
A milestone for DPM (Disk Pool Manager)

Fabrizio Furano1,∗, Oliver Keeble1,∗∗, Andrea Manzi1,∗∗∗, and Georgios Bitzes1,∗∗∗∗

1CERN - Esplanade des Particules 1, 1211 Geneva

Abstract.
The DPM (Disk Pool Manager) system is a multiprotocol scalable technology
for Grid storage that supports about 130 sites for a total of about 90 Petabytes
online.
The system has recently completed the development phase that had been an-
nounced in the past years, which consolidates its core component (DOME: Disk
Operations Management Engine) as a full-featured high performance engine
that can also be operated with standard Web clients and uses a fully documented
REST-based protocol.
Together with a general improvement on performance and with a comprehen-
sive administration command-line interface, this milestone also brings back fea-
tures like the automatic disk server status detection and the volatile pools for
deploying experimental disk caches.
In this contribution we also discuss the end of support for the historical DPM
components (that also include a dependency on the Globus toolkit), whose de-
ployment is now only linked to the usage of the SRM protocols, hence can be
uninstalled when these are not needed any more by the site.

1 Introduction

The Disk Pool Manager (DPM) is a lightweight solution for grid-enabled disk storage man-
agement. Operated at around 130 sites, it has the widest distribution of all grid storage solu-
tions in the WLCG infrastructure, and in total it manages around 90PB of data. DPM provides
an easy way to manage and configure disk pools, and exposes multiple data access interfaces
(xrootd [2], GridFTP and HTTP/WebDAV).

The development direction in recent years has been towards simplifying the system, while
supporting all the advanced features that are needed by the Grid computing and helping sites
to incrementally renew their setups. The result of this work is the creation of the dmlite [3]
framework and the DOME management engine which together represent the modern DPM
service. The dmlite framework and its associated plugins enabled support for the more recent
data access protocols used by HEP (HTTP with multi-range requests and xrootd). DOME
completes the picture as a new internal service for managing the resources which DPM ex-
poses and is described in this contribution.

∗e-mail: furano@cern.ch
∗∗e-mail: okeeble@cern.ch
∗∗∗e-mail: amanzi@cern.ch
∗∗∗∗e-mail: gbitzes@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 04018 (2019)	 https://doi.org/10.1051/epjconf/201921404018
CHEP 2018



2 DOME

DOME (Disk Operations Management Engine)[5] is a robust, high performance server that
manages the operations of a DPM cluster. DOME communicates using HTTP and JSON with
other parts of the system through the XrdHTTP plugin of the Xrootd framework. Architec-
turally speaking, it is primarily a service provider for the dmlite framework, through a dmlite
plugin called DOMEAdapter.

DOME’s adoption aims at augmenting the Disk Pool Manager (DPM) system so that its
core coordination functions and inter-cluster communication paths are implemented through
open protocols, and following contemporary development approaches targeting performance,
scalability and maintainability.

2.1 From spacetokens to quota tokens

Historically, DPM manages space accounting through a set of individual named space reser-
vations that are associated to pools. This follows the philosophy of the SRM specification
[7], where clients’ requests explicitly indicate which named space has to be accounted.

Semantically, SRM space reservations are named reservations of a part of the space of
a disk pool. When writing data in workflows that involve SRM, requests to write a replica
specify a spacetoken that has to host the replica, hence ultimately the replica will be subject
to the space reservation rules specified by that spacetoken.

One of the weakest points in this schema is that the remote client willing to write a file
has to know the name of a suitable space reservation in the destination system, to be able
to write and be properly accounted for. This information represents a technical detail of the
destination storage, and it can also be provided wrongly, for example accounting a file into
the wrong spacetoken (e.g. "scratch" versus "production").

Another related, historical weak point of this workflow is that calculating precise results
for the space occupancies can be a challenging exercise, especially if the structure of the pools
has been modified in the years, following additions of new storage space or even failures.

DOME models an evolution of this mechanism towards subdirectory-based space ac-
counting, instead than pool-based, in a way that is compatible with the older one and can
coexist with it.

When considering subdirectory-based space accounting, every subdirectory at less than N
levels from the root is kept updated with the total size of the replicas of files that reside in that
directory subtree. This subdirectory size together with the information on free/used space in
the pools associated to these subdirectory tree can then be used to compute the needed space
occupancy numbers.

DOME uses the records describing spacetokens that are kept in the head node DB with
minimal modification. Their meaning is slightly changed, into semantically representing a
quota on one and only one directory subtree. From this point on, we will refer to them as
quotatokens, whose behavior is similar to that of an old spacetoken associated to a directory.

Associating space reservations to directories frees clients from the need to declare for
each upload the name of the spacetoken that should be used. The association will be auto-
matic since it’s based on the path of the file.

A quotatoken attached to a directory subtree overrides others that may be attached to
its parents.

If the content of a directory (counting all the replicas) exceeds the quota specified by the
quotatoken that influences it, then new PUT requests on that directory will be denied. In an
analogous way, directories that do not have or inherit any quotatoken cannot be written into,
assuming that having no quotatoken means having no space.

2

EPJ Web of Conferences 214, 04018 (2019)	 https://doi.org/10.1051/epjconf/201921404018
CHEP 2018



2 DOME

DOME (Disk Operations Management Engine)[5] is a robust, high performance server that
manages the operations of a DPM cluster. DOME communicates using HTTP and JSON with
other parts of the system through the XrdHTTP plugin of the Xrootd framework. Architec-
turally speaking, it is primarily a service provider for the dmlite framework, through a dmlite
plugin called DOMEAdapter.

DOME’s adoption aims at augmenting the Disk Pool Manager (DPM) system so that its
core coordination functions and inter-cluster communication paths are implemented through
open protocols, and following contemporary development approaches targeting performance,
scalability and maintainability.

2.1 From spacetokens to quota tokens

Historically, DPM manages space accounting through a set of individual named space reser-
vations that are associated to pools. This follows the philosophy of the SRM specification
[7], where clients’ requests explicitly indicate which named space has to be accounted.

Semantically, SRM space reservations are named reservations of a part of the space of
a disk pool. When writing data in workflows that involve SRM, requests to write a replica
specify a spacetoken that has to host the replica, hence ultimately the replica will be subject
to the space reservation rules specified by that spacetoken.

One of the weakest points in this schema is that the remote client willing to write a file
has to know the name of a suitable space reservation in the destination system, to be able
to write and be properly accounted for. This information represents a technical detail of the
destination storage, and it can also be provided wrongly, for example accounting a file into
the wrong spacetoken (e.g. "scratch" versus "production").

Another related, historical weak point of this workflow is that calculating precise results
for the space occupancies can be a challenging exercise, especially if the structure of the pools
has been modified in the years, following additions of new storage space or even failures.

DOME models an evolution of this mechanism towards subdirectory-based space ac-
counting, instead than pool-based, in a way that is compatible with the older one and can
coexist with it.

When considering subdirectory-based space accounting, every subdirectory at less than N
levels from the root is kept updated with the total size of the replicas of files that reside in that
directory subtree. This subdirectory size together with the information on free/used space in
the pools associated to these subdirectory tree can then be used to compute the needed space
occupancy numbers.

DOME uses the records describing spacetokens that are kept in the head node DB with
minimal modification. Their meaning is slightly changed, into semantically representing a
quota on one and only one directory subtree. From this point on, we will refer to them as
quotatokens, whose behavior is similar to that of an old spacetoken associated to a directory.

Associating space reservations to directories frees clients from the need to declare for
each upload the name of the spacetoken that should be used. The association will be auto-
matic since it’s based on the path of the file.

A quotatoken attached to a directory subtree overrides others that may be attached to
its parents.

If the content of a directory (counting all the replicas) exceeds the quota specified by the
quotatoken that influences it, then new PUT requests on that directory will be denied. In an
analogous way, directories that do not have or inherit any quotatoken cannot be written into,
assuming that having no quotatoken means having no space.

As a summary, the meaning of a quotatoken specifying a quota of N terabytes on pool X,
associated to directory "/dir1" is use pool X as space for hosting the files that will be written
into dir1. Do not allow more than N terabytes to be hosted there. A consequence of this is
that directories that do not have or inherit a quotatoken cannot be written into.

3 DOME Architecture

Figure 1 shows the main components of DOME that are in action in a disk server.
Requests containing DOME commands come through the XrdHTTP plugin of the Xrootd
framework already authenticated and referring to the DOME command path, which starts
with /domedisk. Requests related to data traffic go through the respective frontend daemon
(Apache HTTPd, gridftp, xrootd). Another detail that characterizes a disk server for DOME
is the ability to execute local tasks like checksum calculations and file pulls from external
sources. These tasks, following a logic that is based on time, report their status to the head
node, which uses this information to keep its queues updated.

Xrootd	daemon	

HTTP	plugin	
XrdHTTP	

REST	commands	
/domedisk/…	

DOME	(disk)	

Task	
Executor	

AuthN	

Request	
logic	

Workers	

Ext	Pull()	
requests	
(configurable	
script)	

Xrootd	Data	access	
/<diskpaths>/…	

Dome_checksum	
Script	(bundled	with	DOME)	

Timed	
Logic	

Requests	to	
HEAD	

Disk	
Pools	

DOMEAdapter	can	do	IO	
HTTP	on	/<diskpaths>/…	+	security	token	
substitutes	RFIO	

Requests	to	HEAD	

HTTPD	

GridFTP	

HTTP	Data	access	
/<diskpaths>/…	

GSIFTP	Data	access	
/<diskpaths>/…	

Dmlite/DOMEAdapter	

Dmlite/DOMEAdapter	

Dmlite/DOMEAdapter	

Figure 1. Simplified diagram of DOME in a disk node.

A DOME head node is slightly more complex than a disk server, and its simplified internal
structure is visible in Figure 2.

Requests containing DOME commands come through the XrdHTTP plugin of the
Xrootd framework already authenticated and referring to the DOME command path, which
starts with /domehead. Requests related to data traffic go through the respective frontend
daemon (Apache HTTPd, gridftp, xrootd). A head node can contact external systems to get
information about remote files, and queues in memory the requests for checksum calculations
and remote file pulling for the whole cluster. On top of that, a head node DOME daemon
also contains an embedded write-through cache for file metadata items, that considerably
speeds up its operations.

3

EPJ Web of Conferences 214, 04018 (2019)	 https://doi.org/10.1051/epjconf/201921404018
CHEP 2018



Xrootd	daemon	

HTTP	plugin	
XrdHTTP	

REST	commands	
/domehead/…	

Xrootd	Redirector	
/dpm/…	

MySQL	

DOME	(head)	

Chksum	
queue	

Filepulls	
queue	

Task	
Executor	

AuthN	

Request	
logic	

Workers	

Ext	Stat()	
requests	
(configurable	
script)	

Timed	
Logic	

HTTPD	

GridFTP	

HTTP	redirector	
/dpm/…	

GSIFTP	redirector	
/dpm/…	

Dmlite/DOMEAdapter	

Dmlite/DOMEAdapter	

Dmlite/DOMEAdapter	

Requests	to	Disk	servers	(DOME	REST)	

Requests	to	
DOMEHEAD	

Figure 2. Simplified diagram of DOME in a head node.

4 Storage Resource Reporting

As part of DPM’s policy of allowing SRM-less operation, the ability to query space occu-
pancy has been added in accordance with the recommendations of the WLCG Accounting
Task Force. The DPM distribution now includes a publisher script that can query DOME’s
internal accounting and copy the result as a normal file into the namespace. The file is a
json document that describes the used and free space in all the independent areas (i.e. Quota
Tokens) of the system. A summary for the whole system can thereby be computed simply
by summing the capacities and occupancies of the individual areas. DPM systems publishing
this json summary will enable WLCG accounting to include reliable storage accounting for
the first time.

The distribution also contains an information provider which will publish basic system
and resource metrics to the local resource BDII and which will work in the absence of the
legacy components.

5 Caching with volatile pools

A major functional advantage of the DOME system is that it allows the configuration of so
called "volatile pools" which enable the DPM to operate as a cache. If a Quota Token is
defined on a volatile pool and then assigned to a path in the namespace, accesses via any of
the supported protocols (GridFTP, HTTP or Root) to that path will trigger a file pull if the
object requested is not already resident locally.

This behaviour allows DPM to operate as a caching proxy, fetching data as required from
upstream storage, which could be a nearby large custodial system or a data federation. The
DPM administrator supplies a script which is triggered on the disk server when a pull is
required to get a non-resident file. The pull script has the responsibility to retrieve the full
file. If there is insufficient available space, DPM will remove the oldest files from the cache
before invoking the pull script.

Pull requests are queued in memory and dispatched to disk nodes that match the request
and become available. The disk nodes instances constantly update the head node on the

4

EPJ Web of Conferences 214, 04018 (2019)	 https://doi.org/10.1051/epjconf/201921404018
CHEP 2018



Xrootd	daemon	

HTTP	plugin	
XrdHTTP	

REST	commands	
/domehead/…	

Xrootd	Redirector	
/dpm/…	

MySQL	

DOME	(head)	

Chksum	
queue	

Filepulls	
queue	

Task	
Executor	

AuthN	

Request	
logic	

Workers	

Ext	Stat()	
requests	
(configurable	
script)	

Timed	
Logic	

HTTPD	

GridFTP	

HTTP	redirector	
/dpm/…	

GSIFTP	redirector	
/dpm/…	

Dmlite/DOMEAdapter	

Dmlite/DOMEAdapter	

Dmlite/DOMEAdapter	

Requests	to	Disk	servers	(DOME	REST)	

Requests	to	
DOMEHEAD	

Figure 2. Simplified diagram of DOME in a head node.

4 Storage Resource Reporting

As part of DPM’s policy of allowing SRM-less operation, the ability to query space occu-
pancy has been added in accordance with the recommendations of the WLCG Accounting
Task Force. The DPM distribution now includes a publisher script that can query DOME’s
internal accounting and copy the result as a normal file into the namespace. The file is a
json document that describes the used and free space in all the independent areas (i.e. Quota
Tokens) of the system. A summary for the whole system can thereby be computed simply
by summing the capacities and occupancies of the individual areas. DPM systems publishing
this json summary will enable WLCG accounting to include reliable storage accounting for
the first time.

The distribution also contains an information provider which will publish basic system
and resource metrics to the local resource BDII and which will work in the absence of the
legacy components.

5 Caching with volatile pools

A major functional advantage of the DOME system is that it allows the configuration of so
called "volatile pools" which enable the DPM to operate as a cache. If a Quota Token is
defined on a volatile pool and then assigned to a path in the namespace, accesses via any of
the supported protocols (GridFTP, HTTP or Root) to that path will trigger a file pull if the
object requested is not already resident locally.

This behaviour allows DPM to operate as a caching proxy, fetching data as required from
upstream storage, which could be a nearby large custodial system or a data federation. The
DPM administrator supplies a script which is triggered on the disk server when a pull is
required to get a non-resident file. The pull script has the responsibility to retrieve the full
file. If there is insufficient available space, DPM will remove the oldest files from the cache
before invoking the pull script.

Pull requests are queued in memory and dispatched to disk nodes that match the request
and become available. The disk nodes instances constantly update the head node on the

running callouts, and the system will self-heal on restarts of the head node. When finished
pulling a file, a disk node will notify the head node and pass the result (or failure).
The system can be configured with the following limits

• No more than L pulls will be run per disk server

• No more than M pulls will be run in total

• No more than N pulls will be run per disk mount

The pull callout in the disk server is complemented by a stat callout, which is able to get
information from an external system for the presence of an offline file.

6 Admin interface: dmlite-shell

With the introduction of DOME and the deprecation of the legacy daemons, there has been
also the need to replace the admin commands which currently are using the DPM and DPNS
API. This activity has started some years ago with the implementation of a new python com-
ponent, the dmlite-shell, which in its first incarnation implemented a CLI using underneath
the dmlite interface to perform DPM namespace operation only. With the time the component
has grown and new commands have been added (48 commands are available at the moment)
in the following areas:

• namespace management: acls, checksums, replicas, files, folders

• user management: user, groups

• storage management: pool, filesystems, drain

• quota management: quotatokens

The introduction of DOME has also required the implementation of a REST client (which
uses Davix [10]) for some operations that are not part of the dmlite interface. In particu-
lar every command dealing with Quotatokens is interacting with the DOME server via its
REST APIs, using as identity the x509 certificate of the DPM hosts. As a result, all DPM
management operations can now be performed through the dmlite-shell.

6.1 Drain via HTTP

The drain and replication subsystems have been totally rewritten in the dmlite-shell. In
this case not only the interface has changed, but also the way the data replication is performed.

In particular, the drain mechanism has historically used rfiod([8]) to move data between
diskservers; due to the end of support for the old rfiod client and server we decided to use the
LCGDM-DAV component instead and perform the replication via the HTTP protocol.
The drainpool, drainserver, drainfs and the replicate commands are now contacting the
LCGDM-DAV server running on the DPM headnode in order to put a new replica of the
file to be drained or to be replicated. The process uses the internal PoolManager interface to
request a new location of the replica, eventually hinting the pool/server/fs where to put the
new replica into.
Then, as for a normal HTTP third-party copy, the process issues a COPY request disabling
the credentials delegation to speed up the process (as we are moving data within a DPM in-
stance this is not needed). The COPY process is monitored via Performance markers and
in the case of draining the original replica is removed from the source filesystem only if the
copy succeeds.

5

EPJ Web of Conferences 214, 04018 (2019)	 https://doi.org/10.1051/epjconf/201921404018
CHEP 2018



7 Configuration tool: Puppet

During the last years a lot of effort has been spent to improve the configuration subsystem for
DPM, with the goal to use a more industry oriented product compared to the YAIM tool [11],
which was developed for the Grid world. Puppet([12]) was selected as configuration tool, for
various reasons including:

• Puppet is one of the most used Configuration Management tools, also by sites already
running DPM

• Puppet allows DPM configuration integration for sites already running a Puppet infrastruc-
ture, but also it can run as a local script like YAIM

• CERN moved the whole infrastructure to Puppet, therefore it was possible to make use of
the local expertise to code the DPM Puppet modules

• There is high availability of Puppet modules already developed and shared via a common
portal (PuppetForge ([13]))

Given that DPM is composed by several components, the decision was to implement
Puppet modules for each of them, plus a meta module (puppet-dpm [14] that makes use of
the modules to setup a DPM instance.

The DPM team developed the following modules: puppet-gridftp, puppet-dmlite, puppet-
lcgdm, pupet-xrootd, puppet-dpm, other modules have been developed by other teams at
CERN for their needs, (puppet-voms, puppet-bdii, puppet-fetch-crl) and third-party modules
are included (puppet-mysql, puppet-memcached, puppet-firewall).

All necessary Puppet modules are distributed in one of the RPM packages that belong to a
DPM release, in order to make sure that the sysadmin has always the correct version of them,
i.e. the one that is known to work with the DPM version he has installed. For development
purposes, the modules are also available via PuppetForge.

The DPM puppet modules simplify considerably the transition from the legacy DPM
deployments to new DOME based installations. The site admin can easily switch to DOME
an existing installation, or directly install DPM with DOME from scratch without the legacy
daemons being present.

8 Transitioning steps

As we remarked, the new components are totally compatible with the older ones and can
coexist with them, if properly configured. This was an important design decision. Care has
been taken to allow sites to schedule the activation of DOME at their convenience, decoupled
both from the deployment of the relevant update (DOME can remain dormant if the system
is configured in "legacy mode") and from synchronising with experiments.

The transition steps enumerated below each represent a working system which could be
maintained indefinitely.

• Starting with the release of DPM 1.9 (which includes DOME) in Q4 2016, the sites can start
upgrading head nodes and disk servers at the pace that they prefer. This allows deployment,
in a dormant state, of DOME.

• Dome can be configured, while disabled, giving access to a more powerful dmlite-shell
administration utility.

• The space reporting counters can now be primed. From this moment on, the site will
precisely keep track of the disk space used (not the free space yet).

6

EPJ Web of Conferences 214, 04018 (2019)	 https://doi.org/10.1051/epjconf/201921404018
CHEP 2018



7 Configuration tool: Puppet

During the last years a lot of effort has been spent to improve the configuration subsystem for
DPM, with the goal to use a more industry oriented product compared to the YAIM tool [11],
which was developed for the Grid world. Puppet([12]) was selected as configuration tool, for
various reasons including:

• Puppet is one of the most used Configuration Management tools, also by sites already
running DPM

• Puppet allows DPM configuration integration for sites already running a Puppet infrastruc-
ture, but also it can run as a local script like YAIM

• CERN moved the whole infrastructure to Puppet, therefore it was possible to make use of
the local expertise to code the DPM Puppet modules

• There is high availability of Puppet modules already developed and shared via a common
portal (PuppetForge ([13]))

Given that DPM is composed by several components, the decision was to implement
Puppet modules for each of them, plus a meta module (puppet-dpm [14] that makes use of
the modules to setup a DPM instance.

The DPM team developed the following modules: puppet-gridftp, puppet-dmlite, puppet-
lcgdm, pupet-xrootd, puppet-dpm, other modules have been developed by other teams at
CERN for their needs, (puppet-voms, puppet-bdii, puppet-fetch-crl) and third-party modules
are included (puppet-mysql, puppet-memcached, puppet-firewall).

All necessary Puppet modules are distributed in one of the RPM packages that belong to a
DPM release, in order to make sure that the sysadmin has always the correct version of them,
i.e. the one that is known to work with the DPM version he has installed. For development
purposes, the modules are also available via PuppetForge.

The DPM puppet modules simplify considerably the transition from the legacy DPM
deployments to new DOME based installations. The site admin can easily switch to DOME
an existing installation, or directly install DPM with DOME from scratch without the legacy
daemons being present.

8 Transitioning steps

As we remarked, the new components are totally compatible with the older ones and can
coexist with them, if properly configured. This was an important design decision. Care has
been taken to allow sites to schedule the activation of DOME at their convenience, decoupled
both from the deployment of the relevant update (DOME can remain dormant if the system
is configured in "legacy mode") and from synchronising with experiments.

The transition steps enumerated below each represent a working system which could be
maintained indefinitely.

• Starting with the release of DPM 1.9 (which includes DOME) in Q4 2016, the sites can start
upgrading head nodes and disk servers at the pace that they prefer. This allows deployment,
in a dormant state, of DOME.

• Dome can be configured, while disabled, giving access to a more powerful dmlite-shell
administration utility.

• The space reporting counters can now be primed. From this moment on, the site will
precisely keep track of the disk space used (not the free space yet).

• The dmlite-shell can be used to associate each of the existing spacetokens to a suitable
directory in the logical name space of the Virtual Organization they belong to.

• DOME can now be fully enabled. The system is running both the historical software stack
and the new one, at the same time. All the recent features are enabled, including the ability
of producing sophisticated per-directory free/used space reports. The older stack is used
only for SRM services.

• Once the SRM services are no longer used, the system administrator can safely choose to
uninstall the older components.

9 End of support for legacy components

The transition to the components described in this paper was motivated in part by the difficulty
of maintaining software libraries that were written in the 80s and 90s [9], on which the oldest
core components of DPM are based.

Since SRM has been designated an optional service for WLCG storage systems, a date
has been agreed for the end of support for the full legacy stack. These components, often
referred to as "lcg-dm", will be supported until end of May 2019, after which date DPM sup-
port will just advise sites to reconfigure DPM in order to use the newer components based on
DOME.
This includes advising user communities to stop using unsupported data protocols like SRM,
rfio, dpns, dpm-daemon. The "lcg-dm" components will remain in the public EPEL reposito-
ries for an undefined time, as the DPM team will not take any action to remove them.

10 Conclusion

The introduction of DOME represents the final component in DPM’s definitive architecture.
The project’s platform for the future has now reached its final form and foresees just compo-
nent consolidations. With a fully modernised, maintainable stack, scaleable architecture and
rich protocol support, DPM is able to protect the investment of the large number of sites who
have entrusted their data to it and can expect to absorb future data volumes without major
architectural modifications.

References

[1] Furano F, Hanushevsky A 2010 Scalla/xrootd WAN globalization tools: Where we are J.
Phys.: Conf. Ser. 219 072005 http://iopscience.iop.org/1742-6596/219/7/072005/

[2] The xrootd.org homepage http://www.xrootd.org
[3] Alvarez Ayllon A, Beche A, Furano F, Hellmich M, Keeble O and Brito Da

Rocha R DPM: Future Proof Storage CHEP 2012 J. Phys.: Conf. Ser. 396 032015
DOI: 10.1088/1742-6596/396/3/032015 https://iopscience.iop.org/article/10.1088/1742-
6596/396/3/032015/meta

[4] Alvarez Ayllon A, Beche A, Furano F, Hellmich M, Keeble O, Brito Da Rocha R Web
enabled data management with DPM & LFC CHEP 2012 J. Phys.: Conf. Ser. 396 052006
DOI: 10.1088/1742-6596/396/5/052006 https://iopscience.iop.org/article/10.1088/1742-
6596/396/5/052006/meta

[5] Manzi A, Furano F, Keeble O, Bitzes G DPM evolution: a disk operations management
engine for DPM October 2017 J. Phys.: Conf. Ser. 898(6) 062011, DOI: 10.1088/1742-
6596/898/6/062011

7

EPJ Web of Conferences 214, 04018 (2019)	 https://doi.org/10.1051/epjconf/201921404018
CHEP 2018



[6] Heinlein P FastCGI November 1998 Linux J. 1998, 55es, Article 1
[7] Storage Resource Management (SRM) Working Group https://sdm.lbl.gov/srm-wg/
[8] Kalmady R, Tierney B 2001 A comparison of GSIFTP and RFIO on a WAN Proceedings

of CHEP’01, September 3-7, Beijing, China,
[9] Baud J-P et al. SHIFT, the Scalable Heterogeneous Integrated Facility Proc. of the Int.

Conf. on CHEP’91, Univ. Acad. Press, Tokyo 571-82
[10] Davix documentation https://dmc-docs.web.cern.ch/dmc-docs/davix.html
[11] Aiftimiei, C. (2013, May 28). EMI YAIM CORE V. 5.1.1. Zenodo.

http://doi.org/10.5281/zenodo.6824
[12] Plummer, Shawn and Warden, David, Puppet: Introduction, Implementation, and

Inevitable Refactoring Proceedings of the 2016 ACM on SIGUCCS Annual Con-
ference, SIGUCCS ’16, ISBN: 978-1-4503-4095-3, DOI: 10.1145/2974927.2974950
http://doi.acm.org/10.1145/2974927.2974950

[13] PuppetForge https://forge.puppet.com/
[14] Manzi A, Sartirana A (2018, September 4). cern-it-sdc-id/puppet-dpm: puppet-dpm

v0.6.1 (Version v0.6.1) Zenodo. http://doi.org/10.5281/zenodo.1408556

8

EPJ Web of Conferences 214, 04018 (2019)	 https://doi.org/10.1051/epjconf/201921404018
CHEP 2018


