002696112 001__ 2696112
002696112 003__ SzGeCERN
002696112 005__ 20220402163053.0
002696112 0247_ $$2DOI$$9JACoW$$a10.18429/JACoW-IPAC2019-MOPMP003
002696112 0248_ $$aoai:inspirehep.net:1743391$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT$$pcerncds:CERN$$qINSPIRE:HEP$$qForCDS
002696112 035__ $$9HAL$$ahal-02198376
002696112 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:1743391$$d2019-10-23T12:42:40Z$$h2019-10-24T04:00:04Z$$mmarcxml
002696112 035__ $$9Inspire$$a1743391
002696112 041__ $$aeng
002696112 088__ $$aCERN-ACC-2019-145
002696112 100__ $$aChaikovska, Iryna$$jJACoW-00041014$$jORCID:[email protected]$$uOrsay, LAL
002696112 245__ $$9JACoW$$aPositron source for FCC-ee
002696112 260__ $$c2019
002696112 300__ $$a4 p
002696112 520__ $$9JACoW$$aThe FCC-ee is a high-luminosity, high-precision circular collider to be constructed in a new 100 km tunnel in the Geneva area. The physics case is well established and the FCC-ee operation is foreseen at 91 GeV (Z-pole), 160 GeV (W pair production threshold), 240 GeV (Higgs resonance) and 365 GeV ($t \bar{t}$ threshold). Due to the large 6D production emittance and important thermal load in the production target, the positron injector, in particular the positron source, is one of the key elements of the FCC-ee, requiring special attention. To ensure high reliability of the positron source, conventional and hybrid targets are currently under study. The final choice of the positron target will be made based on the estimated performances. In this framework, we present a preliminary design of the FCC-ee positron source, with detailed simulation studies of positron production, capture and primary acceleration.
002696112 540__ $$3Publication$$aCC-BY-3.0$$bJACoW$$uhttp://creativecommons.org/licenses/by/3.0/
002696112 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002696112 6531_ $$2JACoW$$apositron
002696112 6531_ $$2JACoW$$atarget
002696112 6531_ $$2JACoW$$alinac
002696112 6531_ $$2JACoW$$aelectron
002696112 6531_ $$2JACoW$$acollider
002696112 690C_ $$aCERN
002696112 693__ $$aCERN FCC
002696112 700__ $$aApyan, [email protected]$$uYerevan Phys. Inst.
002696112 700__ $$aChehab, [email protected]$$uOrsay, LAL
002696112 700__ $$aEnomoto, [email protected]$$uKEK, Tsukuba
002696112 700__ $$aFaus-Golfe, [email protected]$$uOrsay, LAL
002696112 700__ $$aFurukawa, Kazuro$$iINSPIRE-00083005$$jJACoW-00003185$$jORCID:0000-0003-4187-2836$$uKEK, Tsukuba
002696112 700__ $$aHan, [email protected]$$uOrsay, LAL
002696112 700__ $$aKamitani, Takuya$$iINSPIRE-00369271$$jJACoW-00000959$$uKEK, Tsukuba
002696112 700__ $$aMartyshkin, [email protected]$$uNovosibirsk, IYF
002696112 700__ $$aMiyahara, [email protected]$$uKEK, Tsukuba
002696112 700__ $$aOgur, Salim$$jJACoW-00078489$$jORCID:[email protected]$$uCERN
002696112 700__ $$aOide, Katsunobu$$iINSPIRE-00037264$$jJACoW-00002811$$jORCID:0000-0002-9694-7738$$uCERN
002696112 700__ $$aPapaphilippou, Yannis$$iINSPIRE-00056849$$jJACoW-00000197$$jORCID:0000-0002-2649-6708$$uCERN
002696112 700__ $$aRinolfi, [email protected]$$uCERN
002696112 700__ $$aSatoh, [email protected]$$uKEK, Tsukuba
002696112 700__ $$aSeimiya, [email protected]$$uKEK, Tsukuba
002696112 700__ $$aSievers, [email protected]$$uCERN
002696112 700__ $$aSuwada, Tsuyoshi$$iINSPIRE-00129946$$jJACoW-00002814$$uKEK, Tsukuba
002696112 700__ $$aZimmermann, Frank$$iINSPIRE-00138581$$jJACoW-00001653$$uCERN
002696112 773__ $$cMOPMP003$$qIPAC2019$$wC19-05-19.1$$y2019
002696112 8564_ $$81525733$$s1190559$$uhttps://cds.cern.ch/record/2696112/files/mopmp003.pdf$$yFulltext from publisher
002696112 960__ $$a13
002696112 962__ $$b2672790$$kMOPMP003$$nmelbourne20190519
002696112 980__ $$aARTICLE
002696112 980__ $$aConferencePaper
002696112 999C6 $$a0-0-0-1-0-0-1$$t2019-07-25 09:05:20$$vInvenio/1.1.2.1260-aa76f refextract/1.5.44
002696112 999C5 $$9CURATOR$$hJ. E. Clendenin$$min Proc. 13th Particle Accelerator Conf. (PAC’89), Chicago, IL, USA, Mar., pp. 1107-1112$$o1$$rSLAC-PUB-4743$$tHigh-Yield Positron Systems for Linear Colliders$$y1989
002696112 999C5 $$9CURATOR$$hJ. Sheppard$$m-072, LCC-0133, Nov$$o2$$rSLAC-TN-03-072$$tConventional Positron Target for a Tesla Formatted Beam$$y2003
002696112 999C5 $$9CURATOR$$hR. Chehab, F. Couchot$$mAR. Nyaiesh, F. Richard, X Artru in Proc. of the Particle Accelerator Conf., ’Accelerator Science and Technology,, pp. 283-285$$o3$$pIEEE$$sConf.Proc.,C8903201,283$$tStudy of a positron source generated by photons from ultrarelativistic channeled particles$$y1989
002696112 999C5 $$0583807$$hR. Chehab et al.$$o4$$sPhys.Lett.,B525,41-48$$tExperimental study of a crystal positron source$$y2002
002696112 999C5 $$0684075$$hX. Artru et al.$$o5$$sNucl.Instrum.Meth.,B240,762-776$$tSummary of experimental studies, at CERN, on a positron source using crystal effects$$y2005
002696112 999C5 $$0605742$$hT. Suwada et al.$$o6$$sPhys.Rev.,E67,016502$$tMeasurement of positron production efficiency from a tungsten monocrystalline target using 4-and 8-GeV electrons$$y2003
002696112 999C5 $$0636301$$hM. Satoh et al.$$o7$$sNucl.Instrum.Meth.,B227,3-10$$tExperimental study of positron production from silicon and diamond crystals by 8-GeV channeling electrons$$y2005
002696112 999C5 $$0806619$$hX. Artru et al.$$o8$$sNucl.Instrum.Meth.,B266,3868-3875$$tPolarized and unpolarized positron sources for electron-positron colliders$$y2008
002696112 999C5 $$01228241$$hM. Aicheler et al.$$o9$$rCERN-2012-007$$rSLAC-R-985$$tA Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report$$y2012
002696112 999C5 $$01713705$$hM. Benedikt et al.$$m[FCC Collaboration] accepted for publication in EPJ ST$$o10$$rCERN-ACC-2018-0057$$tFuture Circular Collider: Conceptual Design Report Vol. 2$$y2018
002696112 999C5 $$01736336$$9CURATOR$$hS. Ogur et al.$$mpresented at the 62nd ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT’18), Hong Kong, Sep., paper TUPAB03$$o11$$tOverall Injection Strategy for FCC-ee$$y2018
002696112 999C5 $$01691327$$adoi:10.18429/JACoW-IPAC2018-MOPMF034$$hS. Ogur et al.$$min Proc. 9th Int. Particle Accelerator Conf. (IPAC’18), Vancouver, Canada, Apr.-May, pp. 169-172$$o12$$tLayout and Performance of the FCC-ee PreInjector Chain$$y2018
002696112 999C5 $$01743390$$9CURATOR$$adoi:10.18429/JACoW-IPAC2019-MOPMP002$$hS. Ogur et al.$$mpresented at the 10th Int. Particle Accelerator Conf. (IPAC’19), Melbourne, Australia, May, paper MOPMP002, this conference$$o13$$tLinac and Damping Ring Designs for the FCC-ee$$y2019
002696112 999C5 $$hR. Chehab$$mAdvanced radiation sources and applications pp. 357-371$$o14$$pSpringer$$tExperimental studies of positron sources using multi-GeV channelled electrons at CERN (a) and KEK (b)$$y2006
002696112 999C5 $$0245421$$hA. Belkacem et al.$$o15$$sPhys.Rev.Lett.,58,1196-1199$$tStudy of e+?(hye- pair creation by 20- 150-GeV photons incident on a germanium crystal in alignment conditions$$y1987
002696112 999C5 $$0343653$$9CURATOR$$hR. Chehab$$mLAL-RT-89-02 105$$mCERN-1989-005$$o16$$rLAL-RT-89-02$$tPositron sources$$y1989
002696112 999C5 $$hP. Sievers$$mprivate communication$$o17$$y2019