

Readout software for the ALICE integrated
Online-Offline (O2) system

Sylvain Chapeland1,*, Filippo Costa1, on behalf of the ALICE collaboration
1CERN, Geneva, Switzerland

Abstract. ALICE (A Large Ion Collider Experiment) is a heavy -ion
detector studying the physics of strongly interacting matter and the quark–
gluon plasma at CERN’s LHC (Large Hadron Collider). During the second
long shutdown of the LHC, the ALICE detector will be upgraded to cope
with an interaction rate of 50 kHz in Pb–Pb collisions, producing in the
online computing system (O2) a sustained input throughput of 3 TB/s. The
readout software is in charge of the first step of data-acquisition, handling
the data transferred from over 8000 detector links to PC memory by
dedicated PCI boards, formatting and buffering incoming traffic until sent
to the next components in the processing pipeline. On the 250 readout
nodes where it runs, the software has to sustain a throughput which can
locally exceed 100 Gb/s. We present the modular design used to cope with
various data sources (hardware devices and software emulators), integrated
with the central O2 components (logging, configuration, monitoring, data
sampling, transport) and initiating the online data flow using the standard
O2 messaging system. Performance considerations and measurements are
also discussed.

1 Introduction

1.1 ALICE and the O2 project

ALICE [1] is the heavy-ion detector designed to cope with very high particle multiplicities
to study the physics of strongly interacting matter at CERN’s LHC. It is optimized to study
the properties of the deconfined state of quarks and gluons produced in such collisions
known as quark–gluon plasma [2]. It is also well suited to study elementary collisions such
as proton–proton and proton–nucleus interactions.

 The detector will be upgraded [3] in the next LHC long shutdown, planned 2019–2020,
and will produce an increased data throughput reaching 3.4 TB/s. The Online -Offline
system, named O2 [4], will be in charge of reading out these data and processing them on-
the-fly, in order to reduce the volume down to 90 GB/s initially recorded to storage. These
demanding data acquisition and processing steps will be handled by a computing farm
consisting of ~250 nodes for readout (named FLPs – First Level Processors) and ~1500
nodes for online reconstruction (named EPNs – Event Processing Nodes).

* Corresponding author: sylvain.chapeland@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 01041 (2019)	 https://doi.org/10.1051/epjconf/201921401041
CHEP 2018

 In O2, detector data are sliced into chunks spanning ~50 ms each, called timeframes.
Based on the centralized timing information provided by the trigger system, the FLPs create
synchronously for each timeframe period the sub-timeframe associated to the fraction of the
detector they are connected to. All sub-timeframes with a given timestamp are sent to the
same EPN (changing for each timeframe), which builds the corresponding full timeframe
containing all data for this period of time, and then used for reconstruction. Data
distribution to the EPNs is typically done round-robin, but may also take into account load
balancing requirements (network and CPUs availability).

1.2 Readout hardware

The detector outputs data through ~8000 optical links connected to PCI readout cards
installed in the FLPs, in the surface counting room 100 m away from the experiment
cavern. These are mainly GBT links [5], a radiation-hard bi-directional 4.8 Gb/s connection
transmitting data from the detector and delivering trigger and slow control information.
Some sub-detectors will also reuse the custom DDL1 and DDL2 links [6] as before the
ALICE upgrade, running respectively at 2.125 Gb/s and 5.3 Gb/s.

 The CRU board [7] is used to accommodate the large number of GBT fibres and
implement a high-density readout system. This is a dedicated PCIe Gen. 3 x16 card hosting
up to 48 links. It provides a typical throughput of 110 Gb/s thanks to a dual DMA engine
Gen3. x8 running on an Intel Arria10 FPGA. For the DDL links, O2 will reuse some C-
RORC cards currently used in ALICE, based on a Xilinx VIRTEX6 FPGA hosting up to 6
links and connected to a PCIe Gen.2 x8 bus. Each FLP will host from 1 to 4 readout cards,
depending on the balance between detector links throughput, network bandwidth output,
and CPU processing needs. Both card types can also be used to perform some data
processing on-the-fly in the FPGA (e.g. cluster finding, as done already in ALICE [8]), in
order to reduce the amount of CPU resources needed for the reconstruction later in the
chain.

 Readout data is delivered directly from the PCI cards to the PC host memory by DMA,
without involving the FLP CPUs. A RoC (Readout Card) device driver and libraries [9,10]
allow this flow to be controlled by the readout software.

2 Readout software

In this paper, the focus is on the readout software. It consists of a runtime process running
on each FLP, dealing with moving the data from the detector electronics into the memory
of the computer hosting the readout cards, and streaming those to further FLP processes in
the O2 online pipeline (e.g. quality control, sub-timeframe building, local processing,
transport to EPN). In the present paper, we will refer to this runtime process simply as
Readout.

Readout tasks consist in particular of:
- Initializing the hardware (CRU and C-RORC) using the common RoC driver interface.
- Allocating the memory buffers used for DMA.
- Providing data pages to be filled by the PCIe device.
- Aggregating, slicing, and formatting the data received.
- Checking the data consistency.
- Distributing the data to consumers.
- Reporting performance and errors.

2

EPJ Web of Conferences 214, 01041 (2019)	 https://doi.org/10.1051/epjconf/201921401041
CHEP 2018

 In O2, detector data are sliced into chunks spanning ~50 ms each, called timeframes.
Based on the centralized timing information provided by the trigger system, the FLPs create
synchronously for each timeframe period the sub-timeframe associated to the fraction of the
detector they are connected to. All sub-timeframes with a given timestamp are sent to the
same EPN (changing for each timeframe), which builds the corresponding full timeframe
containing all data for this period of time, and then used for reconstruction. Data
distribution to the EPNs is typically done round-robin, but may also take into account load
balancing requirements (network and CPUs availability).

1.2 Readout hardware

The detector outputs data through ~8000 optical links connected to PCI readout cards
installed in the FLPs, in the surface counting room 100 m away from the experiment
cavern. These are mainly GBT links [5], a radiation-hard bi-directional 4.8 Gb/s connection
transmitting data from the detector and delivering trigger and slow control information.
Some sub-detectors will also reuse the custom DDL1 and DDL2 links [6] as before the
ALICE upgrade, running respectively at 2.125 Gb/s and 5.3 Gb/s.

 The CRU board [7] is used to accommodate the large number of GBT fibres and
implement a high-density readout system. This is a dedicated PCIe Gen. 3 x16 card hosting
up to 48 links. It provides a typical throughput of 110 Gb/s thanks to a dual DMA engine
Gen3. x8 running on an Intel Arria10 FPGA. For the DDL links, O2 will reuse some C-
RORC cards currently used in ALICE, based on a Xilinx VIRTEX6 FPGA hosting up to 6
links and connected to a PCIe Gen.2 x8 bus. Each FLP will host from 1 to 4 readout cards,
depending on the balance between detector links throughput, network bandwidth output,
and CPU processing needs. Both card types can also be used to perform some data
processing on-the-fly in the FPGA (e.g. cluster finding, as done already in ALICE [8]), in
order to reduce the amount of CPU resources needed for the reconstruction later in the
chain.

 Readout data is delivered directly from the PCI cards to the PC host memory by DMA,
without involving the FLP CPUs. A RoC (Readout Card) device driver and libraries [9,10]
allow this flow to be controlled by the readout software.

2 Readout software

In this paper, the focus is on the readout software. It consists of a runtime process running
on each FLP, dealing with moving the data from the detector electronics into the memory
of the computer hosting the readout cards, and streaming those to further FLP processes in
the O2 online pipeline (e.g. quality control, sub-timeframe building, local processing,
transport to EPN). In the present paper, we will refer to this runtime process simply as
Readout.

Readout tasks consist in particular of:
- Initializing the hardware (CRU and C-RORC) using the common RoC driver interface.
- Allocating the memory buffers used for DMA.
- Providing data pages to be filled by the PCIe device.
- Aggregating, slicing, and formatting the data received.
- Checking the data consistency.
- Distributing the data to consumers.
- Reporting performance and errors.

2.1 Readout architecture

In order to accommodate the various needs and keep the flexibility to evolve with time,
Readout consists of multiple interconnected modules each assigned to a task. In particular,
two general-purpose classes of components have been defined: producers of data (also
named equipments) and consumers of data, organized around a central core taking care of
the data handling. Multiple instances of each module may be created depending on the
configuration. Figure 1 shows a typical runtime setup.

Fig. 1. Readout architecture and internal data flow (example runtime configuration).

2.2 Implementation

2.2.1 Multi-threaded pipeline

The Readout process is a multi-threaded application, to benefit from the multiple CPU
cores available on the FLPs and run the different tasks in parallel. It starts one thread per
component, internally connected by lock-less FIFO buffers to implement the flow of data
from producers to consumers . This ensures a low-overhead transport between the modules
and independent operation of each thread. The building blocks developed in a previous
many-core data streaming application [11] were reused, allowing inter-thread messaging up
to a Megahertz rate without significant CPU usage, while allowing non-blocking operation
when there is space in the buffer. A main thread takes care of distributing the data between
threads and to synchronize them on process startup and shutdown . This approach is slight ly
different from the previous ALICE data-acquisition system [12], where there was one
process per equipment and one process for each other task. This has the advantage of
simplifying code, component communication and control.

The basic workflow consists of several steps: data are produced by readout equipments ,
a data aggregator aggregates their output based on common data block identifiers (also
performing checks and header formatting), and the result is distributed to consumers. Data
chunks are shared, each consumer may use (read-only) the incoming data before releasing

3

EPJ Web of Conferences 214, 01041 (2019)	 https://doi.org/10.1051/epjconf/201921401041
CHEP 2018

it. Pushing data to consumers is by default a blocking operation (if FIFO full, Readout
waits until being able to push). Backpressure is applied upstream between the Readout
threads (output FIFO of step N-1 is not emptied anymore when input FIFO of step N full).

The code [13] is written in C++14, using the typical building blocks of the standard
library (in particular the shared_ptr, unique_ptr, and thread classes simplifying the
development of multi-threaded applications).

Polymorphic classes are defined for producers and consumers, so that new
implementations can easily be added while keeping the same interface. The corresponding
runtime instances are created from configuration (local file or central O2 repository).
Readout can handle any number of instances of each producer and consumer class.

For the time being, there are 3 types of producers: a simple software generator to push
data to memory without a hardware readout card, a more elaborated emulator generating
data with realistic LHC clock rates and formatted data, and finally the readout class able to
get data from C-RORC and CRU devices using the RoC library. As a side remark, from the
driver and software point of view, each CRU x16 card is actually seen as two independent
x8 devices, so Readout instantiates two RoC equipments to read out one CRU card.

On the consumers’ side, a wide variety of features are provided:
- a Stats class, to count the number and size of blocks produced by Readout (among other
statistics). The counters can be published to the O2 monitoring system for live or historic
views of the rates and performance.
- a FileRecorder class, allowing the readout data to be written to a local file. This is useful
for front-end electronics development and debugging, but not in production .
- a DataChecker class, with extensive data checks in the header and payload, verifying
systematically all fields integrity and conformance to CRU format specifications . It is used
in particular for debugging and stability tests, but might not be used for production
depending on the available CPU resources.
- a DataSampling class, providing data (full or subset) to the Quality Control system [14].
- a FMQ class, pushing the data outside Readout as a FairMQ device. FairMQ [15, 16] is
the common transport library used in O2.
Readout is also integrated with the base O2 packages providing facilities for logging [17],
configuration [18], and monitoring [19, 20].

2.2.2 Memory management

Readout provides to the CRU, by means of a FIFO buffer, the free memory pages where
incoming data can be written. When a data page is full, the CRU gives it back through a
second FIFO buffer, holding the ready pages to be picked up by Readout for the data
consumers .

The CRU card transfers data over PCIe DMA in chunks of 8 kB. To reduce the rate of
control messages between host and card when providing the empty pages and getting back
the ready pages, larger data pages (typically 2 MB) are given and filled with contiguous 8
kB blocks. This effectively reduces the FIFOs rate from ~1.7 MHz to ~7 kHz, relieving
both the CPU and PCI bus. As each 8 kB block has a header, it is still possible to easily
browse the data within each page.

Large (multi-gigabyte) buffers are needed to cope with the optical links throughput.
Readout therefore creates a pool of memory pages on start-up. Large physically contiguous
memory regions are allocated, and registered to the driver in order to set up the DMA for
the whole address range(s). These big (~GB) regions are split by Readout into smaller
(~MB) data pages of selected size, with the proper byte-alignment needed to optimize the
DMA transfers. Readout also enforces the allocation of the memory on the same NUMA
node connected to the PCIe card. At runtime, free pages are taken from the pool, given to

4

EPJ Web of Conferences 214, 01041 (2019)	 https://doi.org/10.1051/epjconf/201921401041
CHEP 2018

it. Pushing data to consumers is by default a blocking operation (if FIFO full, Readout
waits until being able to push). Backpressure is applied upstream between the Readout
threads (output FIFO of step N-1 is not emptied anymore when input FIFO of step N full).

The code [13] is written in C++14, using the typical building blocks of the standard
library (in particular the shared_ptr, unique_ptr, and thread classes simplifying the
development of multi-threaded applications).

Polymorphic classes are defined for producers and consumers, so that new
implementations can easily be added while keeping the same interface. The corresponding
runtime instances are created from configuration (local file or central O2 repository).
Readout can handle any number of instances of each producer and consumer class.

For the time being, there are 3 types of producers: a simple software generator to push
data to memory without a hardware readout card, a more elaborated emulator generating
data with realistic LHC clock rates and formatted data, and finally the readout class able to
get data from C-RORC and CRU devices using the RoC library. As a side remark, from the
driver and software point of view, each CRU x16 card is actually seen as two independent
x8 devices, so Readout instantiates two RoC equipments to read out one CRU card.

On the consumers’ side, a wide variety of features are provided:
- a Stats class, to count the number and size of blocks produced by Readout (among other
statistics). The counters can be published to the O2 monitoring system for live or historic
views of the rates and performance.
- a FileRecorder class, allowing the readout data to be written to a local file. This is useful
for front-end electronics development and debugging, but not in production .
- a DataChecker class, with extensive data checks in the header and payload, verifying
systematically all fields integrity and conformance to CRU format specifications . It is used
in particular for debugging and stability tests, but might not be used for production
depending on the available CPU resources.
- a DataSampling class, providing data (full or subset) to the Quality Control system [14].
- a FMQ class, pushing the data outside Readout as a FairMQ device. FairMQ [15, 16] is
the common transport library used in O2.
Readout is also integrated with the base O2 packages providing facilities for logging [17],
configuration [18], and monitoring [19, 20].

2.2.2 Memory management

Readout provides to the CRU, by means of a FIFO buffer, the free memory pages where
incoming data can be written. When a data page is full, the CRU gives it back through a
second FIFO buffer, holding the ready pages to be picked up by Readout for the data
consumers .

The CRU card transfers data over PCIe DMA in chunks of 8 kB. To reduce the rate of
control messages between host and card when providing the empty pages and getting back
the ready pages, larger data pages (typically 2 MB) are given and filled with contiguous 8
kB blocks. This effectively reduces the FIFOs rate from ~1.7 MHz to ~7 kHz, relieving
both the CPU and PCI bus. As each 8 kB block has a header, it is still possible to easily
browse the data within each page.

Large (multi-gigabyte) buffers are needed to cope with the optical links throughput.
Readout therefore creates a pool of memory pages on start-up. Large physically contiguous
memory regions are allocated, and registered to the driver in order to set up the DMA for
the whole address range(s). These big (~GB) regions are split by Readout into smaller
(~MB) data pages of selected size, with the proper byte-alignment needed to optimize the
DMA transfers. Readout also enforces the allocation of the memory on the same NUMA
node connected to the PCIe card. At runtime, free pages are taken from the pool, given to

the CRU, taken back when filled with data, provided to the consumers (and possibly shared
by them), and put back in the pool when not used anymore, ready again for a new write
cycle.

The pages themselves are allocated from different support types, depending on the
needs: simple malloc(), memory mapped files (provided by the RoC library, based on
HugeTLBFS), and shared memory (provided by FairMQ, and used for inter-process or
network zero-copy transport).

2.3 Performance

Readout has been developed and benchmarked on various platforms to understand and
optimize the numerous tuning parameters , both for software and hardware. The system
consistently showed good performance well above 6 GB/s per PCIe x8 CRU end-point, and
routinely reaches the maximum throughput of 6.75 GB/s per x8 end-point (i.e. 13.5 GB/s
per CRU) with the appropriate settings , even with multiple CRUs on the system.

The most critical settings are usually related to hardware, in particular the memory
pages used for the DMA, which need to be aligned and take into account the system
NUMA configuration for minimal PCI to memory latency.

On the software side, the size of the FIFOs between threads is not critical, and the
system works well with FIFOs having ~100 entries, providing enough back-buffer to allow
the threads to be idle when they are empty (instead of an aggressive polling misusing CPU
resource). The CPU deep sleep features are disabled by software (just for the Readout
process) for best DMA performance (otherwise latency may increase when Readout goes
sleeping, waiting the FIFO to fill in).

The standard development setup consists of a DELL R740 server equipped with 1 or 2
CRUs. For the detector commissioning, some ASUS ESC4000G3 machines have been set
up with 2 CRUs running at a total of 26 GB/s (6.5 GB/s per equipment). As shown in
Figure 2, long-running tests show excellent stability over 5 days, using only 12% of one
CPU virtual core (the machine has 2x Xeon E5-2690v2 @ 3GHz, seen as 40 processors by
Linux when hyper-threading is enabled), i.e. around 0.3% of the system CPU resources are
used for Readout. This result validates the efforts done by Readout to minimize CPU usage
for the flow control and memory management, effectively reducing polling between threads
and leaving the CPU for other local tasks.

Readout was also tested with up to 8 CRUs in a server, using a Supermicro 4029GP-
TRT server providing 8 PCIe slots x16, half-duplex, allowing a measured aggregated
throughput of 40 GB/s for the 16 equipments (no optimization). Although this setup does
not reach the maximum bandwidth of each CRU (there are not enough PCIe lanes on the
CPUs, so the PCIe x16 does not run at full speed), this is a convenient system for batch
testing of the CRUs (over 300 will be produced for the ALICE upgrade).

5

EPJ Web of Conferences 214, 01041 (2019)	 https://doi.org/10.1051/epjconf/201921401041
CHEP 2018

3 Conclusions

Readout is the process used in ALICE O2 to initiate DMA transfer from PCIe readout cards
to PC memory, and the first software component in the O2 pipeline. It is connected to the
O2 subsystems (libraries and runtime processes), and provides a lightweight and extendable
architecture to deliver the needed development, debugging, and production tools to inject
the detector data coming at an aggregated 3 TB/s from 8000 links in the future ALICE
online system. It is capable of handling 13.5 GB/s from each of the CRU boards, and it will
run on the ~250 O2 readout nodes. It is currently used in the detector commissioning, which
started in summer 2018.

References

1. The ALICE Collaboration et al. “The ALICE experiment at the CERN LHC”JINST 3
S08002 (2008)

2. N. Cabibbo, G. Parisi Phys. Lett. B 59 pp 67-69 (1975)

3. The ALICE Collaboration et al. “Upgrade of the ALICE Experiment: Letter Of Intent”
J. Phys. G 41 087001 (2014)

Fig. 2. CRU throughput and CPU resources of readout running on a dual-CRU system.

6

EPJ Web of Conferences 214, 01041 (2019)	 https://doi.org/10.1051/epjconf/201921401041
CHEP 2018

3 Conclusions

Readout is the process used in ALICE O2 to initiate DMA transfer from PCIe readout cards
to PC memory, and the first software component in the O2 pipeline. It is connected to the
O2 subsystems (libraries and runtime processes), and provides a lightweight and extendable
architecture to deliver the needed development, debugging, and production tools to inject
the detector data coming at an aggregated 3 TB/s from 8000 links in the future ALICE
online system. It is capable of handling 13.5 GB/s from each of the CRU boards, and it will
run on the ~250 O2 readout nodes. It is currently used in the detector commissioning, which
started in summer 2018.

References

1. The ALICE Collaboration et al. “The ALICE experiment at the CERN LHC”JINST 3
S08002 (2008)

2. N. Cabibbo, G. Parisi Phys. Lett. B 59 pp 67-69 (1975)

3. The ALICE Collaboration et al. “Upgrade of the ALICE Experiment: Letter Of Intent”
J. Phys. G 41 087001 (2014)

Fig. 2. CRU throughput and CPU resources of readout running on a dual-CRU system.

4. P. Buncic, M. Krzewicki, P. Vande Vyvre et al. “Technical Design Report for the
Upgrade of the Online-Offline Computing System” Technical Design Report ALICE
19 (2015)

5. P. Moreira et al. “The GBT project” Proceedings of the Topical workshop on
electronics for particle physics in Paris, France 342-346 (2009)

6. F.Costa et al. “DDL, the ALICE data transmission protocol and its evolution from 2 to
6 Gb/s” JINST 10 C04008 (2015)

7. J. Mitraa, S.A. Khana, S. Mukherjeeb and R. Paulc “Common Readout Unit (CRU) - A
new readout architecture for the ALICE experiment” JINST 11 C03021 (2016)

8. H. Engel, T. Alt and U. Kebschull “FPGA based data processing in the ALICE High
Level Trigger in LHC Run 2” J. Phys. Conference Series 898 032018 (2017)

9. The O2 project, Readout Card (RoC) module
http://github.com/AliceO2group/ReadoutCard

10. P. Boeschoten and F. Costa “The ALICE O2 common driver for the C-RORC and CRU
read-out cards” ACAT 2017 conference proceedings arXiv:1710.05607 (2017)

11. S.Chapeland “A programming framework for data streaming on the Xeon Phi” J. Phys.
Conference Series 898 072007 (2017)

12. F. Carena et al. “The ALICE data acquisition system” Nucl. Instr. Meth. A 741
130-162 (2014)

13. The O2 project, “Readout” http://github.com/AliceO2group/Readout

14. B. von Haller, P. Lesiak and J. Otwinowski “Design of the data quality control system
for the ALICE O2” J. Phys. Conference Series 898 032001 (2017)

15. M. Al-Turany, D. Klein, T. Kollegger, A. Rybalchenko, N. Winckler “C++ Message
Queuing Library and Framework ” https://github.com/FairRootGroup/FairMQ

16. M. Al-Turany et al. “ALFA: ALICE-FAIR new message queuing based framework ”
Proceedings of the CHEP 2018 conference (to be published)

17. The O2 project, “InfoLogger, the logging system for ALICE O2”
https://github.com/AliceO2Group/infoLogger

18. The O2 project, “The configuration system for ALICE O2”
https://github.com/AliceO2Group/Configuration

19. The O2 project, “The monitoring module for ALICE O2”
https://github.com/AliceO2Group/Monitoring

20. A. Wegrzynek et al. “Towards the integrated ALICE Online-Offline (O2) monitoring
subsystem” Proceedings of the CHEP 2018 conference (to be published)

7

EPJ Web of Conferences 214, 01041 (2019)	 https://doi.org/10.1051/epjconf/201921401041
CHEP 2018

