EPJ Web of Conferences 214, 04019 (2019) https://doi.org/10.1051/epjcont/201921404019
CHEP 2018

Scaling the EOS namespace — nhew developments, and
performance optimizations

1, sk

Georgios Bitzes"*, Elvin Alin Sindrilaru'**, and Andreas Joachim Peters

ICERN, Esplanade des Particules 1, 1217 Meyrin, Geneva, Switzerland

Abstract.

EOS is the distributed storage solution being developed and deployed at CERN
with the primary goal of fulfilling the data needs of the LHC and its various
experiments. Being in production since 2011, EOS currently manages around
256 petabytes of raw disk space and 3.4 billion files across several instances.
Nowadays, EOS is increasingly being used as a distributed filesystem and file
sharing platform, which poses scalability challenges on its legacy namespace
subsystem, tasked with keeping track of all file and directory metadata on a
particular instance.

In this paper we discuss said challenges, and present our solution which has
recently entered production. We made several architectural improvements to the
overall system design, the most important of which was introducing QuarkDB, a
highly-available datastore capable of serving as the metadata backend for EOS,
tailored to the needs of the namespace.

We also describe our efforts in providing comparable latency and performance
to the legacy in-memory implementation, both when reading through the use of
extensive caching and prefetching, and when writing through the use of latency-
hiding techniques involving a persistent, back-pressured local queue for batch-
ing writes towards the QuarkDB backend.

1 Introduction

EOS is a distributed storage system being developed at CERN since 2011 [1], with the aim of
addressing the demanding data needs of the LHC and its various experiments. It’s built upon
the XRootD [2] client-server framework, supports several data access protocols (XRootD,
gsiftp, WebDAYV, S3), and currently manages around 256 petabytes of raw disk space and 3.4
billion files across several instances.

Recently, the scope of EOS has been expanded to additionally serve as the backend for
user home directories and a file syncing service, CERNBox [3], as the future replacement to
the AFS [4] service provided by CERN IT.

Even though individual EOS instances routinely manage several hundreds of disk servers,
users access the contents through a unified hierarchical namespace, giving the illusion of
coherency, and simplifying file management. The namespace is exposed by the EOS head

*e-mail: georgios.bitzes@cern.ch
**e-mail: elvin.alin.sindrilaru@cern.ch
***e-mail: andreas.joachim.peters@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 04019 (2019) https://doi.org/10.1051/epjconf/201921404019
CHEP 2018

[xraco Ml nipsweroav BN 53
€D D = €D
"
APP @ il

CLIENT
—
@we

o D

SERVER
—) @wsme
DATA

SERVER

) xRooTo
—_—— Seavin

] “ -
]
]

Figure 1. High-level view of the EOS architecture. FSTs are connected to and are responsible for the
physical disks, while the MGM acts as the initial point of contact for external clients.

node (MGM), which stores the metadata of all files and directories stored on a particular
instance.

The legacy namespace implementation keeps all metadata in-memory to permit low-
latency access, backed by on-disk changelogs which are replayed during boot time. However,
during the last few years, the number of files stored on EOS has been continuously growing.
The legacy namespace subsystem has reached its scalability limits, presenting an urgent need
for replacement. The limitations inherent to the old system mean that as the number of meta-
data entries grow, so does the memory consumption and reboot time of the MGM process.

We designed and implemented a new namespace subsystem, which is based on a key-
value datastore backend, with in-memory caching on the MGM for frequently accessed en-
tries. Therefore, the MGM now acts as a stateless write-through cache, with all metadata
persisted on the backend. This paper is a continuation of our earlier work in 2017 [5] — the
new namespace implementation has been improved further and recently entered production.
The rest of this text is structured as follows:

e Section 2 presents a high-level architectural view of EOS, with a highlight on the changes
brought by the introduction of QuarkDB.

e Section 3 offers more details on QuarkDB, including its design, development, and heavy
focus on software testing.

e Section 4 describes our experience integrating the new namespace, and work done on per-
formance tuning and latency hiding.

e Section 5 summarizes, and points to areas for improvement in the future.

2 Architectural overview

From a high-level view, the purpose of EOS is making large fleets of hard drives manageable,
and presenting them to users in a convenient and coherent way, as well as enforcing access
control. The architecture consists of the following components:

2

EPJ Web of Conferences 214, 04019 (2019) https://doi.org/10.1051/epjcont/201921404019
CHEP 2018

e The File Storage nodes (FSTs) are responsible for handling the physical storage — in a
typical deployment, each FST manages several tens of hard drives.

e The Metadata Manager (MGM) is the initial point of contact for external clients, han-
dles authentication and authorization, and redirects clients to the appropriate FSTs on both
reading and writing.

e The Message Queue (MQ) handles inter-cluster communication between the MGM and the
FSTs, delivering messages such as heartbeats and configuration changes.

The namespace subsystem is a critical part of the MGM, whose major purpose is trans-
lating logical paths to the physical locations where the files reside within the cluster. Among
other things, the MGM is also responsible for background tasks, such as balancing, draining,
detection of failed hard drives or corrupted files, and general management of the FSTs.

2.1 Legacy in-memory namespace implementation

The initial design of EOS foresaw each instance storing a rather limited amount of files, not
exceeding a hundred million. Based on this assumption, a simple namespace implementation
was chosen with a focus on performance and the following characteristics:

e The MGM holds the entire namespace contents in-memory to provide clients with fast
access latency. No I/O or network requests to external services are necessary during path
resolution, providing both low latency and high throughput under heavy load.

e Updates to the in-memory contents are backed by on-disk changelogs, which are periodi-
cally compacted. There is one changelog for file metadata, and one for directories.

e Whenever the MGM process needs to reboot, the entire in-memory contents are recon-
structed by replaying the changelogs.

While the above scheme has proven to be simple and reliable, it comes with severe limi-
tations once the number of files stored on an instance grows past a few hundred millions:

e Each metadata entry consumes around lkb of memory on the MGM node, imposing a
requirement for unreasonable amounts of physical RAM once the number of files grows
past a certain number.

e Replaying the changelogs on reboot is a producedure which takes considerable amount of
time, directly proportional to the number of files on an instance. This amplifies greatly the
impact of crashes due to bugs on the MGM, as it can take a long time before the instance
is ready to serve requests after a crash.

As an example, the most worrisome EOS instance at CERN which contains more than
600 million files requires an MGM node with 1 TB of physical RAM, while a restart of the
server daemon takes around an hour to complete.

2.2 The need for a new namespace implementation

During the past few years, several ideas were considered for designing a better, more scalable
namespace:

e Storing all metadata as objects in a highly available RADOS [6] instance, and communi-
cating through librados. After a few short experiments, it was found to have unacceptably
high write latency for our use-case.

EPJ Web of Conferences 214, 04019 (2019) https://doi.org/10.1051/epjconf/201921404019
CHEP 2018

XRootD . /
Pro?geol - &P redis i Is XRootD

Protocol

<
et s |

RocksDB

Figure 2. Metadata handling in the new namespace: QuarkDB acts as persistent storage for all file and
directory metadata, with the MGM caching hot entries to limit amount of necessary network roundtrips,
thus improving performance and responsiveness.

e Using a traditional relational database, for example MySQL or PostgreSQL. The concern
was scalability and latency: RDBMS tend to perform poorly as the number of rows in a
given table increase into the billions, and present early the need for complicated shard-
ing schemes, which would significantly increase the complexity and operational cost of
running an EOS instance. Additionally, having a performant, low-latency RDBMS would
require a comparable amount of memory to the legacy namespace, and high-performance
SSDs.

e Using a simple, non-relational datastore such as redis [7], well-known for its high perfor-
mance and flexibility. What makes redis unsuitable for our use-case is the requirement that
the entire dataset is memory-resident. The demand for physical RAM would still scale with
the number of files, even if a small fraction of those are being accessed regularly.

The solution we chose is based on RocksDB [8], a highly-performant and stable embed-
dable key-value store. RocksDB implements a log-structured merge-tree (LSM) data struc-
ture, which retains good performance characteristics even when the number of key-value
pairs stored within reaches the tens of billions, an important consideration in our use-case.

Since RocksDB is simply a library, we decided to develop a server around it which speaks
the same protocol as redis. The simplicity of using redis from previous experiments made a
good impression on us, so we decided to keep the same simple protocol and command-set,
but substitute the storage backend with RocksDB, thus creating QuarkDB.

3 QuarkDB, a highly available datastore

Even though QuarkDB was designed specifically for storing the EOS namespace, and tailored
to its needs, the functionality offered is generic. At its core, QuarkDB is a translation layer
which converts redis commands into the appropriate RocksDB key-value transactions, using
an internal encoding scheme.

QuarkDB does not currently implement the entire, extensive command-set of the official
redis implementation, but only the small subset needed for EOS, thus limiting the complexity
of the codebase.

An important consideration when designing QuarkDB has been high-availability. We
aim in reducing any single points of failure existing in our software architecture, since EOS

EPJ Web of Conferences 214, 04019 (2019) https://doi.org/10.1051/epjcont/201921404019
CHEP 2018

has become critical for data at CERN and unavailability has the potential of causing major
disruption.

We decided that QuarkDB should be highly-available from the beginning, and imple-
mented support for native quorum-consensus replication based on the Raft [9] algorithm.
While a full description of Raft is outside the scope of this article, high-availability in
QuarkDB works as follows:

e The QuarkDB cluster is able to tolerate losing some nodes without any impact on avail-
ability, provided that a majority (or quorum) remain online. In a typical deployment with
3 replica nodes, as long as at least 2 out of 3 nodes are alive and connected to each other,
the cluster is fully operational.

e Replication is semi-synchronous, meaning that clients receive an acknowledgement to a
write as soon as it has been replicated to a quorum of nodes.

3.1 Testing strategy

Ensuring correctness of QuarkDB and eliminating the likelihood of bugs remains a high
priority when making changes to the codebase. Mild bugs have the potential of causing
widespread disruption, given that QuarkDB is poised to become the index for hundreds of
petabytes and billions of files at CERN. In addition, consensus algorithms are notoriously
difficult to implement correctly, and are often plagued by subtle race conditions which are
extremely hard to reproduce.

For the aforementioned reasons, QuarkDB is being developed in the spirit of Test Driven
Development (TDD), which has resulted in a large suite of unit, functional, and stress tests,
covering 91% of the codebase as of the time of writing. There are several end-to-end tests
which actively attempt to trigger bugs and inconsistencies by randomly restarting cluster
nodes under heavy read and write load.

The idea is to subject QuarkDB to far harsher conditions than it would typically encounter
in a production environment. Of course, even such kind of testing does not guarantee the
complete absence of bugs, but drives code quality up, and reduces the chance of regressions
being able to survive undetected.

Experience in production has been very positive thus far, with QuarkDB routinely achiev-
ing continuous uptime of several months, usually interrupted just to update to a new version.

4 Integration work and performance optimizations
4.1 Impedance mismatch in the existing nhamespace API

Even though the namespace subsystem is cleanly delineated from the rest of the MGM code,
with it being a separate loadable plugin, a large amount of integration work had to be com-
pleted before the new namespace was ready for production.

The major source of issues was the assumption made throughout the entire MGM code
that namespace and path resolution requests were always low-latency, in-memory operations.
This is no longer the case when using QuarkDB as a namespace backend, since an operation
might now require one or more network roundtrips to complete. The difference in latency can
be in the several orders of magnitude, even if all participating MGM and QuarkDB daemons
are colocated in the same datacenter.

The above is exacerbated by the internal namespace API, used throughout the MGM.
All namespace reads and writes occur under the global namespace read-write mutex — if an
operation waits on a network roundtrip inside that lock, all other clients could stall for an

EPJ Web of Conferences 214, 04019 (2019) https://doi.org/10.1051/epjconf/201921404019
CHEP 2018

unacceptable duration of time, negatively impacting the MGM responsiveness. The effects
are especially visible during write operations, as only a single thread can acquire the mutex
in write mode — multiple read operations could make progress in parallel.

While changing the API and using finer-grained locks would be great, the amount of
effort and time needed for such a code refactoring would take too long, considering the ur-
gency of deprecating the old namespace. Thus, the overarching goal has been to eliminate,
where possible, having to pay network roundtrip penalties within the global namespace lock.
Improving the namespace API is a planned future task.

4.2 In-memory write-through cache

The first method for combating network latency was introducing an in-memory metadata
cache on the MGM. The namespace subsystem is capable of transparently fetching requested
metadata either from its local cache depending on availability, or from the QuarkDB backend,
substantially reducing the number of roundtrips paid for frequently accessed metadata.

Only a small fraction of total metadata entries need to be accessed frequently. The cache
makes most read operations entirely local, providing equivalent latency as the legacy in-
memory namespace. Entries are evicted from the cache on a Least-Recently-Used basis.

4.3 Persistent, backpressured queue for writes

While being extremely useful for read operations, caching does little to help writes in this
case. There is a dilemma when issuing write requests to QuarkDB: Should we wait for an
acknowledgement, or “fire and forget” assuming all requests succeed?

The first choice is certainly the safest, but imposes a severe performance penalty: Any
namespace modification would involve waiting on a network request while holding the global
namespace lock, preventing other clients from interacting with the namespace. Given that
EOS instances typically serve thousands of clients at any given moment, such an approach
would quickly make an instance unusable, limiting metadata modification throughput on
roundtrip latency between the MGM and QuarkDB.

On the other hand, “fire and forget” avoids paying any network penalty, but is obviously
unsafe as writes could be silently lost even if an end-user receives acknolwedgement for some
operation.

We chose an approach which is the best of both worlds: All metadata modifications are
recorded into a local, persistent queue, which is replayed towards QuarkDB transparently in
the background. The queue keeps track of which items have been acknowledged, and are
thus safe to discard. In the event of network instabilities, requests will be retried until they
succeed, while ensuring they are issued in the correct order.

This way, issuing acknolwedgements to end-user clients before receiving confirmation
from QuarkDB becomes safe: All unconfirmed requests will be retried even if the MGM
crashes, ensuring consistency. After a crash, the MGM will not process any end-user re-
quests until any potential, unconfirmed operations from the previous run have been applied
on QuarkDB. Therefore, a namespace modification will never wait on a network request. It’s
enough to record into the local queue, and appropriately update the contents of the cache.

The above creates the possibility of the queue growing out of control in case of
widespread network disruption, or QuarkDB unavailability. To avoid such a situation, back-
pressure built into the queue stops the addition of further requests once the number of pending
ones reaches a certain, configurable number.

EPJ Web of Conferences 214, 04019 (2019) https://doi.org/10.1051/epjcont/201921404019
CHEP 2018

4.4 Prefetching entries outside the namespace lock

Consider for a moment what happens when listing the contents of a directory with a million
files. The MGM acquires the global namespace lock, and synchronously retrieves one-by-
one all metadata entries contained within. Provided the contents are not in the cache, the
above would cost a million network roundtrips between the MGM and QuarkDB, essentially
making the instance unavailable for several minutes.

The above limitation arises, once again, due to the assumption that all metadata is local,
and available in-memory. We implemented the following mitigations:

e Addition of an asynchronous version for many operations in the internal namespace API.
Instead of waiting for a response from the server, a future object is returned and the request
is processed asynchronously in the background. This way, the calling thread is free to
pipeline metadata requests, and only really pay the network latency penalty once.

In our example, a million requests will still happen, but those will be streamed, not “ping-
ponged”. The overall latency for the completion of all one million requests drops drasti-
cally.

e Ability to prefetch metadata into the cache outside the namespace lock. Even before ac-
quiring the lock, it’s already clear which metadata entries will be needed to complete an
operation: We instruct the prefetcher class to ensure all necessary entries are present in
the cache. Once we acquire the lock, it’s guaranteed no network requests will occur, as all
metadata needed is in-memory already. This drastically reduces the amount of time any
client has to hold onto the global namespace lock.

In our example, this ensures all million metadata entries are fetched while not holding the
namespace lock — other clients are free to use the instance in parallel.

4.5 Cache-bypass for streaming operations

Certain operations do not particularly benefit from the use of in-memory metadata caching,
such as those scanning through a large number of metadata entries. A notable example is
the “find” command, which recursively traverses a given path and reports all files contained
within.

In such case, network roundtrip latency is amortized by pipelining metadata requests —
caching will not make much of a difference. Moreover, the scanned contents are not likely
to be among the most frequently used entries, thus thrashing the memory-limited cache and
potentially evicting frequently accessed entries. Therefore, bulk operations such as “find”
bypass the cache and the global namespace mutex.

5 Conclusions and future work

We set out to improve the scalability shortcomings in the original design of the EOS names-
pace, and implemented a highly available datastore to serve as the metadata backend. The
overall system was optimized to offer comparable levels of performance and latency as the
in-memory approach. We believe the new namespace implementation is capable of offering
the next order of magnitude of scaling for EOS, ready to meet the data needs of the LHC
experiments and CERN as a whole:

e Booting time of the MGM, which required / hour for instances with 600 million files, now
takes less than 30 seconds.

EPJ Web of Conferences 214, 04019 (2019) https://doi.org/10.1051/epjconf/201921404019
CHEP 2018

o Our test instance on the new namespace has been tested with up to 4.6 billion files, which
is more than all other EOS instances combined at the time of writing. Even at such size,
namespace operations remain fast and responsive, with boot time not exceeding a few
seconds.

e Memory consumption is mostly dictated by the size of the cache, which is configurable,
and not by the total size of the entire namespace. While we did not yet need to perform
extensive evaluations on the optimal cache size, experience shows only a small fraction of
the namespace is accessed frequently, and thus benefits from caching.

Future work could improve on the design in several areas:

e Ability to use additional MGMs as read-only secondaries. This would help in absorbing
read load for use-cases which tolerate eventual namespace consistency.

e Gradual removal of the global namespace lock, introduction of finer-grained locks in its
stead.

¢ Improvement and rationalization of the namespace APL

e QuarkDB could be made to additionally serve as a highly available message queue, re-
placing the current one and removing an additional architectural single point of failure in
EOS.

References

[1] Peters, Andreas J., Janyst, L.: Exabyte scale storage at CERN. Journal of Physics: Con-
ference Series. Vol. 331. No. 5. IOP Publishing (2011)

[2] Dorigo, Alvise, et al.: XROOTD-A Highly scalable architecture for data access. WSEAS
Transactions on Computers 1.4.3 (2005)

[3] Mascetti, L., et al.: CERNBox+ EOS: end-user storage for science. Journal of Physics:
Conference Series. Vol. 664. No. 6. IOP Publishing (2015)

[4] Howard, John H.: An overview of the andrew file system. Carnegie Mellon University,
Information Technology Center (1988)

[5] Peters, Andreas J and Sindrilaru, Elvin A and Bitzes, Georgios: Scaling the EOS names-
pace. International Conference on High Performance Computing, Springer (2017)

[6] Weil, Sage A, et al: Rados: a scalable, reliable storage service for petabyte-scale storage
clusters. Proceedings of the 2nd international workshop on Petascale data storage: held in
conjunction with Supercomputing’07, ACM (2007)

[7] Sanfilippo, Salvatore, and Pieter Noordhuis.: Redis (2009)

[8] Borthakur, Dhruba.: Under the Hood: Building and open-sourcing RocksDB. Facebook
Engineering Notes (2013)

[9] Ongaro, Diego, and John K. Ousterhout.: In Search of an Understandable Consensus
Algorithm. USENIX Annual Technical Conference (2014)

