
ATLAS Operational Monitoring Data 

Archival and Visualization

Igor Soloviev, University of California, Irvine
on behalf of ATLAS TDAQ Collaboration

CHEP 2019, Adelaide, Australia
4 November 2019



2

Outline

● Operational Monitoring in ATLAS
● First Prototypes and Implementations 

– Cassandra and SPLUNK
● Implementation for Run II

– Design
– Visualization interfaces (Grafana and Beauty)
– Performance statistics

● Technology Evaluation
– InfluxDB and ClickHouse

● Status and Plans



3

Context

● ATLAS online:
– 100 million electronic channels
– tens of thousands various applications
– thousands of computers
– 1 billion collisions per second,

up to 1.5 GB/s physics data storage rate

● The applications produce various 
operational monitoring data 
important for successful ATLAS 
experiment operations
– used online for inter-process communication
– important for experts
– 200K updates of monitoring data per second



4

Operational Monitoring Persistence

● Before 2011: no persistency, data are lost after end of data taking
– several tools were used by different groups for small subsets of their data, no common 

solution

● In 2011 it was suggested to create a common persistence (PBEAST ≡ 
Persistent Back-End for the ATLAS information System of TDAQ) to 
aggregate and visualize ATLAS operational data with requirements:
– archive a subset of operational monitoring data in generic way
– long term storage of raw data
– access via web outside of ATLAS experiment network

Information
Provider

Information
Reader

Information
Subscriber

Information
Repositoryinsert

update
remove

get

subscribenotify

send command

IS data: named object
containing several

attributes of primitive
type, structure or

array of them

Objects with
common properties
are described by IS

class

● Information Service (IS) has been used in 
ATLAS since middle of the '90s
– CORBA based (reliability, interoperability, efficiency) 

client-server architecture
– predefined structure of data (schema), object data 

model
– is used by all ATLAS online detectors and systems 

for online operational monitoring defining own 
schemes

About CORBA: https://www.corba.org/



5

Cassandra Implementation (Run I)

● Evaluated available technologies in 2012
– HBase, MongoDB, Apache Cassandra

● Chose most promising (Cassandra) – distributed hash table:
– freeware, provided cluster solution, linear scalability, fault-tolerance

● Tried several deployment models and database schemes with real monitoring 
from ongoing Run-1 during 1.5 years. Problems only become visible during 
real use. Abandoned by end of 2013:
– data append-only architecture; removal of data was over-complicated, space inefficient with 

various compaction issues, required dedicated maintenance
– lack of vertical scaling enforced schema redesign (complicated queries) and data smoothing:

● when size of data row was above 60 MB, discovered serious problems with queries and database compaction
● not able to store even two months of important raw data acquisition system data (25% of total) on 3x4TB nodes

– incompatible changes in major 
versions of Cassandra

– no arrays and nested types 
required by the IS data model

– developed extra tool to export in 
private JSON format for long 
term storage and yet another 
mechanism to access them

– see backup slide for more

Object-x:attr-1 …...

 Object-x:attr-1:period-1 ...

…....
 Object-x:attr-1:period-2 ...

 Object-x:attr-1:period-y ...

redesign
5M

5M
x
n

About Apache Cassandra database: http://cassandra.apache.org/



6

SPLUNK Archival and Visualization 
(Run I)

● Commercial, cluster license provided by CERN IT for evaluation
● Data-to-Everything Platform

– distributed non-relational semi-structured time-series database
– provides general-purpose search, analysis & reporting  

● Evaluated insertion of monitoring data and querying including 
aggregation, correlation and visualization

● Nice all-in-one tool, but:
– large disk space overhead 

(raw text)
– per day data quota was not 

sufficient for real use
– insufficient visualization 

facilities for scientific data
– difficult integration with 

third-party frontend libraries
– see backup slide for more

About SPLUNK: https://www.splunk.com/ 



7

New Implementation (for Run II)

● We could not afford anymore a risk of yet another failure 
by start of next run, so in 2014 we decided:
– during long shutdown between LHC runs 1 and 2 provide simple and 

robust solution to store operational monitoring data in files, archive 
them on long-term storage (EOS) and implement API for data retrieval 

● Solution was based on Google protocol buffers library
– efficient binary data serialization including interoperability, compaction 

and compression
– private file format using above for random data access
– the format supports all IS data types and schema evolution
– monitoring data receiver stores data into files organized by schema and 

interval buckets
– many receivers can be configured to work concurrently on several 

computers to spread the load
– see backup slide for more

About Google Protocol Buffers: https://developers.google.com/protocol-buffers



8

New PBEAST Service Architecture

● is running on ATLAS 
experiment site

● its internal protocol 
uses CORBA

● PBEAST API (REST, 
C++, Python, Java) 
works over http 
inside experiment 
area, or https on 
public network 
using CERN 
authentication 

● PBEAST files are 
archived on EOS

● additional service 
using EOS is 
running outside 
ATLAS experiment 
area

Monitoring
providers

repository
server

repository
server

...

PBEAST
serverCORBA

http(s)

EOS repository
server

PBEAST
server

● Implemented a service on top of PBEAST files:

ATLAS 
experiment 

area

Monitoring
providers

Monitoring
providers

About EOS: http://eos-docs.web.cern.ch/eos-docs/

receivers
...

receivers
...



9

Grafana Data Visualization

● Use Grafana since 2014 (after SPLUNK):
– open source analytics platform to query and visualize metrics creating and 

exploring dashboards
– implemented REST interface from PBEAST service exposing meta information and 

data to Grafana client
– implemented Grafana plugin knowing details of PBEAST including support for 

arrays and downsampled data
● More than 100 dashboards used by all sub-systems and detectors
● Gradually implemented and integrated many useful features:

– data averaging instead of sampling
– aggregation and array functions, aliases, metrics and data filters, annotations
– new types of plots including scatter plots for correlations, string data 

representation (discrete plot), tabular views, histograms, pie charts, heat maps
– LDAP integration for authentication, permissions on folders and dashboards
– used several Grafana versions from 1.9 to latest 6.x

About Grafana: https://grafana.com/



10

Grafana Dashboard Example



11

SWAN Visualization (Beauty) 

● SWAN is a CERN Service for Web 
based ANalysis
– a platform to perform interactive data 

analysis in the cloud
– share work and reports with your 

colleagues using the cloud data storage 
at CERN (CERNbox)

– interactive development, immediate 
results

● Beauty extends PBEAST for 
SWAN 
– recommended to use if Grafana and 

PBEAST functionality is not enough

● Any level of algorithms 
complexity including correlations
– Python and C++ API to access data are 

available
– interactive plotting including matplotlib 

and ROOT

About SWAN: https://swan.web.cern.ch/



12

SWAN Notebook with Beauty Example

Retrieve
data

Retrieve
data

DrawDraw



13

Data Insertion Rates

● Store all raw operational data from the ATLAS data taking sessions, plus 
some ancillary data from secondary sources (like the networking 
system)

● ATLAS session has average 180 KHz insertion rate during data taking
● Network monitoring has constant rate around 10 KHz
● Other sources may contribute significant data as well

Rate of monitoring data updates in user data taking sessions 
during second milestone week (M2) in 2018 *

Rate of monitoring data updates in ATLAS data taking 
session during few minutes of typical data taking period *

* https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsDAQ



14

Storage Resources

● Two 2015 32 TB, 
three 2012 4 TB 
nodes

● 1.5 TB / month 
during data 
taking periods
(compressed)

● Store raw data 
with compaction 
and compression

● Downsample 
data when 
required and 
store on server 
cache

● Plan to store raw data for lifetime of ATLAS
● New hardware before start of Run 3

Archived data in PBeast per day, for few days in ATLAS operations in October 2018 *

* https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsDAQ



15

Data Access Statistics

● 30-60 Grafana dashboards 
queries per minute in average

● There are short periods with much 
higher request rates (+50 q/s)

● PBEAST is used for ATLAS operations and post-mortem analysis
● Provides access to live and historical data inside and outside 

ATLAS experiment area

Average number of PBEAST REST interface requests rate 
during several months of Run II * 

Increase of PBEAST REST interface requests rate during few 
minutes of a nightly data-taking run on May 18, 2018 *

* https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsDAQ



16

Technology Evaluation

● Perform technology evaluation to see possible candidates for PBEAST 
service implementation or ideas how to improve it in future
– PBEAST file format is rather simple and may not be efficient for certain types of queries
– no data fault tolerance apart of used RAID hardware and weekly replication on EOS
– many time-series oriented databases appeared after 2014

● InfluxDB - open source time series database
– optimized for fast, high-availability storage and retrieval of time series data
– SQL-like language with built-in time-centric functions for querying a data
– but: no support for arrays, cluster solution is only available in commercial enterprise DB

● ClickHouse (Yandex) - open source column-oriented DBMS
– designed for very fast column-oriented queries and hardware efficiency
– feature reach, support of all required data types including arrays, SQL query dialect with a 

number of built-in analytics capabilities
– linear scalability, distributed reads, free cluster and data centers solution
– fault tolerance, highly reliable, automatic synchronization after server downtime
– but: it is not time series database, some functions can be less efficient

About InfluxDB: https://www.influxdata.com/ About Yandex ClickHouse: https://clickhouse.yandex/



17

First Evaluation Results

● Designed data models for both technologies allowing schema evolution and 
arrays support (missing in InfluxDB)

● Inserted 4 months of raw PBEAST data and compared insertion rates and 
storage used per data point by data types

● ClickHouse is faster for data insertion and works better with arrays. InfluxDB 
is optimal for simple numeric values. Both are less efficient than PBEAST, 
that is highly optimized for online operational monitoring data model.

Int 
2.8K

Int 
46K

Int 
250K

Float 
6.8K

Float 
18K

Float 
1.5M

Float 
[12]

Float 
[3.5K]

String Large 
string

100

1000

10000

100000

1000000

Insertion Rates
InfluxDB
ClickHouse

Test (data type, number of data series or array size)

D
a

ta
 P

o
in

ts
 /

 s

Int 
2.8K

Float 
17.8K

Float 
[12]

Float 
[3.5K]

string Large 
string

1

10

100

1000

10000

100000

Storage Usage InfluxDB
ClickHouse

Test (types*)

S
to

ra
g

e
 /

 d
a

ta
 p

o
in

t 
[b

y
te

s]



18

Status and Plans

● PBEAST was successfully used during Run 2 and is planned to be used in Run 3 
without major changes [apart of new hardware]
– stability during development of many required features and improvements during Run-2
– attractive and easy-to-use Web tools (Grafana dashboards, Beauty)
– common monitoring technology across experiment is very important for integration with sub-systems 

and sub-detectors (monitoring data are archived transparently, just configure dashboard)
● Implementation on top of ProtoBuf was at least one order of magnitude more 

efficient in terms of CPU and disk utilization comparing with best available 
technologies
– one node accepted the same monitoring data rate, as a cluster of Cassandra nodes
– even modern time-series database technologies have worse results
– the “price” of such PBEAST service implementation was moderate from human and hw resources points of 

view, and, e.g. even less expensive than effort on Cassandra prototypes (~3 years of FTEs)
● PBEAST becomes a critical component for detector operations

– started as a complimentary monitoring tool, during Run 2, it became essential for online detector 
monitoring, offline analysis of operations data, various operations reports and publications

– during next run, in addition, it will be used by Trigger community to replace in-house developed GUI and 
network monitoring

● The technology evaluation will be continued to make any types of queries efficient, to 
add easy horizontal scalability, and high availability using cluster solutions

● Even more features like trends prediction and alarms are in the plans



Backup Slides

Cassandra Implementation
SPLUNK Implementation

PBEAST file format



20

Cassandra implementation details

● Column family (table) stores data by class, object id and attribute rows
● Each row contains key:value pairs (key = timestamp, value = attribute value)

DATA@ATLAS
Object-x:attribute-1

name
value

timestamp
(internal)

IS timestamp
IS value

Cassandra
timestamp

…...
Object-x:attribute-2 …...

Object-x:attribute-N

Object-z:attribute-L
… ~5 million rows …

…...

…...

● Evaluated several models for deployment.
Finally installed PBEAST on 3 powerful (year 2012) nodes on ATLAS experiment 
area:
– dual 6 cores CPU Xeon X5650 @ 2.67GHz, 24 GB RAM, 4x1TB RAID

● Use data replication factor 2 (and RAID 0)
● Subscribe subset of DAQ IS servers and classes (below 1/4 of total IS information in 

ATLAS)
● 6 MB/s writing aggregate performance (0.5 TB / day!) and 18.4K updates per 

second
● Introduce 5% data smoothing (skip “similar” numeric data) to reduce writing to 0.8 

MB/s



21

SPLUNK implementation details

● Forwarders, Search Head and Indexers 
are components of SPLUNK running on 
different computer nodes for maximum 
performance

● Store monitoring data into a file (stream) 
in a text format optimised for Splunk

● The text format uses ~200 bytes per IS 
attribute value (compressed by SPLUNK)

***SPLUNK*** sourcetype=is index=HLTSV
host=TDAQ.DF.HLTSV.Events source=HLTSV.LVL1Events

timestamp=1395131133784309 value=505358093

***SPLUNK*** sourcetype=is index=HLTSV
host=TDAQ.DF.HLTSV.Events source=HLTSV.LVL1Events

timestamp=1395131133784309 value=505358093

● Insertion rate scales proportionally to number 
of indexers and reaches 2 MB/s (~10000 IS 
updates/s) per single node

● Querying performance depends on many 
indexing parameters and in general case 
allows to scan about 100,000 values per 
second and per indexer node



22

PBEAST File Format

 header obj-1 obj-2 obj-Nobj-3  catalog I

8
name data (ts:value)

obj-1 idx(1,1)

obj-2 idx(2,1)
... ...

obj-N idx(N,1)

timestamp value
ts1 v1

ts2 v2

... ...

tsN vN

...
1 34 2

● Low-level ProtoBuf primitives using integer variants for compaction 
(smaller numbers are serialized into smaller number of bytes) and zip 
compression

● Microseconds precision (configurable) for timestamps relative to the 
file base value

● Sequential write at once, no file size limit (264 bytes), zip data per 
object if necessary. Random read access, efficient on HDDs.

● Numeric types, strings, date/time, structures and arrays, end of validity 

● Header and 
catalog are 
read once and 
stored in 
cache

● Every object is 
accessible 
independently


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

