
Event-Driven RDMA Network Communication
in the ATLAS DAQ System
with

Jörn Schumacher, CERN
On behalf of the ATLAS TDAQ Collaboration

jorn.schumacher@cern.ch

https://flic.kr/p/U2yWcH CC BY-NC-SA 2.0

Initial presentation at CHEP 2016

NetIO is in use in the ATLAS experiment (FELIX project,
see talk by W. Panduro Vazquez, Track 1 / Monday)

About NetIO
NetIO is a general-purpose communication library
optimized for RDMA networks:
Infiniband, OmniPath, Ethernet+RoCE, …

Can be used for HEP Data Acquisition Systems. Enables
use of HPC technology without having to use HPC-centric
APIs like MPI

The library has been around for some time, but has
recently been rewritten to a large extent following a
new event-driven approach

Apart from network communication, NetIO can be used to
drive the readout of DAQ controllers, file I/O, … using the
same event-driven approach

This talk is about some lessons learned while
(re-)implementing NetIO. Some of the ideas can be
applied to other IO-heavy applications

2

“IO-heavy”: data rate ~100 Gpbs, frame rate in the MHz range

https://cds.cern.ch/record/2229585

NetIO

High-Level User Sockets

Low Latency
Send/Receive

High Throughput
Send/Receive Publish/Subscribe

Low-Level Backend Sockets

POSIX Libfabric

Verbs

Event
Loop

separate thread

Backend-specific

Common

Ethernet Infiniband,
OmniPath

Link Layer

NetIO in 2016

Separate
threads for
user
interaction
and event
loop

Dedicated
POSIX
backend

Additional
hardware
abstraction

3

NetIO

Libfabric is a thin hardware
abstraction wrapper for
high-performance fabrics developed
by an industry consortium

Event-Driven Architecture
Lesson 1

4

Lesson 1: Event-Driven Architecture
Early versions of NetIO used an event loop (based on
Linux’ epoll subsystem) running in a separate thread.
The library was “internally event-driven”. The event
loop was not exposed to users

User code was not following the event-driven
approach, so when sending or receiving messages,
messages had to transition between the two
paradigms

NetIO used Intel TBBs lock-free queues to buffer data at the
transition point

This transition incurred significant overhead

User CodeEvent Loop

Send
Queue

Recv
Queue

Synchronization

5

https://software.intel.com/en-us/node/506200

Lesson 1: Event-Driven Architecture

Central
Event
Loop

User Events:
For example, interrupts from a DAQ
card

System Events:
1. Timer events (timerfd)
2. Signals (eventfd)
3. Any file descriptor

event

RDMA Events:
1. Send completed
2. Data received
3. Buffer available

for sending

LINUX

RDMA NIC

In the optimized NetIO,
everything is event-driven -
including user code

DAQ Device

6

Lesson 1: Event-Driven Architecture

Central
Event
Loop

System Events:
1. Timer events (timerfd)
2. Signals (eventfd)
3. Any file descriptor

event

RDMA Events:
1. Send completed
2. Data received
3. Buffer available

for sending

LINUX

RDMA NIC

In the optimized NetIO,
everything is event-driven -
including user code

Event-driven user code that
reads out a DAQ device (file
descriptor API)

User Events:
For example, interrupts from a DAQ
card

DAQ Device

7

Lesson 1: Event-Driven Architecture

Central
Event
Loop

System Events:
1. Timer events (timerfd)
2. Signals (eventfd)
3. Any file descriptor

event

RDMA Events:
1. Send completed
2. Data received
3. Buffer available

for sending

LINUX

RDMA NIC

In the optimized NetIO,
everything is event-driven -
including user code

Event-driven user code that
reads out a DAQ device (file
descriptor API)

NetIO supports different
auxiliary event source like
“signals” and “periodic
timers” (implementation is
based on Linux kernel
features)

User Events:
For example, interrupts from a DAQ
card

DAQ Device

8

Example: simple timer

#include <stdio.h>
#include "netio.h"

struct netio_context ctx;
struct netio_timer timer;

void on_timer(void* ptr) {
 int* ctr = (int*)ptr;
 printf("%d\n", (*ctr)--);
 if(*ctr == 0) {
 netio_terminate(&ctx.evloop);
 }
}

int main(int argc, char** argv) {

 int counter = 10;

 netio_init(&ctx);

 netio_timer_init(&ctx.evloop,

 &timer);

 timer.cb = on_timer;

 timer.data = &counter;

 netio_timer_start_s(&timer, 1);

 // run event loop

 netio_run(&ctx.evloop);

 return 0;

}

This is a callback,
in this case a timer
that is periodically
executed

This executes the event loop which runs until
terminated

9

Reduce Thread Synchronization
Lesson 2

10

Lesson 2: Reduce Thread Synchronization

Having multiple threads is a nice way to increase
performance of an application by parallelising the
load for many applications

However, some overhead is incurred due to thread
synchronization

In I/O-heavy applications, synchronization
overhead may outweigh the advantages of
parallelism. Most work is done by the DMA
controller of the NIC, not by the CPU.

NetIO switched to a single thread approach.
A single thread is enough to saturate a modern
100 Gbps RDMA network link

Multiple Threads that need to be synchronized
(mutexes, concurrent queues, semaphores, spinlocks, …)

Multiple threads may still be used at a higher level (user
code) and may be beneficial if the application is also
doing significant processing on top of the I/O work

11

Lesson 2: Reduce Thread Synchronization

daq_device.callback_data_available = on_data_available;

socket.callback_buffers_available = on_data_available;

void on_data_available(...) {
 for(i = last_item_processed; i<available; i++) {
 int res = netio_send(socket, &big_buffer[i]);
 if(res == AGAIN) {
 last_item_processed = i;
 return;
 }
 }
}

1. No call is ever blocking
2. Caller needs to handle cases

where a call fails because it
would have to block

3. Save state and continue

Function is called by the
event loop as a result of an
event (e.g. an interrupt)

Having only a single thread executing an event loop has
implications on user code:

User code may not block, as that would stall the event loop

No further events can be processed, performance can degrade

User code paradigm: do not wait for conditions.
Instead, let the event loop notify you about
condition changes

12

Or when the output socket
is ready to send data again

Note: syntax simplified for illustration

Avoid unnecessary complexity
Lesson 3

13

Lesson 3: Avoid unnecessary complexity

NetIO included an additional hardware abstraction
layer. This made it possible to implement a
separate POSIX backend for non-RDMA network
technologies.

This comes at the cost of additional complexity.

It is also redundant: libfabric has built-in support
for TCP- and UDP-based networks (the support for
this has significantly improved in the last versions)

The POSIX backend is not necessary anymore

Old NetIO: 19213 lines of C++
New NetIO: 8076 lines of C

14

Recap: Event-Driven NetIO Architecture

NetIO (new)

P2P
(buffered)

P2P
(unbuffered)

Pub/Sub
(buffered)

Pub/Sub
(unbuffered)

Epoll Event Loop

Libfabric

Verbs

Ethernet, Infiniband, OmniPath, ...

TimersSignals

Completion
Queues

Event
Queues Linux

event
fd

timer
fd

User code and event loop in a single thread
‒ Callback-driven code
‒ Non-blocking code to avoid stalling the

event loop

This avoids a lot of synchronization (queues etc.)
that were a bottleneck in the original
implementation

No more dedicated Ethernet backend, this is
supported via libfabric
This reduces overhead by abstraction

15

Benchmarks

Sender PC
Intel Xeon E5-1660 v4 @ 3.2 GHz
8 physical cores

Mellanox ConnectX-5 100G
RoCE-enabled

Receiver PC
Intel Xeon Gold 5218 @ 2.3 GHz
2x16 physical cores

Mellanox ConnectX-5 100G
RoCE-enabled

Juniper Switch
(Lossless
Ethernet)

In the tests we use Ethernet, but with the RDMA-over-Converged-Ethernet
(RoCE) extension

The same API (Verbs, RDMA) as for Infiniband is used, but on top of
lossless Ethernet hardware

Maximum bandwidth measured using ib_send_bw: ~92 Gbps

16

Performance - Throughput 17

Performance - Throughput

The baseline is aquired using a native verbs
benchmark tool, ib_send_bw

With a single thread one can achieve close to
link speed

18

Performance - Throughput

TCP performs poorly

In order to scale up close to the 100 Gbps that
the NIC is capable of, one would have to run
up to 8 parallel instances of the benchmark
application (iperf3). Essentially, this uses up
the entire CPU

19

Performance - Throughput

Legacy NetIO is an improvement compared to
TCP/IP, but still it does not perform nearly as
good as the native benchmark

Performance advantage for lower message
sizes is due to buffering in Legacy NetIO - the
reference benchmark is unbuffered

20

Performance - Throughput

The optimized NetIO (unbuffered) is
operating at peak performance, about the
same speed as the native benchmark

21

Performance - Throughput

The optimized NetIO (unbuffered) is
operating at peak performance, about the
same speed as the native benchmark

The optimized NetIO (buffered) improves
performance for smaller message sizes (at
the cost of some CPU resources)

A single thread can saturate the link

22

Performance - Latency / RTT (Round Trip Time)
Network Limits

Average latency when polling:

1.6 µs
(measured with ib_send_lat)

Average latency when sleeping for events:

4 µs
(measured with ib_send_lat -e)

Majority of
ping-pong messages
return within 10 µs

NetIO is sleeping for events (this is given
by the event-driven architecture)

The ideal expected RTT is then roughly
2 × 4 µs = 8 µs

Ideal avg. RTT when
sleeping for events (8 µs)

Ideal avg. RTT when
polling (3.2 µs)

23

Summary

Reimplementing NetIO based on a fully
event-driven architecture lead to significant
performance gains

Performance gains are mostly due to
significantly reduced synchronization overhead

NetIO will be released under an
Open Source licence in the coming months

🌍http://cern.ch/atlas-project-felix
📧jorn.schumacher@cern.ch

24

http://cern.ch/atlas-project-felix

Backup

25

Libfabric

NetIO is based on libfabric, a
technology-agnostic low-level API for
various high-performance fabrics

Libfabric supports a variety of
RDMA-hardware (Infiniband, OmniPath, …)
and provides a uniform API to user
applications

Libfabric is very thin wrapper around native
APIs and quite efficient (low penalty
compared to direct use of native APIs)

https://ofiwg.github.io/libfabric/

26

Image source: libfabric manual

https://ofiwg.github.io/libfabric/

