
Raythena: 
a Vertically Integrated
Scheduler for ATLAS
Applications on
Heterogeneous
Distributed Resources

Charles Leggett, Illya Shapoval, Miha Muškinja, 
Paolo Calafiura, Vakho Tsulaia 

obo ATLAS Experiment 
 

CHEP in Adelaide 
Tuesday 05 November 2019

05 November 2019 Miha Muškinja

• We are exploring the applicability of a modern distributed execution
framework for ATLAS workflows— Ray1,

• Distributed execution frameworks allows the user to seamlessly transform
a single-node application to run efficiently on a cluster of nodes or on a
(heterogeneous) HPC,

• Ray has a simple python API, supports stateless and stateful operations and
allows us to express data dependencies in the application.

• As a proof-of-concept, we present a 
Ray-based prototype of the  
ATLAS Event Service:
- This is a workflow used for offline 

production jobs at HPCs.

Introduction

2

[1]: https://github.com/ray-project/ray

https://github.com/ray-project/ray

05 November 2019 Miha Muškinja

Athena framework in ATLAS

• Athena is the main software framework in ATLAS used for all data analysis steps,
• In this application we are using ‘AthenaMP’, the multi-process version of Athena,
• In the Event Service mode, input events are provided on demand by an external

application. The number of input events does not need to be known in advance.

3
https://iopscience.iop.org/article/10.1088/1742-6596/664/7/072050/pdf

AthenaMP scheme

https://gitlab.cern.ch/atlas/athena
https://iopscience.iop.org/article/10.1088/1742-6596/664/7/072050/pdf

27 June 2019 Miha Muškinja

Current scheduling on HPCs

4

• ATLAS production workflows are currently comprised of many separate
layers that communicate through different (ad-hoc) interfaces,

iopscience/10.1088/1742-6596/664/9/092025/pdf

We used Ray in place 
of the current ‘Yoda’ 
scheme:

1. Launch AthenaMP
processes on all allocated
compute nodes,

2. Collect output from
AthenaMP sub-processes
and give them new input to
process when needed,

3. Merge output and store it
on the shared FS.

Current default for HPCs

WN = Worker Node

https://iopscience.iop.org/article/10.1088/1742-6596/664/9/092025/pdf

05 November 2019 Miha Muškinja

Raythena: Ray-based ATLAS Event Service

5

Ray Driver
application

Ray Actors (1 per node)

AthenaMP instance

core1 core2 core3 core4 core5

core6 core7 core8 core9 …

Message Passing  
Library (yampl)

‘Main’ node If any CPU core ready, send  
new event range to AthenaMP

Actor reports finished  
events back to the Driver.

Shared FSPointers to event ranges from
input files to be processed

Athena jobs to
merge the output
when enough
events are
processed

github.com/ray-project/ray

https://github.com/ray-project/ray

05 November 2019 Miha Muškinja

Asynchronous communication between the Driver and Actors

6

Driver

A1

A2

A3

Driver pings all Actors
simultaneously

A1

Actor communicates with
AthenaMP via yampl

Actor reports back when
AthenaMP finished
processing an event and
is ready to process the
next event. 
 
O(N) calls per job

A2 A2 A2 A2

A3 A3 A3 A3

A1

• Asynchronous communication is implemented in a few 100 python lines using Ray
explicit parallelism expressions,

• Actors independently communicate with the AthenaMP instance and report back to the
driver only when new input events are needed or when an event was processed.

05 November 2019 Miha Muškinja

Working example on Cori at NERSC

7

• Successfully tested the Raythena workflow on Cori Haswell and KNL nodes
at NERSC,

• Athena merge jobs are spawned on-the-fly when enough events are
processed,

• Largest test that we tried so far:
- 60 Haswell nodes with 32 cores each,
- Processed 100k events in total and spawned merge jobs every 100 events

to form 1000 merged output files.
• No bottlenecks found so far in Ray.

05 November 2019 Miha Muškinja

Close-up — two AthenaMP instances on Haswell nodes

8

AthenaMP 
Initialization

Event 
Processing

Worker

Worker 
Initialization

Cori Haswell Nodes 
- 32 cores / node

wall time

https://www.nersc.gov/users/computational-systems/cori/configuration/cori-phase-i/

05 November 2019 Miha Muškinja

Close-up — two AthenaMP instances on KNL nodes

9

AthenaMP 
Initialization

Event 
Processing

Worker

Worker 
Initialization

Cori KNL Nodes 
- 68 cores / node

wall time

https://www.nersc.gov/users/computational-systems/cori/configuration/knl-processor-modes/

05 November 2019 Miha Muškinja

Large Haswell job example (60 AthenaMP instances, 100k events)

10

AthenaMP 
Initialization

Event 
Processing

Worker

Worker 
Initialization

Cori Haswell Nodes 
- 32 cores / node

Merging 
1000 merge jobs, 
100 events per job

Merge  
Job

wall time

https://www.nersc.gov/users/computational-systems/cori/configuration/cori-phase-i/

05 November 2019 Miha Muškinja

Raythena running scheme

11

$ sbatch —image mmuskinj/centos7-atlasos-ray:1.0.0 —module=cvmfs

 $ shifter ./ray_start_head.sh

$ srun shifter ./ray_start_other.sh &  
 

$ shifter ./run_raythena.sh

• Ray, Raythena, and Athena are all running in a container on all nodes,
• At NERSC we are using Shifter containers which are built from Docker

images,
• Can be ported to other HPCs without too much effort.

05 November 2019 Miha Muškinja

Raythena plans for Run 3

• We are working towards using Raythena as the
default job orchestrating application on HPCs in
Run 3,

• Raythena batch jobs will be spawned by
Harvester— an application connected to the
PanDA server.

• Ray is widely used by the broader community
and centrally maintained. Using Ray would
eliminate the need of supporting some of the
ATLAS home-built software,

• Proven to be scalable on HPCs, lightweight and
easy to install (e.g. as a module),

• Establishes a modular scheme for Run 3 job
scheduling. Ray could be replaced by other
frameworks (e.g. Dask, Spark).

12

https://cds.cern.ch/record/2625435/

Raythena

https://github.com/HSF/harvester/wiki
https://cds.cern.ch/record/2625435/

05 November 2019 Miha Muškinja

Digging deeper into Athena / Gaudi

• The long-term project is to interface Athena/Gaudi algorithms directly to Ray for
a much finer control over scheduling the workload,

• This would replace the current event loop with Ray and enable scheduling of a
single event across several nodes,

• Data needed by the algorithms is provided by Ray’s Global Control Store (GCS),
• Maximize throughput by more efficient/tailored scheduling of algorithms to

computing resources (e.g., CPU vs GPU).

13

for alg in AlgSequence:
 result = alg.sysExecute(theEventContext)
 if result.isFailure():
 return result.getCode()

PyAthenaEventLoopMgr.py AlgSequence
- Algorithm1
- Algorithm2
- …
- AlgorithmN

https://gitlab.cern.ch/atlas/athena/blob/master/Control/AthenaServices/python/PyAthenaEventLoopMgr.py

05 November 2019 Miha Muškinja

Summary

• We are exploring the applicability of a distributed execution framework (Ray)
to ATLAS workflows,

• We have demonstrated a stand-alone prototype of a Ray-based ATLAS Event
Service,
- Shown to be scalable on Cori Haswell and KNL nodes,
- Runs entirely from containers and is portable to other HPCs,
- Plan is to use it as the default intermediate layer between Harvester and

AthenaMP processes on compute nodes in Run 3 for large-scale production
jobs.

• Longer-term-plan is to divide the ATLAS workflow into base components
(Algorithms) and interface them directly to Ray.

14

BACKUPBACKUP

05 November 2019 Miha Muškinja

Ray documentation and tutorials

• Ray has a very rich documentation hosted on readthedocs:
- https://ray.readthedocs.io/en/latest/index.html,

• Hands-on tutorials with exercises available in form of jupyter notebooks,
• Since Feb 2019, Intel hosts an 8-week course about distributed AI computation

with Ray: https://software.intel.com/en-us/ai/courses/distributed-AI-ray.

16

https://ray.readthedocs.io/en/latest/index.html
https://software.intel.com/en-us/ai/courses/distributed-AI-ray
https://software.intel.com/en-us/ai/courses/distributed-AI-ray

05 November 2019 Miha Muškinja

Ray 101

• One driver application (running on any compute node) controls all nodes in a
cluster (HPC) that are connected via TCP to a redis server,

• Tasks are first scheduled locally (Local Scheduler) if resources are available,
otherwise they are scheduled globally via the Global Scheduler.

17

https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/

05 November 2019 Miha Muškinja

Ray Application Layer

• Ray maintains three types of processes:
- Driver: a process executing the user program,
- Worker: a stateless process that executes tasks invoked by the driver or

another worker. Workers are started automatically and execute tasks
serially without maintaining a local state,

18

- Actor: a stateful process that
executes only the method it
exposes. They execute
methods serially and each
method depends on the
state resulting from the
previous execution.

05 November 2019 Miha Muškinja

Ray Functions and Actors

• A Ray parallel application is constructed with python decorations:

19

@ray.remote
def simpleFunction(a, b):
 # wait for 5 seconds
 time.sleep(5)
 # return sum
 return a + b

@ray.remote
class Counter(object):
 def __init__(self):
 self.value = 0

 def increment(self):
 self.value += 1
 return self.value

Task executed at a worker Actor process

this returns immediately
r = simpleFunction.remote(2, 4)

this will be executed 
 # after 5 seconds
print(ray.get(r))

Driver application

