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Abstract. This talk is about sharing our recent experiences in providing 
data analytics platform based on Apache Spark for High Energy Physics, 
CERN accelerator logging system and infrastructure monitoring. The 
Hadoop Service has started to expand its user base for researchers who 
want to perform analysis with big data technologies. Among many 
frameworks, Apache Spark is currently getting the most traction from 
various user communities and new ways to deploy Spark such as Apache 
Mesos or Spark on Kubernetes have started to evolve rapidly. Meanwhile, 
notebook web applications such as Jupyter offer the ability to perform 
interactive data analytics and visualizations without the need to install 
additional software. CERN already provides a web platform, called SWAN 
(Service for Web-based ANalysis), where users can write and run their 
analyses in the form of notebooks, seamlessly accessing the data and 
software they need. The first part of the presentation talks about several 
recent integrations and optimizations to the Apache Spark computing 
platform to enable HEP data processing and CERN accelerator logging 
system analytics. The optimizations and integrations, include, but not 
limited to, access of kerberized resources, xrootd connector enabling 
remote access to EOS storage and integration with SWAN for interactive 
data analysis, thus forming a truly Unified Analytics Platform. The second 
part of the talk touches upon the evolution of the Apache Spark data 
analytics platform, particularly sharing the recent work done to run Spark 
on Kubernetes on the virtualized and container-based infrastructure in 
Openstack. This deployment model allows for elastic scaling of data 
analytics workloads enabling efficient, on-demand utilization of resources 
in private or public clouds.  

1 Introduction  

Large Hadron Collider (LHC) is in an era of excellent performance delivering collisions at 
an ever increasing rate which increases the amount of information recorded by LHC 
experiments. As an example, a new record was set in August 2018 when 13.8 petabytes of 
data was recorded from all sources of LHC experiments. The burgeoning size of the 
datasets is leading the High Energy Physics (HEP) community to modernize the analysis 
infrastructure with the new approaches developed in the industry. One such distributed data 
analytics engine that is gaining wide adaption across CERN [1] accelerator sector, physics 
researchers and IT infrastructure is Apache Spark [2]. 
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Apache Spark is a unified computing engine and a set of libraries for massive parallel data 
processing on computer clusters. Spark supports multiple widely used programming 
languages (Python, Java, Scala, and R), includes libraries for diverse tasks ranging from 
SQL to streaming and machine learning, and runs anywhere from a laptop to a cluster of 
thousands of servers. This makes it an easy system to start with and scale-up to big data 
processing of incredibly large scale. 

At the same time, there is an evolving trend towards interactive analysis at CERN, where 
researchers are using hosted Jupyter notebooks to perform data analysis in the cloud using 
SWAN [3] service. SWAN - Service for Web based data ANalysis is a cloud-based and 
interactive data analysis platform at CERN, accessible via a web interface. SWAN is built 
on top of the Jupyter [4] notebook platform for interactive data analysis, and is integrated 
with the CERN ecosystem of technologies for what concerns storage and software. 

To address ever demanding needs of researchers to perform data analysis at scale, several 
extensions, optimizations and integrations are made to Apache Spark to serve the needs of 
HEP community. In this paper we present the recent changes and innovations of data 
analysis infrastructure built around Apache Spark. 

This paper is structured as follows. Section 2 introduces the integration of SWAN with 
spark clusters. Section 3 describes the cloud-native deployment of Spark on Kubernetes [5] 
resource manager. Section 4 details the Evaluation and analysis of Spark on Kubernetes 
deployment. Finally, Section 5 discusses conclusions and future work. 

2 Integration of SWAN with Spark Clusters  

The Hadoop [6] and Spark service provided by CERN IT is used by the IT Monitoring 
service which is critical for CC operations and WLCG, IT Security for intrusion detection, 
LHC experiments (CMS, ATLAS) for the analytics on computing data and more recently 
by CERN Beams department who are developing the next generation of the CERN 
accelerator logging platform. All these projects use Apache Spark both for the ETL to 
ingest and organize data on HDFS and analytics. The CERN accelerator logging platform 
(NXCALS [7]) has around 1000 users all around CERN who today perform control system 
monitoring, operation and analysis. The team has chosen SWAN as the ideal NXCALS 
entry point to submit computations on the accelerator’s complex logging data to the Spark, 
so that the results can be visualized in the Jupyter interface and stored as notebooks. This 
meant there was a need to integrate SWAN, the hosted Jupyter notebooks service with 
distributed computing framework, Apache Spark. The following sub-subsections describe 
the various components of the integration. 

2.1 Spark Connector  

SWAN users once authenticated are forwarded to JupyterHub [8] server, which manages 
user sessions. JupyterHub spawns a Docker container for every user in order to encapsulate 
their session. User containers run in unprivileged mode and their usage of the host’s 
processors and memory is restricted. Inside the container, a Jupyter server process is 
created to handle the requests of the users when they are working in the notebook interface. 
In addition, the container has access to CVMFS [9] for software which include Apache 
Spark Software and CERNBox [10] for data from their sessions. 
 
From the notebook inside the container a Spark session can be established that connects to a 
master endpoint on the Spark cluster in order to run a job. The master obtains resources for 
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the job and makes them available to the driver running inside Spark session. As shown in 
Figure 1, the communication between the Spark driver and the cluster is bi-directional: the 
driver also acts as a server and listens on three ports. These ports need to be open for the 
driver servers to receive the incoming connections. Since the driver is running inside a 
Docker [11] container, some extra configuration is needed to: 
 
- Open three ports on the user container, so that the driver servers can listen on them. 
- Open a range of ports on the host (i.e. SWAN server machine). Since a SWAN server 

can potentially run multiple user sessions at the same time, the range has to be wide 
enough to provide ports for all the corresponding user containers. 

- At container creation time, link the container ports to a subset of the ports in the host, 
so that incoming connections to those host ports are redirected to the driver servers 
inside the container. 

 
 

Figure 1: Interaction between SWAN server and Spark Cluster 
 
 
The Spark Connector which is implemented as a Jupyter extension allows users to specify 
additional spark configuration as shown in the figure 2 while creation of the spark session. 
In addition for the most common use cases there is a possibility to create a configuration 
bundle as show in the figure 3 which the users can select while creating the spark session.  
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Figure 2: Spark Configuration    Figure 3 : Configuration Bundle 

2.2 Spark Monitor  

After creating the spark session, any computation triggered in the notebook is offloaded to 
the spark cluster. It is not trivial to monitor and debug the status of the computation that is 
offloaded to the cluster, it requires connecting to the external cluster and accessing Spark 
web UI server. Spark Monitor [12] extension developed in the HSF GSoC [13] enables the 
monitoring of jobs sent from a notebook application, from within the notebook itself.  

The spark monitor extension integrates with the cell structure of the notebook and 
automatically detects jobs submitted from a notebook cell. It displays the jobs and stages of 
spark application spawned from a cell, with real time progress bars, status and resource 
utilization as depicted in figure 4. The extension provides an aggregated view of the 
number of active tasks and available executor cores in the cluster. An event timeline 
displays the overall workload split into jobs, stages and tasks across executors in the cluster 
as depicted in figure 5 which is useful to identify the stragglers and take appropriate action. 
An event timeline displays the overall workload split into jobs, stages and tasks across 
executors in the cluster. 
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Figure 4: Visualization of status and resource utilization 

 
Figure 5: Visualisation of Spark Application decomposition 

2.3 HDFS Browser  

The input data for the analysis is on an HDFS filesystem. It is often not trivial for the 
physicist to know the deep directory structures to select the input data for analysis. To 
overcome this obstacle, HDFS Browser Jupyter plugin is created to browse the HDFS 
filesystem as depicted in figure 6. While creating the user container on SWAN, webhdfs 
token is obtained for the user and WEBHDFS_TOKEN environment variable is populated 
which is appended to the all the WEBHDFS REST API [14] calls. 
 

 
Figure 6 : Browsing the HDFS filesystem from Jupyter notebook 
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2.4 Authentication and Encryption  

Spark supports a custom authentication protocol influenced by the ISO/IEC 9798 protocol 
[15] and AES encryption for the communication between the various endpoints of the 
driver and executor. This configuration for authentication and encryption is enabled for 
spark.driver.port and Block manager endpoints. For Spark on YARN deployment which is 
the case with SWAN, Spark automatically generates and distributes the shared secret using 
YARN RPC end points. 

3 Apache Spark deployment models 

In some cases, organizations are bound to usage of external mass storage systems for data 
analysis use-cases - Amazon S3, Google Cloud Storage in public clouds or on-premise 
mass storages like EOS at CERN. These reasons are usually already existing large datasets 
at rest in external storage systems, growing amount of data which cannot be handled cost-
efficiently on traditional systems as HDFS or system complexity. One of such cases is 
current data-processing pipeline architecture at CERN, where Spark runs over 
Hadoop/YARN cluster with existing massive data collections on HDFS from stable 
production-grade use cases. The Hadoop/Spark clusters are sized for known production 
workloads to achieve highest possible utilization. Due to limited capacity on existing 
dedicated Hadoop cluster, and increasing need for large scale physics analysis of files 
stored at external storage service at up to 1 PB scale, there is a need for increased flexibility 
and faster capacity provisioning for Apache Spark clusters - specifically for workloads 
operating on datasets coming from external and elastic storage services. In this architecture 
of Spark/Hadoop, it is very difficult to scale the cluster dynamically according to the users’ 
needs, due to the fact Spark operates on physical machines containing HDFS data. 
Additionally, YARN clusters are difficult to configure, maintain and have limited 
reproducibility and portability across infrastructures. Emergence of cloud-native and 
container-centric technologies as Kubernetes are expected to leverage cloud rapid resource 
provisioning and elasticity. Kubernetes popularity and demand in industry triggered 
contributions to upstream Apache Spark to allow cloud native data processing using Spark 
on Kubernetes. 

3.1 Decoupling Compute and Storage for Big Data  

The reseach by Ganesh Ananthanarayanan et. al. [16] defends the hypothesis that in cluster 
computing disk-locality is becoming irrelevant. This is due to the fact, that two fundamental 
assumptions - disk bandwidth higher than network bandwidth, and disk I/O being a 
considerable fraction of task duration - are no longer valid. They assume that fast networks 
and good datacenter networking, plus economic aspects of large-scale data storage in 
external service are in favour of architectures in which compute nodes are decoupled from 
nodes optimized for storage. In the paper published by Accenture Technology Labs on 
Cloud-based Hadoop Deployments [17], the Google Cloud Storage (GCS) was compared to 
Hadoop Distributed File System (HDFS) in terms of performance for processing the data in 
three scenarios: recommendation engine, sessionization and document clustering. They 
concluded that not only external storages as GCP offer better performance-cost ratio and 
better data availability, but also for fine-tuned workloads they achieved higher performance 
than reading from HDFS preserving data-locality. Databricks in the blog post about 
choosing S3 over HDFS, proves based on customer research that S3 offers higher SLA 
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(availability and durability), performance-cost ratio, and is much more elastic data storage 
type than HDFS. In their benchmark of data platform in the cloud [18], they also prove that 
while in default setup, HDFS can reach much higher local node throughput thanks to data-
locality, in the optimized setup reading from S3 can outperform in performance HDFS 
based on-premise platform (Cloudera Impala). 

3.2 Provisioning of Spark on Kubernetes cluster 

Spark on Kubernetes can be deployed using on-premise physical machines or as a cloud-
managed service over cloud resources. At CERN, Spark on Kubernetes cluster is primarily 
deployed over OpenStack [19] private cloud using MAGNUM, creating clusters consisting 
of hundreds of nodes in few minutes. This allows to abstract from administrators the 
DevOps effort of provisioning, running and maintaining clusters, as this is a case of 
Spark/YARN and Spark/K8S with on-premise. Comparison of architectures regarding 
deployments is shown on Figure 7. 

 

Figure 7: Top level comparison of Spark deployments 
 
3.3 Spark Kubernetes Operator – Managing the lifecycle of Spark 
Applications 
  
To control and manage Spark Applications running Kubernetes cluster, Spark Kubernetes 
Operator is used. In the basic concept, Spark Kubernetes Operator [20] has the following 
roles in the cluster: 
 

1. Enables declarative application specification in YAML format and management of 
applications via dedicated API call (command line tool). Allows to customize 
driver and executors in a declarative way. 

2. Deploys Spark Driver in the cluster (which later deploys on random/selected nodes 
executors) on behalf of the user via API call (command line tool). 

3. Monitors driver and executors of submitted applications in a granular way. 
4. Resiliency and supervision of Spark Applications. Automated application restart 

with a configurable restart policy, automated retries of failed submissions with 
optional linear back-off, automated application re-submission for updated 
SparkAppliation definition, and allows to run applications on schedule. 
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Spark Operator has been developed (mainly by Google, with effort from CERN, Microsoft 
and RedHat) as an open-source project.  

In the cloud-native architecture of Spark on Kubernetes, there is a layered structure of 
software components, which are maintained using dedicated command line tools (Figure 
13: 

 OpenStack Magnum (OpenStack coe cluster): used to create, update, resize, 
delete and access the cluster.  

 Kubectl (kubectl): basic tool for managing Kubernetes. Used to maintain, deploy 
and configuration the cluster and cluster applications. 

 Helm (helm): Package manager for Kubernetes. Used to deploy and update Spark 
Operator in the Kubernetes cluster 

 Sparkctl (sparkctl): used to interact with Spark Operator in order to submit and 
monitor applications defined in YAML files. Uses libraries from Kubectl to 
operate 

The figure 8 depicts the client tools required to manage Spark Kubernetes clusters over 
OpenStack resources at CERN 

 

Figure 8: Client tools to manage Spark Kubernetes cluster 

4 Evaluation of Spark on Kubernetes 

The deployments of Spark on YARN and Kubernetes is validated with industry standard 
TPC-DS [21] benchmarking toolkit. TPC-DS provide set of repeatable, controlled and 
highly comparable tests which evaluate upward boundaries of systems in aspects as CPU, 
Memory and I/O utilization, and ability of systems to compute and examine large volumes 
of data. Benchmark consists of over 100 queries and has been performed in order to 
demonstrate differences between the architectures in terms of network throughput (I/O 
intensive queries), processing power and virtualization overhead (CPU intensive queries) 
and performance of Spark and shuffling (Shuffle intensive queries). 

TPCDS Benchmark has been performed for Apache Spark with two resource managers and 
infrastructures (YARN/On-Premise and Kubernetes/Cloud) in order to ensure comparable 
and efficient execution for different types of workloads with exact Apache Spark version 
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and exact number of resources (spark executors) processing the data stored in EOS, 
multiple iterations of the query have been performed and the average execution time is 
taken into consideration for comparison. The results of the selected queries is shown in 
figure 9 

The following conclusions were drawn based on the results; 
 

 I/O Intensive Query on Spark/Kubernetes and Spark/YARN could reach similar 
I/O Performance.  

 Spark/YARN can reach higher performance on Executor CPU Time, which 
indicated average loss of 5% CPU efficiency due to virtualization.  

 Spark/Kubernetes and Spark/YARN has similar execution time for Shuffle 
Intensive Query. 

 
 

 

Figure 9: Elapsed time of selected queries executed against YARN & K8s 

5 Conclusions and Future work 

Integration of Spark clusters with SWAN allows interactive data exploration and analysis 
from notebook interface which allows the researchers from the accelerator sector to monitor 
and analyse the performance of various components of LHC machine. In addition 
integration of distributed processing framework like Apache Spark with hosted Jupyter 
notebook service like SWAN allows us to take first steps towards a unified analytics 
platform to handle all analytics workloads. The current deployment of Spark (on YARN) 
satisfies the needs of stable, predictable and production workloads from NXCals, WLCG & 
CC monitoring, IT security etc. The future demand from the users, especially the usage of 
spark for physics analysis from experiments is satisfied with Spark on Kubernetes on an 
OpenStack deployment model. 
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In Future, there are plans to develop functionality for the creation and usage of disposable 
Spark on Kubernetes clusters from the SWAN platform. This makes it a truly elastic unified 
data analysis platform with efficient usage of CERN computing resources.  
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