Performance of ATLAS RPC detector and Level 1 muon barrel trigger

Rustem Ospanov (USTC), on behalf of the ATLAS Collaboration

IEEE Nuclear Science Symposium and Medical Imaging Conference, Manchester, UK

October 31, 2019

Introduction

- ► ATLAS is general purpose particle detector observing LHC collisions at 40 MHz rate
- ATLAS muon spectrometer triggers and reconstructs muon candidates
 - Fast detectors operating at 40 MHz for Level 1 hardware trigger (L1)
 - Precision detectors for offline reconstruction
- Muons are important signature for the ATLAS physics programme
 - Muon trigger signatures contribute \sim 10% of 100 kHz Level 1 trigger bandwidth
 - Hundreds of measurements, including Higgs boson measurements, searches for new phenomena...

Rustem Ospanov (USTC), on behalf of the ATLAS Collaboration

ATLAS muon spectrometer

- 2 fast detectors for L1 trigger with position resolution of \sim 1 cm:
 - Resistive Plate Chambers (RPC) for barrel region ($|\eta| < 1.05$) subject of this talk
 - Thin Gap Chambers chambers (TGC) for endcap region (1.05 $<|\eta|<$ 2.4)
 - Fast measurement of muon transverse momentum (p_T) within 2.1 μs for L1 trigger
- 2 precision detectors for offline reconstruction with position resolution of \sim 80 μm :
 - Muon Drift Tubes (MDT) for $|\eta| < 2.7$
 - Cathode Strip Chambers (CSC) for 2.0 $<|\eta|<$ 2.7 for the innermost layer

ATLAS Resistive Plate Chambers

- Parallel 2 \times 10¹⁰ Ω cm resistive (bakelite) plates are separated by 2 mm with insulating spacers
- ▶ Non-flammable low cost gas: tetrafluorethane C₂H₂F₄(94.7%), iso-butane C₄H₁₀(5%), sulphur hexafluoride SF₆(0.3%)
- Orthogonal η and ϕ readout strips with 23-35 mm pitch
- ho \sim 2 ns total time resolution ightarrow designed to identify proton bunches separated by 25 ns
- \blacktriangleright Operating in avalanche mode at 9.6 kV with \sim 97% muon detection efficiency per layer
- RPC sustained rate is 100 Hz/cm² (and capability up to 1000 Hz/cm²)
- Final RPC detector chamber is made of two detector layers with 2 η and 2 ϕ readout strip panels

ATLAS RPC detector

- \blacktriangleright 3 concentric cylindrical shells of doublet chambers with radius of \sim 7, \sim 8 and 10 meters
- $ightarrow \sim$ 3600 gas volumes with area of \sim 4000 m^2 and \sim 360k readout strips
- $\blacktriangleright\,$ Immersed in toroidal magnetic field of 0.5 ~ 1 Tesla
- \blacktriangleright 6 measurements in bending η plane and 6 measurements in non-bending ϕ plane
- **>** RPC provide ϕ coordinate measurement for offline muon reconstruction

ATLAS RPC performance

Performance measurements of RPC detector with proton-proton collision data at 13 TeV

LHC delivered about a half of originally designed integrated luminosity

RPC detector response

Measure RPC detector response with muons produced in pp collisions

- Muon candidates are reconstructed primarily with MDT detector and independently of RPC η readout
- Propagate muons through magnetic field and material to RPC surface
- Muon induced avalanche ightarrow hit is signal above threshold in one strip
- Measure hit position, time and multiplicity

Expected muon η position minus

closest hit n position

Calibrated time of strip hit for one example chamber

Hit multiplicity in response to muon passage efficiency for one example chamber

RPC detector efficiency

- \blacktriangleright Average overall efficiency to detect at least one muon hit is $\sim 94\%$
- Excellent detector stability during data taking during 2018 (and since 2008)
- ATLAS RPC detectors are planned to operate until ~ 2040 (after upgrades)

Performance measurements L1 Muon Barrel trigger response

Level 1 Muon Barrel trigger

- L1 Muon Barrel trigger uses RPCs to detect muon trigger candidates at 40 MHz rate
 - Custom-built on-detector electronics making decision within 2.1 μs after collision
 - 3328 detector regions of 0.1 \times 0.1 in $\Delta\eta\times\Delta\phi$

> 3 low p_T thresholds:

 Requires 3/4 coincidence within trigger road in the two inner doublet layers

▶ 3 high p_T thresholds:

– Requires low p_T trigger and 1/2 coincidence in the outer doublet layer

Trigger timing calibrations

- RPC hits (muon signals) are calibrated online with 3.125 ns step
 - More than sufficient to identify individual LHC bunch crossings with 25 ns spacing
- ▶ 99.7% of muon candidates arrive within expected 25 ns time window
- Excellent stability of timing calibrations during data taking period

L1 Muon Barrel trigger efficiency

- ▶ Measure efficiency to identify L1 muon candidate using $Z \to \mu^{\pm} \mu^{\mp}$ events
- Efficiency×acceptance to detect muon candidates with $p_T > 20$ GeV is $\sim 70\%$
 - Barrel geometrical acceptance is limited by the detector support structures
- Trigger efficiency is stable during data taking period

Muon Spectrometer upgrade studies

Muon Spectrometer upgrades for High-Luminosity LHC

- ▶ New Small Wheels in forward regions and extra RPC chambers (BIS78) 2019-2020
 - Poster by Salvatore Loffredo: BIS78 Pad trigger board for the Phase-I Upgrade of L1 Muon Trigger
- ▶ Install 3 inner RPC layers (BI RPCs) with 470m² area 2024-2025
 - New 1 mm gas gap structure operating at 5.8 kV with better performing front end electronics

HL-LHC studies

- RPC upper limit on current density is 30μ A/m² for HL-LHC at $\mathcal{L} = 7.5 \times 10^{34}$ cm⁻²s⁻¹
- Extrapolate current LHC data to high luminosity to study expected performance
 - Chambers with smaller radius and at high $|\eta|$ will exceed these limits

RPC detector currents at different |n| stations

versus instantaneous luminosity

- Plan to reduce HV to 9.2 kV and decrease front end thresholds to regain $\sim 10\%$ efficiency
- Scan FE discriminator thresholds at 9.6 kV (nominal) and 9.2 kV (proposed for HL-LHC)

RPC detector efficiency

versus discriminator VEE

15

Summary

- \blacktriangleright ATLAS RPC detector was completed in 2008 and need to operate until \sim 2040
- Muon barrel RPC trigger selects muon candidates at 40 MHz collision rate
- Excellent detector and trigger performance during data taking since 2008
- Overall probability to detect barrel muon candidates is \sim 70% for p_T > 20 GeV
- Extensive detector upgrades to prepare for High Luminosity LHC
- New RPC inner triplet layer will be installed in 2025-2026
- Preliminary studies indicate that existing RPCs will perform well at higher luminosity

Thank you!

BACKUP

RPC detector response

Measure RPC detector response with muons produced in pp collisions

- Offline muon candidates are reconstructed primarily with MDT detector
- Propagate offline muon candidates through B-field and material to RPC surfaces
- Muon produce avalanches ightarrow hit is signal on one strip above electronics threshold
- Check expected and actual detector response using expected muon hit position

Expected muon η position minus

closest hit n position

L1 Muon Barrel trigger efficiency

- Measure efficiency to detector L1 muon barrel candidate using $Z o \mu^\pm \mu^\mp$ events
- Barrel geometrical coverage is reduced by detector support structures

RPC currents versus instantaneous luminosity

- RPC detectors have upper limits on current density
- Extrapolate current LHC data to high luminosity to study expected performance
 - Some chambers at high $|\eta|$ will exceed these limits
 - Plan to reduce operational voltage
 - Plan to also reduce signal thresholds to regain some of lost efficiency

RPC detector currents at radius of \sim 8 and 10 meters