EPJ Web of Conferences 214, 02007 (2019) https://doi.org/10.1051/epjconf/201921402007
CHEP 2018

Recent progress with the top to bottom approach to vec-
torization in GeantV

Guilherme Amadio!, Ananya, John Apostolakisl, Marilena Bandieramonte'2, Shiba
Behera®, Abhijit Bhattacharyya®, René Brun!, Philippe Canal*, Federico Carminati',
Gabriele Cosmo', Vitaliy Drohan, Daniel Elvira*, Krzysztof Genser*, Andrei Gheata'"*, Mi-
haela Gheata'”, Ilias Goulas', Farah Hariri', Vladimir Ivanchenko'®, Przemislaw Karpin-
ski, Gulrukh Khattak!, Dmitri Konstantinov!?®, Harphool Kumawat®, Guilherme Lima®,
Jesiis Martinez Castro’, Patricia Mendez', Aldo Miranda Aguillar’, Katalin Nikolics', Mi-
haly Novak!, Elena Orlova, Kevin Pedro®, Witold Pokorski!, Alberto Ribon', Dmitry Savin,
Ryan Schmitz, Raman Sehgal®, Oksana Shadura!, Shruti Sharan, Sofia Vallecorsa', Sandro
Wenzel', and Soon Yung Jun*

'Buropean Organization for Nuclear Research (CERN), Switzerland
2University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA 15260, USA
3Bhabha Atomic Research Centre (BARC), India

4Fermi National Accelerator Laboratory (FNAL), USA

SInstitute of Space Science (ISS), Romania

®Tomsk State University, Tomsk, Russia

"Centro de Investigacién en Computacién (CIC-IPN), Mexico

$NRC Kurchatov Institute (IHEP) Protvino, Russia

Abstract. SIMD acceleration can potentially boost by factors the application
throughput. Achieving efficient SIMD vectorization for scalar code with com-
plex data flow and branching logic, goes however way beyond breaking some
loop dependencies and relying on the compiler. Since the refactoring effort
scales with the number of lines of code, it is important to understand what kind
of performance gains can be expected in such complex cases. We started to
investigate a couple of years ago a top to bottom vectorization approach to par-
ticle transport simulation. Percolating vector data to algorithms was mandatory
since not all the components can internally vectorize. Vectorizing low-level
algorithms is certainly necessary, but not sufficient to achieve relevant SIMD
gains. In addition, the overheads for maintaining the concurrent vector data
flow and copy data have to be minimized. In the context of a vectorization R&D
for simulation we developed a framework to allow different categories of scalar
and vectorized components to co-exist, dealing with data flow management and
real-time heuristic optimizations. The paper describes our approach on coordi-
nating SIMD vectorization at framework level, making a detailed quantitative
analysis of the SIMD gain versus overheads, with a breakdown by components
in terms of geometry, physics and magnetic field propagation. We also present
the more general context of this R&D work and goals for 2018.

*e-mail: andrei.gheata@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 02007 (2019) https://doi.org/10.1051/epjconf/201921402007
CHEP 2018

1 Introduction

Due to the physical constraints preventing frequency scaling, parallel computing has become
the dominant paradigm in modern computer architectures. Throughput-increasing parallelism
techniques are particularly relevant for scaling up the computing performance with the tran-
sistor density. Most modern processors are superscalar, being able to deliver more than one
instruction per clock (IPC). Instruction level parallelism is based on scheduling multi-stage
instruction pipelines to multiple execution units in the processor. As long as instructions have
no data dependencies, they can be executed out of order by the different execution units. Sev-
eral speculative techniques are used for minimizing the idle time of the existing execution
units, such as: branch prediction, speculative prefetching and execution, or cache hierarchy.

A different approach is to leverage the natural data parallelism of a computational prob-
lem by mapping multiple data to similar operations executed in parallel. The most successful
implementations of this concept are SIMD (Single Instruction Multiple Data), and SIMT
(Single Instruction Multiple Threads). In SIMD, elements of short vectors are processed in
parallel using special vector registers and an extended instruction set, while in SIMT, instruc-
tions of several threads run in parallel. Both approaches are broadcasting the same instruction
to different execution units, the main differences coming from the different degrees of flexi-
bility versus efficiency. Arguably, the SIMT model, which is very popular for GPU’s, is more
flexible and well adapted for massive data-parallel problems, while the SIMD approach is
more difficult to program but more efficient in case of more confined data loops.

While the benefit of SIMD and/or SIMT was demonstrated for applications featuring
massive data parallelism, such as linear algebra or graphics, we are trying to develop vector-
ization techniques that can preserve these benefits in case of code with large complexity and
branching. Particle transport simulation represent a very demanding HEP application having
many non-SIMD friendly features like: sparse memory access over large data structures, deep
embedded conditionals branching to a high number of algorithms per data unit (track). While
exploring SIMD/SIMT optimization techniques in the context of GeantV R&D [1], many
of our results can be extrapolated to other similar HEP workflows, including some areas of
reconstruction or analysis.

This paper describes the techniques used in GeantV for enhancing the data parallelism by
transforming typical single-track non-vectorizable algorithms into multi-track SIMD-aware
ones. The following sections are presenting a critical view on the gains versus overheads for
such an approach, hinting that there is a complexity threshold for the transformation to be
beneficial, but also presenting some ways to push this threshold to higher values. In a final
section we try to illustrate this on concrete examples that use specific measurements.

2 Vectorizing on track data

From a data driven perspective, particle transport simulation can be seen as a sequence of
algorithms operating on a single track state. A particle would enter a given material, travel in
fields and perform a stochastic physics process in a sequence of complex calculations altering
its state and possibly producing new secondary particles. This can be seen as a processing
pipeline that takes one track as input and outputs a variable number of tracks, as in Figure
1. The complete workflow in a standard Geant4 [2] application would stack all new tracks
and then execute such pipeline (called stepping loop) repeatedly for each of them until the
stack is exhausted. In reality, the picture is more complex due to the presence of conditionals
that may branch the follow-up algorithms, but in all cases such scalar workflow limits the
opportunities to use the natural track-level parallelism.

2

EPJ Web of Conferences 214, 02007 (2019) https://doi.org/10.1051/epjcont/201921402007
CHEP 2018

GeantV transforms the scalar workflow into a vector one. Instead of handling one track at
a time, algorithms can operate on collections of tracks, called baskets in the GeantV jargon.
Once a basket is injected in the algorithm, the vectorization problem is reduced to transform-
ing all scalar operations on track data into vector operations on basket data. To generate
efficient SIMD instructions, the basket data needs to be transformed from an array of track
structures (AOS) to a structure of arrays of track data (SOA), to be fitted directly into vector
registers. This copying is only necessary for the part of the track data needed by the algo-
rithm. The vectorization technology we chose is based on VecCore [3], an abstraction header
library on top of a number of vectorization back-ends.

Scalar data Scalar data Scalar data Scalar data
. algorithm s algorithm s algorithm s

Vector data

“basketizing” Vector data Vector data Vector data
. Vector Vector Vector
) %) Y X %
algorithm algorithm algorithm

Figure 1. Transformation of a pipeline scalar workflow into a vector one. This implies propagating data
containers (baskets) through the pipeline, but also transforming scalar operations inside the algorithms
into vector ones.

We need to emphasize that most of the work required for migrating an algorithm from
a pure scalar version to the basketized one is concentrated on refactoring the algorithm to
work with vector types. The process allows to preserve the scalar version and even in most
cases coalesce it with the vector one by templating the implementations on the data type.
The GeantV scheduler actually makes use of both scalar and vector versions to optimize its
workflow, as described in a previous paper [4].

Doing a back-of-the-envelope calculation of the performance of a single algorithm in
the context of a basketized data flow can be seen in the following way: We assume T to
be the time taken by the scalar version of the algorithm to process a given amount of tracks,
ignoring any dependency on their state. The corresponding run time for the vectorized version
of the same algorithm will be T;/S,;. The SIMD intrinsic speedup S; can be measured in a
benchmark test for the given algorithm, outside of the actual GeantV workflow. This will
depend only on intrinsic algorithm features such as complexity or amount of memory versus
floating point operations. There is a price to pay for performing vector operations due to
the need to copy scalar track information into structures of arrays, then scatter them back
after getting the results. This overhead 7, depends on the amount of track state needed by
the algorithm, but also on the data sparsity which can generate data cache misses. Note that
after the SOA gather operations both data and instructions become more local so the data
restructuring may be beneficial. A further analysis of this is done in the next section.

In a pipeline workflow where all tracks will be processed by all algorithms, we can reach
almost full efficiency to execute a basket workflow, having to treat as scalar only the tails of
the data passing through. In reality, the simulation workflow is more complex (as in Figure 2)
and many algorithms are selected only for subsets of all tracks. This would still be efficient
if there was an infinite source of tracks feeding the simulation stepping procedure. Baskets
would still eventually get filled even for the very “unpopular” algorithms at a smaller rate than
others. In reality there are memory constraints limiting the number of events/tracks in flight,
so a starvation point will be reached when no tracks from new events can be pushed into the
stepping loop until completing at least one of the events already being transported. Since the
remaining tracks at this point are held by incomplete baskets, we can only refill the stepping
loop by flushing those baskets. This will allow popular baskets to be refilled, but the less pop-

EPJ Web of Conferences 214, 02007 (2019) https://doi.org/10.1051/epjcont/201921402007
CHEP 2018

basketizer

Algorithm_v

selector basketizer Algorithm_v

basketizer Algorithm_v

Figure 2. Generic workflow for GeantV stepping. The stepping procedure is split in stages containing
one or more algorithms specialized for specific tasks like: geometry querying, physics model sampling
or field propagation. A vector of tracks is pushed through the stage buffers, dispatching each track to
the appropriate algorithm. A basketizer may be used to hand-over vectors instead of single tracks.

ular ones will have to be regularly flushed while executing the corresponding algorithms in
scalar mode. This mechanism decreases the basketization efficiency b, (percentage of tracks
processed in basket mode) and depends on many factors such as: algorithm popularity, size
of the event buffer or event type, but also physics settings or geometry setup. For example, a
calorimeter shower will self-refresh populations in most baskets after each stepping loop due
to the high rate of secondary generation, which is not the case within a tracker. Taking the
above into account, we can express the time taken by the basketized and vectorized version
of the given algorithm within the given workflow as:

Ty

T, =T,+(1=bTs +be

ey

From equation 1 we can easily derive the observed algorithm speedup S = T,/T, when
plugged in the complete simulation workflow, taking b, = T,/T, as relative basketizing
overhead:

© b+ S8i(1-b, +by)

S 2
Note, that for a pipeline workflow b, ~ 1 with negligible basketizing overhead b, ~ 0 we
benefit from the full intrinsic algorithm speed-up, while in case of a complex workflow with
an algorithm basketized only 50% (b, = 0.5) we get a maximum speedup of 60% even if
the SIMD algorithm is 4x faster than its scalar version. We can extract from equation 2 the
minimum intrinsic SIMD speedup of the algorithm to have a visible benefit § > 1 from
basketized vectorization:

in case b, > b, 3)

Note that equation 3 stands only if b, > b, otherwise no speed-up is possible. Assuming that
we can measure these numbers, equation 3 gives a quick recipe for deciding if an algorithm is
worth basketizing. If the ratio overhead over efficiency is too large even an ideally vectorized
algorithm will not benefit from basketizing. It hints to few rules of thumb: to have a small
overhead, the number of copy operations should be smaller than the number of vectorized
operations, while the algorithm needs to be rather popular in the execution flow.

4

EPJ Web of Conferences 214, 02007 (2019)
CHEP 2018

https://doi.org/10.1051/epjcont/201921402007

3 Efficiency versus overhead

To measure basketizing efficiency per algorithm, it is enough to count how many tracks fol-
low the basketized path compared to how many tracks had to be flushed from baskets and
processed by the scalar version. This can be easily done using counters inserted in the work-
flow. The more complex the workflow, the more tracks have to be transported concurrently
to fill baskets of different categories. This hints to the use of large event buffers and im-
plicitly more memory to enhance performance. Table 1 gives a summary of the basketizing
efficiency for several different algorithms in GeantV in case of a complex example using the
CMS geometry and EM physics, for the most important simulation stages: geometry (com-
putation of distances and particle relocation), propagation in field, multiple scattering (MSC)
and final state generation (PostStep) for all physics processes involved. In the current imple-
mentation we observe overheads larger than efficiencies for basketizing geometry and final
state generation, which according to equation 3 cannot produce speed-up for these stages. An
interesting observation is that basketizing efficiency for a given algorithm implicitly depends
on the “health” of the data flow. The starvation point tends to occur earlier in a fully baske-
tized configuration and will reduce the overall efficiency. After flushing partial baskets and
triggering scalar stepping, the tracks may not generate enough new work and the starvation
regime will generate a complete scalar transport. This is an undesired effect that is unavoid-
able when having a too small number of tracks in flight. It makes the bulk of the events being
transported in vector mode, while the tails in scalar mode.

Stage | Geometry Field Multiple scatter- | Phys. models fi-
ing (MSC) nal state sampling

b, 0.20 0.75 0.43 0.20

b, 0.63 -0.02 0.01 0.42

Table 1. Basketizing efficiency and overhead for different simulation stages for 100 GeV electrons in
the CMS simulation benchmark

The basketizing overhead is difficult to measure based on scalar versus basketized pro-
filing information, due to better caching in basket mode. GeantV allows measuring this in
a special mode: a given basketizer can be activated, but the basket will be processed still
in scalar mode by looping over tracks (scalar dispatch). So far, we performed only integral
measurements in GeantV, summing the overheads of all basketizers in a given stage.

The current measurements show an important overhead for basketizing based on geom-
etry and physics models final state sampling. This is due to the need to copy rather large
fraction of the track state in SOA form, but also due to the limited amount of floating point
operations involved in some of these models. The relative use of different physics models is
very much dependent on the simulation type: beam energy, particle type and detector setup.
Even along different phases during the event propagation, particles will change model affin-
ity as the initial beam energy is deposited throughout the detector. In case of geometry, we
know that currently the algorithm of reducing the number of basketizable volumes is not
very efficient. We want to emphasize that the basket efficiencies and overheads are not ab-
solute performance markers but they represent a snapshot of performance for a given set of
simulation conditions.

As the particle flow distribution to algorithms in different stages changes during simula-
tion, basketizing efficiency may evolve and make the apparent speed-up for a given algorithm
less than 1. To deal with this, GeantV monitors the activity for certain basketizers and can
dynamically switch on/off basketizing to cut off some unnecessary overheads. This can hap-
pen for example in geometry, where central tracker volumes are popular at the beginning of

EPJ Web of Conferences 214, 02007 (2019) https://doi.org/10.1051/epjcont/201921402007
CHEP 2018

event propagation, but much less popular during shower development in calorimeters. In the
cases where GeantV uses large event buffers mixing many tracks from different events, differ-
ent event stages coexist at a given moment so the configuration of active basketizers reaches
asymptotically some stability.

4 Benchmarks and ongoing optimizations

GeantV evolved from the alpha tag late 2017 to a version embedding vectorized versions for
all electromagnetic physics models and magnetic field propagation. We are currently in the
process of understanding the model behavior and performance, to both reduce the remaining
scalar bottlenecks and introduce heuristic optimizations, such as adapting the thresholds for
turning on/off basketizing per model.

The current benchmarks used for tuning this behavior are examples with very different
complexity, starting from a simple box with configurable dimensions and material, a simpli-
fied sampling calorimeter built up from boxes with arbitrary number of layers, to full LHC
detectors such as CMS or LHCb. We are using a custom GeantV physics list including stan-
dard EM processes for e~ (ionization, bremsstrahlung, Coulomb scattering), e* (ionization,
bremsstrahlung, Coulomb scattering) and y (photoelectric, absorption, Compton scattering,
e*e” pair production). Note that energy loss fluctuation and e* annihilation are not included
in the physics list. Each of these examples have a counterpart implemented as a Geant4 ap-
plication, using a physics list containing the same set of processes and model-level settings.
We are scoring inclusive observables, such as track length or energy deposited per primary
track, particle multiplicities or number of steps, allowing to perform MC validation at below
1 per mil level against the corresponding Geant4 application.

Measuring overheads and vector efficiency per component

Simulation time[s]

SCALAR PHYSICS_BE PHYSICS_VECTOR FIELD_BE FIELD_VECTOR MSC_BE MSC_VECT

Figure 3. Simulation time measurements for different GeantV configurations for the CMS benchmark.
The scalar mode provides the reference. Basketization can be switched on for a single simulation stage
(here reported only physics final state sampling, field propagation and multiple scattering - MSC). The
baskets can be dispatched to either the scalar version (BE) or the vector version of the stage algorithms,
allowing to measure the basketization overheads and the observed speedup. The basketization efficiency
is reported for each basketized stage at the end of the run.

We benchmark several different configurations of GeantV to measure the basketizing effi-
ciency and overheads per module. For example, Figure 3 shows several such simulation time

6

EPJ Web of Conferences 214, 02007 (2019)

CHEP 2018

measurements. As general feature, in the current stage of the implementation we observe
that only field propagation and multiple scattering basketization bring visible benefit of up
to 15% of the total run time, while geometry and post stepping physics actions have both a
small deficit compared to their scalar version.

Figure 4. Profile for the CMS Prestep
simulation benchmark extracted using b

gperftools in scalar mode. The rela- SteppingActions
. X X 1.80% Sampling the
tive fraction of the total time taken by Physics proc. interaction

. . . atrest 13.20%
a given simulation stage can be used to 0.40%
estimate the potential speed-up by vec-
torizing the stage. The relative fractions AVHTSHTED ~

state sampling

modify when using the basketized vec- 11.10%

tor version of the code. Continuous rf
processes
3.10%

Multiple scattering
12.80%
Field propagation
17.50%

Linear
Propagation
9.80%

In Figure 4 we present profiling information extracted using gperftools [5] for the CMS
example. The pie chart shows the fractions of the total run time taken by the different sim-
ulation stages. Correlating this with the bottom-up view of hot-spots, we extract relevant
information about existing scalar bottlenecks. From a preliminary analysis, we identified two
important optimization areas for geometry and physics respectively. Geometry calculations
for relocating tracks after crossing volume boundaries are dominated by scalar matrix mul-
tiplication, adding up to 5% of the total simulation time. Physics basketization is currently
very inefficient since a large fraction of the time is spent in AOS to SOA conversion. These
areas are critical for the overall efficiency of the basketizing method, being currently under
investigation.

An important benchmark for the GeantV prototype is the single thread CPU performance
compared to Geant4 (Figure 5). This comparison and a detailed performance analysis of
both GeantV and Geant4 applications can reveal where the gains are coming from, which are
the weak points and possible optimization areas. At this stage we observe a speedup of 60-
65% when activating basketizing for magnetic field and multiple scattering process. There
are several potential geometry and basketizing optimizations being addressed, targeting a
reduction of 15-20% of the run time.

5 Conclusions

GeantV investigates a top to bottom approach to vectorizing the particle transport simula-
tion. Basketizing particles for the next processing stage allows vectorizing on a much larger
class of algorithms than the single particle mode. The basketizing dynamics depends on
the complexity of the workflow and on state parameters, such as number of tracks in flight,
particle production budget, or percent to completion for a given event. There are workflow
constraints limiting the maximum number of events being transported concurrently, that im-
pose flushing partially filled baskets and dealing with scalar spills that reduce the overall
efficiency. This affects mostly the “unpopular” algorithms and requires dynamic basketize
activation/deactivation.

https://doi.org/10.1051/epjcont/201921402007

EPJ Web of Conferences 214, 02007 (2019) https://doi.org/10.1051/epjcont/201921402007
CHEP 2018

1.8

Speedup FullCMS
Xeon® E5-2630@2.40GHz

17 gce 7.3 AVX2, Vc backend

16 1.59
1.54

1.49 1.49

12

11

sphysics_Ofield vphysics_Ofield sphys_sfield vphys_sfield sphys_vfield vphys_vfield MT4_sphys_sfield

Figure 5. Speed-up for the CMS example compared to the Geant4 equivalent for different GeantV
configurations: magnetic field on/off, scalar/basketized physics, scalar/basketized field, multithreading
on (4 threads).

In the current version, the GeantV prototype provides vectorized implementations for a
large fraction of the algorithms involved in the transportation procedure, including geometry,
field propagation and physics simulation. We are in a phase where the basketizing dynamics
is well understood and we are performing detailed performance analysis to optimize specific
components and reduce the existing scalar bottlenecks.

In the current phase of the GeantV R&D, most of the components needed for a com-
plete demonstrator of a vectorized EM shower simulation engine have been developed. After
the ongoing optimization procedure we plan tagging a beta version and making a realistic
projection of the performance figures within reach in a short time scale.

References

[1] G. Amadio et al., J. Phys: Conf. Ser. 664(2015) 072006

[2] J. Allison et al., NIM A 835 (2016), 186-225

[3] G. Amadio, P. Canal, D. Piparo and S. Wenzel, J. Phys.: Conf. Ser. 1085 (2018) 032034

[4] G. Amadio et al., J. Phys.: Conf. Ser. 1085 (2018) 032037

[5] C. Silverstein and D. Chappelle, Great Performance Tools (2012)
http://code.google.com/p/gperftools/

