

6.1 Subregion F1

For F1, the best fitting model we get without removing any outlier and with zmax = 0.2, is a locally
homogeneous (1, 0, 0) model withH loc

0 = 74.35±1.83 km s−1 Mpc−1 with F-test Threshold> 37%,
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shown in figure 7, while the second best model is an inhomogeneous (1, 1, 6) model. The χ2
R ∼ 0.75

of the inhomogeneous model is not so much lower than that of the homogeneous model, which has
χ2
R ∼ 1.02. As we can observe, the constant density profile that we obtain is below the 2M++

average along the F1 direction. This can be partially understood from the top plot of figure 3 in
which we see that SNe and Cepheids are located far from the highest density regions and that the
angular average of the 2M++ density field has a large variance.

Figure 7. The (1,0,0) best fit model is plotted for F1 and zmax = 0.2, with no peculiar velocity corrections,
and a 250 km s−1 velocity dispersion for SNe. Left: Standard candles distance modulus data are plotted with
their best fit (black), 68% (gray) and 95% (light gray) confidence bands according to the method of section 3.
The invertible bands are shown as the shaded region (68%-gray shade, 95%-light gray shade). The dashed
red line is plotted as a reference and corresponds to µRiess − µPlanck. Right: The confidence bands of the
inverted density contrast corresponding to the invertible bands of the distance modulus are shown (68%-gray,
95%-light gray). The data points of K13 are plotted in green, the 2M++ density contrast averaged over F1 as
a solid black curve, and the dashed red line is for density contrast that would lead to a local Hubble parameter
H loc

0 = HRiess
0 assuming a large scale HLS

0 = HPlanck
0 .

It should be noted that we are correctly normalizing our reconstructed density profile with re-
spect to the background since we are assuming cosmological background parameters obtained from
large scale observations such as the Planck mission, which are insensitive to local structure as shown
for the luminosity distance in [24]. On the contrary 2M++ is not normalized with respect to the
average density of the Universe but with respect to the average within its depth, and consequently its
normalization can be wrong if 2M++ is embedded in a larger structure.

The same normalization problem can arise for K13 analysis as well since the background is
again assumed to be the averaged luminosity density over the data set, not over the all Universe. This
shows that our method can be very useful to establish the correct normalization with respect to the
average density of the Universe, which could otherwise be incorrectly fixed.

We discuss the normalization factor which should be applied to 2M++ and K13 in order to
match our reconstructed density profile in section 7.2, with some good qualitative agreement of the
profiles.

6.2 Subregion F3

For subregion F3, we present the results for two different redshift intervals, zmax = 0.2 and zmax =
0.4. In both cases the range of the plots is z ∈ [0, 0.2] to allow an easier comparison between the
two. The best models we obtain, regardless of zmax, are (0, 0, 5) models, shown in figure 8. The
homogeneous model is not preferred with a F-test Threshold> 0.9999, suggesting that it is necessary
to have some inhomogeneity. Unfortunately some very low z data points cannot be explained as the

– 22 –



effects of inhomogeneities, because they would lead to unphysical negative energy densities, and are
probably due to large intrinsic peculiar velocities not related to the local structure.

Hence, we progressively remove different outlier candidates as shown in table 3. The most
relevant outlier we find is NGC 4536, and the different fits are displayed in figures 9 and 10. We can
see that once NGC 4536 is removed, the suggested models become invertible in both zmax = 0.2 and
zmax = 0.4 cases.

The model suggested for zmax = 0.2 is a (0, 0, 1) model with F-test Threshold between 69 and
96.6%. (1, 0, 0) and (1, 0, 1) models have similar performance in terms of PRESS and χ2

R, and thus
all of them are shown in table 3 and figure 9. In the following discussion we mainly focus on the
(1, 0, 1) model as it matches with the K13 result quite well. The next outlier selected according to
F-test, SN 1999cl, does not have much effect on either model selection or the bands themselves, and
thus should not be removed.

Changing zmax from 0.2 to 0.4 however makes the (1, 0, 0) model more preferable. We believe
it is due to the fact that at larger scales the universe should appear homogeneous. Figure 10 supports
the argument as all the locally inhomogeneous models approach homogeneity at higher redshift.

We show the inverted density profiles of the different fits in figures 9(d) and 10(d). All the
inverted profiles point to the presence of an over-density around z = 0.02 in F3, which seems to be
connected to the peak in 2M++, i.e. the Virgo cluster. In addition, there seems to be a large scale
under-density for the (1, 0, 1) model with zmax = 0.2, as discussed in more details in section 7.2.

zmax Fig. χ2
R Threshold (%) PRESS Param. Removal

0.2

N/A 19.4 Not Preferred 1621 72.94± 3.48
8 1.41 27 ∼ 100 248.6 (0, 0, 5)

9(a) 2.19 96.6 ∼ 100 131.0 62.05± 1.10
NGC 45369(b) 2.04 69 ∼ 96.6 126.5 (0, 0, 1)

9(c) 2.26 Not Preferred 131.5 (1, 0, 1)
N/A 1.67 99.6 ∼ 100 101.1 62.00± 0.96

+ 1999cl
N/A 1.45 69 ∼ 99.5 92.8 (0, 0, 1)

0.4

N/A 17.9 Not Preferred 1627 72.95± 3.33
8 2.53 13 ∼ 100 934.2 (0, 0, 5)

10(a) 2.12 78 ∼ 100 138.1 62.07± 1.09
NGC 453610(b) 2.04 49 ∼ 77 141.9 (0, 0, 1)

10(c) 2.14 Not Preferred 145.5 (1, 0, 1)
N/A 1.65 93 ∼ 100 108.4 62.02± 0.96

+ 1999cl
N/A 1.59 62 ∼ 92 110.3 (0, 0, 1)

Table 3. Distance modulus best fit model parameters with progressive removal of the outliers for F3, without
peculiar velocity correction and with 250 km s−1 velocity dispersion for SNe. The Threshold column shows
the F-test threshold of the model.

7 Discussions

We here discuss the implications and the limitations of our study and describe some possible ways to
increase its precision to further investigate the existence of inhomogeneities.

7.1 Peculiar velocity and galaxy surveys

The 2M++ catalogue [40] gives the density field and the predicted peculiar velocities within 200
Mpc/h (z < 0.67). The under-density claimed byK13 along F2 and F3 has a size of∼ 300 Mpc/h70

(z ∼ 0.07) and is thus roughly outside the 2M++ catalogue. Also the boundary of the under-density,
i.e., an over-dense filament-like structure at z ∼ 0.08 (Sloan Great Wall), is slightly outside the 2M++
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Figure 8. F3 standard candles distance modulus data (without peculiar velocity correction, with 250 km s−1

velocity dispersion for SNe, and without outlier removal) are plotted with their best fit (black), 68% (gray) and
95% (light gray) confidence bands according to the method of section 3, with zmax = 0.2 and a (0, 0, 5) model
on the left, zmax = 0.4 and a (0, 1, 5) model on the right. The dashed red line is plotted as a reference and
corresponds to µRiess − µPlanck. In both cases the fits are not invertible.

window. If this “super void + filament” structure exists, the depth limitation of 2M++ does not allow
a full reconstruction of the velocity field that takes the structure into consideration.

Another independent galaxy survey, Cosmicflows-2 of [68], suggests that we are part of a super-
structure (basin of attraction) called “Laniakea”. As shown in figure 1 of [68], along the center of
F3 (corresponding to the +Y direction in supergalactic coordinates) there seems to exist a large void
which would confirm K13’s finding, also in possible agreement with figure 9(c). In principle, such
an inhomogeneity should be detectable in 2M++, Cosmicflows-2, and K13. In practice though, it is
hard to compare these surveys since for example K13 only uses GAMA DR1 [69] as an anchor and
does a comparison with its own analysis of the old 2M++ dataset [56], while [40] uses its own average
density as the background. The different normalization introduces additional scaling to the density
contrast that may jeopardize the whole comparison of their density contrasts. The under-density that
we find in F3 is not aligned with the CMB dipole, and thus does not seem explainable from the bulk
flow of the Local Group.

7.2 Choice of background and the associated background density

As discussed before, one plausible explanation for the discrepancy between the observed H0 values
of R16 and Planck is that the assumed background density in 2M++, i.e. the averaged density
within its observation depth, is not the real background density. If we take K13 background density
we would have to rescale the density contrast of 2M++ as

δcor
C =

ρ̃2M++

ρ̃K13
(1 + δC)− 1, (7.1)

where δcor
C is the rescaled density contrast, while ρ̃2M++ and ρ̃K13 are the assumed background density

of 2M++ andK13. According toK13 the needed rescaling is a factor of∼ 0.6. As shown in figure 11
after the rescaling of the density contrast in both subregion F1 and F3 the 2M++ averaged density
matches quite well with the inverted density that we obtain in section 6. This, along with the finding
that the inverted density in F3 is compatible with the density inK13, indicates that the existence of the
∼ 300 Mpc inhomogeneity of K13 could explain the tension between R16 and Planck estimation
of H0.

Alternatively we may also assume a different background HR16
0 = 73.24 km s−1 Mpc−1. In

that case all the inverted densities shown in section 6 need to be rescaled as (up to the zeroth order in
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(a) NGC 4536 removed (1, 0, 0) (b) NGC 4536 removed (0, 0, 1)

(c) NGC 4536 removed (1,0,1) (d) Inverted density

Figure 9. Distance modulus best fit models are plotted for F3 with zmax = 0.2, without peculiar velocity
corrections and with a 250 km s−1 velocity dispersion for SNe. The model parameters and the removed data
points are shown in the sub-captions. (a, b, c): Standard candles distance modulus data are plotted with their
best fit (black), 68% (gray) and 95% (light gray) confidence bands according to the method of section 3. The
invertible bands are shown as the shaded region (68%-darker color, 95%-lighter color), while the removed
outliers are shown as darker data points. The dashed red line is plotted as a reference and corresponds to
µRiess−µPlanck. Case (c) is preferred. (d): The confidence bands of the inverted density contrast corresponding
to the invertible bands of the distance modulus are shown (68%-darker color, 95%-lighter color). The data
points of K13 are plotted in orange, the 2M++ density contrast averaged over F3 as a solid black curve, and
the dashed red line is for density contrast that would lead to a local Hubble parameterH loc

0 = HRiess
0 assuming

a large scale HLS
0 = HPlanck

0 . The bands are color coded case by case with blue (a), red (b), green (c).

redshift)

δcor
C ∼ HR16

0

HPlanck
0

(
3

f
+ δC)− 3

f
, (7.2)

where f ∼ Ω0.55
m0 is the growth rate, while HR16

0 and HPlanck
0 are the Hubble parameter of R16

and Planck. The resulting shift on the inverted density contrast is ∼ 0.5, again consistent with the
observed density contrast of 2M++.

Both explanations could explain simultaneously the luminosity distance data of standard can-
dles and the luminous density data. However, a higher H0 value would create inconsistencies with
the CMB observations, and since there are solid theoretical reasons to expect that high redshift ob-
servations are insensitive to local structure [24], it seems more justified to interpret these results as
the need for a proper renormalization of 2M++ rather than invoking an hypothetical early Universe
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(a) NGC 4536 removed (1, 0, 0) (b) NGC 4536 removed (0, 0, 1)

(c) NGC 4536 removed (1,0,1) (d) Inverted density

Figure 10. Distance modulus best fit models are plotted for F3 with zmax = 0.4, without peculiar velocity
corrections and with a 250 km s−1 velocity dispersion for SNe. The model parameters and the removed data
points are shown in the sub-captions. (a, b, c): Standard candles distance modulus data are plotted with their
best fit (black), 68% (gray) and 95% (light gray) confidence bands according to the method of section 3. The
invertible bands are shown as the shaded region (68%-darker color, 95%-lighter color), while the removed
outliers are shown as darker data points. The dashed red line is plotted as a reference and corresponds to
µRiess−µPlanck. Case (c) is preferred. (d): The confidence bands of the inverted density contrast corresponding
to the invertible bands of the distance modulus are shown (68%-darker color, 95%-lighter color). The data
points of K13 are plotted in orange, the 2M++ density contrast averaged over F3 as a solid black curve, and
the dashed red line is for density contrast that would lead to a local Hubble parameterH loc

0 = HRiess
0 assuming

a large scale HLS
0 = HPlanck

0 . The bands are color coded case by case with blue (a), green (b), red (c).

physics modification which may affect CMB observations independently from local structure, as pro-
posed for example in [70]. In any case, the difference in the reconstructed density profile for the two
different directions is an evidence of anisotropy which cannot be explained by considering different
values of H0, and would remain even assuming HR16

0 .

7.3 Impact of Supernovae data quality on the reconstruction of density

Our analysis uses 70 (145) SNe or Cepheids-hosting galaxies in F1 and 55 (60) in F3 for zmax = 0.2
(zmax = 0.4). Despite the seemingly “large” numbers for such a small redshift range, the redshift
distribution of the data has some limitations. In F2 there are no SNe, while K13 also reports an
under-density profile in that field of view. Along F1 SNe are distributed evenly in redshift, but along
F3 most of SNe and Cepheids-hosting galaxies are at z < 0.04 (only 9 SNe between 0.04 < z < 0.2
and only 5 SNe between 0.2 < z < 0.4). So we may be missing the peak of K13 if it exists.
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(a) Subregion F1 (1, 0, 0)

(b) Subregion F3 zmax = 0.2 with NGC 4536 removed
(1, 0, 1)

(c) Subregion F3 zmax = 0.4 with NGC 4536 removed
(1, 0, 1)

Figure 11. The confidence bands of the inverted density contrast for the standard candles distance modulus
data without peculiar velocity corrections and with a 250 km s−1 velocity dispersion for SNe are shown (68%-
darker color, 95%-lighter color). The model parameters and the cuts of the dataset are shown in the sub-
captions. In addition the data points of K13 are plotted in orange for F3 and green for F1, the 2M++ density
contrast averaged over the subregion specified in the sub-captions as a solid black curve, its rescaled version
by a factor of 0.6 according to K13 as a dashed black curve, and the dashed red line is for density contrast that
would lead to a local Hubble parameter H loc

0 = HRiess
0 assuming a large scale HLS

0 = HPlanck
0 .

As our method consists in a 1-dimensional fit, SNe with the same redshift but different angles are
fitted together, implying that some angular regions can have more weight than others if more SNe
are located therein. This can explain the deviation of our reconstructed profiles with respect to the
angular average of the 2M++ density profile. In addition, SNe are affected by intrinsic dispersion
and, as shown in the past, their intrinsic color can play an important role in assessing the existence of
a Hubble bubble (c.f. [71–73]).

Nevertheless we can still draw some conclusions from our results. First, according to figures
11(b) and 11(c), the inverted density contrasts could not reveal the over-dense regions of 2M++ very
well, except at very small redshifts (z . 0.02). According to figure 3, all SNe actually lie in regions
with density very close to the background, which shows that apparently the SNe sample does not
probe well extreme density variations. We can argue that this phenomenon is due to the fact that,
firstly the selected models are too simple to accommodate fine structures, secondly most star-forming
galaxies are lower-mass galaxies outside the densest regions. According to [74] the cutoff scale for
SNe-producing galaxy mass is 1011M�. Therefore, qualitatively SNe underestimate the small scale
density fluctuations and that makes SNe more suitable for probing density fluctuations on large scales
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compared to galaxies.

7.4 Statistical significance of the fits

There are recent publications (c.f. [4, 41, 43]) using model-independent techniques like Gaussian
process or the Bayesian hyper-parameters method to fit data. Since the multiple models we have are
selected using step-wise regression and ranked using χ2, it would be interesting to consider those
methods as well.

In order to test the statistical significance of our results, we ran 10000 Monte Carlo simula-
tions assuming a homogeneous universe with Planck cosmological parameters, with each simulation
having the same number of data points as in F3, randomly generated with the same errors of the
observational data in F3.

Using a stepwise regression method with a 95% F-test Threshold we found that is 99.5% of
the best fit models are homogeneous (either a (0, 0, 0) or a (1, 0, 0) model). Given the low 0.5%
misidentification rate, the selection of an inhomogeneous model as the best fit model is unlikely to
be a statistical fluke. In addition, we may also consider the full 3-D fit of the luminosity distance by
extending our fitting method to a multi-dimensional version. In that case we may apply a density map
reconstruction technique to recover the full-sky density map, and compare it directly to galaxy surveys
like 2M++ and Cosmicflows-2, without depending on window averaging. Notice that ”outliers”
removal may be an artifact due to window averaging. For example, NGC 4536, 2006x and 1999cl
are right behind the Virgo cluster and NGC 4424 is in front of it, making them prone to the extreme
density fluctuations within the Virgo cluster. These four objects in fact happen to be most frequently
selected as outliers in our analysis.

8 Conclusions

We have applied a new method to extract information about the large scale structure from the observed
distance modulus of supernovae (SNe) and Cepheids. We used a combination of the UNION 2.1 Type
Ia SNe of [45] (with an added 250 km s−1 velocity dispersion) and the Cepheid calibrators of [2]
(R16). The inversion method we utilize requires the input luminosity distance as a smooth function
of the redshift, so we fit the observational data with a set of radial basis functions (RBFs), without
any prior on the local structure (except for meta-fitting parameters such as the explicit form of RBF).
Using this method, any deviation of the observed luminosity distance from its homogeneous Universe
(ΛCDM) prediction can be used to reconstruct the local structure. Rather than fitting the complete
dataset with SNe from the whole sky, we have analyzed the density profile along different directions.
Under the assumption that lensing effects at low redshift are negligible the radial profiles in different
angular directions have been modeled as independent LTB radial profiles.

Note that there is no fine tuning of the position of the observer since we are reconstructing the
radial density profile in different directions separately. In other words, we are not assuming isotropy
and the center of the coordinate system where the observer is located is not a center of spherical
symmetry. The density profile in a given direction is a function of the radial coordinate and as such
can be mapped into the geometry of a solution depending on a single function of the radial coordinate
such as the LTB, since this is a one dimensional problem. Assuming the lensing effects are negligible
at low redshift should be a good approximation. In other words the use of a LTB solution is just a
computational tool and we are not assuming a spherically symmetric model of the local Universe,
since we reconstruct radial profiles in different directions independently.

We focused on further investigating the existence of inhomogeneities with a size of several
hundred Mpc, which was previously studied by [39] (K13) using observed luminosity density in
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different fields of observations. K13 studied three different regions (which we call F1, F2, F3), while
we reconstruct the density profile only in F1 and F3, where the number of SNe is high enough to
allow a statistical analysis.

Our results are in good agreement with the rescaling of 2M++ proposed by K13 for both F1
and F3. The agreement of our reconstructed density profiles for F3 is also good with respect to K13,
while in F1 at higher redshift there is some difference . The density profile along F1 and F3 directions
are different and this clearly shows the existence of an anisotropy not detectable by 2M++.

The inhomogeneity detection depends crucially on the velocity dispersion of Cepheids-hosting
galaxies. This is naturally expected since large values of the velocity dispersion can introduce noise in
the data which dominate over the effects of inhomogeneities. As a confirmation of the importance of
the velocity dispersion, we find that the very low-redshift peak in 2M++, corresponding to the Virgo
cluster, is well reconstructed from the luminosity distance data when we consider a small velocity
dispersion for Cepheids-hosting galaxies, but disappears for larger dispersion. This suggests that
the Cepheids-hosting galaxies data should be analyzed assuming a value for the velocity dispersion
smaller than the one used in R16, and is supported by the observations of nearby clusters [54, 55].
Large values of the velocity dispersion could introduce an artificially strong noise in the analysis that
contaminates the real signal of large scale structures on the velocity field.

According to our analysis, in some directions the size of the inhomogeneity is larger than the
depth of the 2M++ survey. Consequently, the normalization of the latter with respect to the average
density of the Universe may require a rescaling, which we find to be very close to whatK13 obtained.
This could in fact play a very important role in explaining the apparent discrepancy between the local
and large scale estimation of H0 [24], due to the fact that about 40% of low redshift SNe used to
estimate H loc

0 are affected by the inhomogeneities we found along F1 and F3. In the future this
method could be used to correctly normalize density maps with respect to the average density of
the Universe, a procedure which can be especially important when galaxy catalogues have a depth
smaller than the size of the large scale structure inside which they are embedded, as it seems the case
for 2M++.

We also checked that our method does not depend significantly on meta-parameters. The ac-
curacy of our distance-modulus fitting is obviously limited by the SNe data precision, and a higher
number of events would reduce the size of the confidence bands. The inversion and the comparison
with the luminosity density profiles are also limited by the non-uniform angular and redshift distri-
bution of SNe. For instance, F3 does not have a lot of data points at z ∼ 0.08 (with less than ten SNe
for 0.04 < z < 0.2), so the size of the inhomogeneity cannot be precisely confirmed. Future data
could overcome these statistical limitations.

Our analysis could be extended to a larger dataset, for example the carefully calibrated SNe
data presented in R16 (see also [75–77] for SNe) and the density field of Cosmicflows [78]. We
could also use the Nearby Supernova Factory data of [79] (see [80] for example) or other future
surveys such as WFIRST9, in order to find out whether or not we can reconstruct a more accurate
large scale structure map and compare it to what is obtained using galaxy catalogues. Once new data
will be available supernovae could become a very important source of information about large scale
structure, especially useful at high redshift where other astrophysical objects are difficult to observe,
allowing to overcome the limits of depth and angular limitation of galaxy catalogues. In the future it
could be also interesting to develop a fully non linear inversion method which could be applied when
the assumptions we made are not satisfied, such as at high red-shift, or when lensing is important.

9https://jet.uchicago.edu/blogs/WFIRST/
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A Effect of cosmological constant on density contrast

As briefly explained in the section 3.2, the effect of the cosmological constant on the density contrast
is non-negligible at the very small redshift because the growth rate can play an important role despite
the effects of dark energy on the luminosity distance are not important. Here we derive the effects
of Λ on δC comparing with perturbation theory. We then test the inversion method applying it to
luminosity distance computed numerically using a ΛLTB solution showing that the reconstructed
density contrast defined in eq. (3.22) is in good agreement with the numerical computation of the
corresponding density profile.

According to [24], assuming a spherically symmetric universe, the density contrast δC in the
pertubative regime is given by

δC =
χ

3

dδ̄

dχ
+ δ̄ , δ̄ =

3

f

(
Dobs
L

DL

− 1

)
(1− z)−1 , (A.1)

where χ is the unperturbed comoving distance, f the growth rate defined in eq. (3.23), z the observed
redshift at χ, Dobs

L the observed and DL the background luminosity distances at z, and δ̄ is the
comoving-volume-averaged density contrast δ̄ =

(
4πχ3/3

)−1 ∫ χ
4πχ′2δC (χ′) dχ′. For a (Λ)CDM

model with a spherically symmetric density contrast perturbatively solved up to the first order, i.e.
a linearized (Λ)LTB model, and cosmological background parameters estimated from large scale
observations, the density contrast at first order in z can be expressed as

δΛLTB
C (∆) =

3

f
∆ +

z

f

(
d∆

dz
+ 4∆

)
, (A.2)

δLTB
C (∆) = 3∆ + z

(
d∆

dz
+ 4∆ + 3ΩΛ0 (1 + ∆)

)
, (A.3)

where ∆ =
Dobs
L

DHom
L

− 1 ≡ 10(µobs−µHom)/5 − 1 is the relative difference between observed luminos-

ity distance and the luminosity distance DHom
L of a homogeneous ΛCDM model with cosmological

background parameters estimated from large scale observations, such as Planck.
There are two differences between LTB and ΛLTB models. First, there are additional terms

proportional to ΩΛ0 in δLTB
C coming from DHom

L . Second, the differences in the evolution of the
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Hubble flow and of the background matter density imply a different growth rate values. The density
contrast we propose in eq. (3.22)

δC = f−1

(
ρinv

(
Dobs
L , z

)
ρinv

(
DPlanck
L , z

) − 1

)
≈ f−1

(
1 + δLTB

C (∆)

1 + δLTB
C (0)

− 1

)
≈ f−1

(
3∆ + z

(
d∆

dz
+ 4∆− 6ΩΛ0∆

))
≈ (1− 2ΩΛ0z) δ

ΛLTB
C (∆) , (A.4)

takes care of all the factors mentioned above, and is approximately the density contrast in a ΛLTB
model up to first order in redshift. The term−2ΩΛ0zδ

ΛLTB
C (∆) is actually at the second order and we

do not consider it for simplicity.
To test the validity of eq. (3.22), we consider a specific setup (compensated void, i.e. limz→inf δ̄ →

0) presented in [27]. As shown in fig. 12, the reconstructed density contrast obtained using eq. (3.22)
is in very good agreement with the numerical calculation using the ΛLTB solution, indicating that
eq. (3.22) is indeed a good approximation.

Figure 12. Left: The plot of ∆ = DL

DPlanck
L

− 1 for the model from [27]. Right: The plot of density contrast
for the model from [27]. The black curve is the original density contrast of the ΛLTB model. The grey curve
is the density profile reconstructed from the luminosity distance of the ΛLTB model using the linear method
defined in eq. (A.1). The dashed curve is the density profile reconstructed using the non linear method defined
in eq. (3.22). The profile reconstructed using the non linear method matches well the original profile, while the
pertubative formula is not as accurate in some regions due to non linear effects.

Nevertheless there are some limitations related to the inversion derived above, since it is based
on the low red-shift expansion of eq. (A.1). The first limitation is related to the fact that at high
red-shift eq. (3.22) may require higher order corrections in the red-shift expansion. The second has
to do with the fact that eq. (3.22) is assuming that the Doppler effect is the dominant contribution,
but in the fully non linear regime it is possible that other contributions such as lensing or ISW could
become important. Consequently from a purely mathematical point of view it cannot be claimed that
the inversion method in eq. (3.22) is fully non linear, but it can at least be stated that is better than the
perturbative method as shown in fig. 12, and quite accurate as long as the Doppler term is dominating,
which is a reasonable assumption at low red-shift.

As explained in appendix B lensing observations support the assumption that the Laplacian of
the gravitational potential in the directions orthogonal to the line of sight is negligible compared to
the Laplacian in the radial direction, so when applied to low red-shift data, the method should be
accurate, but from a purely mathematical point of view it will be less accurate when applied to high
red-shift data, or for systems with large shear or large non Doppler effects.
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B LTB inversion and anisotropic matter distributions

To justify the application of LTB inversion method we will demonstrate that up to first order in
perturbation theory and assuming, as supported by observations[59–64], a negligible lensing effect,
it is possible to express the effects of inhomogeneities on the luminosity distance only in terms of δC
along the line of sight. According to eq. (B1) of [66], the luminosity distance can be expressed as

dL (zS , ~n) = (1 + zS) ∆η

{
1 +

ΨO −ΨS − (~vO − ~vS) · ~n
HS∆η

−ΨS − ~vS · ~n

+

∫ ηO

ηS

dη

[
2

∆η
− 2

∆η

(
1

HS
−
∫ η

ηS

dη′
)
∇~n −

(η − ηS) (ηO − η)

∆η
∇2
⊥

]
Ψ

}
, (B.1)

where subscripts O and S stand for observer and source, ∇2
⊥ ≡ 4 − ∇~n∇~n + 2 (ηO − η)−1∇~n is

the screen-space Laplacian[58], A · B = AiBi is the inner product with i the spatial index running
from 1 to 3, ∇~n = ~n · ~∇ is the covariant derivative along ~n ,4 = ~∇ · ~∇ is the 3-Laplacian, ~v is the
peculiar velocity, ~n is the unit 3-vector along the photon direction, η is the conformal time along the
photon trajectory, ∆η ≡ ηO − ηS , Ψ is the gravitational potential, and H is the conformal Hubble
parameter. Only the second derivative term explicitly depends on quantities off the line of sight, and
corresponds to the convergence in the context of the weak lensing[58, 63], which at low red-shift
should be negligible, as supported both by theoretical calculations [58] and observation [59–64].

Assuming ∇2
⊥Ψ ≈ 0, zero pressure for the background and perturbations, and that the peculiar

velocity field is irrotational, the perturbed Einstein’s equations give [81]

2

3
ΩMH2δC = 4Ψ = ∇2

⊥Ψ + ni∇i
(
nj∇jΨ

)
− 2 (ηO − η)−1 ni∇iΨ ≈ r−2∂r

(
r2∂rΨ

)
, (B.2)

2

3
ΩMH2nivi = −ni∂i [(∂η +H) Ψ] ≡ (∂η +H) ∂rΨ = fH∂rΨ , (B.3)

where ΩM is the matter density parameter, r ≡ ηO − η the comoving distance from the observer,
∂r = −ni∂i the partial derivative of r, ∂η the conformal time derivative, a is the scale factor, and f is
the growth rate defined in eq. (3.23). We will show later that lensing observations indeed support the
assumption ∇2

⊥Ψ ≈ 0. In a fully non linear regime this approximation may not be valid anymore,
and a non spherically symmetric approach should be adopted. Nevertheless based on our analysis we
expect the non linear effects to be negligible at low red-shift, as supported also by other observations
[59, 60, 63].

It is important to check under which conditions the orthogonal part of the Laplacian ∇2
⊥Ψ can

be neglected, and this can be done by using its relation to the the convergence

κ [ηS ] ≡ −
∫ ηO

ηS

dη
(ηO − η) (η − ηS)

∆η
∇2
⊥Ψ . (B.4)

Solving eq. (B.2) without assuming∇2
⊥Ψ ≈ 0, we obtain

Ψ = ΨO +

∫
r−2dr

∫
r′2dr′(4Ψ−∇2

⊥Ψ) ≈ Ψiso + κ , (B.5)

where r is the comoving distance from the observer, Ψiso is the potential obtained assuming isotropy,
i.e. the solution of r−2∂r

(
r2∂rΨISO

)
= 2

3ΩMH2δC .
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From the identity d
dηΨ (η, ~x (η)) = ∂

∂ηΨ +∇~nΨ ≡ s−1Ψ +∇~nΨ, we have∫ ηO

ηS

dη
Ψ

s
= Ψ

∣∣∣∣ηO
ηS

−
∫ ηO

ηS

dη∇~nΨ ∼ (Ψ− s∇~nΨ)

∣∣∣∣ηO
ηS

− s
∫ ηO

ηS

dη∇2
⊥Ψ , (B.6)∫ ηO

ηS

dη
∇~nΨ

s
∼∇~nΨ

∣∣∣∣ηO
ηS

+

∫ ηO

ηS

dη∇2
⊥Ψ , (B.7)∫ ηO

ηS

dη

∫ η

ηS

dη′
∇~nΨ

s
=−∆η∇~nΨS +

∫ ηO

ηS

dη

(
1−

∫ η

ηS

dη′∇~n
)
∇~nΨ

∼ s∇~nΨ

∣∣∣∣ηO
ηS

−∆η∇~nΨS +

∫ ηO

ηS

dη

(
s+

∫ η

ηS

dη′
)
∇2
⊥Ψ , (B.8)

where ∼ denotes that terms depending only on the density contrast δC along the line of sight, are
dropped and we have defined s−1 = (f − 1)H, and approximated it as a constant, which should be
reasonable within the regime of interest (z < 0.2).

According to eq. (B.1) the relative fractional difference between the perturbed and background
luminosity distance can be split into the sum of a radial ∆r and transverse ∆⊥ part as

dL (zS , ~n)

(1 + zS) ∆η
− 1 = ∆r + ∆⊥ = ∆r −

1

∆η

∫ ηO

ηS

dη

[
2s

HS
+

∫ η

ηS

dη′
(
η′ − ηS − 2s

)]
∇2
⊥Ψ .

(B.9)

The first part ∆r contains terms depending only on observables along the line of sight. The term
∆⊥ is associated to the transverse part of the Laplacian, it is the one which is being neglected when
assuming isotropy, and as such can be interpreted as the error due to such an approximation. Using
eq. (B.4) we can conveniently write ∆⊥ in terms of the convergence as

∆⊥ =
2s

HS

(
κ′

∆η
− 2E

[
κ′

ηO − η

])
+ 2s

(
κ′ −E

[
κ′
])

+ κ , (B.10)

where κ′ [η] = ∂
∂ηκ [η] and E [F ] = 1

∆η

∫ ηO
ηS

dηF .
Given that the shear power spectrum Pγ is the same as the convergence power spectrum Pκ (c.f.

e.g. eq. (30) of [63]), we may estimate the error due to assuming isotropic by using weak lensing
observations. According to [59–64] lensing observations give a value of the shear power spectrum of
∼ 10−4z2, implying that the error in neglecting ∆⊥ is indeed negligible for any practical application
of the inversion method. Furthermore the convergence power spectrum is theoretically predicted [82]
to grow as z1.5

S ∼ z2.5
S , which implies that the dominating part of ∆⊥ decays approximately as 1/∆η,

confirming the validity of the isotropic approximation in the linear regime.

C Results with an additional dispersion added to Cepheids-hosting galaxies

We present here the results of our analysis in F1 and F3, without peculiar velocity corrections, and as
opposed to section 6, with vc = 40. The results are very similar to the case excluding this dispersion,
but are still differing slightly due to the induced small decrease of Cepheids importance (higher
uncertainty).

For F1, where most high redshift SNe are located, without removing any outlier and with red-
shift cut zmax = 0.2, the fit we get is almost identical to figure 7, with either a (1, 0, 0) model with
H loc

0 = 74.18 ± 1.89 km s−1 Mpc−1 for a F-test Threshold > 38%, or a inhomogeneous (1, 1, 9)
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model when the F-test Threshold is lower. The reduced chi square χ2
R ∼ 0.74 of the inhomogeneous

model is not so much lower than that of the (1, 0, 0) model (χ2
R ∼ 1.01).

For F3, without outliers removal, a (0, 0, 5) model with both zmax = 0.2 and zmax = 0.4 cases
is preferred. Again the fits are very similar to what we obtain in section 6. Other fits are presented in
table 4 and are very similar to those presented in table 3.

Finally one can observe that the different fits for zmax = 0.2 and zmax = 0.4, presented in
figure 13, are very similar to those obtained in figures 9 and 10, and the conclusions made in section 6
regarding K13 and 2M++ still hold.

zmax Fig. χ2
R Threshold (%) PRESS Param. Removal

0.2

N/A 11.9 Not Preferred 982.9 76.22± 3.87
N/A 1.25 25 ∼ 100 166.2 (0, 0, 5)
N/A 2.15 97.6 ∼ 100 116.1 (0, 0, 0)

NGC 453613(a) 1.99 95.0 ∼ 97.5 111.5 63.37± 1.50
N/A 1.88 73 ∼ 94.9 109.0 (0, 0, 1)
N/A 1.65 99.2 ∼ 100 87.3 (0, 0, 0)

+ 1999clN/A 1.30 74 ∼ 99.1 76.6 (0, 0, 1)
13(b) 1.29 Not Preferred 83.3 (1, 0, 1)

0.4

N/A 11.0 97.6 ∼ 99.0 988.8 76.23± 3.72
N/A 2.46 15 ∼ 97.5 662.5 (0, 0, 5)
N/A 2.08 97.7 ∼ 100 122.8 (0, 0, 0)

NGC 4536N/A 1.94 69 ∼ 97.6 118.5 63.40± 1.47
13(c) 1.97 Not Preferred 126.8 (1, 0, 1)
N/A 1.47 88 ∼ 99.1 89.0 63.32± 1.28

+ 1999cl
N/A 1.43 61 ∼ 87 92.1 (0, 0, 1)

Table 4. Distance modulus best fit model parameters with progressive removal of the outliers for F3, without
peculiar velocity correction, with vc = 40, and with 250 km s−1 velocity dispersion for SNe. The Threshold
column shows the F-test threshold of the model.
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(a) zmax = 0.2 NGC4536 removed (1, 0, 0) (b) zmax = 0.2 NGC4536 and 1999cl removed (1, 0, 1)

(c) zmax = 0.4 NGC4536 removed (1, 0, 1) (d) Inverted density

Figure 13. Distance modulus best fit models are plotted for F3 without peculiar velocity corrections and
with vc = 40 km s−1. The redshift cut zmax, model parameters and the removed data points are shown in
the sub-captions. (a, b, c): Standard candles distance modulus data are plotted with their best fit (black), 68%
(gray) and 95% (light gray) confidence bands according to the method of section 3. The invertible bands are
shown as the shaded region (68%-darker color, 95%-lighter color), while the removed outliers are shown as
darker data points. The dashed red line is plotted as a reference and corresponds to µRiess − µPlanck. (d): The
confidence bands of the inverted density contrast corresponding to the invertible bands of the distance modulus
are shown (68%-darker color, 95%-lighter color). The data points of K13 are plotted in orange, the 2M++
density contrast averaged over F3 as a solid black curve, and the dashed red line is for density contrast that
would lead to a local Hubble parameter H loc

0 = HRiess
0 assuming a large scale HLS

0 = HPlanck
0 . The bands

are color coded case by case with blue (a), green (b), red (c).

D Union2.1 + Riess et al. 2016 Cepheids dataset

We present here tables containing the data described in section 2 and on which our methodology
of section 3 is applied. In table 5 are presented the Cepheid calibrators of [2] with their associated
SNe. Several quantities such as the angular position and redshifts are extracted from external sources:
UNION 2.1, NED and SIMBAD. Among the 3 fields, there are 8 SNe related to a Cepheid host-galaxy,
among which 3 of them have redshift and magnitude recorded in UNION 2.1 (2007af, 1994ae and
1995al, indicated by ∗ in tables 8 and 9) and 5 others for which redshift and magnitude are only
given from the Cepheids (2009ig, 1981B, 1990N, 2012cg and 2012ht, indicated by † in table 5), i.e.
SNe which are not in UNION 2.1. We already explained in section 2.1 how the distance moduli are
obtained. The ICRS sky positions are written in degrees and the magnitude µ, plus its error ∆µ before
adding the calibration error, are presented. For types, the letters denote the following: ‘o’ indicates
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the so-called outliers in UNION 2.1, ‘z’ is for redshifts < 0.015 and ‘h’ for redshifts > 0.2 and
≤ 0.4; ∗ and † were explained above. Finally, we present in tables 6-7, 8 and 9 the respective UNION

2.1 SNe of [45] and used in fields F1, F2 and F3. Angular positions are extracted from SIMBAD,
and given with 3 digits of precision. redshifts z are from UNION 2.1 and shown with 5 digits (when
available). (µ,∆µ) are also from UNION 2.1 and ∆µ250 is computed with the additional 250 km s−1

velocity dispersion. They are shown with only 4 digits of precision.

Table 5. Cepheids-hosting galaxies of [2] with additional data. The Cepheid-hosting galaxy name and the
name of the hosted SN are from [2]. Angular positions of host galaxies are from SIMBAD, in ICRS decimal
format. Values of (µ,∆µ) come from [2], while ∆µ250 refers to the modified distance modulus error after
considering an additional velocity dispersion of 250 km s−1 to the hosted SN redshift zSN, but before adding
the calibration error. Values z(NED) are the host redshifts taken from NED and zSN are from UNION 2.1,
SIMBAD, or Extragalactic Distance Database (EDD) from [83] depending on availability. For some cases
(denoted by “/”) none of these 3 sources have redshifts. NGC 4258 does not host a SN. Angles are truncated
to 3 digits, similarly for ∆µ250 and ∆µ (except when UNION 2.1 does not reach this precision).

Cepheid Co-hosted R.A. Dec. µ ∆µ ∆µ250 z(NED) zSN Origin(zSN) Field
Host SN (deg) (deg) (mag) (mag) (mag) Host

M 101 SN 2011fe 210.802 54.349 29.135 0.045 1.499 0.001207 0.001208 SIMBAD

NGC 1015 SN 2009ig 39.548 -1.319 32.497 0.081 0.081 0.00801 / / F1†

NGC 1309 SN 2002fk 50.527 -15.400 32.523 0.055 0.280 0.006618 0.0066 UNION 2.1
NGC 1365 SN 2012fr 53.402 -36.141 31.307 0.057 0.057 0.005133 / /
NGC 1448 SN 2001el 56.133 -44.645 31.311 0.045 0.505 0.003676 0.0036 EDD
NGC 2442 SN 2015F 114.099 -69.531 31.511 0.053 0.053 0.005284 / /
NGC 3021 SN 1995al 147.738 33.553 32.498 0.09 0.373 0.006017 0.005 UNION 2.1 F3
NGC 3370 SN 1994ae 161.767 17.274 32.072 0.049 0.424 0.005387 0.0043 UNION 2.1 F3
NGC 3447 SN 2012ht 163.350 16.772 31.908 0.043 0.043 0.004688 / / F3†

NGC 3972 SN 2011by 178.938 55.321 31.587 0.07 0.536 0.003406 0.003402 SIMBAD
NGC 3982 SN 1998aq 179.117 55.125 31.737 0.069 0.417 0.004265 0.0044 EDD
NGC 4038 SN 2007sr 180.471 -18.868 31.29 0.112 0.292 0.006661 0.0067 UNION 2.1
NGC 4424 SN 2012cg 186.798 9.421 31.08 0.292 0.292 0.002581 / / F3†

NGC 4536 SN 1981B 188.613 2.188 30.906 0.053 0.259 0.007174 0.00715 EDD F3†

NGC 4639 SN 1990N 190.718 13.258 31.532 0.071 0.427 0.004463 0.0043 EDD F3†

NGC 5584 SN 2007af 215.599 -0.387 31.786 0.046 0.291 0.006293 0.0063 UNION 2.1 F2
NGC 5917 SN 2005cf 230.386 -7.377 32.263 0.102 0.278 0.006935 0.007 UNION 2.1
NGC 7250 SN 2013dy 334.574 40.562 31.499 0.078 0.078 0.002884 / /
UGC 9391 SN 2003du 218.654 59.338 32.919 0.063 0.277 0.006652 0.0067 UNION 2.1
NGC 4258 / 184.740 47.304 29.387 0.0568 0.057 0.002181 / /
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Table 6. UNION 2.1 SNe of F1 – Part I.
Name R.A. Dec. z µ ∆µ ∆µ250 Type Name R.A. Dec. z µ ∆µ ∆µ250 Type
SN (deg) (deg) (mag) (mag) (mag) SN (deg) (deg) (mag) (mag) (mag)

1995ak 41.453 3.231 0.02198 34.7547 0.1875 0.2048 F1 2005gu 12.238 -0.906 0.3305 41.1317 0.16 0.1601 F1h
1995ao 44.378 -1.689 0.24 40.6417 0.4 0.4001 F1h 2005gv 38.476 0.281 0.3619 41.2817 0.17 0.1701 F1h
1995aw 36.231 0.885 0.4 42.2117 0.48 0.48 F1h 2005gw 354.498 0.642 0.2754 40.6417 0.14 0.1402 F1h
1999dr 345.073 -0.087 0.178 39.3565 0.2357 0.236 F1 2005gx 359.884 0.737 0.14462 39.1926 0.1127 0.1134 F1
1999du 16.775 -0.132 0.26 40.7217 0.2 0.2001 F1h 2005gy 21.528 0.677 0.3306 40.9517 0.15 0.1501 F1h
1999dv 17.246 0.007 0.186 39.6139 0.189 0.1893 F1 2005hc 29.200 -0.214 0.04498 36.4521 0.1083 0.1156 F1
1999dx 23.498 0.071 0.269 40.6817 0.26 0.2601 F1h 2005hj 21.702 -1.238 0.0576 36.982 0.1619 0.1649 F1
1999dy 23.956 0.144 0.215 40.2817 0.19 0.1902 F1h 2005hn 329.267 -0.223 0.10671 38.5384 0.1176 0.1188 F1
1999fw 352.971 0.159 0.278 40.4717 0.2 0.2001 F1h 2005ho 14.850 0.003 0.06184 37.0327 0.1157 0.1193 F1
2002ha 311.827 0.313 0.0131 33.7317 0.23 0.2683 F1z 2005hp 307.219 -0.779 0.17391 39.4337 0.129 0.1294 F1
2004ey 327.283 0.444 0.0147 33.9617 0.18 0.2181 F1z 2005hq 312.582 -0.825 0.3996 41.6317 0.21 0.21 F1h
2005a 37.680 -2.939 0.01832 34.2735 0.1605 0.1884 F1 2005hr 49.641 0.123 0.11635 38.6479 0.1123 0.1134 F1
2005ed 0.706 0.751 0.0857 37.8955 0.118 0.1198 F1 2005hs 52.342 -1.095 0.3003 40.7517 0.15 0.1501 F1h
2005eg 15.535 -0.879 0.18971 39.8413 0.1197 0.1201 F1 2005ht 312.603 -0.168 0.18581 39.7258 0.1207 0.1211 F1
2005ei 329.199 0.318 0.12669 38.817 0.1239 0.1248 F1 2005hu 328.670 0.413 0.2186 40.1017 0.12 0.1203 F1h
2005ex 25.464 -0.877 0.09294 38.0476 0.119 0.1205 F1 2005hv 333.183 -0.035 0.1776 39.9724 0.1248 0.1252 F1
2005ey 34.273 0.281 0.14703 39.2053 0.1117 0.1123 F1 2005hx 3.251 0.248 0.11967 38.6573 0.1107 0.1118 F1
2005ez 46.796 1.120 0.12928 38.8197 0.1344 0.1351 F1 2005hy 3.598 0.333 0.15463 39.2257 0.112 0.1127 F1
2005fa 24.900 -0.758 0.16086 39.2209 0.1186 0.1192 F1 2005hz 11.634 0.838 0.12873 38.766 0.1095 0.1104 F1
2005fc 320.414 0.895 0.2956 41.0417 0.22 0.2201 F1h 2005ia 17.896 -0.006 0.2507 40.6517 0.12 0.1202 F1h
2005fd 323.799 0.163 0.2606 40.4217 0.14 0.1402 F1h 2005ic 327.786 -0.843 0.3095 40.9217 0.13 0.1301 F1h
2005fe 334.864 0.494 0.2155 40.2017 0.14 0.1403 F1h 2005id 349.139 -0.663 0.18255 39.6858 0.1141 0.1145 F1
2005ff 337.671 -0.776 0.08569 37.8992 0.1164 0.1183 F1 2005ie 34.761 -0.273 0.2789 40.6717 0.13 0.1302 F1h
2005fh 349.374 0.430 0.11763 38.4812 0.1136 0.1146 F1 2005if 52.554 -0.974 0.06644 37.2739 0.1176 0.1207 F1
2005fi 1.995 0.638 0.2635 40.6717 0.13 0.1302 F1h 2005ig 337.631 -0.503 0.2795 40.4017 0.14 0.1401 F1h
2005fj 317.837 -0.445 0.14179 39.1756 0.1195 0.1202 F1 2005ih 1.807 0.349 0.2575 40.4917 0.13 0.1302 F1h
2005fl 311.842 -1.253 0.2328 40.1017 0.15 0.1502 F1h 2005ii 3.266 -0.620 0.2925 40.8217 0.14 0.1401 F1h
2005fm 312.043 -1.171 0.15186 39.0575 0.1138 0.1145 F1 2005ij 46.089 -1.063 0.12427 38.6217 0.1111 0.1121 F1
2005fn 312.221 0.191 0.09391 38.0746 0.118 0.1195 F1 2005ik 322.815 -1.057 0.3095 41.0917 0.15 0.1501 F1h
2005fo 328.943 0.594 0.2605 40.7117 0.15 0.1502 F1h 2005ir 19.182 0.795 0.07535 37.4818 0.1023 0.1051 F1
2005fp 6.807 1.121 0.2116 40.4617 0.16 0.1602 F1h 2005is 5.437 -0.325 0.17063 39.3766 0.1164 0.1169 F1
2005fr 17.092 -0.096 0.2866 40.9417 0.13 0.1302 F1h 2005it 16.190 0.514 0.3086 40.8117 0.18 0.1801 F1h
2005fs 31.221 -0.326 0.3388 41.2117 0.17 0.1701 F1h 2005iu 305.065 0.217 0.08902 37.7302 0.1174 0.1192 F1
2005ft 40.521 -0.541 0.18012 39.5403 0.1156 0.116 F1 2005iv 307.936 0.245 0.2988 40.9317 0.15 0.1501 F1h
2005fu 42.634 0.807 0.19215 39.941 0.1211 0.1215 F1 2005ix 310.483 1.092 0.2658 40.4017 0.12 0.1202 F1h

Table 7. UNION 2.1 SNe of F1 – Part II.
Name R.A. Dec. z µ ∆µ ∆µ250 Type Name R.A. Dec. z µ ∆µ ∆µ250 Type
2005fv 46.343 0.858 0.11728 38.6477 0.1137 0.1147 F1 2005iz 328.069 0.267 0.2006 39.7517 0.13 0.1303 F1h
2005fw 52.704 -1.238 0.1424 39.0182 0.1137 0.1144 F1 2005ja 358.969 0.877 0.3264 40.8717 0.14 0.1401 F1h
2005fx 344.201 0.401 0.2884 40.7417 0.15 0.1501 F1h 2005jb 339.013 -0.368 0.2565 40.5117 0.16 0.1602 F1h
2005fy 50.090 -0.886 0.19432 39.8633 0.1264 0.1267 F1 2005jc 11.352 1.076 0.2116 39.8817 0.12 0.1203 F1h
2005fz 315.922 0.570 0.12283 38.7015 0.1211 0.122 F1 2005jd 34.276 0.535 0.3129 40.9117 0.14 0.1401 F1h
2005ga 16.932 -1.040 0.17274 39.4047 0.1135 0.1139 F1 2005je 38.861 1.075 0.09315 38.1827 0.1145 0.1161 F1
2005gb 19.053 0.792 0.08585 37.8542 0.1126 0.1145 F1 2005jg 345.262 -0.207 0.3024 40.9317 0.13 0.1301 F1h
2005gc 20.407 -0.977 0.1638 39.2963 0.1131 0.1137 F1 2005jh 350.019 -0.056 0.10864 38.5522 0.1195 0.1206 F1
2005gd 26.963 0.641 0.15989 39.2523 0.1147 0.1153 F1 2005ji 4.326 -0.257 0.2146 40.1017 0.12 0.1203 F1h
2005ge 34.561 0.797 0.205 39.9217 0.12 0.1203 F1h 2005jj 314.186 0.408 0.3666 41.7617 0.2 0.2001 F1h
2005gf 334.069 0.708 0.2485 40.1717 0.13 0.1302 F1h 2005jk 26.499 1.196 0.18885 39.6938 0.1197 0.1201 F1
2005gg 334.672 0.639 0.2285 40.1517 0.12 0.1203 F1h 2005jl 323.234 -0.700 0.17969 39.6227 0.117 0.1174 F1
2005gh 312.651 -0.354 0.2577 40.5517 0.14 0.1402 F1h 2005jm 328.079 0.472 0.2026 39.8717 0.13 0.1303 F1h
2005gj 45.300 -0.554 0.18222 39.4956 0.1193 0.1197 F1 2005jn 4.754 -0.281 0.3204 41.0017 0.13 0.1301 F1h
2005go 17.705 1.008 0.2636 40.4517 0.14 0.1402 F1h 2005jo 52.090 -0.326 0.2183 40.1217 0.12 0.1203 F1h
2005gp 55.497 -0.783 0.12647 38.6122 0.1192 0.1201 F1 2005jp 32.460 -0.062 0.2109 39.8817 0.12 0.1203 F1h
2005gq 53.454 0.709 0.3893 41.5017 0.2 0.2001 F1h 2005jt 42.667 -0.066 0.36 41.0617 0.18 0.1801 F1h
2005gr 54.156 1.079 0.2444 40.1017 0.12 0.1202 F1h 2005ju 39.117 0.511 0.258 40.5417 0.14 0.1402 F1h
2005gs 333.293 1.051 0.2495 40.6817 0.13 0.1302 F1h 2005jw 310.080 -0.007 0.3797 41.3317 0.15 0.1501 F1h
2005gt 31.016 -0.366 0.2779 40.7417 0.17 0.1701 F1h 2005jy 348.465 1.257 0.2704 40.5717 0.15 0.1501 F1h
2005jz 22.863 -0.632 0.2517 40.4417 0.12 0.1202 F1h 2005ln 6.751 -0.587 0.14567 38.9585 0.1258 0.1264 F1
2005ka 333.483 1.087 0.3164 41.3017 0.19 0.1901 F1h 2005lo 9.299 -1.203 0.2975 40.6717 0.21 0.2101 F1h
2005kn 318.885 -0.355 0.19672 39.8262 0.135 0.1353 F1 2005lp 26.928 0.207 0.3018 41.3917 0.25 0.2501 F1h
2005ko 357.521 -0.921 0.18357 39.6125 0.1238 0.1242 F1 2005lq 40.400 0.205 0.379 41.4817 0.2 0.2001 F1h
2005kp 7.721 -0.719 0.11471 38.5708 0.1134 0.1145 F1 2005mh 41.236 0.204 0.394 41.6817 0.15 0.1501 F1h
2005kq 347.837 -0.609 0.3873 41.7917 0.19 0.1901 F1h 2005mi 335.261 -0.748 0.2125 39.9917 0.13 0.1303 F1h
2005kt 17.742 0.276 0.06386 37.2177 0.1196 0.1229 F1 2005ml 33.518 -0.239 0.11304 38.4532 0.1192 0.1203 F1
2005ku 344.928 -0.014 0.04372 36.2883 0.1272 0.1338 F1 2005mm 3.290 1.146 0.3804 41.5617 0.22 0.2201 F1h
2005ld 325.002 -0.008 0.14371 39.0875 0.1163 0.117 F1 2005mo 57.554 -0.240 0.2735 40.6317 0.16 0.1601 F1h
2005le 337.885 -0.494 0.2525 40.4217 0.15 0.1502 F1h 2005mq 350.091 -0.350 0.3483 41.2117 0.22 0.2201 F1h
2005lf 349.675 -1.205 0.2984 40.9617 0.22 0.2201 F1h 2006cm 320.073 -1.684 0.0153 34.6089 0.2132 0.2438 F1
2005lg 19.084 -0.808 0.3486 41.2017 0.18 0.1801 F1h 2006eq 322.155 1.228 0.04839 36.5876 0.1192 0.1249 F1
2005lh 328.951 1.181 0.2166 40.2617 0.15 0.1502 F1h 2006gj 49.399 -1.692 0.0277 35.6068 0.1833 0.1946 F1
2005li 335.814 0.253 0.2555 40.3917 0.15 0.1502 F1h 2006oa 320.929 -0.843 0.0589 37.0134 0.1657 0.1685 F1
2005lj 29.430 -0.180 0.077 38.2317 0.14 0.142 F1o 2006ob 27.952 0.264 0.0583 36.96 0.1681 0.1709 F1
2005lk 329.956 -1.194 0.10272 38.389 0.1199 0.1212 F1 2006on 328.994 -1.070 0.0688 37.3884 0.198 0.1998 F1
2005ll 337.029 -1.128 0.2425 40.0317 0.15 0.1502 F1h 2006py 340.425 -0.137 0.05668 36.8654 0.1101 0.1146 F1
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Table 8. UNION 2.1 SNe of F2.
Name R.A. Dec. z µ ∆µ ∆µ250 Type Name R.A. Dec. z µ ∆µ ∆µ250 Type
1994m 187.786 0.605 0.02431 35.0112 0.1817 0.1963 F2 2002ck 236.753 -0.990 0.0303 35.53 0.1767 0.1866 F2
1994t 200.378 -2.149 0.03572 35.8623 0.1712 0.1785 F2 2007af 215.588 -0.394 0.0063 31.9817 0.38 0.4763 F2z∗

1999ar 140.067 0.561 0.1561 39.131 0.0841 0.0849 F2

Table 9. UNION 2.1 SNe of F3.
Name R.A. Dec. z µ ∆µ ∆µ250 Type Name R.A. Dec. z µ ∆µ ∆µ250 Type
1992p 190.704 10.360 0.02649 35.3824 0.1913 0.2031 F3 2004bg 170.256 21.340 0.0221 34.8239 0.189 0.206 F3
1994ae 161.758 17.275 0.0043 32.0317 0.53 0.6768 F3z 2004gs 129.600 17.631 0.02757 35.3772 0.1281 0.144 F3∗

1994s 187.841 29.134 0.01517 34.0034 0.2152 0.2461 F3 2004gu 191.603 11.949 0.04697 36.3962 0.1103 0.1168 F3
1995al 147.733 33.553 0.005 32.2217 0.46 0.5853 F3z 2004l 156.767 16.019 0.0334 35.7817 0.1758 0.1839 F3∗

1995ba 124.777 7.723 0.388 42.1117 0.47 0.47 F3h 2005ag 224.180 9.327 0.08005 37.5875 0.102 0.1044 F3
1995d 145.228 5.141 0.0065 32.5117 0.37 0.463 F3z 2005bg 184.322 16.372 0.02419 34.9541 0.1334 0.1529 F3
1996ab 230.285 27.927 0.1244 38.9465 0.1643 0.1649 F3 2005ki 160.118 9.183 0.02037 34.5582 0.1456 0.1706 F3
1997ac 126.022 4.190 0.32 41.1417 0.42 0.42 F3h 2005m 144.387 23.203 0.02297 35.0356 0.1356 0.1569 F3
1997n 125.958 3.481 0.18 40.0913 0.4454 0.4456 F3 2005mc 126.777 21.646 0.026 35.283 0.1839 0.1967 F3
1997o 126.010 4.126 0.374 43.0917 0.92 0.92 F3h 2006ac 190.436 35.062 0.0239 34.9367 0.1814 0.1966 F3
1999aa 126.925 21.487 0.015 34.0653 0.1615 0.2015 F3 2006al 159.868 5.183 0.069 37.4678 0.1762 0.1781 F3
1999ac 241.813 7.972 0.0095 33.0817 0.24 0.3064 F3z 2006an 183.661 12.230 0.0651 37.2084 0.1628 0.1652 F3
1999cl 187.983 14.426 0.0087 31.0417 0.26 0.333 F3z 2006br 202.508 13.416 0.0255 35.6219 0.1962 0.2086 F3
1999gd 129.603 25.759 0.01926 34.8544 0.2406 0.2583 F3 2006bt 239.141 20.052 0.0325 35.7148 0.1704 0.1793 F3
2001ay 216.571 26.249 0.0309 35.8312 0.1837 0.1928 F3 2006bu 208.199 5.314 0.0843 37.9536 0.2003 0.2014 F3
2001fe 144.488 25.495 0.0145 33.8217 0.22 0.2529 F3z 2006bw 218.486 3.799 0.0308 35.5307 0.1784 0.1878 F3
2001iv 117.556 10.286 0.3965 41.3917 0.2 0.2001 F3h 2006cj 194.852 28.348 0.0684 37.6329 0.1706 0.1726 F3
2001iw 117.664 10.339 0.3396 40.9817 0.23 0.2301 F3h 2006cp 184.812 22.427 0.0233 34.7839 0.1834 0.1992 F3
2001n 159.992 24.091 0.0221 34.8133 0.19 0.2069 F3 2006cq 201.105 30.956 0.0491 36.6319 0.1758 0.1797 F3
2001v 179.354 25.203 0.016 33.7264 0.208 0.2367 F3 2006s 191.413 35.087 0.0329 35.8435 0.1704 0.1791 F3
2002bo 154.527 21.828 0.0053 31.9417 0.44 0.5569 F3z 2006x 185.729 15.820 0.0063 30.9317 0.36 0.4605 F3z
2002de 244.127 35.708 0.0283 35.422 0.1801 0.1911 F3 2007bc 169.819 20.813 0.0219 34.7507 0.1884 0.2057 F3
2002g 196.980 34.085 0.0345 35.88 0.2116 0.218 F3 2007bz 194.224 22.373 0.0227 35.5517 0.19 0.206 F3o
2003cg 153.567 3.467 0.0053 31.9317 0.44 0.5569 F3z 2007ci 176.441 19.771 0.0192 34.3933 0.1971 0.2185 F3
2003kc 146.643 30.655 0.0341 35.7437 0.1752 0.1831 F3 2007s 150.130 4.407 0.015 34.0132 0.2134 0.2451 F3
2003w 146.706 16.044 0.0211 34.5625 0.1884 0.207 F3 2008af 224.869 16.653 0.0341 35.6722 0.1776 0.1853 F3
2004as 171.413 22.830 0.0321 35.7977 0.1738 0.1828 F3 2008bf 181.012 20.245 0.0251 34.85 0.1792 0.1932 F3
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[61] F. Köhlinger et. al., KiDS-450: The tomographic weak lensing power spectrum and constraints on
cosmological parameters, Mon. Not. Roy. Astron. Soc. 471 (2017), no. 4 4412–4435 [1706.02892].

[62] H. Hildebrandt et. al., RCSLenS: The Red Cluster Sequence Lensing Survey, Mon. Not. Roy. Astron.
Soc. 463 (2016), no. 1 635–654 [1603.07722].

[63] M. Kilbinger, Cosmology with cosmic shear observations: a review, Rept. Prog. Phys. 78 (2015)
086901 [1411.0115].

[64] L. Van Waerbeke et. al., CFHTLenS: Mapping the Large Scale Structure with Gravitational Lensing,
Mon. Not. Roy. Astron. Soc. 433 (2013) 3373 [1303.1806].

[65] M. Sasaki, The magnitude-redshift relation in a perturbed Friedmann universe, MNRAS 228 (Oct.,
1987) 653–669.

[66] C. Bonvin, R. Durrer and M. A. Gasparini, Fluctuations of the luminosity distance, Phys. Rev. D73
(2006) 023523 [astro-ph/0511183]. [Erratum: Phys. Rev.D85,029901(2012)].

[67] E. Macaulay, T. M. Davis, D. Scovacricchi, D. Bacon, T. E. Collett and R. C. Nichol, The effects of
velocities and lensing on moments of the Hubble diagram, 1607.03966.

[68] R. B. Tully, H. Courtois, Y. Hoffman and D. Pomarède, The Laniakea supercluster of galaxies, Nature
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