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10.1 Introduction and motivation
Thanks to the accurate measurements performed at the low-energy facilities [1] and LHC,
flavour physics of light quarks, especially the bottom quark, emerged on the precision frontier
for tests of the standard model (SM) and in searches for new physics effects. On the theoretical
side, short-distance perturbative higher-order QCD and electroweak corrections are under good
control for many processes. Moreover, tremendous progress in lattice computations [2] allows
achieving percent to even subpercent accuracy for long-distance nonperturbative quantities.
This allows for the prediction of some key observables with unprecedented accuracy and in
turn the determination of short-distance parameters like the elements of the quark-mixing
matrix (CKM) in the framework of the SM. In view of these prospects, it is also desirable to
improve the understanding and treatment of QED corrections, which are generally assumed to
be small. Unfortunately not much new development has taken place in the evaluation of such
corrections.

For the future e+e− machines, the proper computation of QED corrections will be partic-
ularly important because the large data samples allow for precision measurements that require
their inclusion in theoretical predictions. We would like to advocate a framework for a proper
and systematic treatment of QED effects based on the effective field theory (EFT) approach that
exploits scale hierarchies present in processes involving mesons. In this spirit, QED corrections
to Bs → µ+µ− have been recently analysed [3], revealing an unexpectedly large contribution
owing to power enhancement. Such an effect cannot be found in the standard approach based
on soft-photon approximation [4–6] as it requires a helicity flip induced by the photon. Further,
the common assumption that hadrons are point-like objects neglects effects related to the struc-
ture of hadrons. It implies implicitly that the soft-photon approximation itself is performed in
the framework of an EFT in which photons have virtuality below a typical hadronic binding
scale ΛQCD ∼ O(100 MeV) of partons in hadrons, below which they do not resolve the partonic
structure of the hadrons. In consequence this approach can not address QED corrections due
to virtualities above the scale ΛQCD. These observations are a motivation to scrutinise further
QED corrections in flavour physics in the light of upcoming precise measurements and existing
tensions in flavour measurements, in particular, related to tests of lepton flavour universality.

In addition to a systematic power counting, the EFT treatment offers the possibility of
the all-order resummation of the corrections. This is particularly important for the mixed
QCD-QED corrections owing to the size of the QCD coupling constant and the presence of
large logarithmic corrections. While the soft-exponentiation theorem allows resumming leading
QED effects related to ultrasoft photons that do not resolve the partonic structure of hadrons,
not much is known about the resummation of the subleading logarithms in QED for photons
with larger virtuality. Standard factorization theorems derived in QCD cannot be directly
translated to QED, for in the QCD case, the mass effects related to light degrees of freedom are
typically neglected. This is not the case in QED, where the lepton mass provides a cut-off for
collinear divergences. Moreover, the fact that in QCD one can observe only color-singlet states
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additionally simplifies the computations, while in QED, and more generally in the electroweak
sector of the SM [7, 8], it is necessary to account for charged particles both in the final and
initial states. As a result, the QED factorization theorems have not been explored intensively
in the literature so far, but this gap should be filled before a precise e+e− collider becomes
operational.

Power-corrections to the standard soft approximation may also play an important role
in certain processes. Studies of power corrections in the QCD case gained recently much
attention [9–15]. New tools based on soft-collinear EFT (SCET) developed to study processes
with energetic quarks and gluons can, after certain modifications, be applied to improve the
accuracy of electroweak corrections in future lepton colliders. This is particularly important
in collider physics for regions of phase space where the perturbative approach breaks down
due to the presence of large logarithmic enhancements and the next-to-soft effects become
more important. Particularly interesting are mass-suppressed effects related to soft fermion
exchange [16–18], whose consistent treatment in the SCET language is not yet fully known.
Beyond applications to precision SM physics, the SCET framework may be necessary after
possible discovery of new physics at the LHC [19,20].

10.2 QED corrections in Bq → `+`−

The decay of a neutral meson Bq → `+`− (` = e, µ, τ) is the first step in an investigation of
QED effects in QCD bound states. Its purely leptonic final state and neutral initial state keep
complications related to the nonperturbative nature of QCD to the necessary minimum. Yet
as we shall see, even this simple example requires investigation of power corrections in SCET.
The importance of this decay derives from the fact that it depends, at leading order (LO) in
QED, only on the Bq-meson decay constant, which can be nowadays calculated with subpercent
precision on the lattice [21], necessitating the inclusion of higher order QED corrections from
all scales at this level. This decay has been observed for ` = µ by LHCb [22, 23], CMS [24]
and ATLAS [25]. The currently measured branching fraction for Bs decays of about 3 · 10−9 is
compatible with the latest SM predictions [3,26,27] and it is expected that the LHCb experiment
will be able to measure the branching fraction with 5% accuracy with 50/fb (Run 4) around
the year 2030 [28]. The FCC-ee running on the Z resonance is expected to provide with about
O(103) reconstructed events [29] an even higher event yield compared to LHCb Run 4. This
together with the cleaner hadronic environment at the FCC-ee should allow better control of
backgrounds and also systematic uncertainties, such that one can expect improved accuracy.
However, the gain in accuracy cannot be quantified without a dedicated study.

On the theory side, electroweak and QCD corrections above the scale µb ∼ 5 GeV of
the order of the b-quark mass mb are treated in the standard framework of weak EFT of the
SM [30]. The effective Lagrangian is a sum of four-fermion and dipole operators

L∆B=1 = N∆B=1

[ 10∑
i=1

Ci(µb)Qi

]
+ h.c. , (10.88)

with N∆B=1 ≡ 2
√

2GFVtbV
∗
tq and covers in principle all weak decays of b hadrons. The pertinent

operators relevant for Bq → `+`− (q = d, s) are

Q7 = e

(4π)2

[
q̄σµν(mbPR +mqPL)b

]
Fµν ,

Q9 = αem
4π

[
q̄γµPLb

]∑
`

[
¯̀γµ`

]
,

- 110 -



B Effective field theory approach to QED corrections in flavour physics

Q10 = αem
4π

[
q̄γµPLb

]∑
`

[
¯̀γµγ5`

]
. (10.89)

The matching Ci(µb) coefficients are computed at the electroweak scale µW ∼ O(100 GeV) and
evolved to the scale of µb ∼ mb with the renormalization group equation of the weak EFT.

Because the neutral Bq meson is a pseudoscalar and the SM interactions are mediated
by axial and vector currents, the decay rate must vanish in the limit mµ → 0, and therefore
the decay amplitude is proportional to the muon mass. The hadronic matrix element at LO in
QED is parameterized by a single decay constant fBq , defined by 〈0|q̄γµγ5b|B̄q(p)〉 = ifBqp

µ.
The leading amplitude for Bq → `+`− is

iA = m` fBq N C10(µb)
[
¯̀γ5`

]
,

(
N ≡ N∆B=1

αem
4π

)
(10.90)

and the branching fraction is

Br(0)
q` ≡ Br(0)

[
Bq → `+`−

]
=
τBqm

3
Bqf

2
Bq

8π |N |2 m2
`

m2
Bq

√√√√1− 4m2
`

m2
Bq

|C10|2 , (10.91)

with mBq denoting the mass of the meson and τBq its total lifetime. For neutral Bs mesons the
mixing needs to be accounted for [31], thereby allowing for the measurement of related CP asym-
metries to be discussed below. In this case, the above expression refers to the “instantaneous"
branching fraction at time t = 0, which differs from the measured untagged time-integrated
one by the factor (1 − y2

s)/(1 + ysA∆Γ), where ys = ∆Γs/(2Γs) is related to the lifetime dif-
ference and A∆Γ denotes the mass-eigenstate rate asymmetry. Concerning QED corrections,
the above branching fraction refers to the “non-radiative” one prior to the inclusion of photon
bremsstrahlung effects.

If one takes into account soft-photon radiation (both real and virtual) with energies smaller
than the muon mass, the decay amplitude is dressed by the standard Yennie-Frautschi-Suura
exponent [4, 32]

Br
[
Bq → `+`− + nγ

]
= Br(0)

q` ×
(

2Emax

mBq

)2αem
π

(
ln
m2
Bq

m2
µ
−1
)

+O(mµ)

. (10.92)

This “photon-inclusive” branching fraction is based on eikonal approximation, in the limit
when the total energy carried away by the n photons Emax is much smaller than the muon
mass. QED corrections in the initial state are entirely neglected and photons are assumed to
couple to leptons through eikonal currents

Jµ(q) = e
∑
i

Qiηi
pµi
pi · q

, (10.93)

where η = −1 for incoming particles and η = +1 for outgoing particles. The sum runs over all
charged particles with momenta pi and charges Qi. Eikonal currents are spin independent and
thus they do not change helicity of the leptons.

In the experimental analysis [23–25] the signal is simulated fully inclusive of final-state
radiation off the muons by applying PHOTOS [33] corresponding to a convolution of the Emax-
depending exponential factor in the determination of the signal efficiency. On the other hand,
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Fig. B.33: An example diagram that give rise to the power-enhanced QED correction. A photon
can be either collinear with virtuality k2 ∼ m2

µ or hard-collinear, k2 ∼ mµmb.

photon emission from the quarks (initial state) vanishes in the limit of small photon energies
because it is infrared safe since the decaying meson is electrically neutral. Hence it can be
neglected as long as the signal window is sufficiently small, in practice of O(60 MeV) [34],
and is effectively treated as negligible background on both, experimental and theory sides. In
consequence, currently the experimental analyses provide the non-radiative branching fraction
relying on the simulation with PHOTOS.

The limitations of the conventional approximation had missed the important effect re-
sponsible for the power-enhancement of QED corrections to the Bs → µ+µ− decay. Indeed,
even when the cut on the real photon emission is much smaller than the muon mass, the virtual
photons with virtualities of the order of muon mass or larger can resolve the structure of the
meson whose typical size is of the order of 1/ΛQCD. In this case, the meson cannot be treated
as a point-like object. Moreover, the eikonal approximation is not suitable for such photons
as they can induce a helicity flip of the leptons. However, straightforward computation of the
QED corrections is not possible, as it requires the evaluation of non-local time-ordered products
of the L∆B=1(0) Lagrangian with the electromagnetic current jQED = Qq q̄γ

µq such as

〈0|
∫
d4xT{jQED(x),L∆B=1(0)}|B̄q〉. (10.94)

Currently this object is beyond the reach of lattice QCD, while the SCET approach allows
to systematically expand this matrix element and reduce the nonperturbative quantities to
universal ones at leading order.

Let us consider a diagram in Fig. B.33, where the photon is exchanged between the light
quark and the lepton. There are two low energy scales in the diagram set by the external
kinematics of the process Bq → µ+µ−. One is the muon mass mµ, which is related to the
collinear scale. We parametrize the lepton momentum in terms of the light-cone coordinates
as p` = (n+p`, n−p`, p

⊥
` ) ∼ mb (1, λ2

c , λc), where we introduced the small counting parameter
λc ∼ mµ/mb. The second low energy scale is related to the typical size of the soft light-quark
momentum lq ∼ ΛQCD and for counting purposes we introduce a λs ∼ ΛQCD/mb. In the case of
muons, it happens that numerically λc ≈ λs and below we equate them and do not distinguish
among them. It turns out that there exists also a hard-collinear invariant constructed from the
lepton and quark momentum p` · lq ∼ λm2

b , thus in addition to the collinear and soft regions we
must also consider a hard-collinear region, where momenta scale like k ∼ mb

(
1, λ, λ1/2

)
. This
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non-trivial hierarchy of intermediate scales has to be properly accounted to evaluate the leading
QED corrections, which can be done by subsequent matching on SCET1 and SCET2 [35] at the
hard (∼ mb) and hard-collinear scales, respectively.

The power enhancement is directly related to the interplay of collinear and hard-collinear
scales. When the hard-collinear or collinear photon interacts with the soft quark, momentum
conservation forces the quark to become hard-collinear. These modes can be integrated out
perturbatively with the help of the EFT methods. In this case, we must first match the
operators in eq. (10.89) on SCET1 currents [36]. In SCET1, we retain soft, collinear and hard-
collinear modes, only the hard modes are integrated out. The leading SCET1 operator contains
a hard-collinear quark field which scales like λ1/2 instead of the soft quark field with scaling
λ3/2. When we integrate out the hard-collinear modes, we must convert the hard-collinear
quark field ξC(x) to the soft quark field qs. This is done with the help of power-suppressed
Lagrangian [37]

L(1)
ξq = q̄s(x−)W †

ξCi /D⊥ ξC(x)− ξ̄C(x) i
←−
/D⊥WξC qs(x−),

where WξC is a collinear Wilson line carrying charge of the collinear field ξC . This Lagrangian
insertion costs additional power of λ1/2, but the resulting SCET2 operators are sill power
enhanced, when compared to the operators obtained without intermediate hard-collinear scale.
The power-enhanced correction to the amplitude is [3]

i∆A = αem
4π Q`Qqm`mBqfBqN

[
¯̀(1 + γ5)`

]
×


∫ 1

0
du (1− u)Ceff

9 (um2
b)
∫ ∞

0

dω

ω
φB+(ω)

[
ln mbω

m2
`

+ ln u

1− u

]

− Q`C
eff
7

∫ ∞
0

dω

ω
φB+(ω)

[
ln2 mbω

m2
`

− 2 ln mbω

m2
`

+ 2π2

3

], (10.95)

where φB+(ω) is the Bq-meson light-cone distribution amplitude (LCDA), which contains in-
formation about the nonperturbative structure of the meson. This virtual correction is by itself
infrared finite as it modifies the exclusive decay rate. The power-enhancement manifest itself
in eq. (10.95) as the inverse power of the ω variable that results from the decoupling of the
hard-collinear quark modes

mBq

∫ ∞
0

dω

ω
φB+(ω) lnk ω ∼ mBq

ΛQCD
∼ 1
λ
. (10.96)

The ω may be interpreted as a momentum of the soft quark along the light-cone direction of
the lepton and thus ω ∼ ΛQCD. The annihilation of the quark into leptons is a non-local process
in the presence of the QED interactions and the virtual leptons with the wrong helicity can
propagate over distances of the order of the meson size. Thus the helicity flip costs a factor
m`/ΛQCD instead of typical suppression factor of m`/mb present in the leading order amplitude.

The terms proportional to C10 cancel after the collinear and anti-collinear contributions
are added, such that only C9 contributes out of the semileptonic operators. The term ∝ C7
requires separate treatment since the convolution integral containing the hard matching coeffi-
cient exhibits an endpoint singularity. In addition, the collinear contribution has a rapidity-type
divergence. There exist an additional contribution related to the soft region, which after a suit-
able rapidity regularization can be combined with the collinear one. When the convolution
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integral is performed in dimensional regularization before taking the limit d → 4, the total
correction is finite and exhibits the double-logarithmic enhancement.

The numerical evaluation [3] of the power-enhanced correction (10.95) shows a partial
cancellation of the terms ∝ Ceff

9 and ∝ Ceff
7 . The final impact on the branching fraction Br(0)

qµ is
a decrease in the range of (0.3− 1.1)% with a central value of 0.7%. Despite the cancellation,
the overall correction is still sizeable compared to the natural size of a QED correction of
αem/π ∼ 0.3%. The large uncertainties of the power-enhanced QED correction are due to the
poorly known inverse moment λB and almost unknown inverse-logarithmic moments σ1 and σ2
of the B-meson LCDA. ∗ The prediction for the muonic modes for the untagged time-integrated
branching fractions for Bs → µ+µ− and Bd → µ+µ− are

Br(0)
sµ =

(
3.59
3.65

) [
1±

(
0.032
0.011

)
fBs

± 0.031|CKM ± 0.011|mt

± 0.012|non-pmr ± 0.006|pmr ± +0.003
−0.005|QED

]
· 10−9, (10.97)

Br(0)
dµ =

(
1.05
1.02

) [
1±

(
0.045
0.014

)
fBd

± 0.046|CKM ± 0.011|mt

± 0.012|non-pmr ± 0.003|pmr ± +0.003
−0.005|QED

]
· 10−10, (10.98)

where we group uncertainties: i) main parametric long-distance (fBq) and short-distance (CKM
and mt), ii) remaining non-QED parametric (τBq , αs) and non-QED non-parametric (µW , µb,
higher order, see [26]) and iii) from the QED correction (λB and σ1,2, see [3]). We provide here
two values depending on the choice of the lattice calculation of fBq for Nf = 2 + 1 (upper) and
Nf = 2 + 1 + 1 (lower) with averages from FLAG 2019 [2]. Note that the small uncertainties of
the Nf = 2 + 1 + 1 results are currently dominated by a single group [21] and confirmation by
other lattice groups in the future is desirable. It can be observed that in this case the largest
uncertainties are due to CKM parameters, such that they can be determined provided the
accuracy of the measurements at FCC-ee is at one-percent level. Still fairly large errors are due
to the top-quark mass mt = (173.1±0.6) GeV, here assumed to be in the pole scheme, where an
additional non-parametric uncertainty of 0.2% is included (in “non-pmr”) for the conversion to
the MS scheme. Further “non-pmr” contains a 0.4% uncertainty from µW variation and 0.5%
further higher order uncertainty, all linearly added. For the CKM input we use [3, 27].

As mentioned above, for the Bs meson the mixing provides the opportunity to measure
CP asymmetries in a time-dependent analysis

Γ[Bs(t)→ µ+
λ µ
−
λ ]− Γ[B̄s(t)→ µ+

λ µ
−
λ ]

Γ[Bs(t)→ µ+
λ µ
−
λ ] + Γ[B̄s(t)→ µ+

λ µ
−
λ ]

= Cλ cos(∆mBst) + Sλ sin(∆mBst)
cosh(yst/τBs) +Aλ∆Γ sinh(yst/τBs)

, (10.99)

where all quantities are defined in Ref. [31] and |Aλ∆Γ|2 + |Cλ|2 + |Sλ|2 = 1 holds. For example,
the mass-eigenstate rate asymmetry A∆Γ = +1 in the SM exactly, if only a pseudo-scalar
amplitude exists, and is therefore assumed to be very sensitive to possible new flavour-changing
interactions, with essentially no uncertainty from SM background. We now see that the QED
correction of the SM itself generates a small “contamination” of the observable, given by [3]

Aλ∆Γ ≈ 1− 1.0 · 10−5 , Sλ ≈ −0.1% , Cλ ≈ ηλ 0.6% , (10.100)
∗Throughout same numerical values as in [3] are used for Bs and Bd, neglecting SU(3)-flavour breaking

effects.
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where ηL/R = ±1. Present measurements [23] set only very weak constraints on the deviations
of Aλ∆Γ from unity, and Cλ, Sλ have not yet been measured, † but the uncertainty in the B-
meson LCDA is in principle a limiting factor for the precision with which new physics can be
constrained from these observables. Also Sλ and Cλ deviate marginally from the leading order
SM prediction of zero, but signals from new physics should be substantially larger to distinguish
them from the SM QED correction.

A similar framework can be used to analyse QED corrections to B± → `±ν`. In this case,
power-enhancement does not arise due to the different chirality structure of the current and
the presence of only one charged lepton in the final state [3]. QED corrections that depend on
the meson structure are subleading in this case. The leading QED corrections for this process
can be obtained from the usual soft photon approximation, where the charged meson is treated
as a point-like charge.

10.3 Summary and outlook

The proper treatment of QED corrections in theoretical predictions is essential to the success
of future e+e− colliders. In this document we have shown how this goal could be achieved in
flavour physics for the example of a power-enhanced leading QED correction to the leptonic
decays Bq → µ+µ− with q = d, s [3] and provide updated predictions. A systematic expansion
based on the appropriate EFTs must be implemented to cover dynamics from the hard scale
µb ∼ 5 GeV over hard-collinear (SCET1) and collinear scales (SCET2) down to the ultrasoft
scales O(10MeV). Further, the EFTs allow for a systematic resummation of the leading log-
arithmic corrections and they provide a field-theoretical definition of nonperturbative objects
in the presence of QED, as for example generalised light-cone distribution amplitudes of the
B-meson dressed by process-dependent Wilson lines [36]. The consistent evaluation of the QED
corrections is thus a challenging task, but it can be accomplished with the help of effective field
theory.

In the example at hand, the special numerical value of the muon mass and its proximity
to the typical size of hadronic binding energies ΛQCD gave rise to a special tower of EFTs.
The application to the cases of electrons and taus requires additional considerations. Full
theoretical control of QED corrections is also desirable for other decays that will allow future
precision determinations of short-distance parameters. For example, an important class are
exclusive b → u`ν̄` and b → c`ν̄` decays for the determination of CKM elements Vub and
Vcb, respectively. Due to the absence of resonant hadronic contributions, the only hadronic
uncertainties from B → M form factors could become controllable with high accuracy in
lattice calculations for large dilepton invariant masses, i.e. energetic leptons, which is also the
preferred kinematic region for the tower of EFTs discussed here. Other interesting applications
are observables that are predicted in the SM to vanish when restricting to the leading order
in the weak operator product expansion but might be sensitive to nonstandard interactions.
Then the QED corrections in the SM provide a background to the new physics searches, as
in the example of A∆Γ in Bs → µ+µ− given above. This concerns observables in the angular
distributions of B → K(∗)`+`− as for example discussed in [38,39].

† Note that Cλ requires the measurement of the muon helicity, whereas Aλ∆Γ and Sλ can be determined
also as averages over the muon helicity. Further Aλ∆Γ can be measured without flavour-tagging, whereas it is
required for Sλ and Cλ.
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