
© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 03037 (2019)	 https://doi.org/10.1051/epjconf/201921403037
CHEP 2018

JAliEn: the new ALICE high-performance and
high-scalability Grid framework

M. Martinez Pedreira1,*, C. Grigoras1, and V. Yurchenko1
1CERN, CH-1211, Geneva 23, Switzerland

Abstract. The ALICE experiment will undergo extensive hardware and
software upgrades for the LHC Run3. This translates in significant increase
of the CPU and storage resources required for data processing, and at the
same time the data access rates will grow linearly with the amount of
resources. JAliEn (Java ALICE Environment) is the new Grid middleware
designed to scale-out horizontally to fulfil the computing needs of the
upgrade, and at the same time to modernize all parts of the distributed
system software. This paper will present the architecture of the JAliEn
framework, the technologies used and performance measurements. This
work will also describe the next generation solution that will replace our
main database backend, the AliEn File Catalogue. The catalogue is an
integral part of the system, containing the metadata of all files written to
the distributed Grid storage and also provides powerful search and data
manipulation tools. As for JAliEn, the focus has been put onto horizontal
scalability, with the aim to handle near exascale data volumes and order of
magnitude more workload than the currently used Grid middleware.
Lastly, this contribution will present how JAliEn manages the increased
complexity of the tasks associated with the new ALICE data processing
and analysis framework (ALFA) and multi-core environments.

1 Introduction
The ALICE [1] experiment at CERN is one of the four big particle detectors at the Large
Hadron Collider (LHC). Its main goal is to study heavy-ion (Pb-Pb) collisions at high
center of mass energies.

During a normal data taking year, ALICE creates and collects up to tens of petabytes of
data. To store, process and analyse it, ALICE uses the Worldwide LHC Computing Grid
(WLCG) [2], which unites 170 computing centres in 42 countries.

Java ALICE Environment (JAliEn) [3] is the new middleware framework used on top of
WLCG within ALICE. It coordinates the computing operations and data management of the
collaboration on the Grid, and is the evolution of the legacy framework called AliEn.
Different architectural and technological changes have been introduced to JAliEn to make it
capable of fulfilling the ALICE requirements in Run3 and beyond, and some will be
described by this work.

* Corresponding author: miguel.martinez.pedreira@cern.ch

2

EPJ Web of Conferences 214, 03037 (2019)	 https://doi.org/10.1051/epjconf/201921403037
CHEP 2018

The JAliEn File Catalogue takes over from the previous MySQL-based file catalogue,
used in AliEn. The catalogue annotates every file stored on the ALICE Grid distributed
storage. As of 2018, it contains more than 5 billion logical entries and 12 billion entries
overall, including the pointers to file physical locations. The catalogue growth over time is
constant and smooth, however the number of files will increase significantly in Run3. The
JAliEn catalogue has been developed and benchmarked extensively to assure it will meet
the future needs. It makes use of new technologies, namely the Cassandra [4] NoSQL
model. We present the details and performance tests in the next sections.

1.1 Evolution of computing resources in the past, present and future

From the initial Grid capacity to today, the deployed computing resources have grown
continuously and in the LHC data taking years (2010 to 2018) the CPU and storage
capacity have increased by a factor 10. It is expected to have such continuous growth in the
future as well. The resource growth is illustrated in Figure 1 for storage, and it is similar for
CPU. In addition, the ALICE Run 3 upgrade will translate yet into more resource increases
associated to the O2 facility, which is a purpose-built large computational cluster to be used
for synchronous and asynchronous data processing. It will comprise of 60 petabytes of disk
and around 100000 CPU cores.

For improved scalability and maintainability, the ALICE high-level Grid services and
clients are being reimplemented as the new JAliEn framework.

Figure 1. Data accumulation in ALICE from 2011 to 2018, each colour corresponds to a storage
element

2 Java ALICE Environment framework
JAliEn consists of a set of services with different functions. Firstly, we have the central
services, called jCentral. Their authentication and authorization mechanisms are discussed
further below.

jCentral takes care of the job queue, the TaskQueue. The functions related to the
TaskQueue are serving job submissions, job splitting into smaller sub-tasks, calculation and
control of job quotas per user, handling the information and parameters of the different
computing centres (CPU resources), registering job outputs, job status transitions, job
matching and job tracing.

3

EPJ Web of Conferences 214, 03037 (2019)	 https://doi.org/10.1051/epjconf/201921403037
CHEP 2018

The JAliEn File Catalogue takes over from the previous MySQL-based file catalogue,
used in AliEn. The catalogue annotates every file stored on the ALICE Grid distributed
storage. As of 2018, it contains more than 5 billion logical entries and 12 billion entries
overall, including the pointers to file physical locations. The catalogue growth over time is
constant and smooth, however the number of files will increase significantly in Run3. The
JAliEn catalogue has been developed and benchmarked extensively to assure it will meet
the future needs. It makes use of new technologies, namely the Cassandra [4] NoSQL
model. We present the details and performance tests in the next sections.

1.1 Evolution of computing resources in the past, present and future

From the initial Grid capacity to today, the deployed computing resources have grown
continuously and in the LHC data taking years (2010 to 2018) the CPU and storage
capacity have increased by a factor 10. It is expected to have such continuous growth in the
future as well. The resource growth is illustrated in Figure 1 for storage, and it is similar for
CPU. In addition, the ALICE Run 3 upgrade will translate yet into more resource increases
associated to the O2 facility, which is a purpose-built large computational cluster to be used
for synchronous and asynchronous data processing. It will comprise of 60 petabytes of disk
and around 100000 CPU cores.

For improved scalability and maintainability, the ALICE high-level Grid services and
clients are being reimplemented as the new JAliEn framework.

Figure 1. Data accumulation in ALICE from 2011 to 2018, each colour corresponds to a storage
element

2 Java ALICE Environment framework
JAliEn consists of a set of services with different functions. Firstly, we have the central
services, called jCentral. Their authentication and authorization mechanisms are discussed
further below.

jCentral takes care of the job queue, the TaskQueue. The functions related to the
TaskQueue are serving job submissions, job splitting into smaller sub-tasks, calculation and
control of job quotas per user, handling the information and parameters of the different
computing centres (CPU resources), registering job outputs, job status transitions, job
matching and job tracing.

jCentral is also responsible for the data management. It takes decisions on file
placement and file source for all Grid jobs, depending on several factors such as client
location (being a client any entity connecting to the service, such as a job or a user) and the
status of storage and network topology between the client and the storage servers. A
filesystem-like hierarchy is kept within the File Catalogue and offered to the users, so they
can run shell commands and use powerful lookup tools. Moreover, data transfer services
run centrally and are used for balancing storages, data replication and data recovery.

The site services have the function of interfacing jCentral and the computing
resources available on every site. A frontend machine called VoBox runs a service that
deals with the local resource management system of each site on behalf of jCentral. It
controls the submission of new jobs and provides an aggregation point for the services and
monitoring messages from the jobs running on the site and from other services running at
the site. The software package distribution on the worker nodes is done via CernVM-FS
[5]. It is a reliable, low-maintenance distribution service implemented as a POSIX read-
only file system in user space.

The users connect to JAliEn using their standard Grid certificates and get a shell
prompt like on a Linux console. From the shell they can run a variety of commands to add,
move or delete files, submit jobs, or run find and list commands, among many others.
Clients can connect from their own scripts or programs using the WebSocket [6] endpoint.
Support for that protocol is standard in the relevant programming languages.

2.2 Authentication and authorization model

X509 [7] is a Public Key Infrastructure standard that specifies, among other things, formats
for public key certificates and a validation algorithm for the certification chain. The X509
model assumes a strict hierarchical system of Certification Authorities (CAs). JAliEn has
its own CA and it is extensively used to create Token Certificates that will be described in
detail in the next subsection.

2.2.1 Client-server

We extend the standard X509 model by introducing the ‘Token Certificate’. It includes
more fine-grained functions, like distinction between a JobAgent (pilot) and user payload -
each token can only be used to execute a fixed set of operations. The authorization level is
controlled by jCentral and checked on every request.

The additional functions are encoded in the DN and extensions of the X509
certificate. This makes the software compatible with the current X509 security libraries
while adding the flexibility of mapping roles and capabilities to the tokens.

A utility has been developed as well to renew tokens automatically. This is important
for long-lived services on the site frontend machines (VoBoxes).

An example of a Token Certificate for a payload is given below:

Subject: OU="queueid=1038905674/resubmission=3/user=mmmartin", OU=jobagent,
CN=jobagent, CN=Jobs, O=AliEn, C=ch
Issuer: JAliEn-CS

With this token, the JobAgent can operate on job 1038905674 as user ‘mmmartin’
with the full rights of this user. The resubmission field shows how many times the job was
executed, and that previous tokens (for resubmissions 0-2) are invalidated by jCentral.

4

EPJ Web of Conferences 214, 03037 (2019)	 https://doi.org/10.1051/epjconf/201921403037
CHEP 2018

2.2.2 Data access

JAliEn implements the data access model used in the ALICE Grid for the last decade. In
this access workflow, every time a client interacts with a storage element (for
read/write/delete operations), it requests permission from jCentral. The latter creates an
“envelope” (a token), that contains metadata of the file in question, plus a signature
generated with the central services private key. The envelope is encrypted using the public
key of the destination storage element (each storage has its own keyset). This way, only the
destination storage will be able to decrypt the envelope (using its private key) and will
verify that the content is correct. The keys mentioned in this workflow are standard X509
key-pairs. Each envelope is unique for an operation, a file and a user, and has an expiration
time.

2.3 Job pilot

The job pilot (called JobAgent) executes user payloads assigned by jCentral. In JAliEn, the
implementation of the JobAgent is split in two, following its two main logical functions.
 The first component is the base JobAgent equipped with a Pilot Token Certificate.
Such a credential allows the JobAgent to do job matching, which consists of reporting the
worker node conditions and asking jCentral for a matching user payload. The reply is based
on the JobAgent conditions report and general information about the site already available
to jCentral. It contains the job id, the job description and a Job Token Certificate, which
works as explained at the end of section 2.2.1. The JobAgent also controls and monitors the
payload: memory, disk and CPU usage. The metrics are sent back to jCentral to keep the
job database up to date and mark payload execution status transitions.
 High Performance Computing environments are becoming a useful opportunistic
resource and typically offer full computing nodes instead of single CPU cores for payload
execution. In these cases, the JobAgent instantiates and controls several user payloads (see
next paragraph) and does a more refined job matching.
 The second component is the JobWrapper. It handles several aspects based on the
payload requirements: download input files, create the job sandbox, set the environment of
the task, launch its execution, and at the end of execution, upload the output files (including
archives) and manage their registration in the JAliEn catalogue. The JobWrapper is
instantiated from the JobAgent. The JobAgent thus has an exclusive communication
channel with the JobWrapper through Java stdin/stdout pipes, used e.g. to transfer the
credentials of the task to the JobWrapper.

2.3.1 Isolation of the payload using containers

Critical security aspects of the execution of user payloads and control of the execution
environment have been addressed with the use of containers. The JobWrapper adopts
containers in a solution-agnostic fashion. Non-containerized tasks could potentially try to
steal others tasks’ credentials or the ones from the pilots. Even if JAliEn minimizes the
risks with the introduction of the Token Certificates and the sharing of credentials through
the handles in Java, containers further enforce isolation. Strict sandboxing is also necessary
to make sure a task hasn’t left any malign code to the next one and to avoid resource
misuse. The JobWrapper leverages the control groups (cgroups) capabilities of the
container engines to limit the CPU, memory and disk available to the payload, and the
namespace capabilities to limit the filesystem operations to the local scratch space.

5

EPJ Web of Conferences 214, 03037 (2019)	 https://doi.org/10.1051/epjconf/201921403037
CHEP 2018

2.2.2 Data access

JAliEn implements the data access model used in the ALICE Grid for the last decade. In
this access workflow, every time a client interacts with a storage element (for
read/write/delete operations), it requests permission from jCentral. The latter creates an
“envelope” (a token), that contains metadata of the file in question, plus a signature
generated with the central services private key. The envelope is encrypted using the public
key of the destination storage element (each storage has its own keyset). This way, only the
destination storage will be able to decrypt the envelope (using its private key) and will
verify that the content is correct. The keys mentioned in this workflow are standard X509
key-pairs. Each envelope is unique for an operation, a file and a user, and has an expiration
time.

2.3 Job pilot

The job pilot (called JobAgent) executes user payloads assigned by jCentral. In JAliEn, the
implementation of the JobAgent is split in two, following its two main logical functions.
 The first component is the base JobAgent equipped with a Pilot Token Certificate.
Such a credential allows the JobAgent to do job matching, which consists of reporting the
worker node conditions and asking jCentral for a matching user payload. The reply is based
on the JobAgent conditions report and general information about the site already available
to jCentral. It contains the job id, the job description and a Job Token Certificate, which
works as explained at the end of section 2.2.1. The JobAgent also controls and monitors the
payload: memory, disk and CPU usage. The metrics are sent back to jCentral to keep the
job database up to date and mark payload execution status transitions.
 High Performance Computing environments are becoming a useful opportunistic
resource and typically offer full computing nodes instead of single CPU cores for payload
execution. In these cases, the JobAgent instantiates and controls several user payloads (see
next paragraph) and does a more refined job matching.
 The second component is the JobWrapper. It handles several aspects based on the
payload requirements: download input files, create the job sandbox, set the environment of
the task, launch its execution, and at the end of execution, upload the output files (including
archives) and manage their registration in the JAliEn catalogue. The JobWrapper is
instantiated from the JobAgent. The JobAgent thus has an exclusive communication
channel with the JobWrapper through Java stdin/stdout pipes, used e.g. to transfer the
credentials of the task to the JobWrapper.

2.3.1 Isolation of the payload using containers

Critical security aspects of the execution of user payloads and control of the execution
environment have been addressed with the use of containers. The JobWrapper adopts
containers in a solution-agnostic fashion. Non-containerized tasks could potentially try to
steal others tasks’ credentials or the ones from the pilots. Even if JAliEn minimizes the
risks with the introduction of the Token Certificates and the sharing of credentials through
the handles in Java, containers further enforce isolation. Strict sandboxing is also necessary
to make sure a task hasn’t left any malign code to the next one and to avoid resource
misuse. The JobWrapper leverages the control groups (cgroups) capabilities of the
container engines to limit the CPU, memory and disk available to the payload, and the
namespace capabilities to limit the filesystem operations to the local scratch space.

3 JAliEn File Catalogue

The current AliEn File Catalogue is based on MySQL with master-multislave
configuration. The slaves are in sync with the master and are used for backups and hot
standby. The master is the only entry point for queries modifying the catalogue content and
for read operation, since fully guaranteed consistency is a requirement. This architecture
has several critical limitations: single point of failure (unique master), low-availability
design (partially solved by the slaves), master relying on powerful hardware and manual
sharding.
 The Cassandra model has a completely different architecture (that resembles a ring)
and solves the aforementioned limitations of MySQL: high-availability and no single point
of failure are guaranteed by having many master machines with replicas; horizontal
scalability can be achieved by adding more machines to the cluster; consistency can be
tuned on different levels.

3.1 Performance and size goals

The current query rates and data volume handled by the MySQL catalogue implementation
are taken into account to estimate future needs: 15000 queries per second and 110 petabytes
hosted storage respectively. Additional 60 petabytes and 100000 cores will be available in
the O2 facility and about 25% yearly increase of resources must be handled as well. Given
this scenario, the minimum performance goal has been set to sustain 100000 operations per
second on a 50 billion entries namespace. However, Cassandra allows the system to adapt
dynamically and scale up or down when the needs change.

3.2 Data model

The performance and adaptability of the database rely critically on the data model. Table 1
shows the various data model elements foreseen for the JAliEn catalogue.

Table 1. Column families of the model, primary keys in italic

index path_id path ctime child_id flag

metadata
path_id id ctime owner gowner size

type perm jobid checksum metadata pfns

ids child_id path_id path ctime flag

se_lookup senumber modulo id owner size

The index column family allows exploring the hierarchical structure and getting the

id of a logical filename or all logical filenames in a folder. It will receive many queries but
the content is highly cacheable. The metadata table will be queried using the data retrieved
from index. It contains file system-like metadata. The ids table provides the inverse
functionality of the index: allows going from an id to the logical filename. This is
especially useful to know which files are in a given storage element, where the physical
names are id based. The se_lookup column family is used to account the content of the
storage elements and calculate the quotas for the users (total space and number of files).

SizeTieredCompaction, compression and replication factor 3 are set for all column
families.

6

EPJ Web of Conferences 214, 03037 (2019)	 https://doi.org/10.1051/epjconf/201921403037
CHEP 2018

3.3 Apache Cassandra and ScyllaDB internals and tuning

These two technologies provide mostly the same base features and currently are compatible
at data block level, thus the application layer is compatible with both without changes,
making a migration from one to another a straightforward process.
 Apache Cassandra runs as any Java application. However, there are some tricks in the
implementation that allow for complex memory manipulation by using the Java Native
Interface framework. Extensive tuning of kernel, disk, network, CPU and memory
parameters is needed to allow Cassandra to run to the full extent of its capabilities. The disk
tuning makes the OS aware of the solid-state disks, and adapt to the nature of the database
operations, for example read-ahead and avoiding reading extra bytes when possible,
deadline scheduler, and number of requests. For the CPU, scaling is disabled, so it always
runs on the highest frequency without transitions. The modified network parameters allow
the service to profit from increased buffer sizes, faster time-wait recycle, window scaling
and an increase of both the number and backlog of incoming connections. Lastly, swap is
disabled.
 Cassandra’s startup script optimizes a set of JVM parameters. The G1GC garbage
collector is used for the tests, with increased memory (16GB). Some extra GC parameters
establish the triggers and thresholds for the garbage collection operation, to avoid stop-the-
world pauses.
 Finally, the Cassandra configuration is modified to enhance the concurrency of reads
and writes with much higher values than those shared in the community. The number of
memory table writers and the size of the key cache are increased. The modifications to the
Cassandra base configuration are the ones that made the most impact on the overall
performance of the database. The total gain factor after all the tuning efforts is 5, which is
quite significant as it reduces the number of nodes required by the same factor. Even fully
optimized, Cassandra didn’t manage to saturate the system resources in any benchmark and
after some investigation, the conclusion was that there are locks on the application level
that cannot be made faster or be avoided.
 The lack of resource saturation led us to run tests also on ScyllaDB [8]. It has a
completely different internal implementation, is written in C++ and splits into one database
engine per core, instead of using threads. The memory of the machine is distributed among
those database engines, called shards. ScyllaDB discovers the OS and hardware of the host
and automatically does the tuning of the kernel and file systems. It also runs fully
asynchronous operations and bypasses most of the system calls.

3.4 Benchmark results

The test cluster is a 6-server ring, with 2 Xeon E5-2660 (56 hyperthreaded cores total),
256GB of RAM and a Samsung 850 Pro SSD SATA each. The links between server
machines and client machines are routed through a dedicated 40G switch, with 10G for
each individual machine.
 Two benchmarks have been used. Firstly, the “cassandra-stress” tool, which is
included in all Cassandra and ScyllaDB distributions and provides options to run different
workloads and distributions: population, read-only, mixed read-write, using Gaussian,
exponential or other distributions. One can also tune the requests per second per client and
other options. A positive aspect of this tool is that the results can be used to compare
different setups against community-supplied results. The second benchmark is the “JAliEn
benchmark”, which implements all the file catalogue functionalities and provides the same
functions as in the cassandra-stress suite. The results of the JAliEn benchmark are more

7

EPJ Web of Conferences 214, 03037 (2019)	 https://doi.org/10.1051/epjconf/201921403037
CHEP 2018

3.3 Apache Cassandra and ScyllaDB internals and tuning

These two technologies provide mostly the same base features and currently are compatible
at data block level, thus the application layer is compatible with both without changes,
making a migration from one to another a straightforward process.
 Apache Cassandra runs as any Java application. However, there are some tricks in the
implementation that allow for complex memory manipulation by using the Java Native
Interface framework. Extensive tuning of kernel, disk, network, CPU and memory
parameters is needed to allow Cassandra to run to the full extent of its capabilities. The disk
tuning makes the OS aware of the solid-state disks, and adapt to the nature of the database
operations, for example read-ahead and avoiding reading extra bytes when possible,
deadline scheduler, and number of requests. For the CPU, scaling is disabled, so it always
runs on the highest frequency without transitions. The modified network parameters allow
the service to profit from increased buffer sizes, faster time-wait recycle, window scaling
and an increase of both the number and backlog of incoming connections. Lastly, swap is
disabled.
 Cassandra’s startup script optimizes a set of JVM parameters. The G1GC garbage
collector is used for the tests, with increased memory (16GB). Some extra GC parameters
establish the triggers and thresholds for the garbage collection operation, to avoid stop-the-
world pauses.
 Finally, the Cassandra configuration is modified to enhance the concurrency of reads
and writes with much higher values than those shared in the community. The number of
memory table writers and the size of the key cache are increased. The modifications to the
Cassandra base configuration are the ones that made the most impact on the overall
performance of the database. The total gain factor after all the tuning efforts is 5, which is
quite significant as it reduces the number of nodes required by the same factor. Even fully
optimized, Cassandra didn’t manage to saturate the system resources in any benchmark and
after some investigation, the conclusion was that there are locks on the application level
that cannot be made faster or be avoided.
 The lack of resource saturation led us to run tests also on ScyllaDB [8]. It has a
completely different internal implementation, is written in C++ and splits into one database
engine per core, instead of using threads. The memory of the machine is distributed among
those database engines, called shards. ScyllaDB discovers the OS and hardware of the host
and automatically does the tuning of the kernel and file systems. It also runs fully
asynchronous operations and bypasses most of the system calls.

3.4 Benchmark results

The test cluster is a 6-server ring, with 2 Xeon E5-2660 (56 hyperthreaded cores total),
256GB of RAM and a Samsung 850 Pro SSD SATA each. The links between server
machines and client machines are routed through a dedicated 40G switch, with 10G for
each individual machine.
 Two benchmarks have been used. Firstly, the “cassandra-stress” tool, which is
included in all Cassandra and ScyllaDB distributions and provides options to run different
workloads and distributions: population, read-only, mixed read-write, using Gaussian,
exponential or other distributions. One can also tune the requests per second per client and
other options. A positive aspect of this tool is that the results can be used to compare
different setups against community-supplied results. The second benchmark is the “JAliEn
benchmark”, which implements all the file catalogue functionalities and provides the same
functions as in the cassandra-stress suite. The results of the JAliEn benchmark are more

relevant since they represent more realistically the performance for the ALICE use-case.
Figure 2 shows the results of the various tests done with “cassandra-stress” on our test
cluster.

Figure 2. Cassandra-stress results for ScyllaDB and Apache Cassandra. The synopsis of each test is
given in the text.

The first workload (A) populates 5 billion entries. The rest use a Gaussian distribution with
the whole namespace, mean on the centre and different standard deviations. B and C do
read-only with 10K and 1M standard deviation. D, E and F run a mixed (10 times read for 1
write) workload with standard deviations of 100K, 1M and 10M respectively. G runs a
similar workload as D with the difference that instead of controlling the mixed operations
from the application, it is done with the number of threads instantiated for each type of
operation. There was no resource saturation on Cassandra nodes in any test. ScyllaDB had
100% I/O during population and 100% real CPU utilization (excluding polling) in the rest
of the tests, which shows the more efficient hardware use of this backend.

Figure 3. JAliEn benchmark results for ScyllaDB

As shown by Figure 3, the results obtained by the new schema fulfil the initial requirements
for the File Catalogue in Run3. The bottom benchmark result, that has a standard deviation
of 10M, is the closest model to our current production workload. To reach this conclusion,

8

EPJ Web of Conferences 214, 03037 (2019)	 https://doi.org/10.1051/epjconf/201921403037
CHEP 2018

different metrics and query information were gathered from the File Catalogue in different
periods. Disk utilization was 100% in all three tests.

3.5 Lessons learnt

There are some database maintenance operations that were not mentioned so far but need to
be run periodically. They compact database entries and synchronize the content of the
different instances, resulting in significant I/O and thus affecting performance.
 Running several Cassandra instances per node is possible, in order to maximize
resource utilization. While the cassandra-stress tests run with dual instances revealed a 30-
40% gain, setup complexity increases as well and affects different Cassandra tools and
commands.
 Monitoring is of key importance not only to understand the behaviour of the database
and workloads, but also to detect bottlenecks, for example in hardware. In the JAliEn
benchmark (Figure 3), the disk is saturated. An easy improvement with large performance
impact is to switch from SATA SSDs to NVMe disks. The PCI-express communication
provides much higher bandwidths and IOPS. At the same time, monitoring will be helpful
to find out if there is a good balance between disk, memory and CPU depending on the
workload.

4 Conclusions

JAliEn and its new File Catalogue have been developed with focus on the scalability and
performance to fulfil the Run3 requirements for ALICE. The new design includes modern
and maintained technologies and concepts, and the development tracks the evolution and
trends of the software and hardware. One example for the latter would be the Intel 3D X-
Point memory, introduced to the market in 2017, for the Cassandra/ScyllaDB hosting
servers. JAliEn development is consolidating and the framework is being put into
production gradually. The File Catalogue migration will come after the deployment of
JAliEn completes. Full database imports and stability of operations in production are still to
be validated.

References
1. A. Abrahantes, K. Aamodt, R. Achenbach et al., The ALICE experiment at the CERN

LHC (Journal of Instrumentation: 3(08): S08002, 2008)
2. I. Bird, P. Buncic et al., Computing models of the WLCG (CERN CDS: record

1695401, 2014)
3. A. G. Grigoras et al., JAliEn: a new interface between AliEn jobs and the central

services (Journal of Physics: Conf. Ser. 523 012010, 2014)
4. A. Lakshman, P. Malik, Cassandra: a decentralized structured storage system (ACM

SIGOPS ref. 1773922, 2010)
5. J. Blomer et al., Distributing LHC application software and conditions databases using

the CernVM file system (Journal of Physics: Conf. Ser. 331 042003, 2011)
6. I. Fette, A. Melnikov, The WebSocket protocol (IETF RFC6455, 2011)
7. M. Cooper, P. Hesse et al., X.509 Public Key Infrastructure (IETF RFC4158, 2005)
8. A. Kivity, D. Laor et al., Building the Real-Time Big Data Database (whitepaper)

(https://www.scylladb.com/resources/whitepapers, last read on 15 November, 2018)

