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4.1 Introduction
Computations in perturbative Quantum Field Theory (pQFT) feature several aspects which,
although intrinsically non-physical, are traditionally successfully eluded by modifying the di-
mensions of the space-time. Closed loops in pQFT implicitly extrapolate the validity of the
Standard Model (SM) to infinite energies – equivalent to zero distance–, much above the Planck
scale. We should expect this to be a legitimate procedure if the loop scattering amplitudes that
contribute to the physical observables are either suppressed at very high energies, or if there is
a way to suppress / renormalise their contribution in this limit. In gauge theories like QCD,
massless particles can be emitted with zero energy, and pQFT treats the quantum state with N
external partons as different from the quantum state with emission of extra massless particles at
zero energy, while these two states are physically identical. In addition, partons can be emitted
in exactly the same direction, or in other words at zero distance. All these unphysical features
have a price and lead to the emergence of infinities in the four dimensions of the space-time.

In Dimensional Regularization (DREG) [1–5], the infinities are replaced by explicit poles
in 1/ε, with d = 4 − 2ε, through integration of the loop momenta and the phase-space of
real radiation. Then, the 1/ε ultraviolet (UV) singularities of the virtual contributions are
removed by renormalisation, and the infrared (IR) soft and collinear singularities are subtracted.
The general idea of subtraction [6–18] consists of introducing counter-terms which mimic the
local IR behaviour of the real components and that can easily be integrated analytically in
d-dimensions. In this way, the integrated form is combined with the virtual component whilst
the unintegrated counter-term cancels the IR poles originated from the phase-space integration
of the real-radiation contribution.

Although this procedure efficiently transforms the theory into a calculable and well-defined
mathematical framework, a big effort needs to be invested in evaluating loop and phase-space
integrals in arbitrary space-time dimensions, which are particularly difficult at higher pertur-
bative orders. In view of the highly challenging demands imposed by the expected accuracy
attainable at the LHC and future colliders, like the FCC, there has been a recent interest in
the community to define perturbative methods directly in d = 4 space-time dimensions in order
to avoid the complexity of working in a non-physical multidimensional space [19]. Examples of
those methods are the four-dimensional formulation (FDF) [20] of the four-dimensional helicity
scheme, the six-dimensional formalism (SDF) [21], implicit regularisation (IREG) [22,23], and
four-dimensional regularisation / renormalisation (FDR) [24, 25] ∗. In this section, we review
the four-dimensional unsubtraction (FDU) [26–28] method, which is based on the loop-tree
duality (LTD) [29–36]. The idea behind FDU is to exploit a suitable mapping of momenta
between the virtual and real kinematics in such a way that the summation over the degenerate
soft and collinear quantum states is performed locally at integrand level without the necessity
to introduce IR subtractions, whereas the UV singularities are locally suppressed at very high

∗R. Pittau, see Section 3
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energies, e.g. at two loops [35]. The method should improve the efficiency of Monte Carlo event
generators because it simultaneously describes real and virtual contributions.

Finally, LTD is also a powerful framework to analyse the singular structure of scattering
amplitudes directly in the loop momentum space, which is particularly interesting to charaterise
unitarity thresholds and anomalous thresholds for specific kinematical configurations [36].

4.2 The Loop-Tree Duality
The LTD representation of a one-loop scattering amplitude is given by

A(1)({pn}N) = −
∫
`
N (`, {pn}N)⊗GD(α) , (4.93)

where GD(α) = ∑
i∈α δ̃ (qi)

∏
j 6=iGD(qi; qj), and N (`, {pn}N) the numerator of the integrand,

which depends on the loop momentum ` and the external momenta {pn}N . The delta function
δ̃ (qi) = ı2π θ(qi,0) δ(q2

i −m2
i ) sets on-shell the internal propagator with momentum qi = `+ ki

and selects its positive energy mode, qi,0 > 0. At one-loop, α = {1, · · · , N} labels all the internal
momenta, and Eq.(4.93) is the sum of N single-cut dual amplitudes. The dual propagators,

GD(qi; qj) = 1
q2
j −m2

j − ı0 η · kji
, (4.94)

differ from the usual Feynman propagators only by the imaginary prescription that now depends
on η · kji, with kji = qj − qi. The dual propagators are implicitly linear in the loop momentum
due to the on-shell conditions. With η = (1,0), which is equivalent to integrating out the
energy component of the loop momentum, the remaining integration domain is Euclidean.

At two-loops the corresponding dual representation is [31,35]

A(2)({pn}N) =
∫
`1

∫
`2
N (`1, `2, {pn}N)⊗ [GD(α1)GD(α2 ∪ α3) +GD(−α2 ∪ α1)GD(α3)

− GD(α1)GF (α2)GD(α3)] . (4.95)

Now, the internal momenta are qi = `1 +ki, qj = `2 +kj and qk = `1 + `2 +kk, and are classified
into three different sets, with i ∈ α1, j ∈ α2 and k ∈ α3 (see Fig. C.4). The minus sign in
front of α2 indicates that the momenta in α2 are reversed to hold a momentum flow consistent
with α1. The dual representation in Eq. (4.95) spans over the sum of all possible double-cut
contributions, with each of the two cuts belonging to a different set. In general, at higher
orders, LTD transforms any loop integral or loop scattering amplitude into a sum of tree-level
like objects that are constructed by setting on-shell a number of internal loop propagators equal
to the number of loops.

Explicit LTD representations of the scattering amplitude describing the decay H → γγ
have been presented at one- [34] and two-loops [35].

4.3 Four-Dimensional Unsubtraction
It is interesting to note that although in Eqs. (4.93) and (4.95) the on-shell loop three-momenta
are unrestricted, all the IR and physical threshold singularities of the dual amplitudes are
restricted to a compact region [32, 36], as discussed in Section 4.4. This is essential to define
the Four-Dimensional Unsubtraction (FDU) [26–28] algorithm, namely, to establish a mapping
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Fig. C.4: Momentum flow of a two-loop Feynman diagram.

between the real and virtual kinematics in order to locally cancel the IR singularities without
the need for subtraction counter-terms.

In the FDU approach, the cross-section at next-to-leading order (NLO) is constructed,
as usual, from the renormalised one-loop virtual correction with N external partons and the
exclusive real cross-section with N + 1 partons

σNLO =
∫
N
dσ

(1,R)
V +

∫
N+1

dσ
(1)
R , (4.96)

integrated over the corresponding phase-space,
∫
N and

∫
N+1. The virtual contribution is ob-

tained from its LTD representation∫
N
dσ

(1,R)
V =

∫
(N, ~̀)

2 Re 〈M(0)
N |
(∑

i

M(1)
N (δ̃(qi))

)
−M(1)

UV(δ̃(qUV))〉 Ô({pn}N) , (4.97)

whereM(0)
N is the N -leg scattering amplitude at leading order (LO), andM(1)

N (δ̃(qi)) is the dual
representation of the unrenormalised one-loop scattering amplitude with the internal momen-
tum qi set on-shell. The integral is weighted with the explicit observable function Ô({pn}N).
The expression includes appropriate counter-terms, M(1)

UV(δ̃(qUV)), that implement renormali-
sation by subtracting the UV singularities locally, as discussed in Ref. [27, 28], including UV
singularities of degree higher than logarithmic that integrate to zero.

By means of an appropriate mapping between the real and virtual kinematics [27,28]:

{p′r}N+1 → (qi, {pn}N) , (4.98)

the real phase-space is rewritten in terms of the virtual phase-space and the loop three-
momentum ∫

N+1
=
∫

(N, ~̀)

∑
i

Ji(qi)Ri({p′r}N+1) , (4.99)

where Ji(qi) is the Jacobian of the transformation with qi on-shell, and Ri({p′j}N+1) defines a
complete partition of the real phase-space∑

i

Ri({p′r}N+1) = 1 . (4.100)
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As the result, the NLO cross-section is cast into a single integral in the Born/virtual phase-space
and the loop three-momentum

σNLO =
∫

(N, ~̀)

[
2 Re 〈M(0)

N |
(∑

i

M(1)
N (δ̃(qi))

)
−M(1)

UV(δ̃(qUV))〉 Ô({pn}N)

+
∑
i

Ji(qi)Ri({p′r}N+1) |M(0)
N+1({p′r}N+1)|2 Ô({p′r}N+1)

]
, (4.101)

and exhibits a smooth four-dimensional limit in such a way that it can be evaluated directly
in four space-time dimensions. Explicit computations have been presented in Refs. [27, 28]
with both massless and massive final-state quarks. More important, with suitable mappings
in Eq. (4.98) conveniently describing the quasi-collinear configurations also the transition from
the massive [28] to the massless configuration [27] is smooth.

The extension of FDU to next-to-next-to-leading order (NNLO) is obvious, the total
cross-section consists of three contributions

σNNLO =
∫
N
dσ

(2,R)
VV +

∫
N+1

dσ
(2,R)
VR +

∫
N+2

dσ
(2)
RR , (4.102)

where the double virtual cross-section dσ
(2,R)
VV receives contributions from the interference of

the two-loop with the Born scattering amplitudes, and the square of the one-loop scattering
amplitude with N external partons, the virtual-real cross-section dσ

(2,R)
VR includes the contri-

butions from the interference of one-loop and tree-level scattering amplitudes with one ex-
tra external particle, and the double real cross-section dσ

(2)
RR are tree-level contributions with

emission of two extra particles. The LTD representation of the two-loop scattering ampli-
tude, 〈M(0)

N |M
(2)
N (δ̃(qi, qj))〉, is obtained from Eq. (4.95), while the two loop momenta of

the squared one-loop amplitude are independent and generate dual contributions of the type
〈M(1)

N (δ̃(qi))|M(1)
N (δ̃(qj))〉. In both cases, there are two independent loop three-momenta and

N external momenta, with which to reconstruct the kinematics of the tree-level corrections
entering dσ(2)

RR and the one-loop corrections in dσ(2,R)
VR :

{p′′r}N+2 → (qi, qj, {pn}N) , (q′k, {p′s}N+1)→ (qi, qj, {pn}N) , (4.103)

in such a way that all the contributions to the NNLO cross-section are cast into a single phase-
space integral

σNNLO =
∫

(N, ~̀1, ~̀2)
dσNNLO . (4.104)

Explicit applications of FDU at NNLO are currently under investigation.

4.4 Unitarity Thresholds and Anomalous Thresholds
An essential feature for FDU to work is to proof that all the IR singularities of the dual
amplitudes are restricted to a compact region of the loop three-momenta. This has recently
been proven at higher orders in Ref. [36], thus extending the one-loop analysis of Ref. [32],
and also analysing the case of anomalous thresholds. The location of the singularities of the
dual amplitudes in the loop three-momentum space are encoded at one-loop through the set of
conditions

λ±±ij = ±q(+)
i,0 ± q

(+)
j,0 + kji,0 → 0 . (4.105)
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where q(+)
r,0 =

√
~q 2
r +m2

r, with r ∈ {i, j}, are the on-shell loop energies. There are indeed
only two independent solutions. The limit λ++

ij → 0 describes the causal unitarity threshold,
and determines that q(+)

r,0 < |kji,0|, where kji,0 depends on the external momenta only and is
therefore bounded. For massless partons, it also describes soft and collinear singularities. The
other potential singularity occurs for λ+−

ij → 0, but this is a non-causal or unphysical threshold
and it cancels locally in the forest defined by the sum of all the on-shell dual contributions.
For this to happen, the dual prescription of the dual propagators plays a central role. Finally,
anomalous thresholds are determined by overlapping causal unitarity thresholds, e.g. λ++

ij and
λ++
ik → 0 simultaneously.

At two loops, the location of the singularities is determined by the set of conditions

λ±±±ijk = ±q(+)
i,0 ± q

(+)
j,0 ± q

(+)
k,0 + kk(ij),0 → 0 , (4.106)

where kk(ij) = qk − qi − qj depends on external momenta only, with i ∈ α1, j ∈ α2 and
k ∈ α3. Now, the unitarity threshold is defined by the limit λ+++

ijk → 0 (or λ−−−ijk → 0 ) with
q

(+)
r,0 ≤ |kk(ij),0| and r ∈ {i, j, k}, and the potential singularities at λ++−

ijk → 0 and λ+−−
ijk → 0

cancel locally in the forest of all the dual contributions. Again, the anomalous thresholds are
determined by the simultaneous contribution of unitarity thresholds. The generalization of
Eq. (4.106) to higher orders is straitforward.

4.5 Conclusions
The bottleneck in higher order perturbative calculations is not only the evaluation of multi-
loop Feynman diagrams, but also the gathering of all the quantum corrections from different
loop orders (and thus different number of final-state partons). In order to match the expected
experimental accuracy at the LHC, particularly in the high luminosity phase, and at future
colliders new theoretical efforts are still needed to overcome the current precision frontier. LTD
is also a powerful framework to analyse comprehensively the emergence of anomalous thresholds
at higher orders.
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