EPJ Web of Conferences 214, 07018 (2019) https://doi.org/10.1051/epjcont/201921407018
CHEP 2018

Grid services in a box: container management in ALICE

Maxim Storetvedt'*, Maarten Litmaath?, Latchezar Betev?, Hévard Helstrupl , Kristin Fane-
bust Hetland', and Bjarte Kileng!

"Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
2CERN, Geneva, Switzerland

Abstract. Virtualization and containers are established tools for providing sim-
plified deployment, elasticity and workflow isolation. These benefits are espe-
cially advantageous in containers, which dispense with the resource overhead
associated with virtual machines in cases where virtualization of the full hard-
ware stack is not considered necessary. Containers are also simpler to setup
and maintain in production environments—deployed and currently operational
systems serving end-users, where service disruptions should be avoided.

This contribution addresses container configuration and deployment to run cen-
tral and site services on the ALICE Grid system, specifically to achieve con-
tainerized VO-boxes. We describe the methods through which we minimize
the manual interaction, while retaining the simplicity and scalability associated
with container deployment, the so-called “’service in a box”. Furthermore, we
explore ways to increase fault tolerance, aimed at reducing the risk of service
downtime, and identify possible performance bottlenecks.

1 Introduction

Containers are an implementation of the operating-system-level virtualization paradigm, us-
ing mechanisms such as Linux cgroups and namespaces. Running as isolated wrappers on
top of a preexisting kernel, containers can reduce the resource overhead for situations where
virtualizing the full hardware stack is not necessary. This enables containers to have close to
no overhead, achieving performances comparable to that of a native operating system (OS).

The lack of overhead allows containers to be both simple to deploy and maintain, while
allowing for features such as elasticity and workflow isolation. These benefits have earlier
motivated both the ATLAS [1] and LHCD [2] experiments to investigate and adopt containers
within their Grid environments [3][4]. CMS [5] Grid jobs make use of the Singularity [6]
container manager since 2018 [7].

To investigate the viability of containers within the ALICE [8] Grid, a number of ALICE
VOBOXes [9] have been redeployed within containers. A VOBOX at a grid site is a machine
on which VO-specific services may be run for a supported VO. Each ALICE site operates
at least one VOBOX on which ALICE-specific services handle job submission to the site,
as well as monitoring the site’s jobs, storage services and network performance. In this pi-
lot project, the containerized VOBOXes are expected to be capable of satisfying the same

*e-mail: msto@hvl.no

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 07018 (2019) https://doi.org/10.1051/epjcont/201921407018
CHEP 2018

requirements as expected from Virtual Machines (VMs), specifically in regards to perfor-
mance and availability. VMs are actively used in production environments to run VOBOXes,
and have usually proven to require little-to-no manual interventions while achieving minimal
downtime and solid performance. Exceptions to that rule, discussed in Sec. 4, sparked the
idea of using containers instead.

While using containers within a development/testing environment is a straightforward
process, having containerized VOBOXes in a production environment introduces more com-
plexity. Several containerized VOBOXes have now been deployed in such environments
within the ALICE Grid since mid-2017, where the initial experiences in using and managing
such containerized VOBOXes will be the main focus of this contribution.

Containers will also be used within ALICE to provide isolation for Grid worker nodes—a
feature found within the new JAliEn Grid middleware [10]. This is detailed in a separate
contribution dedicated to JAIiEn [11].

2 Key configuration points

Compared to the more common VMs, containers have no virtual hardware stack. This dif-
ference becomes evident when attempting to use and configure containers for purposes typ-
ically handled by VMs, such as VOBOXes, and preparing them for use within production
environments. Appropriate steps must be taken to ensure sufficient stability, security and
performance.

2.1 Platform

All the containerized VOBOXes deployed in production environments within ALICE use
Docker [12] as their container base. This platform is both mature and well documented,
and contains all the features necessary to run the appropriate services. VOBOXes require
a full networking stack to function as intended, as opposed to the container bridging found
within Docker—which in reality uses a network address translation (NAT) scheme to provide
networking.

2.2 Networking

VOBOX containers are networked using the MACVLAN [13] network driver. Within Linux
systems the implementation can be compared to a “reverse VLAN”—as opposed to mapping
the OS-side of a network interface to multiple virtual networks, the network side of an in-
terface is mapped to multiple virtual interfaces. This is illustrated in Fig. 1, where a single
physical interface is supplied with two virtual interfaces (one for each of the two illustrated
containers). Each of these interfaces is assigned a MAC-address, and traffic sent from the vir-
tual interfaces is sent directly to the underlying network'. This allows containers networked
using MACVLAN each to have their own IP address, and appear as conventional machines
on the network.

! As traffic is routed directly to the underlying network, the virtual network interfaces will be invisible to the
physical host.

EPJ Web of Conferences 214, 07018 (2019)

CHEP 2018

Container 1 Container 2

eth0: 192.168.0.3 eth0: 192.168.0.4

00:10:9A:BC:4C:81 00:10:0B:11:23:4C

MACVLAN

eth0: 192.168.0.2

00:10:8A:3D:D7:1A

Physical network

Gateway: 192.168.0.1

https://doi.org/10.1051/epjcont/201921407018

Figure 1. MACVLAN architecture overview for a possible network with two containers. Each con-
tainer is assigned a virtual interface through MACVLAN, with their own MAC and IP addresses.

2.3 Host configuration

Unlike the more traditional VM-hypervisor, a container host shares its kernel with its running
containers. While this contributes to less overhead, it creates challenges when attempting to

use containers for VOBOX purposes:

e The deployed VOBOX containers are responsible for running multiple services. With each

container sharing the host kernel, this is equivalent to having all services running on the
host itself. As the number of containers grows, the number of processes on the host will
increase rapidly. Consequently, the number of used file pointers will quickly reach the user
maximum? causing crashes, system hangs and process terminations. For more than two
VOBOX containers on a single host, the system default value must be increased.

AutoFS-a software used to automatically mount directories on demand—must be disabled
to allow stable CVMFS [14] access. This is caused by a known bug within AutoFS when
used in conjunction with containers: if the AutoFS directory has not been accessed on the
host first, it will fail within all containers. Disabling AutoFS bypasses this issue. A script
can be used to automatically mount the required directories instead.

For the purpose of isolation, Docker will limit the access privileges that containers have on
the underlying kernel. Using the default settings, many common tools and services used
within VOBOXes fail to start. Granting access to kernel capabilities is possible, and will al-
low more tools to function. It is also mandatory in order to deploy containers in production
environments. As a result, all VOBOXes used within ALICE run with full, or near-full, ac-
cess privileges. Considering the convenience and stability provided by having full access
to the kernel capabilities, the risk was considered minimal given that the containers will
mainly be handled by system administrators.

2Defaults are set to 4096 (hard) and 1024 (soft) on CentOS 7.

3

EPJ Web of Conferences 214, 07018 (2019) https://doi.org/10.1051/epjcont/201921407018
CHEP 2018

3 Preventing downtime

The containerized VOBOXes within ALICE all use the “’Live Restore” [15] feature provided
by Docker. When enabled, it allows containers to exist independently of the background
Docker service (dockerd)—as opposed to having all containers terminate should the service
crash or disappear, which is the default Docker behavior. In addition to the added redundancy,
this feature also makes it possible to update Docker without causing downtime. However, the
feature is only intended as a temporary measure. Containers must occasionally offload their
stored logs, for which they depend on the dockerd service. If the service remains absent for
longer durations, the container log-buffers will eventually overflow, causing crashes.

Should a container fail or terminate, a container management tool can be used to handle au-
tomatic restarts, such as Swarm [16] and Kubernetes [17]. While the former comes bundled
with Docker, and the latter is used elsewhere within the Grid, none of these are currently
used within ALICE to manage site-service containers. Given the low number of container-
ized VOBOXes per site, the effort required to manually maintain these containers does not
currently necessitate any additional tool.

Restarted containers need ways to quickly restore their previous services. Within ALICE,
containerized VOBOXes use Dockerfiles to start all necessary services at launch. While this
is also possible using 3rd-party tools, the current approach requires no additional software
installations or configurations. However, any changes to a Dockerfile requires rebuilding and
redeploying the associated container image, which results in downtime. To avoid excessive
downtime when testing new configurations, a separate script was introduced, containing all
commands to run at launch. The script is placed in the container base image at ”/etc/init.sh”,
with a static reference to the location kept in the Dockerfile. The commands within this file
can be freely changed, without having to rebuild the container image to apply changes. This
flexibility comes at the cost of having to maintain a separate script within each container, as
opposed to having a single Dockerfile.

4 Observed performance

Containerized VOBOXes have been operating in production environments within ALICE
since July 2017. This has allowed performance to be monitored over longer periods, with
different configurations and storage drivers—such as AUFS and Overlay2. On average, con-
tainers were found to be able to run as many (or more) jobs, with less load on the host system
compared to conventional VMs. A comparison can be seen in Fig. 2 and Fig. 3, where
a containerized VOBOX is compared to a VM VOBOX in terms of performance and load
for the same interval. For a few days, the containerized VOBOX was configured to manage
many more concurrent jobs compared to the VM in Fig. 2, while Fig. 3 shows the load on
the underlying system to be less than on the VM for the same interval.

It must be noted that container I/O performance will gradually degrade as additional
changes are committed when using file-level storage drivers like AUFS or Overlay2. As
with most copy-on-write filesystems, all changes are stored as a separate layer on top of the
base container image, with a new layer for each commit. When using the AUFS storage
driver, each of these layers is composed of a read-only AUFS branch (directory), except for
the top layer used by the running container which remains writable. The first time a container
writes to a file, the file has to be located in the corresponding lower AUFS branch and there-
after copied into the current writable layer. As the filesize grows and the number of layers
increases, so too will the I/O latency[18]. To reduce the impact on performance when using

4

EPJ Web of Conferences 214, 07018 (2019) https://doi.org/10.1051/epjcont/201921407018
CHEP 2018

file-level storage drivers, container images must thus be flattened before being put into a pro-
duction environment-having all additional layers merged into one. This is done by exporting
and re-importing the image through Docker.

Running Jobs

[cemvAuRoRa - ceaw skus

Figure 2. Container VOBOX (green) running jobs in a production environment, compared to a VM
VOBOX (magenta) from December 18, 2017 to January 1, 2018. The container was configured to
manage many more concurrent jobs, which resulted in 114k more jobs being handled (a 13% increase)
compared to its VM counterpart at the end of the duration.

Load

[-cern-AURoRA — cerN-SRIUS

Figure 3. Display of the load on the underlying system for the container VOBOX (green) and VM
VOBOX (magenta) from Fig. 2, for the same interval as above. The container can be seen to have less
load on the underlying system when compared to the VM.

From a stability perspective, containers were also found to be less prone to faults com-
pared to their VM counterparts in the ALICE central-services cluster. None of the container-
ized VOBOXes experienced connectivity issues or other odd behavior—a previously recurring

5

EPJ Web of Conferences 214, 07018 (2019) https://doi.org/10.1051/epjcont/201921407018
CHEP 2018

issue for several VOBOXes running in VMs. Figure 4 shows the maximum number of concur-
rent jobs for an ALICE VOBOX (Corona), a VM VOBOX known for underperforming, while
also being prone to network freezes—no longer responding on the network, making it unable
to handle jobs until it is rebooted manually. The VOBOX was redeployed as a container in
early November, showing an immediate gain in the maximum number of concurrent jobs. No
network freezes or other connectivity issues have been observed since redeployment.

Running Jobs
\
\
A
R
1 I \‘
b T A
0 fNERA T
v A Vo
Yol 14 v i |
,w IV S LA R T
W AR Ly VAT
\ RIEEREY VY | |
: IR I |
IR | il | ||
\]‘x/\/\ il ! || i L]
Y 1 | || | ||
N M‘ ’\“ ‘ ““\J U ‘4 H
Ul Vo ! | i
FEN A | | !
[|
L
2617 Oct T Nov Dec I Jan s Feb

Figure 4. Running jobs for the VOBOX Corona. Initially a VM, before being redeployed as a container
in early November. The maximum number of concurrent jobs was seen to increase from this point,
without unexpected network freezes.

5 Outlook

With container VOBOXes running within production environments for over a year, yielding
positive results in terms of both performance and stability, ALICE is ready for VOBOX ser-
vices to be run in containers where this is desirable. A number of VOBOXes for new use
cases have thus been deployed as containers instead of VMs.

As mentioned in Sec. 1, containers will also be used to provide payload isolation for
Grid worker nodes. This is a feature which will be found in the new JAliEn Grid middleware.
These containers used for payload isolation will, unlike the VOBOXes, run on Singularity [6],
a lightweight container platform optimized for high-performance computing. With features
such as support for unprivileged containers, simple image distribution and emphasis on singu-
lar, potentially long-running tasks, the platform might be seen as another choice for running
Grid services. However, the absence of a networking stack makes it unsuitable for running
the services needed to provide a functioning VOBOX-one of the reasons why Docker was
chosen for this specific purpose. Most of the network functionality required is nowadays built
into the Linux kernel itself, but using this in conjunction with Singularity requires explicitly
configuring networking for each container namespace—a process that must be repeated each
time a container is restarted.

Singularity is expected to simplify network setup by introducing official support for net-
working in version 3.0, not yet released at the time of writing [19]. To avoid maintaining
containers on two separate platforms, and to benefit from the more lightweight approach to

6

EPJ Web of Conferences 214, 07018 (2019) https://doi.org/10.1051/epjcont/201921407018
CHEP 2018

containers, several VOBOXes may be moved to Singularity when it supports proper network-
ing. By applying the experiences gained through Docker, this ought to be straightforward.

References

[1] The ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Col-
lider, JINST3 S08003, DOI: 10.1088/1748-0221/3/08/S08003

[2] The LHCb Collaboration, The LHCb Detector at the CERN LHC, JINST3 S08005, DOI:
10.1088/1748-0221/3/08/S08005

[3] J. Elmsheuser, L. Heinrich, G. Stewart and M. Vogel, Using containers with AT-
LAS offtine software, ACAT 2017. URL: https://cds.cern.ch/record/2279133 (Accessed
12.10.2018)

[4] Andrew McNab, LHCb container status, Container WG, CERN, Dec 2017. URL.:
https://indico.cern.ch/event/684575/contributions/2813991/ (Accessed 12.10.2018)

[5S] The CMS Collaboration, The CMS experiment at the CERN LHC, JINST 3 S08004,
DOI: 10.1088/1748-0221/3/08/S08004

[6] G. M. Kurtzer, V. Sochat, Singularity: Scientific containers for mobility of compute,
PLoS ONE 12(5): e0177459, DOI: 10.1371/journal.pone.0177459.

[7] Brian Bockelman, Moving CMS to a Container-based
Infrastructure, MAGIC Meeting, April 2018. URL:
https://www.nitrd.gov/nitrdgroups/images/c/c6/CMS_Containers_04042018.pdf
(Accessed 12.10.2018)

[8] ALICE Collaboration, The ALICE Experiment at the CERN LHC, JINST3 S08002,
DOI: 10.1088/1748-0221/3/08/S08002

[91 WLCG VOBOX: https://twiki.cern.ch/twiki/bin/view/LCG/WLCGvoboxDeployment
(Accessed 12.10.2018)

[10] A.G Grigoras, C. Grigoras, M.M Pedreira, P. Saiz, S. Schreiner, JAliEn — A new inter-
face between the AliEn jobs and the central services, Journal of Physics: Conference
Series 523, DOI:10.1088/1742-6596/523/1/012010

[11] MM Pedreira, JAIiEn: the new ALICE high-performance and high-scalability Grid
Jframework, these proceedings.

[12] Docker: https://www.docker.com/ (Accessed 12.10.2018)

[13] Docker MACVLAN: https://docs.docker.com/v17.09/engine/userguide/networking/get-
started-macvlan/ (Accessed 12.10.2018)

[14] J. Blomer, P. Buncic, R. Meusel, The CernVM File System, CERN Technical Re-
port, 2013. URL: http://jblomer.web.cern.ch/jblomer/cvmfstech-2.1-0.pdf (Accessed
12.10.2018)

[15] Docker Live Restore: https://docs.docker.com/config/containers/live-restore/ (Accessed
12.10.2018)

[16] Docker Swarm: https://docs.docker.com/engine/swarm/ (Accessed 12.10.2018)

[17] Kubernetes: https://kubernetes.io/ (Accessed 12.10.2018)

[18] B.Ruan, H. Huang, S. Wu and H. Jin, A Performance Study of Containers in Cloud En-
vironment, APSCC 2016 Proceedings (pp.343-356), DOI: 10.1007/978-3-319-49178-
3.27

[19] Keith Cunningham, A glimpse into Singularity 3.0, Syslabs, 2018. URL:
https://www.sylabs.i0/2018/08/a-glimpse-into-singularity-3-0/ (Accessed 12.10.2018)

