
Concurrent Adaptive Load Balancing at CERN

Paulo Canilho1,∗, Ignacio Reguero1, and Pablo Saiz1

1CERN IT Department, CH-1211 Geneva 23, Switzerland

Abstract. CERN is using an increasing number of DNS based load balanced
aliases (currently over 700). This article explains the Go based concurrent im-
plementation of the Load Balancing Service, both the client (lbclient) and the
server (lbd). The article describes how it is being progressively deployed using
Puppet and how concurrency greatly improves scalability, ultimately allowing
a single master-slave couple of Openstack virtual machines to server all the
aliases. It explains the new implementation of the lbclient, which, among other
things, allows to incorporate Collectd metrics to determine the status of the
node and takes advantage of the Go language concurrency features to reduce
the real time needed for checking the status of the node. The article explains
that the LBD server acts as an arbiter getting feedback on load and health from
the backend nodes using snmp (Simple Network Management Protocol) to de-
cide which IP addresses the LB alias will present. While this architecture has
been used since long at CERN for DNS based aliases, the LBD code is generic
enough to drive other load balancers. A proof of concept using HAProxy to pro-
vide adaptive responses to load and health monitoring has been implemented.

1 Introduction
This paper describes the main components of the Load Balancing Service created at CERN.
The service has been running in production for the last twelve years, and, recently, it has
undergone a major reorganization to improve its performance, scalability and monitoring.

First, the paper gives an overview of the system and introduces the different components.
After that, it describes in more detail the client, the server and the way they communicate
with each other. The following chapter describes how the service is being handled, and
a prototype that was evaluated to use HAProxy instead of DNS as a backend. Finally, a
summary concludes the article.

2 System architecture - overview
The overall architecture of the load balance service is depicted in Figure 1. There is a central
machine running the Load Balanced Daemon (LBD). This daemon periodically probes the
clients and queries their status. The different clients run the lbclient, which, according its
configuration, decides if the node is healthy and its current load. After gathering the results
from all the nodes that could potentially sit behind an alias, the LBD will select the best
candidates, and it will update the DNS server accordingly.

The communication between the LBD and the nodes running lbclient is done through
SNMP.
∗e-mail: lb-experts-public@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 08028 (2019)	 https://doi.org/10.1051/epjconf/201921408028
CHEP 2018



Figure 1: Components of the Load Balancing Service.

3 Load-balanced client

3.1 Implementation

The load-balanced client (lbclient) runs on the hosts that could be behind a DNS alias. The
configuration of the lbclient describes a set of metrics, called checks, that will be used to
evaluate if the node is healthy, and, a second set of metrics, called loads to evaluate how busy
the node is. A subset of the checks and loads can be found in Table 1. Most of these metrics
are generic, like checking the disk space, or if there are services listening behind particular
ports. Others have been created to take advantage of other CERN infrastructure components,
like lemon [1], roger [2] and collectd [3].

The latest version of the lbclient extended the c-style arithmetic/string expression and
JSON support in several metrics. Using this, the user is able to perform complex checks,
similar to the ones described in Table 1.

3.2 Deployment

The deployment of the lbclient requires the following steps:

• The first step is the installation of the lbclient software. This is currently done with an rpm
(Redhat Package Manager).

• The second one is the configuration of the lbclient. Currently, this is done with a Puppet
resource.

• The last one is to configure a SNMP daemon to allow incoming calls from the LBD. The
same Puppet resource mentioned above takes care also of setting the SNMP daemon, open-
ing the firewall and configuring the rules of SElinux.

The simplest configuration consists of a single configuration file per node, with all the
metrics needed for the configuration. This layout can be extended to allow a single node to
sit behind different aliases, and even use different metrics for the evaluation of each alias.
As an example, a machine that runs both a web server and a database server could have two

2

EPJ Web of Conferences 214, 08028 (2019)	 https://doi.org/10.1051/epjconf/201921408028
CHEP 2018



Figure 1: Components of the Load Balancing Service.

3 Load-balanced client

3.1 Implementation

The load-balanced client (lbclient) runs on the hosts that could be behind a DNS alias. The
configuration of the lbclient describes a set of metrics, called checks, that will be used to
evaluate if the node is healthy, and, a second set of metrics, called loads to evaluate how busy
the node is. A subset of the checks and loads can be found in Table 1. Most of these metrics
are generic, like checking the disk space, or if there are services listening behind particular
ports. Others have been created to take advantage of other CERN infrastructure components,
like lemon [1], roger [2] and collectd [3].

The latest version of the lbclient extended the c-style arithmetic/string expression and
JSON support in several metrics. Using this, the user is able to perform complex checks,
similar to the ones described in Table 1.

3.2 Deployment

The deployment of the lbclient requires the following steps:

• The first step is the installation of the lbclient software. This is currently done with an rpm
(Redhat Package Manager).

• The second one is the configuration of the lbclient. Currently, this is done with a Puppet
resource.

• The last one is to configure a SNMP daemon to allow incoming calls from the LBD. The
same Puppet resource mentioned above takes care also of setting the SNMP daemon, open-
ing the firewall and configuring the rules of SElinux.

The simplest configuration consists of a single configuration file per node, with all the
metrics needed for the configuration. This layout can be extended to allow a single node to
sit behind different aliases, and even use different metrics for the evaluation of each alias.
As an example, a machine that runs both a web server and a database server could have two

Type Tool Parameters Description

check nologin verifies that the files /etc/iss.nologin
and /etc/nologin do not exist

check webdaemon verifies that a process listens on port
22

check daemon {"port":[80,8080],
"protocol":["tcp",
"udp"]}

verifies that a process listens on both
ports 80 and 8080, using both tcp and
udp

check tmpfull verifies that the location /tmp/ is not
full

check collectd [X:1]>2 && [Y]=0 using the collectd service, verifies that
the 2nd index of the X metric slide is
greater than 2 and that the value of the
metric Y is equal to 0

check command <command_name> verifies that <command_name> re-
turns 0 when executed

load constant 4 the load of the node will be 4
load lemon [12163:1] + [13423] using the lemon service, the load of

the node will be the sum of the 2nd
index of the metric number 12163 and
the value of the metric 13423

load collectd [Z] * [M:key] the load of the node will be the value
of the collectd entry [Z] multiplied by
the value that has is identified by ’key’
of the entry [M]

Table 1: Some metrics available when using lbclient.

aliases configured. The first alias would check if the web server is running properly, whereas
the second alias would check if the database is running properly.

4 Load-Balanced Daemon

4.1 Implementation

The Load Balancing Daemon (LBD) has been running at CERN in production for the last
twelve years. It is a stable service, which has been adjusted and kept up to date. At the
same time, it was reaching its limit on the number of aliases that it could handle. This was
an opportunity to take a step back, and evaluate the assumptions and decisions taken during
the first implementation. The first lesson taken was that it would be better to parallelize the
evaluation of the aliases. A sequential evaluation on a single node does not scale. This lead
to two improvements in the new generation of the Load Balancing Daemon:

• Since the aliases are independent, it should be possible to parallelize their evaluation. This
will take advantage from the multiple core architecture. Due to the possible timeouts an
retries on each of the SNMP calls, the sequential approach was already reaching five min-
utes of running time. Thanks to parallelization, the time was brought down to less than one
minute.

3

EPJ Web of Conferences 214, 08028 (2019)	 https://doi.org/10.1051/epjconf/201921408028
CHEP 2018



• Split all the aliases into different partitions, and run a different LBD per partition. This
allowed a progressive deployment of the new version, as it will be explained on the next
chapter.

The workflow diagram of the LBD is depicted in Figure 2. The aliases might have different
refresh policies, so, first, the LBD figures out which aliases have to be evaluated. Once it has
done that, there are three main tasks:

• First, identify all the nodes that could potentially sit behind all the aliases being evaluated.
Call the lbclient on all these nodes. Note that, if a node could be behind multiple aliases, it
should be called only once.

• Then, for each alias, compare the response of the nodes, and select the best nodes.

• Finally, compare the selected nodes with the current nodes that appear on the DNS. If they
are different, update the DNS accordingly.

The first two items can be executed concurrently, as long as all the nodes have been
contacted before starting the evaluation of the aliases. The last part, the update of the DNS,
has been left sequential to reduce the amount of simultaneous calls done to the DNS service.
Since most of the execution time of the LBD is spent on the evaluation of the nodes, this
sequential part was acceptable.

Figure 2: Workflow of the Load Balanced Daemon.

4.2 Deployment

The Load-Balance Daemon needs two sources of information to be able to process the aliases:

• The list of aliases that it has to process.

• The list of nodes that might be behind each of the alias.

The former information is stored in a central database, called ermis [4]. The current
implementation of ermis is a Django interface on top of a MySQL database. The list of nodes
is currently fetched from Puppetdb, querying all the nodes that have configured the lbclient
Puppet resource.

4

EPJ Web of Conferences 214, 08028 (2019)	 https://doi.org/10.1051/epjconf/201921408028
CHEP 2018



• Split all the aliases into different partitions, and run a different LBD per partition. This
allowed a progressive deployment of the new version, as it will be explained on the next
chapter.

The workflow diagram of the LBD is depicted in Figure 2. The aliases might have different
refresh policies, so, first, the LBD figures out which aliases have to be evaluated. Once it has
done that, there are three main tasks:

• First, identify all the nodes that could potentially sit behind all the aliases being evaluated.
Call the lbclient on all these nodes. Note that, if a node could be behind multiple aliases, it
should be called only once.

• Then, for each alias, compare the response of the nodes, and select the best nodes.

• Finally, compare the selected nodes with the current nodes that appear on the DNS. If they
are different, update the DNS accordingly.

The first two items can be executed concurrently, as long as all the nodes have been
contacted before starting the evaluation of the aliases. The last part, the update of the DNS,
has been left sequential to reduce the amount of simultaneous calls done to the DNS service.
Since most of the execution time of the LBD is spent on the evaluation of the nodes, this
sequential part was acceptable.

Figure 2: Workflow of the Load Balanced Daemon.

4.2 Deployment

The Load-Balance Daemon needs two sources of information to be able to process the aliases:

• The list of aliases that it has to process.

• The list of nodes that might be behind each of the alias.

The former information is stored in a central database, called ermis [4]. The current
implementation of ermis is a Django interface on top of a MySQL database. The list of nodes
is currently fetched from Puppetdb, querying all the nodes that have configured the lbclient
Puppet resource.

Taking advantage of the Puppet infrastructure at CERN [2], every time that Puppet runs
on the LBD, it gathers all the information from both sources, and creates the configuration
file that the LBD uses. Note that there is no strong interconnection between the LBD and
Puppet. As long as the configuration file gets created and contains a list of aliases, the LBD
can run. This enables to run the LBD and lbclient setup on sites that do not have Puppet.

5 Communication

The Load Balanced Daemon uses SNMP as the communication protocol between the LBD
and the lbclient running on the nodes. This was identified as a simple, secure and small foot-
print solution to get information from the node. The SNMP daemon has been configured in
such a way that the request arriving asking for a particular identifier will execute the lbclient
command and it will return its output. The output could be either an integer, in the cases
where the node has a single configuration file, or string containing a list key-value pairs,
where the keys are the names of the aliases configured on that node, and the value the load of
each of them.

The port that the SNMP daemon uses is behind a firewall, and only the traffic coming
from the LBD is allowed. SElinux had to be configured as well to allow the execution of the
lbclient.

6 Operations

6.1 Partitions

As mentioned before, the concept of partitions was introduced to split all the aliases into
several groups. Each partition can be evaluated by a different set of LBD. Thanks to this, the
transition from the old version of the LBD to the new GoLBD has been done progressively.
The initial situation was that all the aliases were on the partition of the old LBD. Then, a new
partition was created, where the aliases were evaluated by the Go implementation. Then, the
aliases used for development were moved into this partition. The rest of the aliases followed,
each time migrating a small bunch of aliases. The full operation was done over several
months, thus minimizing the risk of sudden transitions and gaining expertise on the service.
The migration was transparent for the end users.

6.2 Achieving High Availability

Each partition of load balanced aliases is deployed on two nodes running the LBD. The first
node, the primary, does the evaluation of the aliases and then it checks if it has to update
the DNS. The secondary node does also the evaluation of the aliases. Then, it checks if the
primary is alive. In that case, it just goes to sleep until the next iteration. If the secondary
finds that the primary is not alive, it will also update the DNS. It was decided that both
servers should check the status of the nodes to have some comparison, and to be able to
identify network issues. In the scenario where the communication between the primary and
the secondary has been cut, both servers would check if they have to update the DNS. As
long as they see a coherent state of the nodes, the end result will still be reasonable. If, on
the other hand, the primary and the secondary see different behaviour of the nodes, they will
both update the DNS with different values.

5

EPJ Web of Conferences 214, 08028 (2019)	 https://doi.org/10.1051/epjconf/201921408028
CHEP 2018



6.3 Monitoring

The monitoring of the Load Balanced Daemon has been done with the UMA infrastructure
[5]. In particular, it uses Logstash to send the data, and then a Kibana dashboard on top of
Elasticsearch shows the status of the service. Three different dashboards have been created:

• One dashboard for the creator of the alias. This dashboard presents the nodes that are
behind the alias, and how they evolve over time.

• The second one presents more detailed information about the decisions that the LBD took
for each alias, and the type of policy that it applied.

• The last dashboard is for the service managers of the LBD, with the status of the LBD
machines.

An example of the first dashboard can be seen in Figure 3. This particular alias has had ninety
different nodes behind. The plot on the left presents the average load of each of the nodes,
evaluated every five minutes over the last thirty day. Then, the fifteen least loaded nodes were
selected, and presented behind the alias. The plot on the right presents the percentage of time
that each node was behind the alias. The status and load of each node was evaluated every
five minutes, and the fifteen least loaded healthy nodes were presented by the alias.

Figure 3: Monitoring of the nodes behind a particular alias.

7 DNS & HAProxy

Most of the work done by the the LBD is in fact not DNS specific. The part of evaluating a list
of nodes, getting their health status and choosing the healthiest nodes can be applied to other
situations. Following this idea, and as a proof of concept, a version of Load Balancing with
an HAProxy [6] backend was implemented. The workflow has been depicted in Figure 4.
The LBD uses the same logic to evaluate the nodes, and then it sets the weights of HAProxy
accordingly.

8 Future work

The proof of concept of the LBD with HAProxy backend should be taken to the next level,
and configure it on real use cases. The scenarios that are being considered at the moment
include a standard DNS Load Balancing for the HAProxy service itself, and then the Load
Balancing with HAProxy backend for the service nodes.

6

EPJ Web of Conferences 214, 08028 (2019)	 https://doi.org/10.1051/epjconf/201921408028
CHEP 2018



6.3 Monitoring

The monitoring of the Load Balanced Daemon has been done with the UMA infrastructure
[5]. In particular, it uses Logstash to send the data, and then a Kibana dashboard on top of
Elasticsearch shows the status of the service. Three different dashboards have been created:

• One dashboard for the creator of the alias. This dashboard presents the nodes that are
behind the alias, and how they evolve over time.

• The second one presents more detailed information about the decisions that the LBD took
for each alias, and the type of policy that it applied.

• The last dashboard is for the service managers of the LBD, with the status of the LBD
machines.

An example of the first dashboard can be seen in Figure 3. This particular alias has had ninety
different nodes behind. The plot on the left presents the average load of each of the nodes,
evaluated every five minutes over the last thirty day. Then, the fifteen least loaded nodes were
selected, and presented behind the alias. The plot on the right presents the percentage of time
that each node was behind the alias. The status and load of each node was evaluated every
five minutes, and the fifteen least loaded healthy nodes were presented by the alias.

Figure 3: Monitoring of the nodes behind a particular alias.

7 DNS & HAProxy

Most of the work done by the the LBD is in fact not DNS specific. The part of evaluating a list
of nodes, getting their health status and choosing the healthiest nodes can be applied to other
situations. Following this idea, and as a proof of concept, a version of Load Balancing with
an HAProxy [6] backend was implemented. The workflow has been depicted in Figure 4.
The LBD uses the same logic to evaluate the nodes, and then it sets the weights of HAProxy
accordingly.

8 Future work

The proof of concept of the LBD with HAProxy backend should be taken to the next level,
and configure it on real use cases. The scenarios that are being considered at the moment
include a standard DNS Load Balancing for the HAProxy service itself, and then the Load
Balancing with HAProxy backend for the service nodes.

Figure 4: Component-reuse for the implementation of the DNS & HAProxy services.

9 Summary

This paper has presented the Load Balanced system developed and maintained at CERN. It
is based on three components:

• A thin and configurable client, running on the nodes.

• A set of servers that can evaluate if the nodes are healthy and their load and update the
DNS accordingly.

• A transport mechanism that has been configured so that the server can retrieve the infor-
mation from the client.

A new implementation has been done this year to improve the service scalability. This im-
plementation has been done in Go, and uses the concurrent features offered by the language
to reduce the execution time.

References

[1] LEMON - LHC Era Monitoring. 2018. LEMON - LHC Era Monitoring. [ONLINE]
Available at: http://lemon-monitoring.web.cern.ch/. [Accessed 23 October 2018].

[2] B. Jones, G. McCance, S. Traylen and N. Arias (2015). Scaling Agile Infrastructure to
People. Journal of Physics: Conference Series, 664(2), p.022026.

[3] Documentation – collectd – The system statistics collection daemon. 2018. Documen-
tation – collectd – The system statistics collection daemon. [ONLINE] Available at:
https://collectd.org/documentation.shtml. [Accessed 23 October 2018].

[4] I. Reguero and L. Lobato (2017). DNS load balancing in the CERN cloud. Journal of
Physics: Conference Series, 898, p.062007.

[5] A. Aimar et al. (2017). Unified Monitoring Architecture for IT and Grid Services. Journal
of Physics: Conference Series, 898, p.092033.

[6] HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer. 2018. HAProxy
- The Reliable, High Performance TCP/HTTP Load Balancer. [ONLINE] Available at:
https://haproxy.org. [Accessed 26 November 2018].

7

EPJ Web of Conferences 214, 08028 (2019)	 https://doi.org/10.1051/epjconf/201921408028
CHEP 2018



[7] GitHub. 2018. GitHub - cernops/golbd: Go implementation of CERN lbd DNS Load
balancing daemon. [ONLINE] Available at: https://github.com/cernops/golbd. [Accessed
28 November 2018].

[8] GitHub. 2018. GitHub - cernops/golbclient. [ONLINE] Available at:
https://github.com/cernops/golbclient. [Accessed 28 November 2018].

8

EPJ Web of Conferences 214, 08028 (2019)	 https://doi.org/10.1051/epjconf/201921408028
CHEP 2018


