Charles Leggett, lllya Shapoval, Miha Muskinja,
Paolo Calafiura, Vakho Tsulaia A\

~

obo ATLAS Experiment | & oo m‘

CHEP in Adelaide
Tuesday 05 November 2019 BERKELEY LAB

Lawrence Berkeley National Laboratory

S

Introduction :r,\””a'

» We are exploring the applicability of a modern distributed execution
framework for ATLAS workflows— Ray1,

* Distributed execution frameworks allows the user to seamlessly transform
a single-node application to run efficiently on a cluster of nodes or on a
(heterogeneous) HPC,

* Ray has a simple python API, supports stateless and stateful operations and
allows us to express data dependencies in the application.

» As a proof-of-concept, we present a [1]: https://github.com/ray-project/ray _
Ray-based prototype of the § 1.6t e
ATLAS Event Service: a S A

o . e I R ARG
- This is a workflow used for offline S IR
. 0.8 |- oot R L
production jobs at HPCs. g =
= 0.4 v f
= PRSI .
O - & = 51 8 =B B
10 20 30 40 50 60 100

number of nodes

05 November 2019 Miha Muskinja

https://github.com/ray-project/ray

Athena framework in ATLAS f\lA

» Athena is the main software framework in ATLAS used for all data analysis steps,
* |n this application we are using ‘AthenaMP’, the multi-process version of Athena,

 |n the Event Service mode, input events are provided on demand by an external
application. The number of input events does not need to be known in advance.

WORKER 0: | ——
> Events: [0, 5, B,..] —(fin J—OFﬁZ“t
AthenaMP scheme -
WORKER 1: || pp—
| | > Events: [1, 7, 10,...] l -‘ fin)— Ogitf:ﬁ
Cinit ‘ - > fin
WORKER 2: | | V
> Fvents: [3, 6, 9,...] ;L fin P Ogﬁgut
o
WORKER 3: \
> Events [2, 4, 12,.]| -‘ fin ‘—Ogiﬁ?t

werun-prenmnion || PARALLEL: 4 workers eventloop + fin) sewme.mare |

https://iopscience.iop.org/article/10.1088/1742-6596/664/7/072050/pdf

05 November 2019 Miha Muskinja

https://gitlab.cern.ch/atlas/athena
https://iopscience.iop.org/article/10.1088/1742-6596/664/7/072050/pdf

,\

Current scheduling on HPCs e

* ATLAS production workflows are currently comprised of many separate
layers that communicate through different (ad-hoc) interfaces,

..................

T om0 Current default for HPCs —~ .
Node We USed Ray 1N pIaCe

MPI Application ‘ ;
[Pilot e — of the current ‘Yoda

MPI Rank 1| Yampl Payload. AthenaMP
: Lighweight [Worker h .
Execution <:> Master > Worker SC el I le .

Wrapper O Worker

runJobHPC

x
@

Event Ranges
(MPI Send/Recv)

—T R .. ek 1. Launch AthenaMP
' [werrano || "o 2 o | P A | processes on all allocated

: | Leightweight JEDI |- Execution Master Worker

Wrapper Worker CO m p u te n Od eS y

--
........

. .

. .

el R e 2. Collect output from
| e == AthenaMP sub-processes
s s AeAAA AR R AR AR ’ and give them neW inpUt to

I 0 I process when needed,

Job

Shared File System | 3. Merge output and store it
on the shared FS.

Figure 1. Schematic view of Yoda

iopscience/10.1088/1742-6596/664/9/092025/pdf

27 June 2019 Miha Muskinja

https://iopscience.iop.org/article/10.1088/1742-6596/664/9/092025/pdf

Raythena: Ray-based ATLAS Event Service T

‘Main’ node Ray Actors (1 per node)
- . Ifany CPU core ready, send - \
Ray new event range to AthenaMP (C N
— j " AthenaMP
U)
- ~ Actor reports finished Message Passing
‘ events back to the Driver. Library (yampl)

f(((\ a D D D @ D "
Athena jObS to \U AN AN A) J
merge the output T T T
when enough
events are \& AN AN AN AN JJ
processed

L y

Pointers to event ranges from E ;
input files to be processed github.com/ray-project/ray

05 November 2019 Miha Muskinja

https://github.com/ray-project/ray

Asynchronous communication between the Driver and Actors ”\”“

* Asynchronous communication is implemented in a few 100 python lines using Ray
explicit parallelism expressions,

» Actors independently communicate with the AthenaMP instance and report back to the
driver only when new input events are needed or when an event was processed.

Driver pings all Actors m Actor reports back when
simultaneously AthenaMP finished
processing an event and
t IS ready to process the
hext event.

Actor communicates with O(N) calls per job

m AthenaMP via yampl

A2 gy A2 O
A3 S A3 B A3 Ry A3 Ry A3

05 November 2019 Miha Muskinja

Working example on Cori at NERSC f\m

» Successfully tested the Raythena workflow on Cori Haswell and KNL nodes
at NERSC,

* Athena merge jobs are spawned on-the-fly when enough events are
processed,

» Largest test that we tried so far:
- 60 Haswell nodes with 32 cores each,

- Processed 100k events In total and spawned merge jobs every 100 events
to form 1000 merged output files.

» No bottlenecks found so far in Ray.

05 November 2019 Miha Muskinja

Close-up — two AthenaMP instances on Haswell nodes)

Athenal worker 31
Athenal_ worker 30
Athenal worker 29
Athenal worker 28
Athenal_worker_27
Athenal worker 26
Athenal_worker_ 25
Athenal_worker_24
Athenal_worker 23
Athenal_worker_22
Athenal_worker 21
Athenal_worker_20
Athenal_worker_19
Athenal worker 18
Athenal_worker_17
Athenal worker 16
Athenal_worker_ 15
Athenal worker 14
Athenal_worker_13
Athenal worker 12
Athenal worker 11
Athenal worker 10
Athenal_ worker 9
Athenal worker 8
Athenal_worker 7
Athenal worker 6
Athenal worker 5
Athenal worker 4
Athenal worker 3
Athenal worker 2
Athenal worker 1
Athenal_worker_ 0
AthenaO_worker 31
AthenaO_worker_30
AthenaO_worker_29
AthenaO_worker_28
AthenaO_worker_27
AthenaO_worker 26
AthenaO_worker 25
AthenaO_worker 24
AthenaO_worker 23
AthenaO_worker 22
AthenaO_worker 21
AthenaO_worker 20
AthenaO_worker 19
AthenaO_worker_18
AthenaO_worker 17
AthenaO_worker_16
AthenaO_worker 15
AthenaO_worker_14
AthenaO worker 13
AthenaO_worker 12
AthenaO worker 11
AthenaO_worker_ 10
AthenaO worker 9
AthenaO_worker 8
AthenaO_worker_7
AthenaO_worker 6
AthenaO_worker 5
AthenaO_worker 4
AthenaO_worker_3
AthenaO_worker_2
AthenaO_worker_1
AthenaO_worker_0

AthenaMP
Initialization

Event
Processing

Worker
Initialization

Cori Haswell Nodes
- 32 cores / node

wall time

03:21 03:31 03:41

05 November 2019 Miha Muskinja

https://www.nersc.gov/users/computational-systems/cori/configuration/cori-phase-i/

Close-up — two AthenaMP instances on KNL nodes ﬂm

AthenaMP
Initialization

Event 5
Processing

Worker
Initialization

Cori KNL Nodes
- 68 cores / node

wall time
13:02 13:12 13:22 13:32 13:42 13:52 14:02 14:12 14:22 14:32

05 November 2019 Miha Muskinja

https://www.nersc.gov/users/computational-systems/cori/configuration/knl-processor-modes/

Large Haswell job example (60 AthenaMP instances, 100k events) e

Cori Haswell Nodes Merging

- 32 cores / node 1000 merge jobs,
100 events per job

AthenaMP
Initialization

Event |
Processing

Worker
Initialization

wall time

27 22:59 27 23:09 27 23:19 27 23:29 27 23:39 27 23:49 27 23:59 28 00:09

05 November 2019 Miha Muskinja

https://www.nersc.gov/users/computational-systems/cori/configuration/cori-phase-i/

Raythena running scheme

$ sbatch —image mmuskinj/centos7-atlasos-ray:1.0.0 —module=cvmfs

&

gocker

K $ shifter ./ray start head.sh \

$ srun shifter ./ray start other.sh &

k $ shifter ./run raythena.sh /

» Ray, Raythena, and Athena are all running in a container on all nodes,

At NERSC we are using Shifter containers which are built from Docker
Images,

» Can be ported to other HPCs without too much effort.

05 November 2019 Miha Muskinja

Raythena plans for Run 3

 We are working towards using Raythena asthe ——
default job orchestrating application on HPCs in e |

PanDA Server

4 —)
a9
Uﬂn
A Y

DB
Run 3, (Oracle)

- J

» Raythena batch jobs will be spawned by — /

Harvester— an application connected to the

PanDA server. / /

Harvester Core \

Server

interaction]

* Ray is widely used by the broader community ‘

Agent per
Action

and centrally maintained. Using Ray would

DB connection]

eliminate the need of supporting some of the

/

ATLAS home-built software,

* Proven to be scalable on HPCs, lightweight and
easy to install (e.g. as a module),

A=
U

.) Local DB
 Establishes a modular scheme for Run 3 job (sqlite3 or

scheduling. Ray could be replaced by other MariaDB)
frameworks (e.g. Dask, Spark).

/
\

e

Raythena

Resource

https://cds.cern.ch/record/2625435/

05 November 2019 Miha Muskinja

https://github.com/HSF/harvester/wiki
https://cds.cern.ch/record/2625435/

S

Digging deeper into Athena / Gaudi -

* The long-term project is to interface Athena/Gaudi algorithms directly to Ray for
a much finer control over scheduling the workload,

* This would replace the current event loop with Ray and enable scheduling of a
single event across several nodes,

» Data needed by the algorithms is provided by Ray’s Global Control Store (GCS),

* Maximize throughput by more efficient/tailored scheduling of algorithms to
computing resources (e.g., CPU vs GPU).

PyAthenaEventLoopMgr.py A|QSGCIU9HCG
for alg in AlgSequence: - Algorlthm1 g

result = alg.sysExecute(theEventContext) - Alagorithm2 —
if result.isFailure(): J0 RAY

return result.getCode()

- Algorltth >

05 November 2019 Miha Muskinja

https://gitlab.cern.ch/atlas/athena/blob/master/Control/AthenaServices/python/PyAthenaEventLoopMgr.py

,\

: A
rrrrrrr !

* We are exploring the applicability of a distributed execution framework (Ray)
to ATLAS workflows,

* We have demonstrated a stand-alone prototype of a Ray-based ATLAS Event
Service,

- Shown to be scalable on Cori Haswell and KNL nodes,
- Runs entirely from containers and is portable to other HPCs,

- Plan is to use it as the default intermediate layer between Harvester and
AthenaMP processes on compute nodes in Run 3 for large-scale production
jobs.

* Longer-term-plan is to divide the ATLAS workflow into base components
(Algorithms) and interface them directly to Ray.

05 November 2019 Miha Muskinja

Ray documentation and tutorials /\IA

* Ray has a very rich documentation hosted on readthedocs:
- https://ray.readthedocs.io/en/latest/index.html,
» Hands-on tutorials with exercises available in form of jupyter notebooks,
» Since Feb 2019, Intel hosts an 8-week course about distributed Al computation

with Ray: https://software.intel.com/en-us/ai/courses/distributed-Al-ray.
DISTRIBUTED AIWITH THE RAY FRAMEWORK

Summary
Prerequisites
Learn how to build large-scale Al applications using Ray, a high-performance distributed execution

framework from the RISELab at UC Berkeley. Simplify complex parallel systems with this easy-to-use Python™ programming

Python* framework that comes with machine learning libraries to speed up Al applications. Deep Learning
Calculus

This course provides you with practical knowledge of the following skills: Linear algebra

o Use remote functions, actors, and more with the Ray framework

e Quickly find the optimal variables for Al training with Ray Tune

e Distribute reinforcement learning algorithms across a cluster with Ray RLIib For Professors: Request Free
e Deploy Al applications on large computer clusters and cloud resources Access to Curriculum

The course is structured around eight weeks of lectures and exercises. Each week requires
approximately two hours to complete.

GitHub* Repository for the Ray Framework

05 November 2019 Miha Muskinja

https://ray.readthedocs.io/en/latest/index.html
https://software.intel.com/en-us/ai/courses/distributed-AI-ray
https://software.intel.com/en-us/ai/courses/distributed-AI-ray

Ray 101 /\I i

* One driver application (running on any compute node) controls all nodes in a
cluster (HPC) that are connected via TCP to a redis server,

» Tasks are first scheduled locally (Local Scheduler) if resources are available,
otherwise they are scheduled globally via the Global Scheduler.

Worker Worker Worker

T

Local Scheduler
~ 1L __ _______._

Driver Worker Worker

_ vh pf

Local Scheduler

Global Global
Scheduler

-3 Schedule = Load

—P tasks

05 November 2019 Miha Muskinja

https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/

Ray Application Layer

» Ray maintains three types of processes:

- Driver. a process executing the user program,

- Worker. a stateless process that executes tasks invoked by the driver or
another worker. Workers are started automatically and execute tasks
serially without maintaining a local state,

- Actor. a stateful process that
executes only the method it
exposes. They execute
methods serially and each
method depends on the
state resulting from the
previous execution.

05 November 2019

App Layer
A

System Layer (backend)

Node

Driver Worker

Local Scheduler

Global

Scheduler

‘“Fo

Miha Muskinja

Node

Node

Actor Driver

Worker || Worker

Object Store K—> Object Store

K——> Object Store

Local Scheduler

Local Scheduler

e

obal Control Store (GCS) | J Web Ul

Object Table

/ Debugging

Task Table

Function Table

%’ Tools
Al Profiling Tools

Event Logs

ﬂ Error Diagnosis

Ray Functions and Actors

* A Ray parallel application is constructed with python decorations:

Task executed at a worker Actor process

@ray.remote
class Counter(object):

def __1nit__(self):
self.value = 0

@ray.remote
def simpleFunction(a, b):

time.sleep(5)

return a + b def i1ncrement(self):
self.value += 1

return self.value

= simpleFunction.remote(2, 4)

print(ray.get(r))

Driver application

05 November 2019 Miha Muskinja

