

Apache Spark usage and deployment models
for scientific computing

Diogo Castro1, Prasanth Kothuri1, Piotr Mrowczynski1, Danilo Piparo1, and Enric Tejedor1

1CERN. 1 Esplanade des Particules, Meyrin, Switzerland

Abstract. This talk is about sharing our recent experiences in providing
data analytics platform based on Apache Spark for High Energy Physics,
CERN accelerator logging system and infrastructure monitoring. The
Hadoop Service has started to expand its user base for researchers who
want to perform analysis with big data technologies. Among many
frameworks, Apache Spark is currently getting the most traction from
various user communities and new ways to deploy Spark such as Apache
Mesos or Spark on Kubernetes have started to evolve rapidly. Meanwhile,
notebook web applications such as Jupyter offer the ability to perform
interactive data analytics and visualizations without the need to install
additional software. CERN already provides a web platform, called SWAN
(Service for Web-based ANalysis), where users can write and run their
analyses in the form of notebooks, seamlessly accessing the data and
software they need. The first part of the presentation talks about several
recent integrations and optimizations to the Apache Spark computing
platform to enable HEP data processing and CERN accelerator logging
system analytics. The optimizations and integrations, include, but not
limited to, access of kerberized resources, xrootd connector enabling
remote access to EOS storage and integration with SWAN for interactive
data analysis, thus forming a truly Unified Analytics Platform. The second
part of the talk touches upon the evolution of the Apache Spark data
analytics platform, particularly sharing the recent work done to run Spark
on Kubernetes on the virtualized and container-based infrastructure in
Openstack. This deployment model allows for elastic scaling of data
analytics workloads enabling efficient, on-demand utilization of resources
in private or public clouds.

1 Introduction

Large Hadron Collider (LHC) is in an era of excellent performance delivering collisions at
an ever increasing rate which increases the amount of information recorded by LHC
experiments. As an example, a new record was set in August 2018 when 13.8 petabytes of
data was recorded from all sources of LHC experiments. The burgeoning size of the
datasets is leading the High Energy Physics (HEP) community to modernize the analysis
infrastructure with the new approaches developed in the industry. One such distributed data
analytics engine that is gaining wide adaption across CERN [1] accelerator sector, physics
researchers and IT infrastructure is Apache Spark [2].

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 07020 (2019)	 https://doi.org/10.1051/epjconf/201921407020
CHEP 2018

Apache Spark is a unified computing engine and a set of libraries for massive parallel data
processing on computer clusters. Spark supports multiple widely used programming
languages (Python, Java, Scala, and R), includes libraries for diverse tasks ranging from
SQL to streaming and machine learning, and runs anywhere from a laptop to a cluster of
thousands of servers. This makes it an easy system to start with and scale-up to big data
processing of incredibly large scale.

At the same time, there is an evolving trend towards interactive analysis at CERN, where
researchers are using hosted Jupyter notebooks to perform data analysis in the cloud using
SWAN [3] service. SWAN - Service for Web based data ANalysis is a cloud-based and
interactive data analysis platform at CERN, accessible via a web interface. SWAN is built
on top of the Jupyter [4] notebook platform for interactive data analysis, and is integrated
with the CERN ecosystem of technologies for what concerns storage and software.

To address ever demanding needs of researchers to perform data analysis at scale, several
extensions, optimizations and integrations are made to Apache Spark to serve the needs of
HEP community. In this paper we present the recent changes and innovations of data
analysis infrastructure built around Apache Spark.

This paper is structured as follows. Section 2 introduces the integration of SWAN with
spark clusters. Section 3 describes the cloud-native deployment of Spark on Kubernetes [5]
resource manager. Section 4 details the Evaluation and analysis of Spark on Kubernetes
deployment. Finally, Section 5 discusses conclusions and future work.

2 Integration of SWAN with Spark Clusters

The Hadoop [6] and Spark service provided by CERN IT is used by the IT Monitoring
service which is critical for CC operations and WLCG, IT Security for intrusion detection,
LHC experiments (CMS, ATLAS) for the analytics on computing data and more recently
by CERN Beams department who are developing the next generation of the CERN
accelerator logging platform. All these projects use Apache Spark both for the ETL to
ingest and organize data on HDFS and analytics. The CERN accelerator logging platform
(NXCALS [7]) has around 1000 users all around CERN who today perform control system
monitoring, operation and analysis. The team has chosen SWAN as the ideal NXCALS
entry point to submit computations on the accelerator’s complex logging data to the Spark,
so that the results can be visualized in the Jupyter interface and stored as notebooks. This
meant there was a need to integrate SWAN, the hosted Jupyter notebooks service with
distributed computing framework, Apache Spark. The following sub-subsections describe
the various components of the integration.

2.1 Spark Connector

SWAN users once authenticated are forwarded to JupyterHub [8] server, which manages
user sessions. JupyterHub spawns a Docker container for every user in order to encapsulate
their session. User containers run in unprivileged mode and their usage of the host’s
processors and memory is restricted. Inside the container, a Jupyter server process is
created to handle the requests of the users when they are working in the notebook interface.
In addition, the container has access to CVMFS [9] for software which include Apache
Spark Software and CERNBox [10] for data from their sessions.

From the notebook inside the container a Spark session can be established that connects to a
master endpoint on the Spark cluster in order to run a job. The master obtains resources for

2

EPJ Web of Conferences 214, 07020 (2019)	 https://doi.org/10.1051/epjconf/201921407020
CHEP 2018

Apache Spark is a unified computing engine and a set of libraries for massive parallel data
processing on computer clusters. Spark supports multiple widely used programming
languages (Python, Java, Scala, and R), includes libraries for diverse tasks ranging from
SQL to streaming and machine learning, and runs anywhere from a laptop to a cluster of
thousands of servers. This makes it an easy system to start with and scale-up to big data
processing of incredibly large scale.

At the same time, there is an evolving trend towards interactive analysis at CERN, where
researchers are using hosted Jupyter notebooks to perform data analysis in the cloud using
SWAN [3] service. SWAN - Service for Web based data ANalysis is a cloud-based and
interactive data analysis platform at CERN, accessible via a web interface. SWAN is built
on top of the Jupyter [4] notebook platform for interactive data analysis, and is integrated
with the CERN ecosystem of technologies for what concerns storage and software.

To address ever demanding needs of researchers to perform data analysis at scale, several
extensions, optimizations and integrations are made to Apache Spark to serve the needs of
HEP community. In this paper we present the recent changes and innovations of data
analysis infrastructure built around Apache Spark.

This paper is structured as follows. Section 2 introduces the integration of SWAN with
spark clusters. Section 3 describes the cloud-native deployment of Spark on Kubernetes [5]
resource manager. Section 4 details the Evaluation and analysis of Spark on Kubernetes
deployment. Finally, Section 5 discusses conclusions and future work.

2 Integration of SWAN with Spark Clusters

The Hadoop [6] and Spark service provided by CERN IT is used by the IT Monitoring
service which is critical for CC operations and WLCG, IT Security for intrusion detection,
LHC experiments (CMS, ATLAS) for the analytics on computing data and more recently
by CERN Beams department who are developing the next generation of the CERN
accelerator logging platform. All these projects use Apache Spark both for the ETL to
ingest and organize data on HDFS and analytics. The CERN accelerator logging platform
(NXCALS [7]) has around 1000 users all around CERN who today perform control system
monitoring, operation and analysis. The team has chosen SWAN as the ideal NXCALS
entry point to submit computations on the accelerator’s complex logging data to the Spark,
so that the results can be visualized in the Jupyter interface and stored as notebooks. This
meant there was a need to integrate SWAN, the hosted Jupyter notebooks service with
distributed computing framework, Apache Spark. The following sub-subsections describe
the various components of the integration.

2.1 Spark Connector

SWAN users once authenticated are forwarded to JupyterHub [8] server, which manages
user sessions. JupyterHub spawns a Docker container for every user in order to encapsulate
their session. User containers run in unprivileged mode and their usage of the host’s
processors and memory is restricted. Inside the container, a Jupyter server process is
created to handle the requests of the users when they are working in the notebook interface.
In addition, the container has access to CVMFS [9] for software which include Apache
Spark Software and CERNBox [10] for data from their sessions.

From the notebook inside the container a Spark session can be established that connects to a
master endpoint on the Spark cluster in order to run a job. The master obtains resources for

the job and makes them available to the driver running inside Spark session. As shown in
Figure 1, the communication between the Spark driver and the cluster is bi-directional: the
driver also acts as a server and listens on three ports. These ports need to be open for the
driver servers to receive the incoming connections. Since the driver is running inside a
Docker [11] container, some extra configuration is needed to:

- Open three ports on the user container, so that the driver servers can listen on them.
- Open a range of ports on the host (i.e. SWAN server machine). Since a SWAN server

can potentially run multiple user sessions at the same time, the range has to be wide
enough to provide ports for all the corresponding user containers.

- At container creation time, link the container ports to a subset of the ports in the host,
so that incoming connections to those host ports are redirected to the driver servers
inside the container.

Figure 1: Interaction between SWAN server and Spark Cluster

The Spark Connector which is implemented as a Jupyter extension allows users to specify
additional spark configuration as shown in the figure 2 while creation of the spark session.
In addition for the most common use cases there is a possibility to create a configuration
bundle as show in the figure 3 which the users can select while creating the spark session.

3

EPJ Web of Conferences 214, 07020 (2019)	 https://doi.org/10.1051/epjconf/201921407020
CHEP 2018

Figure 2: Spark Configuration Figure 3 : Configuration Bundle

2.2 Spark Monitor

After creating the spark session, any computation triggered in the notebook is offloaded to
the spark cluster. It is not trivial to monitor and debug the status of the computation that is
offloaded to the cluster, it requires connecting to the external cluster and accessing Spark
web UI server. Spark Monitor [12] extension developed in the HSF GSoC [13] enables the
monitoring of jobs sent from a notebook application, from within the notebook itself.

The spark monitor extension integrates with the cell structure of the notebook and
automatically detects jobs submitted from a notebook cell. It displays the jobs and stages of
spark application spawned from a cell, with real time progress bars, status and resource
utilization as depicted in figure 4. The extension provides an aggregated view of the
number of active tasks and available executor cores in the cluster. An event timeline
displays the overall workload split into jobs, stages and tasks across executors in the cluster
as depicted in figure 5 which is useful to identify the stragglers and take appropriate action.
An event timeline displays the overall workload split into jobs, stages and tasks across
executors in the cluster.

4

EPJ Web of Conferences 214, 07020 (2019)	 https://doi.org/10.1051/epjconf/201921407020
CHEP 2018

Figure 2: Spark Configuration Figure 3 : Configuration Bundle

2.2 Spark Monitor

After creating the spark session, any computation triggered in the notebook is offloaded to
the spark cluster. It is not trivial to monitor and debug the status of the computation that is
offloaded to the cluster, it requires connecting to the external cluster and accessing Spark
web UI server. Spark Monitor [12] extension developed in the HSF GSoC [13] enables the
monitoring of jobs sent from a notebook application, from within the notebook itself.

The spark monitor extension integrates with the cell structure of the notebook and
automatically detects jobs submitted from a notebook cell. It displays the jobs and stages of
spark application spawned from a cell, with real time progress bars, status and resource
utilization as depicted in figure 4. The extension provides an aggregated view of the
number of active tasks and available executor cores in the cluster. An event timeline
displays the overall workload split into jobs, stages and tasks across executors in the cluster
as depicted in figure 5 which is useful to identify the stragglers and take appropriate action.
An event timeline displays the overall workload split into jobs, stages and tasks across
executors in the cluster.

Figure 4: Visualization of status and resource utilization

Figure 5: Visualisation of Spark Application decomposition

2.3 HDFS Browser

The input data for the analysis is on an HDFS filesystem. It is often not trivial for the
physicist to know the deep directory structures to select the input data for analysis. To
overcome this obstacle, HDFS Browser Jupyter plugin is created to browse the HDFS
filesystem as depicted in figure 6. While creating the user container on SWAN, webhdfs
token is obtained for the user and WEBHDFS_TOKEN environment variable is populated
which is appended to the all the WEBHDFS REST API [14] calls.

Figure 6 : Browsing the HDFS filesystem from Jupyter notebook

5

EPJ Web of Conferences 214, 07020 (2019)	 https://doi.org/10.1051/epjconf/201921407020
CHEP 2018

2.4 Authentication and Encryption

Spark supports a custom authentication protocol influenced by the ISO/IEC 9798 protocol
[15] and AES encryption for the communication between the various endpoints of the
driver and executor. This configuration for authentication and encryption is enabled for
spark.driver.port and Block manager endpoints. For Spark on YARN deployment which is
the case with SWAN, Spark automatically generates and distributes the shared secret using
YARN RPC end points.

3 Apache Spark deployment models

In some cases, organizations are bound to usage of external mass storage systems for data
analysis use-cases - Amazon S3, Google Cloud Storage in public clouds or on-premise
mass storages like EOS at CERN. These reasons are usually already existing large datasets
at rest in external storage systems, growing amount of data which cannot be handled cost-
efficiently on traditional systems as HDFS or system complexity. One of such cases is
current data-processing pipeline architecture at CERN, where Spark runs over
Hadoop/YARN cluster with existing massive data collections on HDFS from stable
production-grade use cases. The Hadoop/Spark clusters are sized for known production
workloads to achieve highest possible utilization. Due to limited capacity on existing
dedicated Hadoop cluster, and increasing need for large scale physics analysis of files
stored at external storage service at up to 1 PB scale, there is a need for increased flexibility
and faster capacity provisioning for Apache Spark clusters - specifically for workloads
operating on datasets coming from external and elastic storage services. In this architecture
of Spark/Hadoop, it is very difficult to scale the cluster dynamically according to the users’
needs, due to the fact Spark operates on physical machines containing HDFS data.
Additionally, YARN clusters are difficult to configure, maintain and have limited
reproducibility and portability across infrastructures. Emergence of cloud-native and
container-centric technologies as Kubernetes are expected to leverage cloud rapid resource
provisioning and elasticity. Kubernetes popularity and demand in industry triggered
contributions to upstream Apache Spark to allow cloud native data processing using Spark
on Kubernetes.

3.1 Decoupling Compute and Storage for Big Data

The reseach by Ganesh Ananthanarayanan et. al. [16] defends the hypothesis that in cluster
computing disk-locality is becoming irrelevant. This is due to the fact, that two fundamental
assumptions - disk bandwidth higher than network bandwidth, and disk I/O being a
considerable fraction of task duration - are no longer valid. They assume that fast networks
and good datacenter networking, plus economic aspects of large-scale data storage in
external service are in favour of architectures in which compute nodes are decoupled from
nodes optimized for storage. In the paper published by Accenture Technology Labs on
Cloud-based Hadoop Deployments [17], the Google Cloud Storage (GCS) was compared to
Hadoop Distributed File System (HDFS) in terms of performance for processing the data in
three scenarios: recommendation engine, sessionization and document clustering. They
concluded that not only external storages as GCP offer better performance-cost ratio and
better data availability, but also for fine-tuned workloads they achieved higher performance
than reading from HDFS preserving data-locality. Databricks in the blog post about
choosing S3 over HDFS, proves based on customer research that S3 offers higher SLA

6

EPJ Web of Conferences 214, 07020 (2019)	 https://doi.org/10.1051/epjconf/201921407020
CHEP 2018

2.4 Authentication and Encryption

Spark supports a custom authentication protocol influenced by the ISO/IEC 9798 protocol
[15] and AES encryption for the communication between the various endpoints of the
driver and executor. This configuration for authentication and encryption is enabled for
spark.driver.port and Block manager endpoints. For Spark on YARN deployment which is
the case with SWAN, Spark automatically generates and distributes the shared secret using
YARN RPC end points.

3 Apache Spark deployment models

In some cases, organizations are bound to usage of external mass storage systems for data
analysis use-cases - Amazon S3, Google Cloud Storage in public clouds or on-premise
mass storages like EOS at CERN. These reasons are usually already existing large datasets
at rest in external storage systems, growing amount of data which cannot be handled cost-
efficiently on traditional systems as HDFS or system complexity. One of such cases is
current data-processing pipeline architecture at CERN, where Spark runs over
Hadoop/YARN cluster with existing massive data collections on HDFS from stable
production-grade use cases. The Hadoop/Spark clusters are sized for known production
workloads to achieve highest possible utilization. Due to limited capacity on existing
dedicated Hadoop cluster, and increasing need for large scale physics analysis of files
stored at external storage service at up to 1 PB scale, there is a need for increased flexibility
and faster capacity provisioning for Apache Spark clusters - specifically for workloads
operating on datasets coming from external and elastic storage services. In this architecture
of Spark/Hadoop, it is very difficult to scale the cluster dynamically according to the users’
needs, due to the fact Spark operates on physical machines containing HDFS data.
Additionally, YARN clusters are difficult to configure, maintain and have limited
reproducibility and portability across infrastructures. Emergence of cloud-native and
container-centric technologies as Kubernetes are expected to leverage cloud rapid resource
provisioning and elasticity. Kubernetes popularity and demand in industry triggered
contributions to upstream Apache Spark to allow cloud native data processing using Spark
on Kubernetes.

3.1 Decoupling Compute and Storage for Big Data

The reseach by Ganesh Ananthanarayanan et. al. [16] defends the hypothesis that in cluster
computing disk-locality is becoming irrelevant. This is due to the fact, that two fundamental
assumptions - disk bandwidth higher than network bandwidth, and disk I/O being a
considerable fraction of task duration - are no longer valid. They assume that fast networks
and good datacenter networking, plus economic aspects of large-scale data storage in
external service are in favour of architectures in which compute nodes are decoupled from
nodes optimized for storage. In the paper published by Accenture Technology Labs on
Cloud-based Hadoop Deployments [17], the Google Cloud Storage (GCS) was compared to
Hadoop Distributed File System (HDFS) in terms of performance for processing the data in
three scenarios: recommendation engine, sessionization and document clustering. They
concluded that not only external storages as GCP offer better performance-cost ratio and
better data availability, but also for fine-tuned workloads they achieved higher performance
than reading from HDFS preserving data-locality. Databricks in the blog post about
choosing S3 over HDFS, proves based on customer research that S3 offers higher SLA

(availability and durability), performance-cost ratio, and is much more elastic data storage
type than HDFS. In their benchmark of data platform in the cloud [18], they also prove that
while in default setup, HDFS can reach much higher local node throughput thanks to data-
locality, in the optimized setup reading from S3 can outperform in performance HDFS
based on-premise platform (Cloudera Impala).

3.2 Provisioning of Spark on Kubernetes cluster

Spark on Kubernetes can be deployed using on-premise physical machines or as a cloud-
managed service over cloud resources. At CERN, Spark on Kubernetes cluster is primarily
deployed over OpenStack [19] private cloud using MAGNUM, creating clusters consisting
of hundreds of nodes in few minutes. This allows to abstract from administrators the
DevOps effort of provisioning, running and maintaining clusters, as this is a case of
Spark/YARN and Spark/K8S with on-premise. Comparison of architectures regarding
deployments is shown on Figure 7.

Figure 7: Top level comparison of Spark deployments

3.3 Spark Kubernetes Operator – Managing the lifecycle of Spark
Applications

To control and manage Spark Applications running Kubernetes cluster, Spark Kubernetes
Operator is used. In the basic concept, Spark Kubernetes Operator [20] has the following
roles in the cluster:

1. Enables declarative application specification in YAML format and management of
applications via dedicated API call (command line tool). Allows to customize
driver and executors in a declarative way.

2. Deploys Spark Driver in the cluster (which later deploys on random/selected nodes
executors) on behalf of the user via API call (command line tool).

3. Monitors driver and executors of submitted applications in a granular way.
4. Resiliency and supervision of Spark Applications. Automated application restart

with a configurable restart policy, automated retries of failed submissions with
optional linear back-off, automated application re-submission for updated
SparkAppliation definition, and allows to run applications on schedule.

7

EPJ Web of Conferences 214, 07020 (2019)	 https://doi.org/10.1051/epjconf/201921407020
CHEP 2018

Spark Operator has been developed (mainly by Google, with effort from CERN, Microsoft
and RedHat) as an open-source project.

In the cloud-native architecture of Spark on Kubernetes, there is a layered structure of
software components, which are maintained using dedicated command line tools (Figure
13:

 OpenStack Magnum (OpenStack coe cluster): used to create, update, resize,
delete and access the cluster.

 Kubectl (kubectl): basic tool for managing Kubernetes. Used to maintain, deploy
and configuration the cluster and cluster applications.

 Helm (helm): Package manager for Kubernetes. Used to deploy and update Spark
Operator in the Kubernetes cluster

 Sparkctl (sparkctl): used to interact with Spark Operator in order to submit and
monitor applications defined in YAML files. Uses libraries from Kubectl to
operate

The figure 8 depicts the client tools required to manage Spark Kubernetes clusters over
OpenStack resources at CERN

Figure 8: Client tools to manage Spark Kubernetes cluster

4 Evaluation of Spark on Kubernetes

The deployments of Spark on YARN and Kubernetes is validated with industry standard
TPC-DS [21] benchmarking toolkit. TPC-DS provide set of repeatable, controlled and
highly comparable tests which evaluate upward boundaries of systems in aspects as CPU,
Memory and I/O utilization, and ability of systems to compute and examine large volumes
of data. Benchmark consists of over 100 queries and has been performed in order to
demonstrate differences between the architectures in terms of network throughput (I/O
intensive queries), processing power and virtualization overhead (CPU intensive queries)
and performance of Spark and shuffling (Shuffle intensive queries).

TPCDS Benchmark has been performed for Apache Spark with two resource managers and
infrastructures (YARN/On-Premise and Kubernetes/Cloud) in order to ensure comparable
and efficient execution for different types of workloads with exact Apache Spark version

8

EPJ Web of Conferences 214, 07020 (2019)	 https://doi.org/10.1051/epjconf/201921407020
CHEP 2018

Spark Operator has been developed (mainly by Google, with effort from CERN, Microsoft
and RedHat) as an open-source project.

In the cloud-native architecture of Spark on Kubernetes, there is a layered structure of
software components, which are maintained using dedicated command line tools (Figure
13:

 OpenStack Magnum (OpenStack coe cluster): used to create, update, resize,
delete and access the cluster.

 Kubectl (kubectl): basic tool for managing Kubernetes. Used to maintain, deploy
and configuration the cluster and cluster applications.

 Helm (helm): Package manager for Kubernetes. Used to deploy and update Spark
Operator in the Kubernetes cluster

 Sparkctl (sparkctl): used to interact with Spark Operator in order to submit and
monitor applications defined in YAML files. Uses libraries from Kubectl to
operate

The figure 8 depicts the client tools required to manage Spark Kubernetes clusters over
OpenStack resources at CERN

Figure 8: Client tools to manage Spark Kubernetes cluster

4 Evaluation of Spark on Kubernetes

The deployments of Spark on YARN and Kubernetes is validated with industry standard
TPC-DS [21] benchmarking toolkit. TPC-DS provide set of repeatable, controlled and
highly comparable tests which evaluate upward boundaries of systems in aspects as CPU,
Memory and I/O utilization, and ability of systems to compute and examine large volumes
of data. Benchmark consists of over 100 queries and has been performed in order to
demonstrate differences between the architectures in terms of network throughput (I/O
intensive queries), processing power and virtualization overhead (CPU intensive queries)
and performance of Spark and shuffling (Shuffle intensive queries).

TPCDS Benchmark has been performed for Apache Spark with two resource managers and
infrastructures (YARN/On-Premise and Kubernetes/Cloud) in order to ensure comparable
and efficient execution for different types of workloads with exact Apache Spark version

and exact number of resources (spark executors) processing the data stored in EOS,
multiple iterations of the query have been performed and the average execution time is
taken into consideration for comparison. The results of the selected queries is shown in
figure 9

The following conclusions were drawn based on the results;

 I/O Intensive Query on Spark/Kubernetes and Spark/YARN could reach similar
I/O Performance.

 Spark/YARN can reach higher performance on Executor CPU Time, which
indicated average loss of 5% CPU efficiency due to virtualization.

 Spark/Kubernetes and Spark/YARN has similar execution time for Shuffle
Intensive Query.

Figure 9: Elapsed time of selected queries executed against YARN & K8s

5 Conclusions and Future work

Integration of Spark clusters with SWAN allows interactive data exploration and analysis
from notebook interface which allows the researchers from the accelerator sector to monitor
and analyse the performance of various components of LHC machine. In addition
integration of distributed processing framework like Apache Spark with hosted Jupyter
notebook service like SWAN allows us to take first steps towards a unified analytics
platform to handle all analytics workloads. The current deployment of Spark (on YARN)
satisfies the needs of stable, predictable and production workloads from NXCals, WLCG &
CC monitoring, IT security etc. The future demand from the users, especially the usage of
spark for physics analysis from experiments is satisfied with Spark on Kubernetes on an
OpenStack deployment model.

9

EPJ Web of Conferences 214, 07020 (2019)	 https://doi.org/10.1051/epjconf/201921407020
CHEP 2018

In Future, there are plans to develop functionality for the creation and usage of disposable
Spark on Kubernetes clusters from the SWAN platform. This makes it a truly elastic unified
data analysis platform with efficient usage of CERN computing resources.

References

[1] European Organisation for Nuclear Research, http://www.cern.ch

[2] Apache Spark, http://spark.apache.org/

[3] E. Tejedor, D. Piparo, J. Moscicki, L. Mascetti, P. Mato, M. Lamanna, SWAN: a
Service for Web-Based Data Analysis in the Cloud, in Proceedings of the 22nd
International Conference on Computing in High Energy and Nuclear Physics (CHEP 2016)
(Journal of Physics: Conference Series, 2016)

[4] Jupyter: Open source, interactive data science and scientific computing,
http://jupyter.org

[5] Kubernetes: Production-Grade Container Orchestration, https://kubernetes.io/

[6] Apache Hadoop, http://hadoop.apache.org/

[7] The Architecture of the Next CERN Accelerator Logging Service,
https://databricks.com/blog/2017/12/14/the-architecture-of-the-next-cern-accelerator-
logging-service.html

[8] JupyterHub, https://jupyterhub.readthedocs.io

[9] CernVM File System, https://cernvm.cern.ch

[10] L. Mascetti, H.G. Labrador, M. Lamanna, J. Moscicki, A. Peters, Journal of Physics:
Conference Series 664, 062037 (2015)

[11] Docker: Container runtime, https://www.docker.com/

[12] Spark Monitor, https://krishnan-r.github.io/sparkmonitor/

[13] Google Summer of Code - HEP Software Foundation,
https://hepsoftwarefoundation.org/activities/gsoc.html

[14] WEDHDFS REST API, https://hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-hdfs/WebHDFS.html

[15] Spark Security: Spark Auth Protocol and AES Encryption Support
https://github.com/apache/spark/blob/master/common/network-
common/src/main/java/org/apache/spark/network/crypto/README.md

[16] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Disk-locality in
datacenter computing considered irrelevant,” Proceedings of the 13th USENIX Conference
on Hot Topics in Operating Systems, 2011.

[17] A. Wendt, “Cloud-based Hadoop deployments: benefits and considerations.”
Accenture Technology Labs, 2017. https://goo.gl/ZhNbVy.

[18] R. Xin, “Benchmarking Big Data SQL Platforms in the cloud.” Databricks Blog, 2017.
https://databricks.com/blog/2017/07/12/benchmarking-big-data-sql-platforms-in-the-
cloud.html.

[19] OpenStack, https://www.openstack.org/

[20] Y. Li, P. Mrowczynski, et al., “Spark K8S Operator - Spark Application API,” 2018.
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/master/docs/api.md

[21] TPC Benchmark DS (TPC-DS), http://www.tpc.org/tpcds

10

EPJ Web of Conferences 214, 07020 (2019)	 https://doi.org/10.1051/epjconf/201921407020
CHEP 2018

