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Many state-of-the-art applications for linear accelerators, such as free-electron lasers (FELs) and plasma-
wakefield accelerators (PWFAs), require small normalized emittances, and PWFAs in particular are very
sensitive to transverse slice offsets along the beam. Dispersive systems, such as bunch compressors, can
cause different chromatic aberrations, one of which yields transverse slice offsets. In this paper, we show a
design approach to double-achromat bunch compressors which greatly reduces different chromatic
aberrations and mitigates coherent synchrotron radiation effects.
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Bunch compressors (BCs) are an essential part of many
linear electron accelerators and are vital for most state-of-
the-art applications, such as free-electron lasers (FELs),
linear colliders (LCs) and beam-driven plasma-wakefield
accelerators (PWFAs). As a correlated energy spread, or
chirp, along the beam is often required to compress particle
bunches to the desired duration or peak current, compres-
sors and transport optics exhibiting chromatic aberrations
can cause different beam parameters to change along the
beam. Particularly beams entering and exiting PWFAs
can exhibit large energy spreads, which exacerbates the
chromatic effects.
Similarly to chromatic aberrations in photon optics,

different longitudinal slices of a chirped particle beam will
be focused at different longitudinal positions for given
focusing optic. This causes the beam Twiss parameters to
change along the beam, which can cause poor matching
conditions and focusing, as well as a growth of the projected
normalized emittance. This type of aberration is generally
called chromaticity, and a system which mitigates this
aberration using only linear focusing elements is called
apochromatic. In systems containing dipole magnets, such as
bunch compressors and transfer beamlines, another type of
aberration can cause different slices to also exit the system
with a different centroid, or mean, position and angle.
Beyond also causing projected normalized emittance

growth, this type of transverse offset from the axis has been
shown to decrease FEL performance [1], while for PWFAs
[2,3], it can cause beam hose instability [4], which can
completely destroy the beam. This aberration can be caused
by nonzero, or leaking, transverse dispersion, and a system
which is devoid of such dispersion to order n is typically
called nth-order achromatic.
Much work has been devoted in the past few years to

understanding and mitigating the effects of the hose
instability [5,6], but if the transverse offset can be removed
before entering the plasma, the root cause of the instability
is also removed. Leaking higher-order dispersion has been
identified as a potential issue for staging in future PWFA-
based LCs [7]. Large energy spread in the beam also, in
itself, serves to mitigate hosing growth, as shown in
Ref. [5]. Therein it is also shown that controlled plasma
density tapers, which are also useful for matching the beam
parameters from vacuum to plasma [8,9], are useful for
mitigating hosing, and are likely to be implemented in
future PWFA experiments.
In this paper, we show by means of numerical simu-

lations in Elegant [10], a design approach to double-
achromat bunch compressors [11] which are achromatic
to third order, while also exhibiting apochromatic proper-
ties. We show that these systems can transport and com-
press beams with significant energy spreads and can be
tuned to mitigate some effects of coherent synchrotron
radiation (CSR), which is always present in such systems
and can cause spatial and angular offsets similar to leaking
higher-order dispersion. Double-achromat bunch compres-
sors have the added benefit that they can easily be optically
tuned to provide linearly ramped beam current profiles
[12], which are nearly optimal for efficiently driving
plasma waves [13–15], requiring no harmonic cavity to
do so. These features allow double-achromats to be
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configured as primary bunch compressors or truly trans-
parent (with respect to energy spread) transfer beamlines,
with or without current profile shaping. These facts present
a strong case for this bunch compressor scheme in, e.g.,
future PWFA machines. An example of the geometry of a
double-achromat compressor (MAX IV BC1) is shown
in Fig. 1.
In the following, the matrix-based beam transfer notation

of Brown and Carey [16,17] will be used. In this notation,
the transformation X → Xf of the 6D particle coordinate
vector X ¼ ðx; x0; y; y0; z; δÞ between two points along the
lattice is described by

Xi;f ¼
X

j

RijXj þ
X

jk

TijkXjXk þ
X

jkl

UijklXjXkXl; ð1Þ

where i is the index of the vector X and δ ¼ ΔE=E is the
relative energy spread, with E being the mean energy. Rij,
Tijk and Uijkl are the first-, second- and third-order transfer
matrix elements, respectively, which depend on all the
components that constitute the transport system in
question. As an example, consider the mapping of the
coordinate x → xf as a function of the energy spread δ
alone, as given by

xf ¼ xþ R16δþ T166δ
2 þU1666δ

3 ¼ xþ ΔxðδÞ; ð2Þ

with i ¼ 1 and j ¼ k ¼ l ¼ 6 following the notation of
Eq. (1). The linear energy dependence, R16, is the trans-
verse dispersion, and T166 and U1666 are the second- and
third-order transverse dispersion, respectively. At either end
of an achromat, R16 ¼ R26 ≡ 0, and so we call a lattice with
T166 ¼ T266 ¼ 0 at these locations a second-order achro-
mat, and so on. Passing through a system with nonzero
dispersion yields Δx ≠ 0 for δ ≠ 0, which produces an
offset of the slices in a chirped beam, as particles within a
slice have nearly the same energy.
An example of this is shown in Fig. 2, which shows the

horizontal slice centroids of a single bunch with large
energy spread which is tracked through a first-order
double-achromat bunch compressor, together with the
predicted offset from Eq. (2). There are evidently remaining
T166 and U1666 elements, as ΔxðδÞ takes the shape of
a skewed parabola. Other effects, such as CSR and

wakefields, are turned off to show only the coupling
between the energy spread and the offset.
The matrix elements T266 and U2666, which relate energy

spread and angular deviation similarly to Eq. (2), are also of
interest, as are the elements T566 and U5666, which relate
energy spread and longitudinal position in the bunch. R56 is
the first-order longitudinal dispersion, so T566 andU5666 are
thus higher-order longitudinal dispersion, which can be
tuned to particular values for shaping of the beam current
profile. The longitudinal dispersion elements one might
want to control and give some specific, nonzero value,
while it is often desirable to cancel the transverse elements
mentioned above.
All these different matrix elements are determined by the

magnets in the setup, but different magnets affect different
order elements. Assuming that the magnets are perfectly
aligned, dipoles affect terms from 0 (trajectory deflection)
and up, quadrupoles from 1 and up, sextupoles from 2 and
up, etc. Misalignment will cause a feed-down effect [18],
which means that a magnet of given order will also exhibit
lower-order terms; a transversely displaced quadrupole will
also give a dipole kick. This effect will be disregarded in
this paper for simplicity. Finite manufacturing tolerances
also introduce different-order terms, also known as the
multipole content [18] of the magnet. The specific multi-
pole content for the MAX IV compressor magnets is
included in the numerical tracking throughout this paper.
Regardless, a magnet of a given order can typically be used
to tune a matrix element of the same order, but it will also
affect all higher order as its strength and longitudinal
position is changed. It is generally a good idea to optimize
the setup using lower-order magnets first.
We also note that the cross-terms, such as T116, which

maps to the transverse coordinate by Δx ¼ T116xδ, are
omitted in the analytical work. While in principle contrib-
uting to emittance increase, the initial position in, e.g., x is
small enough in the cases considered here that the resulting
Δx is very small compared to the beam size and secondly,

FIG. 1. Overview of the geometry of a double-achromat
compressor. Blue rectangles are dipoles, red are quadrupoles
and green are sextupoles. This color convention will be the same
for all following figures.

FIG. 2. Horizontal offset of the beam after the BC, as a function
of δ. The blue marks show the slice centroids of the tracked beam
and the red line is Eq. (2) with the corresponding coefficients for
the BC in question.
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terms such as this give a symmetric shift for particles at
positive and negative x, and will therefore not give a
collective centroid offset. This is also true for similar terms
related to the angular offset, Δx0.
The starting point of the design is the second bunch

compressor in the MAX IV Laboratory [19] linear accel-
erator [20], see Fig. 3. The compressors are self-linearizing
with respect to the longitudinal (z − δ) phase space, and so
no harmonic linearizing cavity, commonly used in chicane-
based linacs, is required. Unlike the more common chi-
canes, this type of bunch compressor has a positive R56,
which means that a positive chirp with respect to z is
required for compression. The compressors self-linearize
the longitudinal phase space of the bunches by tuning T566

with the weak (jk2j ≤ ∼70 m−3) sextupoles at the center of
each achromat. These sextupoles can also be used to easily
adjust the bunch current profile [12]. R56 is fixed at a value
of 2.60 cm for the full compressor and R16 ¼ R26 ¼ 0 at
each achromat end. The degree of compression is varied
with the energy chirp, which is established with the phase
of the accelerating radio frequency (rf) voltage as well as

the longitudinal wakefield of the bunch, which chirps in the
same direction as the rf.
Third-order achromaticity is achieved in a few key steps.

First, two new quadrupoles are introduced in the straight-
section between the achromats. Their strengths and relative
positions are optimized, using the Simplex optimizer in
Elegant, to minimize jT166j and jT266j at the compressor
end, while keeping the Twiss functions symmetric about
the compressor center. This reduces not only jT166j and
jT266j, but also jU1666j and jU2666j, decreasing jU5666j only
very slightly. T566 is unaffected. A benefit of using the
straight-section quadrupoles for this type of task is that it
has negligible effect on the overall compression, even to
third order. Then, the sextupole configuration is changed to
have sextupoles from two different families placed sym-
metrically around the achromat centers, outside the ach-
romat quadrupoles that control the first-order dispersion,
while an octupole magnet is placed in the center, see Fig. 4
top. The sextupoles and octupoles in the second achromat
are configured to have the opposite sign of the strength
compared to the first achromat. Starting the tuning with all

FIG. 3. Original BC2 layout (top) followed by beta functions
(βx and βy) and dispersion (R16), betatron phase advances (ψx and
ψy), second-order spatial and angular dispersion (T166 and T266),
and finally third-order spatial and angular dispersion (U1666

and U2666). Note the asymmetric behavior of the higher-order
dispersion curves.

FIG. 4. CSR-mitigating and near-apochromatic BC. Again with
compressor layout on top, followed by beta functions and
dispersion, betatron phase advances, second-order spatial and
angular dispersion, and finally third-order spatial and angular
dispersion. The added octupoles are shown in black. Note the
Δψx ¼ 2π phase advance between achromat centers.
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higher-order magnets set to 0, the two sextupole families
are used to set T566 to its nominal value of 4.23 cm, after
which jT166j and jT266j are again minimized using the 5
straight-section quadrupoles. Then, the octupoles are used
to minimize jU1666j and jU2666j, after which all magnets
and the straight-section drifts are simultaneously used to set
these four matrix elements to zero.
The resulting spatial offset of the slices out of the

compressor [using Eq. (2)] is then≪ 1 μm, and the angular
offset was ≪ 1 μrad, at δ ¼ �3%. The higher-order
magnets are very weak, the sextupole strengths being 30
and 42m−3, respectively, and the octupole strength being
0.7 m−4. Removing the octupole altogether does not allow
for convergence of the U-terms, possibly because of the
dipole limitation mentioned earlier. The compressor foot-
print is unchanged. The offset in a beam tracked through
the compressor is shown and compared to Eq. (2) in Fig. 5.
The small discrepancy is a result of third-order (U) matrices
for the dipole magnets not being implemented in Elegant.
The two sextupole families, together with the octupole and
the three families of quadrupoles, allow for tuning T566 to
account for different voltage curvature at different rf
phases, while minimizing the remaining T- and U-terms.
Since the sextupoles are also used to, e.g., overlinearize
the longitudinal phase space, to yield the linear current
ramps shown in, e.g., Ref. [12], this approach could be

used to construct, e.g., PWFA-tailored, offsetfree bunch
compressors.
An alternative design approach could be the one taken in

Ref. [21], particularly considering the very similar dogleg
case in Sec. Vof that paper. As noted, there is a positive R56

of such a double-achromat, which could possibly be
increased from the presented 5 mm to some desirable
value [OðcmÞ] and still keep the achromats in, or near, the
regime for second-order achromaticity. Leaving out the
added chicane, one ends up precisely with a double-
achromat compressor. It is also noted in the paper that
there is some residual T566, which could be tuneable by
weak sextupoles in a similar manner to the MAX IV
compressors, if it cannot indeed be increased by the linear
magnet layout alone. Two sextupole families would be
required, then, to set T566 and minimize T166 or T266. The
design presented in Ref. [21] is also scalable in length via
the center straight-section, just like the layouts presented
here, which could then also provide additional knobs for
minimizing U1666 and U2666 (since T166 and T266 are
already zero), similarly to what was described above.
Up until now, we have considered the effects of the

higher-order transverse dispersion arising in compressors.
However, there are of course also chromatic aberrations in
nondispersive systems. These effects are often compared
to the chromatic aberrations arising in photon optics,
where different photon energies, or wavelengths, usually
have different focal lengths for a given lens. Normally,
these aberrations in charged particle optics can be canceled
by the use of sextupoles in dispersive sections (see
e.g., Refs. [22,23]), but it is also possible to mitigate them
by the use of linear focusing elements, such as quadru-
poles, alone.
Using the definition of Ref. [24], an optical layout where

the first-order chromatic derivatives of the Twiss functions,
i.e., dβdδ and

dα
dδ, are cancelled by linear focusing elements, is

called first-order apochromatic. This approach is very
useful for transport beamline and final focus design, as
the Twiss functions, between two given locations along the
system, can be conserved, in spite of a significant energy
spread. If the magnet layout is chromatic, a beam with a
correlated energy spread will acquire different Twiss
parameters along the beam, which can lead to poor trans-
port and focusing, which then leads to, e.g., projected
emittance growth. It is, of course, particularly important to
take this into account in sections of the system where the
energy spread is the large, just as for the higher-order
dispersion.
Incidentally, the center straight-section quadrupoles

are useful not only for controlling the higher-order
dispersion, but also for reducing the overall chromaticity.
This means that if one has the headroom in terms
of degrees-of-freedom, these magnets can be used for
multiple purposes. E.g., if one uses the design principle
of Ref. [21], and third-order terms are not a concern, the

(a)

(b)

FIG. 5. (a) Horizontal offset of the beam after the third-order
achromatic BC as a function of δ. The blue marks show the slice
spatial centroids of a tracked beam and the red line is Eq. (2),
using the corresponding matrix elements. Note the large differ-
ence in scale compared to Fig. 2. (b) Horizontal slice spatial and
angular centroids after tracking through the lattices in Fig. 3 (gray
circles and triangles) and Fig. 4 (colored crosses), with CSR
enabled.
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center straight-section is free to use for canceling the
chromatic derivatives. Alternatively, one can opt for con-
trolling the betatron phase advance between achromats
with these quadrupoles—this can be an implicit effect
when cancelling the chromatic derivatives, as shown in
Ref. [24]. It is worth noting that it can be worth limiting
the maximum beta function value along the system, as
this was found to flatten the beta responses as function of
δ, particularly in the nonbending plane. Even with the
Twiss derivatives zeroed at δ ¼ 0, rapid increase of the
Twiss functions for δ ≠ 0 would yield chromatic aberra-
tions in the beam.
So far, only the optical functions have been considered,

and unwanted chromatic effects in the beam have been
minimized. However, there are other effects, not con-
tained within the previously used theory, that can have a
detrimental impact on the final beam quality. One such
effect is coherent synchrotron radiation (CSR). This
electromagnetic radiation is generated (mostly) in the
dipole magnets, where the beam is deflected by a large
amount, and is coherent for wavelengths that are on the
order of twice the bunch length, or features in the bunch
current, and longer. The CSR can both increase the slice
energy spread and emittance on the bunch, and also
impart a transverse momentum, or kick, along it. This can
lead to similar offsets in position and angle to was
described earlier, so clearly, these are also effects that
need to be limited.
To control these effects, we note that the CSR will impart

a spatial and angular offset on the beam at the end of the
compressor, which can be approximated by third-order
polynomials. Because of this, one can combat this effect by
detuning the dispersion functions using quadrupoles, sextu-
poles and octupoles, to mitigate linear, quadratic and cubic
terms, respectively; here the dispersion quadrupoles in the
achromats are detuned to this end (which does affect R56

slightly), but dipole corrector magnets might be more
appropriate as they could also help remove constant terms.
Using the straight-section quads is effective because of how
they transport the higher-order dispersion functions, but
they also affect the betatron phase advance between the
achromats, which is a known strategy for mitigating CSR
kicks. The apochromaticity, compared to the original and
third-order lattices, is also improved by using these quadru-
poles (cf. Fig. 6). The final lattice is shown in Fig. 4. Note
that the second-order dispersion is almost symmetric, while
the third-order dispersion was detuned to a greater extent.
For the third-order achromatic compressor, all second- and
third-order functions are (anti-)symmetric around the
compressor center.
As a final benchmark, we simulate bunch compression

using this design with a 3 GeV beam of 250 pC charge,
0.5 mm mrad normalized emittance and with a Gaussian
current profile, from 3.15 ps fwhm down to 81.5 fs fwhm,
for a peak current of 2.66 kA. These parameters are in the

realm of PWFA drivers, a schemewhich is more sensitive to
the transverse offset than, e.g., FEL, in that it can be a
“make-or-break”-type scenario. The longitudinal phase
space curvature at the entrance of the compressor corre-
sponds to accelerating at 30.5 degrees off-crest, yielding an
energy spread of 1.61% rms, or 6.6% end-to-end. T566 is
changed from its nominal value of 4.23 cm to 3.58 cm, using
the sextupoles, to accommodate the different rf curvature
and linearize the final longitudinal phase space; the remain-
ing magnets are re-tweaked once the desired rf phase and
T566 are known so that the higher-order transverse
dispersion is well controlled and the transverse emittance
in minimized. The sextupoles and octupoles are still weak,
at 37.6 and 34.8 m−3 and 0 m−4, respectively. 106 macro-
particles were used for the tracking simulations.
The resulting offset after compression is shown in

Fig. 5(b), with the tracked slice Twiss parameters displayed
as a function of δ in Fig. 6(b). Evidently,Δx andΔx0 are not
altogether completely removed, but they are much flatter
than before. Constant offsets like these could be improved
using dipole corrector magnets. When undergoing trans-
port, such as focusing into a plasma cell, these parameters
will change somewhat, but the ratio of Δx to the transverse
beam size σx will remain constant, as they are (de-)
magnified by the same factor. As an example, in
Ref. [6] it is shown that for an initial transverse offset
of 0.2σx, the oscillations are damped and the instability
does not grow. Examining the fraction of our bunch within
δ ¼ �3% (93% of the total charge), σx ¼ 14.8 μm, the
weighted (by current) mean absolute offset is 5.27 μm and
the weighted deviation from this mean is 1.21 μm rms, so

(a)

(b)

FIG. 6. Plot of the tracked slice Twiss functions as functions
of δ at the end of (a) original BC2 (see Fig. 3), (b) the CSR-
mitigating modification of the third-order compressor (see
Fig. 4).
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that this deviation is < 0.1σx. Only at the tail of the current
distribution (δ < 0) is the deviation from the mean larger,
for a small fraction of the total charge. The horizontal
normalized projected emittance ϵnx grows by 3.6%.
Worth noticing here is that while these final results were

obtained numerically, the results are well understood from
analytic theory. A rigorous analytical analysis, such as the
one presented in Ref. [25], could yield further insight and
potential developments still. As is well known from matrix
treatments of beam transport (see e.g., Ref. [26]), a −I-
transformation (i.e., a betatron phase shift of π) between
two identical sextupoles serves to cancel nonlinear kicks
imposed by the first sextupole, mitigating also geometric
aberrations. In our case, the optimal phase shift is instead
2π, corresponding to an I-transformation, as the sextupoles
(and octupoles) in the two achromats are of equal magni-
tude but opposite sign. This is indeed the achieved phase
advance in x between the achromat centers in the new
version (Fig. 4), as opposed to 1.87π previously (Fig. 3).
While Δψy is not a multiple of π between the achromat
centers, βy is small enough at the location of all higher-
order magnets that the ψy-dependent terms only contribute
by a small amount, even to fourth order as suggested by
Eq. (3.16) in Ref. [25]. Since the final layout is optimized
partially for tracked beam emittance, the lack of dipole
U-terms does not interfere in the same way as before. The
octupole is still useful for flexibility in different use-cases,
e.g., tuning the third-order component of the slice offset,
and is therefore not removed. The end result is that
projected emittance growth induced by geometric aberra-
tions from nonlinear magnets is also reduced significantly,
allowing for control of the higher-order transverse and
longitudinal dispersion terms without sacrificing the beam
emittance.
In summary, we have shown a double-achromat design

which is achromatic to third order and which has apochro-
matic properties, as well as the optimization approach to
reach it. The compressor design can also be used to mitigate
CSR effects, which will always be present in real systems,
as well as geometric aberrations from the higher-order
magnets. The applications of such bunch compressors or
similar beam transport systems are many, but a key one is
for PWFA experiments, because of the ease of current
shaping and the possibility to minimize the transverse
offset and other chromatic effects, for which PWFA is
generally rather sensitive.
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