EPJ Web of Conferences 214, 08029 (2019) https://doi.org/10.1051/epjcont/201921408029
CHEP 2018

Notifications workflows using the CERN IT central messag-
ing infrastructure

Zhechka Toteva!-*, Darko Lukic?, and Lionel Cons!

ICERN, 1, Esplanade des Particules, 1211 Geneva 23, Switzerland
2EPFL, CE 3 316 (Centre Est), Station 1, CH-1015 , Switzerland

Abstract. In the CERN IT agile infrastructure (AI), Puppet, the CERN IT cen-
tral messaging infrastructure (MI) and the Roger application are the key con-
stituents handling the configuration of the machines of the computer centre.
The machine configuration at any given moment depends on its declared state
in Roger and Puppet ensures the actual implementation of the desired configu-
ration by running the Puppet agent on the machine at regular intervals, typically
every 90 minutes. Sometimes it is preferable that the configuration change is
propagated immediately to the targeted machine, ahead of the next scheduled
Puppet agent run on this machine. The particular need of handling notifica-
tions in a highly scalable manner for a large scale infrastructure has been satis-
fied with the implementation of the CERNMegabus architecture, based on the
ActiveMQ messaging system. The design and implementation of the CERN-
Megabus architecture are introduced, followed by the implementation of the
Roger notification workflow. The choice of ActiveMQ is analysed and the mes-
sage flow between the Roger notification producer and the CASTOR, EOS,
BATCH and Load Balancing consumers are presented. The employment of pre-
defined consumer modules in order to speed up the on-boarding of new CERN-
Megabus use cases is also described.

1 Introduction

Messaging enables asynchronous communication between services in a highly reliable and
configurable manner. It is designed for loosely coupled architectures where producers and
consumers do not need to know about each other [1]. Also, it offers instant communication,
which is a significant improvement for services that do HTTP polling. However, using mes-
saging may become unnecessary complicated, as it turned out in our use case with Roger[2].

Roger is an in-house developed tool, that manages the application state and the alarm
masking for every machine in the CERN IT AI world. Previously, locally installed RabbitMQ
[3] message brokers on the Roger servers were used to notify other affected services about
Roger state changes. The two biggest customers of the Roger notifications are CASTOR [4]
and EOS [5], that have the requirement to change the read/write mode of the tapes (disks
respectively) as soon as the Roger state changes of a CASTOR/EOS worker node.

Despite the flexibility to run a configuration tailored to the Roger notifications use case,
locally managed message brokers require significant extra support. In order to ensure reliable

*e-mail: Zhechka.Toteva@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 08029 (2019) https://doi.org/10.1051/epjconf/201921408029
CHEP 2018

and scalable notification handling of Roger state changes, the decision was taken to switch to
use the CERN IT MI instead [6].

A lot of similarities were found in the described EOS/CASTOR use cases and some other
services that require prompt update after another service is changed. These similar needs
inspired the birth of the CERNMegabus project.

2 CERNMegabus architecture

CERNMegabus is a service that provides instant messaging communication between ser-
vices. Its architecture is based on the publisher-consumer model and utilises the CERN IT
MI (Figure 1).

1. Subscribe for message

2. Publish message Central CERN _ 4. Execute actions
Change IT ActiveMQ Affected Externa
service "A’ brokers I service “B program

Figure 1. CERNMegabus architecture

The publisher and the consumer services comprise building blocks that are configured
with Puppet[7] and use the Python libraries, python-megabus, specially developed for the
CERNMegabus project. The python-megabus code has been developed with the idea to
be handed to the scientific community, by reducing the coupling with the CERN specific
configuration. The CERN specific configuration is handled by Puppet manifests as it is done
for all other services in the CERN Computer Centre (CC).

The next paragraphs present in detail the CERNMegabus components, some of which
have evolved quite a lot since CERNMegabus is running on all Puppet-managed machines in
the CERN CC.

2.1 python-megabus

The python-megabus library was developed mainly in order to provide an abstraction on top
of the CERN AI and the STOMP protocol. The library consists of two user-facing Python
classes, Publisher and Consumer, that automatically find their configuration file. These
classes can be instantiated and configured in any customer Python code. Roger was the first
service to profit from CERNMegabus when publishing the Roger state update to the central
IT message brokers (Table 1).

The Publisher class provides an abstraction of the communication between Service "A"
and the CERN IT ActiveMQ message brokers (Step 2 on the Figure 1). The Consumer
class can be configured and used in customer’s Python code in a similar way. This class
provides an abstraction of the communication between the CERN IT ActiveMQ message
brokers and Service "B" (Steps 1 and 3), leaving the processing of the action (Step 4) to the
customer’s code. In order to include as well the action handling in the abstraction, initially
CERNMegabus used stompclt [8] in the consumer’s part of the workflow.

After releasing CERNMegabus in production running on more than forty thousand vir-
tual and physical Puppet-managed machines, there was a change introduced to the project -
the stompclt part was replaced with a new CERN-developed Python equivalent of it, called
megabusclt. Apart from having all the code in a single programming language, this new tool
mitigated a problem related to the NET6 SSL Perl library. The megabusclit tool is distributed
in the python-megabus library.

EPJ Web of Conferences 214, 08029 (2019)

CHEP 2018
teigi/message.py activemq-publisher-roger.conf
import megabus [elient]
auth_method = password
def send_msg(message, hostname): server = cernmibroker.cern.ch
try: port = 12345
bus = megabus.Publisher('roger') destination = roger.notification.hostgroup
bus.send(message, extension=top_hostgroup, destination_type = topic
hostgroup=full_hostgroup, hostname=hostname) user = produceruser
except Exception as e: pass = thatisasecret

use_multiple_brokers = true

Table 1. Roger sending state update via CERNMegabus to the CERN IT MI

2.2 Puppet configuration

All the python-megabus user-facing classes and tools are highly configurable with the help
of configuration files, one example of which was presented in Table 1. These configuration
files are produced by Puppet. Table 2 shows how activemg-publisher-roger.conf is created.

https://doi.org/10.1051/epjcont/201921408029

manifests/common/server_leveldb.pp templates/clt/activemq-publisher.conf.erb
::cernmegabus: :client: :publisher{'roger': [client]
server => $activemg_server, auth_method = <%= @auth_method %>
port => $activemqg_port, server = <%= @server %>
user => $activemq_producer, port = <%= @port %>
pass_key => 'activemq_user', destination = <%= @destination %>
destination => 'roger.notification.hostgroup', destination_type = <%= @destination_type %>
destination_type => 'topic', user = <%= @user %>
owner => $teigi_user, pass = %TEIGI__<%= @pass_key %>__ %
} use_multiple_brokers = <%= @use_multip.. %>

Table 2. Puppet configuration of roger CERNMegabus Publisher

The server_leveldb.pp Puppet manifest uses the CERN Puppet resource ::cern-
megabus: :client::publisher to provide the values for the ERB Puppet[9] template activemq-
publisher.conf.erb. The later manages the content of activemq-publisher-roger.conf.

The Consumer can be configured and embedded in customer Python code in a similar
way, using a corresponding Puppet manifest and a Puppet template. The parameters are
mostly the same, except that there are two additional CERN specific consumer parameters,
namely hostgroup_selector and host_selector, which will be covered in detail in a later sec-
tion of this paper.

Megabusclt requires the same parameters as the Consumer class and the extra ones for
configuring the actions to be taken.

3 CERNMegabus features

CERNMegabus service provides variety of configurable features that make significant impact
to any message-driven communication. The next couple of sections of this document are
dedicated to the most appealing features for the Python-base service-oriented systems.

3.1 Authentication and authorisation

CERNMegabus supports two authentication schemes:

EPJ Web of Conferences 214, 08029 (2019) https://doi.org/10.1051/epjconf/201921408029
CHEP 2018

e x5009 certificate-based[10]

e basic authentication that requires an user name and a password, which are locallly managed
in the ActiveMQ message brokers

The authentication schema is set per topic/queue by the CERN IT MI service manager.
In order that CERNMegabus connects successfully a publisher/consumer to a ActiveMQ top-
ic/queue, the correct authentication schema should be provided with correct credentials.

CERNMegabus defaults to x509 when choosing the authentication schema. If basic au-
thentication is explicitly selected, the user name and the password have to be supplied. The
password is expected to be stored in TBAG[11] and retrieved from there and stored on the
client node by Puppet.

3.2 Publisher-consumer model

Different message brokers offer different approaches for providing high availability
architecture[3]. CERN IT MI provides multiple independent brokers[12] available behind
a DNS Load Balancing (LB) alias[13].

With the LB approach without explicit replication of each message on every broker, the
publisher-consumer models can be individually designed for the needs of each application.
The choice depends on the ratio between the number of publishers (n(pub)) and number of
consumers (n(cons)). The goal is to minimise the number of network connections needed to
guarantee that a message sent by any publisher can reach all the affected consumers. This
algorithm results in two possible publisher-consumer models:

e if n(pub) >= n(cons): Publish to one (random) message broker behind the LB alias and
subscribe to consume from all message brokers.

e if n(pub) < n(cons): Publish to all message brokers behind the LB alias and subscribe to
consume from one (random) message broker.

CERNMegabus brings value here by proposing transparent dereferencing of the DNS
LB alias for the consumer and for the producer by a single flag use_multiple_brokers in the
python-megabus library configuration (see activemq-publisher-roger.conf in Table 1). This
flag is also configurable via Puppet (see Table 2). Depending if the use_multiple_brokers
flag is set for the publisher or for the consumer, the message is sent to all (or respectively is
read from all) message brokers behind the DNS LB alias.

3.3 Puppet plugins

Plugins are the essential part of the CERNMegabus service. They demonstrate how pow-
erful, but still simple-to-use, notification handling in a big computer centre can be. The
CERNMegabus plugins are available as Puppet resources and in most cases they need only a
couple of parameters to be initialised, e.g. a command that should be executed on a message
arrival.

These plugins were initially built on top of stompclt Puppet resources (Figure 2), and later
one migrated to use megabusclt Puppet resources.

3.3.1 teigiclt_roger_actions plugin

There are different consumers of Roger state changes, but the one installed on all 40 thousand
machines in the CERN CC listens to updates of the Roger state of the machine itself. This is
achieved with only one line of code:

EPJ Web of Conferences 214, 08029 (2019) https://doi.org/10.1051/epjcont/201921408029
CHEP 2018

teigiclt_roger_actions

Figure 2. Inheritance of CERNMegabus plugins

include ::cernmegabus::plugins::teigiclt_roger_actions

The teigiclt_roger_actions plugin inherits from the roger one, initialising only the
on_change_command parameter with a path to a bash script residing on the file system of
the machine.

::cernmegabus :: plugins ::roger { ’file ’:
on_change_command => ’/usr/bin/roger_actions ',

}

3.3.2 Roger plugin

The roger plugin inherits from the cernmegabus::action plugin by passing the already
initialised on_change_command parameter. The on_change_command parameter goes to
the template cernmegabus/pluginsfroger.sh.erb that forms the content of the bash script
(Jusr/libexec/megabusclt-actionsfroger-file) that will end up in the client file system. This
bash script will be listed in the megabusclt configuration as the action to be executed:

define cernmegabus:: plugins ::roger (
String $on_change_command ,

) A

cernmegabus ::action { "roger-${title }":

host => $::cernmegabus::roger_server,
destination => $::cernmegabus::roger_dest,

filters => {’hostname’ => "mymachine.cern.ch"}
use_broker_filtering => true,

command =>

template (’cernmegabus/plugins/roger.sh.erb’),

3.3.3 CCPCO plugin

The ccpco plugin handles notifications related to CERN Computer Centre Power Cut Or-
chestration (CCPCO) workflow. The default action to be taken in case of a power cut on all
machines in the computer centre is declared with only one line of code:

cernmegabus :: plugins ::ccpco { ’base’: }

EPJ Web of Conferences 214, 08029 (2019) https://doi.org/10.1051/epjconf/201921408029
CHEP 2018

This plugin hides the detail that the action to be taken is sending an email to the responsible
people of the machine. Once the IT management approves the CCPCO workflow for pro-
duction, the same plugin gives the possibility the default action to be switched transparently
to shutdown. The ccpco plugin provides several predefined actions like logging to a log file,
shutting down or sending an email. The service manager is also offered the option to execute
any user-defined bash script that is stored on the machine file system.

Due to the diverse requirements that different services have in case of a power cut, the
default action can be be overwritten by the service managers by a list of actions. Each action
is tagged with a starting time, which is represented with the number of seconds after the
power cut event. This is implemented by Puppet resource collectors:

Cernmegabus :: Plugins :: Ccpco <| title == ’base’ [> {
power_cut_actions => {
0 => ’std_log ——path=/var/log/powercut.log’,
120 => ’/bin/backdata.sh’,
240 => ’std_email ——to teigi—admins@cern.ch’,
360 => ’std_shutdown ’,

3.3.4 New plugin development

CERNMegabus provides a simple interface for developing new plugins. In order to develop
a new plugin, users can use the stompclt::action or the megabusclt::action Puppet resource.

3.4 Puppet stompclt resources

Although the stompclt resource has been replaced with the megabusclt one for the purposes of
the CERNMegabus service, the users of the stompclt service can still profit from this resource
for building the stompclt configuration file. In order to configure the stomcplt daemon, a few
Puppet resources are created. The architecture of the stompclt resource enables configuration
of multiple authentications, subscriptions and actions per stompclt instance. The resource
implements reuse of subscriptions and TCP connections whenever it is possible.

3.5 Reuse of TCP connections, subscriptions and selectors

Consumers subscribe to queues or to topics and these subscriptions become more fine-grained
by using ActiveMQ message broker-side selectors. These selectors express criteria in SQL-
92 syntax that are applied on the header parameters of the messages. Although broker-side
selectors reduce the amount of messages being sent to the clients, they can increase the num-
ber of subscriptions to the broker significantly in the case of generic topics. Both stompclt and
megabusclt provide the choice of broker-side or client-side filtering, by using a simple flag
use_broker_filtering, which can be configured by Puppet as well. For the moment CERN-
Megabus supports only simple client-side filtering, based on hostgroup and hostname, terms
that are specific for the CERN Al world.

4 Use cases

The design of CERNMegabus service was mainly driven by use cases. Despite of their diver-
sity most of the use case fall into one of these three classes of message consuming:

EPJ Web of Conferences 214, 08029 (2019) https://doi.org/10.1051/epjcont/201921408029
CHEP 2018

4.1 Consume message affecting my workers

From this class of use cases, CASTOR Roger state listener was the first one migrated
to the CERNMegabus service. The following example demonstrates some implementa-
tion details. CASTOR LHCb headnodes subscribe to the ActiveMQ message broker on
topic "/topic/roger.hostgroup.castor" with broker-side filtering hostgroup_selector "castor-
lheb-diskserver-%". The broker-side filtering ensures that the CASTOR LHCb nodes are
not getting messages for CASTOR CMS disk servers for example. This use case profits from
the roger Puppet plugin. On message arrival, if there is a change of the Roger application
state of the diskserver in question, a command is run to adapt the read/write state of the tapes
accordingly.

The other use cases from this class are configured to use CERNMegabus in a similar way,
with the similarity that they all rely on the hostgroup_selector.

e EOS - uses topic "ftopic/roger.hostgroup.eos" with broker-side filtering hostgroup_selector
""eos/<instancename>/storage". Due to the complexity of the action that handles the re-
ceived message, EOS profits from the python-megabus library embedded in their customer
code and configured with the ::cernmegabus::client::consumer Puppet resource. The ac-
tion taken is similar to the CASTOR one, namely to ensure that the read/write mode of the
affected node is consistent with the updated Roger state.

e Puppet HAProxy - uses topic "ffopic/roger.hostgroup.punch" with broker-side filtering host-
group_selector ""punch/Puppet/ps/v4/%/<h3>". This use case profits from the roger plu-
gin on change of the Roger application state from/to "production” to run directlty the
HAProxy ctl sub-commands to disable/enable the machine in question.

4.2 Consume messages affecting myself

From this class of use cases, the DNS LB client was the first one migrated to the CERN-
Megabus service. The following example demonstrates some implementation details.

The DNS LB client is available on all Puppet-managed machines that are members of
an LB alias. There are many configurable criteria considered in the decision if a machine
is healthy in order to participate in an LB alias. If Roger application state is one of the
criteria for healthiness of a machine, it has to be verified by the LB client on regular intervals.
Previously, the LB client was querying (polling) the Roger state of a machine directly from
the Roger server, and if unavailable if was falling back to the locally cached Roger state stored
in current.yaml file on the machine. That file was updated on a Puppet agent run, which was
between every 1 and 6 hours, depending on the services the machine provides.

CERNMegabus facilitates the services, which run locally on the machine and need up-
to-date Roger state, by immediately propagating the Roger state to the current.yaml file,
overtaking the next Puppet agent run. This enhancement eliminated the need of the Roger
server to be contacted. Another service that will soon profit from the change is the Alert
Handler, that collects alarms information for the monitoring infrastructure on every node in
the CERN CC.

All these use cases rely on the host_selector criteria to be the FQDN of the machine.

4.3 Consume messages affecting everybody

The big use case of this class is the CERN CCPCO workflow, that has been already introduced
in this paper with the ccpco Puppet plugin. In the CCPCO workflow, we have two machines
monitoring the UPS systems in the CERN CC. In case of a power cut, they send (broadcast)

EPJ Web of Conferences 214, 08029 (2019) https://doi.org/10.1051/epjconf/201921408029
CHEP 2018

a message to a general topic fopic/ccpco.notification on which all machines in the CC are
subscribed. The presence of a power cut is verified every five seconds and a new message is
sent every minute in order to ensure that all machines are notified with the exact time elapsed
since the power cut event. It is estimated that the UPS can last for about 20 minutes. When
the power is back in time, a new message is broadcast announcing the power back event.

5 Conclusion

A new approach to handle notifications in a highly scalable manner for a large scale in-
frastructure using Puppet, was presented in this paper. A detailed technical description was
given of the CERNMegabus service design based on Python, Puppet, ActiveMQ, and stom-
cplt/megabusclt. As a result of this developemnt, users are given access to a simple CERN-
Megabus API that easily handles notifications. CERNMegabus provides means to decrease
the load on message brokers by reusing connections, subscriptions and selectors. The success
of CERNMegabus service allows for planning to use it for even more intensive daily activities
in the CERN computer centre.

References

[1] The WLCG Messaging Service and its Future, L.Cons and M. Paladin, Journal of
Physics: Conference Series, 396(3), p.032084, (2012).

[2] Alarm masking and application state management tool [software], Available at
https://twiki.cern.ch/twiki/bin/view/Main/rogerClient.

[3] RabbitMQ - Distributed RabbitMQ brokers. [software] Available at:
https://www.rabbitmq.com/distributed.html [Accessed 21 Jun. 2018].

[4] CASTOR: A Distributed Storage Resource Facility for High Performance Data Process-
ing at CERN, G. Presti, O. Barring, A. Earl, R. Rioja, S. Ponce, G. Taurelli, D. Waldron
and M. Santos, 24th IEEE Conference on Mass Storage Systems and Technologies (MSST
2007), 9880374, p.275-280, (2007).

[5] Latest evolution of EOS filesystem, G. Adde, B. Chan, D. Duellmann, X. Espinal, A.
Fiorot, J. Iven, L. Janyst, M. Lamanna, L. Mascetti, J. Rocha, A. Peters and E. Sindrilaru,
Journal of Physics: Conference Series, 608, p.012009, (2015).

[6] Enterprise Messaging Solutions Technical Evaluation, L. Cons and M. Paladin, European
Middleware Initiative, Available at http://cern.ch/go/w9Qd, (2011).

[7] Scaling Agile Infrastructure to People, B. Jones, G. McCance, S. Traylen and N. Arias,
Journal of Physics: Conference Series, 664(2), p.022026, (2015).

[8] stompclt, L. Cons, [software] GitHub. Available at: https://github.com/cern-mig/stompclt
[Accessed 21 Jun. 2018].

[9] Puppet, [software], Available at: https://puppet.com/.

[10] Overview of Certification Systems: X.509, PKIX, CA, PGP SKIP, E. Gerck, The Bell
Newsletter, ISSN 1530-048X, Vol. 1, p.8, (2007).

[11] Managing secrets with TBAG [software], Available at
https://configdocs.web.cern.ch/configdocs/secrets

[12] Modern Messaging for Distributed Systems, L. Magnoni, Journal of Physics: Confer-
ence Series, 608, p.012038, (2015).

[13] DNS load balancing in the CERN cloud, I. Reguero and L. Lobato, Journal of Physics:
Conference Series, 898, p.062007, (2017).

