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Abstract

By means of the non-commutative differential geometry, we construct an SU(2)
generalized gauge field model. [t is of SU(2) x m(SU(2)) geuge invariance. We
show that this model not only includes the Higgs field automaticelly on the equal
footing with ordinary Yang-Mills gauge potentials but also is stable against quantum

correlation.
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Unlike Yang-Mills gauge ﬁelds, Higgs fields and Yukawa couplings seem to be

. artificial although they play a very important role in modern QFT. Eventually, the

price paied for them is the beauty of the gauge principle.

Recently, we have generalized the ordinary Yang-Mills gauge theory in order to
take both Lie groups and discrete groups as gauge groups (1,2 and completed an
approach to this generalized gauge theory coupled to the fermions in the spirit of
non-commutative geometry |3, 4. We.have shown that Higgs fields are such gauge
fields with respect to discrete gauge symmetry over 4-dimensional space-time M™* and
the Yukawa couplings between Higgs and fermions may automatically be introduced
via generalized covariant derivatives. In this approach, Higgs appears as discrete
group gauge fields on the same footing with ordinary Yang-Mills fields over spacetime
M*. In other wards, the beauty of-the gauge principle may be regained. Of course,
how to understand the physical meaning of the discrete group to be gauged is a
most crucial point in this approach. On the other hand, like other approaches [3-10]
based upon the non-commutative differential geometry do not survive the standard
quantum correlation [11], the approach in {1,2] may also be unstable against the
standard quantum correlation unless there is certain special mechanism to guarantee

its stability.

In this letter, we will present an SU (2) generalized gauge field model with the
Higgs mechanism and show that it will be able to get rid of all those problems. The
key point is that we take into account the fourth homotopy group of SU(2) as a
discrete gauge group on the footing with the Yang-Mills gauge group SU (2). It is
well known that the fourth homotopy group of S5U(2) is non-trivial, T (SU(2)) = 2,,
ie. the gauge transformations of SU(2) may be divided into two different equivalence

classes [12]. Once the Yang-Mills fields for the gauge group SU(2) is introduced, the

role played by its fourth homotopy group must be taken into account. In view of the

generalized Yang-Mills gauge theory {1 based upon the non-commutative differential
geometry, we should also introduce the generalized gauge field with respect to this
internal discrete group m4(SU(2)) due to the fact that the gauge transformations

depend on its elements.

Let the elements of 1 (SU(2)) = 2, = {e,7} be {U.,U,} where U, represents



the equivalence class of the topologically trivial gauge transformations and U, the
topologically non-trivial class modulo topologically trivial gauge transformations.
. The model under construction not only includes leptons y(z, k), h € Z,, SU (2) Yang-
Mills gauge potentials Au(z, k) and Higgs ®(z, h) with respect to this Z;, but also
combines both the Yang-Mills gauge potential and the Higgs on the equal footing as
- a generalized Yang-Mills gauge potential.

Let us regard those fields as elements of function space on M* as well as on

SU(2) x ma(SU(2)) and assign them into two sectors according to two elements of
T4(SU(2)) = Z3 = {e,r} as follows:

4,0 =90 = 1 ); s =i = ()
tiea=ae =" D), men=a@=(F 0

B —
O(z,e) = ¥(z) = ( _;,f ; ) i B(z,r) =9 (x);

with I = UL, ¢" = U¢, UUt =1, U is a topologically non-trivial SU(2) gauge
transformation. In (1), L (R) is the left (right) handed fermion which is an SU 2
doublet (singlet), L, = ~igZW} the SU(2)-gauge potential, ¢ also an SU(2) doublet,

‘ u# and A two constants.

It should be mentioned, however, that the assignments (1) not only assign the
fields to the elements of Z; but also imply that all fields are arranged into certain

matrices. In fact, this aspect of the arrangements is nothing to do with discrete

gauge symmetry but for convenience in the forthcoming calculation. Of course, it -

must be kept in mind that this is a working hypothesis and sometimes one should

avoid certain extra constraints coming from this working hypothesis.
From the general framework in [1], it follows the generalized connection one-form
A
A(z,h) = Au(z, h)dz* + ;@(z,h)x, h € Z,, (2)

where y denotes x™, a one form on the function space on 7(SU(2)), and the gener-
alized curvature two-form
F(h) =dA(h)+ A(h) ® A(h)

s (3)
= JFu(h)dze* Adz” + 2F,, (h)de* ® x + % F.. (M) ® v.

N =< x,x >, Dim(y) = g

Using the above assignments, we get

F(z,e) = F(z, r)

a7 0) v 0 ~D,¢
__2( OTO dz# Adz” + 2 —(D,,qsf)' 0 dz* @ x )
(¢¢ -% 0

0 ¢'t¢"_§. X®Xx;

where L, = —igl;‘W,‘;,,, Dyup=0up+ Lud = (8, ~ igl;*W“;)gb.

Having these building blocks, we may introduce the generalized gauge invariant

Lagrangian with respect to each element of Z, ,A then take the Haar integral of them

over Z; to get the entire Lagrangian of the model. Under certain consideration on
the normalization in the Lagrangian, we may get a Lagrangian without any extra

constraints among the coupling constants and the mass parameters at the tree level.
For the Lagrangian of the bosonic sector, we have
Lym-u(z,e) =Lyp_glz,r)

R
: ()
+E0RTr(D,b(2)(D# ()l

—%n"‘—‘-Tr(qS(z)dz(z)f - f\‘;)’ + const,;

n
where Np and N are normalization constants introduced here to avoid some extra
constraints from the matrix arrangement in (1), 7 a metric parameter defined by
2, The normalization of the coefficients of each term

results

N[, = %, N = 2_27]- (6)

For the fermionic sector, the Lagrangian may also be given as follows:

Lr(z,e) = Li(z,7)

(M
=iLy*(8, + L)L + iRy*8,R + NI¢R + RolL).
Then the entire Lagrangian for the model reads:
1 b (8)
E(I) = ; Z {L:p(z,h) + EYM_H(I, )}

=e,r



It is remarkable that this is a Lagrangian with the Higgs mechanism of sponta-

- neously symmetry breaking type and the Yukawa couplings included automatically.
In fact, the Higgs potential takes its minimum value at Tr(¢¢f) = (4)? and the con-
tinuous gauge symmetry SU (2) will spontaneously be broken down when the vacuum

expectation value is taken as, say,

n(3):

where pg = \/55 Now we take the vacuum expectation value of ¢ and introduce a
new field p(z)
0

":(%)' | o

Then we have in the Lagrangian of the bosonic part

Tr{Dud(Dud)! — 02 (9! - £y}

3
= 30upp + Lpo + pP WS Wi + Lg% (0o + pW2W? (11)
-123*(03 + pop + &) + const.
It is easy to see that only all gauge bosons W* and W2 and Higgs p become massive:
1
My = 591’0: MH:'ya- = 2\/’7~ (12)
While for the fermions, one of the components of L, the down fermion in the SI/ (2)-
doublet, becomes massive with mass 1 and others remain massless. If the metric
parameter 7 is free of choice, there do not exist any constraints among the coupling

constants. This is different from other approaches [5-10].

Let us now summarize what we have done. Based on a first principle, the gener-
alized gauge principle, we have constructed an SU(2) generalized gauge field model
with m4(SU(2)) = Z; taken as discrete gauge symmetry. The Higgs mechanism is

automatically included in this generalized gauge theory model.

It is worthy to point out that there are several advantages in this approach. First,
this 7,(SU(2)) is a most natural and meaningful internal symmetry to be gauged in
the model. What we have done here is just to combine the ordinary Yang-Mills gauge
theory with the non-commutative differential calculus in the function space on this

discrete group to formulate a generalized gauge theory with Higgs and spontaneously

5

symmetry breaking. In other wérds, the Higgs mechanism should be introduced
automatically on the equal footing with ordinary Yang-Mills gauge fields, if the role
played by the fourth homotopy group of the gauge groups would be taken into account

together with the gauge groups themselves at very beginning.

It is even more remarkable that the approach presented here is stable against
quantum correlation. One of the reasons is that there are no extra constraints
among the parameters at the tree level so that we do not need to pay attention to
them in the course of quantization. Another reason may be more essential. Namely,
since the Higgs potential is automatically introduced, the SU(2) gauge symmetry
should be spontaneously broken down at the tree level in this model. Therefore, this
74(SU(2)) = Z; symmetry is also broken down as long as the VEV for the Higgs is
taken. Consequently, what we got.is the same version as an ordinary SU(2) Yang-
Mills model with Higgs mechanism and of course we do not need to concern about
this 74(SU(2)) = Z;-gauge symmetry when we consider the quantum correlation in
the model. Needless to say, this very important point is completely different from
other approaches to the Higgs by means of the non-commutative differential geom--

etry. In fact, Connes like approaches [5-10] do not survive the standard quantum

. correlation [11].

>It is clear that the model presented here is not phenomenologically realistic but
it can be generalized to other gauge theory models, such as the Weinberg-Salam
model and the standard model for the electroweak-strong interaction. In those cases,
this approach may also shed the light on the Higgs pattern. Since m((SU(N)) =
0, N # 2, Higgs mechanism of this type should not appear in the gauge field sectors
of SU(N), N # 2. On the other hand, the model may also be generalized to the
case of SU(2)y, x SU(2)r gauge invariance with w,(SU(2)L x SU(2)r) = Z3 x Z; and
it may be applied to the left-right symmetric mode‘L Furthermore, since the fourth
homotopy group of SU(5)/(SU(3) x SU(2) x U(1)) is also non-trivial, it may play
certain role in the SU(5)-GUT together with m,(SU(3) x SU(2) x U(1)) = Z3. And
all models of this kind may have the same advantages as the one presented in this

letter. Especially, all of them should also be stable against quantum correlation.
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