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Abstract. An observable stochastic background of gravitational waves is generated whenever
primordial black holes are created in the early universe thanks to a small-scale enhancement
of the curvature perturbation. We calculate the anisotropies and non-Gaussianity of such
stochastic gravitational waves background which receive two contributions, the first at for-
mation time and the second due to propagation effects. The former contribution can be
generated if the distribution of the curvature perturbation is characterized by a local and
scale-invariant shape of non-Gaussianity. Under such an assumption, we conclude that a size-
able magnitude of anisotropy and non-Gaussianity in the gravitational waves would suggest
that primordial black holes may not comply the totality of the dark matter.
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1 Introduction

Following the first measurements of the gravitational waves (GWs) generated by ~ O (10) Mg,
black-hole mergers [1], the past few years have witnessed a renewed interest in Primordial
Black Holes (PBHs) [2-5]. Bounds of various origins exist on the PBHs abundance for a
wide range of PBHs masses [4], leaving also open the possibility that PBHs in certain mass
ranges could be identified with a substantial fraction or, possibly, the totality of the dark
matter of the universe. This is particularly true for PBH of masses of ~ O (10*12) Mg,
for which previously expected limits from femtolensing [6] and dynamical constraints from
White Dwarves [7] have been shown to be invalid.

A simple mechanism for PBHs generation is from enhanced density perturbations ép
produced during inflation. If, using standard arguments from (nearly) scale invariance, we
extrapolate the power of the perturbations Py ~ (6p/p)* = O (107?) measured at CMB
scales to small scales, we obtain a completely negligible fraction of PBHs. On the other
hand, an increase of this power can strongly increase the portion of the universe which, at
horizon re-entry, have an energy density above the threshold that leads to the collapse and
PBH formation [8-11]. This increase would be associated to a breaking of scale invariance
at some given scale, which in turn reflects some specific dynamical mechanism taking place
during inflation [12-15] (see [4] for a review and references therein).

The increased density perturbations unavoidably lead to GWs production due to the
intrinsic nonlinear nature of gravity [16-22] ! . This GW emission can be used to constrain
the PBH abundance [21]. In fact, let us assume that the power P of the primordial scalar

Tt is important to stress that we do not refer here to the GWs produced only in the regions that collapse
to form the PBH, but from everywhere in the universe, due to the general increased of the power of the density
perturbations [23].



perturbations has an enhancement at some give scale k., leading to a significant fraction fpgy
of dark matter and also to an observable amount of GWs. Then, even a small decrease of
P from this level would lead to a completely negligible value for fepy 2 with a very minor
change of the amount of GWs. Therefore GW observations are sensitive even to peaks in
P that are associated to a very small (possibly, otherwise unobservable) amount of PBHs.
The characteristic frequency of the GWs emitted by the production of PBH of mass M is
f~3x10""Hz (M/Mz)"'/? [21].

Given the potential relevance of these observations in upcoming experiments like LISA
[25] and DECIGO [26], it is important to characterize the stochastic background of gravita-
tional waves (SGWB) produced with this mechanism [34-37] 3. Is it homogeneous in space?
Does its spatial distribution obey a Gaussian statistics? To our knowledge, these questions
have not yet been addressed for the SGWB studied in this paper. This is the purpose of this
work.

Even assuming a completely homogeneous and isotropic SGWB at its production, these
GWs propagate in a perturbed universe. As a consequence, the GW signal arriving to Earth
has angular anisotropies [38-44] which are non-Gaussian [45]. In addition, as we show and
quantify in this work, the GW production itself has some degree of anisotropy and non-
Gaussianity. A necessary condition for large scale anisotropies and non-Gaussianity is the
presence of large-scale perturbations that are needed to produce correlations on cosmolog-
ical scales, much greater than the scale k' associated to the typical regions forming the
PBHs. The GW formation is a local event, that, by the equivalence principle, cannot be
locally affected by modes of wavelength much greater than the PBH horizon. However, non-
Gaussianity of the primordial density perturbations can lead to small-long scale correlations,
so that long modes can lead to a large-scale modulation of the local power of the density
perturbations and, consequently, on the amount of GWs produced within each region.

We show here that an amount of (local) non-Gaussianity of the scalar perturbations com-
patible with the current upper bounds from Planck [46] can lead to an amount of anisotropies
and non-Gaussianity of the GWs distribution greater than that due to the propagation [45].
On the other hand, if the PBHs constitute a significant fraction of the dark matter, additional
limits from isocurvature apply, leading to much stronger limits on the scalar non-Gaussianity
[47]. This significantly limits the SGWB anisotropy and non-Gaussianity imprinted at the
SWGB production. Therefore, our prediction is that a significant amount of PBH dark mat-
ter is associated with a SGWB that is isotropic and Gaussian, up to propagation effects. A
stronger amount of anisotropy and non-Gaussianity of the SGWB would signify the existence
of a local enhancement of the density perturbations, and of a PBH population that is well
below the dark matter abundance. These conclusions hold under the strict assumption of
local, scale-invariant primordial non-Gaussianity in the curvature perturbations, extending
from CMB scales down to the small scales relevant for PBH formation. On the other hand,
given the huge range of scales involved, different conditions for structure formation might
hold, especially on the smallest scales, that might break the assumption of scale-invariant
non-Gaussianity. This would leave open the possibility of relaxing our constraints, and to
allow for PBHs to be the totality of the observed dark matter, with an accompanying SGWB

2This is due to the fact that, assuming Gaussian primordial perturbations, only the rare regions with
dp > o, being o the square root of the variance, have an energy density above the threshold for PBH
formation. A change of the variance have a strong impact on the area of the tail of the distribution above the
PBH threshold. For an example of a case with non-Gaussian primordial perturbations, see, e.g., [24].

30ther mechanisms to generate a SGWB from the early universe can be found in Refs. [22, 27-33].



that might still be anisotropic and non-Gaussian.

The paper is organized as follows. In Section 2 we review the mechanism of GWs
production at second order from scalar density perturbations. In Section 3 we compute the
amount of anisotropy and non-Gaussianity of the SGWB produced by this mechanism, in the
case in which the primordial density perturbations are non-Gaussian. In Section 4 we review
the additional limits on the scalar non-Gaussianity that are present if the PBHs constitute a
significant portion of the dark matter. In Section 5 we present a summary of our results and
of the existing constraints. Finally, in Section 6 we provide some final remarks. The paper
is concluded by two appendices where we present some technical steps of our computations.

2 GWs at second-order from enhanced density perturbations

A simple mechanism for the production of a distribution of PBHs peaked at a given mass is
to assume that some inflationary mechanism has produced a peak of the primordial density
perturbations at some given scale. This enhancement reflects some specific dynamical mech-
anism that took place at some given moment during inflation, thus breaking the approximate
scale invariance for modes that exited the horizon at that specific moment. This enhance-
ment increases the amount of regions where, at horizon re-entry of this mode (in the radiation
dominated era, well after inflation) the energy density is above the necessary threshold to
produce PBHs, thus increasing the PBH density. We introduce the power spectrum for the
primordial density perturbations as

- - 7'(2 - -
(CRICEY) = 2T P (B )P SOF+ R Pe(R)=Pe W)+ P, (), (2)

where P, (k) is the power spectrum of the standard (nearly) scale-invariant perturbations
generated during inflation. The suffix “L” in this term stands for long-wavelength modes,
relevant at cosmological scales, which are much greater than the scale k; ! of the modes
forming the PBH, which are labelled with the suffix “s” and are related to the small-scale
power spectrum P, (k). At the short scale k; ! these long modes are completely subdominant
with respect to those contributing to the first term in (2.1). So they play no role in the local
PBH formation and in the local production of GWs that we discuss next. However, as we
see in the next Section, in presence of primordial non-Gaussianity these modes can add a
long-scale modulation to this production, thus resulting in anisotropies of the SGWB.

The necessity of local non-Gaussianity to create anisotropies of the SGWB is crucial
due to the generation of a cross-talk between the short scale k!, of the order of the horizon
scale at PBH production, and the long wavelength scale ¢!, associated to (z. If absent,
the long scalar modes of wavelength of cosmological size do not change the local physics in
each patch of size k!, and so the amount of PBHs and the induced GWs is locally the same
in any patch. This is simply due to the Equivalence Principle which also dictates that the
anisotropies in the SGWB should decay like (g/kx«)?.

To have a confirmation of such a general result we present, in the following, the calcu-
lation of the contribution from the enhanced scalar modes in (2.1) to the production of GWs
at second-order, without primordial non-Gaussianity. This leads to the GW energy density
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This expression is valid during radiation domination, and the function T’ [12:1, ];'2, D1, 172}

is obtained from a contraction between the internal momenta and the GW polarization
operators (we provide the expression in Appendix A, where we also outline our conventions.
In that Appendix, we also provide the analytic expressions for Z. s [49, 50]). The angular
brackets in the second line denote a time average, that is necessary for the definition of the
energy density in GW [51-53], and it is performed on a timescale 7" much greater than the
GW phase oscillations (T'k; > 1) but much smaller than the cosmological time (TH < 1).
Finally, we note the presence of four density perturbation operators ( in this expression. This
is due to the fact that the GW energy density is a bilinear in the GW field (see Eq. (A.7),
and the GW field sourced at second-order is a bilinear in ¢ (see Eq. (A.3)).

The one-point expectation value of the operator (2.2) is the expected GW energy density
from this mechanism. As already mentioned, we assume that the scalar perturbations ¢ are
Gaussian (this assumption will be relaxed in the next section) so that the four point function
<C4> emerging from the expectation value of (2.2) can be written as sum of three terms, each
containing two products <C 2>. Schematically,

Gaussian ¢ = <§4> = <C2> <C2> + <(2> <C2> + <C2> <C2>, (2.3)

with all possible permutations of the four operators. One contraction gives a vanishing con-
tribution at finite momentum, while the other two contractions give an identical contribution,
and (using the definition of the power spectrum in (2.1)) lead to

(pew (0, )) = peln) / dink Qe (1, k)
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(2.4)

The contraction forced k1 = kg in Eq. (2.2) using Eq. (2.1). In this case the time average
procedure in (2.2) became straightforward, namely

(sin® (k1 n) > = (cos? (k1 77)> =1/2, (sin(k1n)cos(kin))y =0. (2.5)

Following the standard convention, in the first line of (2.4) we defined the fractional energy
density in the GW for log interval. The quantity p. = 3H QMI? denotes the critical energy

4One additional contribution to the GWs abundance, which is not considered in this paper, is related to the
contraction of peaks in the density fluid, generated by the same curvature perturbations which are responsible
for the production of GWs at second-order, which are not high enough to collapse into PBHs (see Ref. [23]
for details).



density of a spatially flat universe with Hubble rate H. The notation in the second line
of (2.4) exploits the fact that the integral over the two angles dQ; can be made trivial by
exploiting that the only angular dependence of the integrand is on the angle between k1 and
p1 (this is a consequence of the statistical isotropy of the background). By introducing the
rescaled magnitudes = = p1/k; and y = |k — py|/k1, the expression (2.4) reduces to [49]

2
1 2 14+ 22 — 92 2
Qaw(k,n) = 9722 2 //3 dﬂﬁdy? [1 - (4x2) Pe (kz) Pe (ky) I* (z,y), (2.6)

where the integration region S extends to z > 0 and to |1 — z| < y < 1+ z and where we
defined 72 = T2 + Z2. For a Dirac delta power spectrum of the scalar curvature perturbation

on small scales, P¢, (k) = A k. 0 (k — k), this expression then becomes °
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where 6 is the Heaviside step function, and
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We note that the result (2.7) for the one-point expectation value of the GW energy density is
independent of position. This follows from statistical homogeneity of the FLRW background
universe (at the technical level, it is due to the fact that the contraction of the four ¢
operators in Eq. (2.2) forces ki + ko = 0). However, as explained in the introduction, one
does not expect that the sourced GWs are perfectly homogeneous across the universe. As
a consequence, the SGWB reaching us from different directions will present some angular
anisotropies.

To quantify the level of these anisotropies one needs to compute the two-point correlation
function (paw (Z) pew (¥)). This correlator depends on space only through its dependence on
|Z — 4] as a consequence of statistical isotropy and homogeneity.

In computing < p%w> we need to evaluate the correlator <( 8>. The resulting contractions
are given in Eq. (B.2). The first line of that equation represents the case in which all
the (s emerging from the same p are contracted among each other. This gives rise to the
disconnected diagram shown in Figure 1, which is evaluated to

)]2+7r29 (j’%k - 1)

(2.8)

(paw (T) paw (¥)) = <PGW>2 ’ (2.9)

disconnected

and is homogeneous.

The other lines of Eq. (B.2) are represented by the different topologies of connected
diagrams shown in Figure 5. As we show in Appendix B these contributions are completely
negligible at the distances |Z — ¢] of our interest. Our goal is to compute the large scale

5This expression is valid during radiation domination; we see that it is costant, and independent of the
normalization of the scale factor.
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Figure 1. Feynman diagram for the disconnected term in the energy density two-point function.
The double lines identify the energy density field, the solid lines identify the gravitational waves and
the wiggly lines identify the curvature field.

anisotropies in the GW energies arriving on Earth. The angular anisotropies (unless we go
to extremely large multipoles ¢) are obtained by comparing the energy density from points
which are separated by non-negligible fractions of the present horizon. These distances are
much greater than the wavelengths responsible for the GWs formation, k, | — ] > 1. For
Gaussian scalar perturbations, the enhanced scalar modes (the first term in Eq. (2.1)) do not
lead to statistical correlations on these cosmological scales. It is also easy to check that, as
imposed by the Equivalence Principle, the anisotropies decay at large distances as (q/k«)?.

Furthermore, when we measure the GW energy density at some given angular scale
we effectively coarse grain the GW energy density with a resolution related to that scale.
This results in averaging an extremely large number of patches of size k!, and the resulting
energy density becomes extremely homogeneous due to the central limit theorem.

We conclude that the effects that we have discussed so far lead to a homogeneous and
isotropic distribution of pgw, up to the completely negligible contributions from the terms
evaluated in Appendix B. There are however two additional effects of the long-scale modes
that can lead to sizeable anisotropy. The first effect is a propagation effect [39, 45]. Even if
produced isotropically, GWs coming from different regions travel through disconnected and
effectively different realizations of the large scales density perturbations. This makes the
arriving GWs anisotropic. The second effect, that we study in this work, is that the scalar
perturbations are not perfectly Gaussian. Most shapes of non-Gaussianity, starting from the
most common local-type, give rise to correlations between short and long scales. Due to this,
long wavelength modes can modulate the power of scales k!, thus giving rise to long-scale
correlations in the initial GWs distribution. We study this effect in the next section.

3 Primordial scalar non—Gaussianity and the angular anisotropies of the
SGWB.

The non-Gaussianity of the primordial scalar perturbations is parametrized by

- - 3 —
=G+ g fa [ 5560 GE D, (31)

namely it is assumed (as verified experimentally) that the perturbations are very close to be
gaussian, so that a mode can be expanded as a large Gaussian contribution (4 plus the square
of a Gaussian term. The specific shape in (3.1) is known as local shape, as it corresponds
to the local expansion ( = (4 + % I Cg in real space. This is the most studied shape
of non-Gaussianity, and it leads to significant correlation between large and small scales.
Other shapes could also be considered, corresponding to a momentum-dependent non-linear
parameter in the convolution (3.1). For simplicity, in this work we consider only the local



Figure 2. Feynman diagram for the energy density two-point function connected by a fy1, bridge.
The double wiggly line indicates a (;, long mode.

shape (3.1). The Planck collaboration [46] constrained the local non-linear parameter to
111 < fi, €93, at 95% C.L. (3.2)

At the diagrammatic level, computing the two-point function using (3.1) results in adding
trilinear vertices (3, each proportional to fy.. In particular, vertices involving two short-scale
and one long-scale mode connect the disconnected diagram of Figure 1 into the connected
diagram of Figure 2. For brevity, we will denote this connection as an “fy, bridge”. In the
peak-background split picture, one can expand the Gaussian comoving curvature perturba-
tion field (4 as the sum of a short (, and a long (7, components. In such a case, the four-point
function in Eq. (2.3), not yet averaged over the long modes, results in

MMMwm<%«S=Q+?mg>w3@%M@«3+@M¢» (3.3)

In practice, it is convenient to write down the energy density before correlating over the long
modes as

3
mm@:mmﬁ+?m/&)Wg@] (3.4)

where the term pgw defines the energy density field at zeroth order in the non-linear pa-
rameter, while the second term in the square brackets accounts for the presence of such a
non-Gaussianity. From the energy density one can immediately compute the GWs abundance
as

3
Qaw(n, 2, k) = Qaw (n, k) [1 + 2*54 fNL/ (;lﬂ) el ¢L (q_>:| (3.5)

where the term Qcyw (1, k) identifies the contribution with the absence of the long mode, see
Eq. (2.7).

Following the notation in [45], one can estimate the amount of anisotropy in the GW
abundance by introducing the contrast

Qe (1, 7, ) — QGW(n,k)FI(n’f’E)O_‘w), (3.6)

. Z,
Oaw (0, 7, k) = Qaw (1, %) olnk

in terms of the quantity

3, Pa e . 81
a8 = 2 ®) [ L@, fu =t (3)
(27) 4= —Fhr

This term carries all the information about the amount of anisotropy due to the initial
conditions (suffix I). We choose to define the variable I' by following the notation used
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Figure 3. fNL /fn1 as a function of the ratio k/k, for a Dirac delta and gaussian power spectrum,
respectively.

in [45] where the subsequent propagation of the GWs in a perturbed FLRW universe was
originally studied by solving the free Boltzmann equation (for a discussion on the graviton
collisional corrections see [54] and Refs. therein). Fig. 3 shows the behaviour of the rescaled
non-linear parameter as a function of the GW momentum for the choice of a Dirac delta and
gaussian power spectrum.

Setting our location at the origin and defining k= kn, then the position of the source
term is at & = Ay — 1), where 7, indicates the emission time which we associate to the
moment when the modes k, re-enter the horizon and give rise to the signal we are considering
in this work. One can expand this quantity using the spherical harmonics, to get °

~ 3
D () = () o 8) [ 55660 @ Vi @) e labm—m) - 39

To keep into account all the possible sources of anisotropy in the GW background, one shall
add to this term the contribution from the propagation across the universe,

T's(no. @) = T° (4, no> Min) CL(Q), (3.9)

where

10 it ) oIt /’ + T /?
T (¢, M0, Min) _/ dn'e ik-qa(mo—n') | Ty (77/’ q) 5(771_%1) + [Ty (n Q()an, o (1, q)] :
Tlin
(3.10)
and where
®(n, k) = To(n, k)C(k), U(n, k) = Tw(n, k)C(k). (3.11)

The large scale modes of our interest entered the horizon during matter domination, and
so the transfer functions become T¢ (Min, ¢) = Tw (Min, ¢) = 3/5. Eq. (3.9) represents the
contribution of the scalar sources (S) when the signal travels across the universe towards us,
and we see that it is composed by two pieces equivalent to the Sachs-Wolfe and integrated
Sachs-Wolfe effect, respectively.

SWe are using the spherical harmonics normalised as [ AAY e Yy = 800 Spmms -



Therefore adding these two contributions one gets the full source of anisotropy as
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where we defined the quantity

3
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Tlin
Before going into the details of the computation of the correlators, one can have a deeper
look of the ISW contribution to estimate its value with respect to the other. Introducing the
variable ' = n/ny and parametrising the scalar transfer functions as

3
To (n, ) = Tw (1, 9) = £9(n), (3.14)
one gets
3 ~ ) 1 dg(n') .
7 (k,q, no, 1hn) = R Hl + fa (k‘)} Je (qno) + 2/ drf 857,)36 (@0 =n))|, (3.15)
0
where we neglected the term g7, in the Bessel function of the first term. Starting from the
expression of g(n), see for example Ref. [55, 56], one can use the analytical fit given by [57]

9g(n')
on'
to perform the integral numerically, finding that the ISW effect is subdominant. Therefore

one can approximate the total contribution of the long mode, at leading order in the non-
linear parameter, through the quantity

= —1.251° (3.16)
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In the following subsections we will compute the two-point and three-point functions of the
rescaled energy density as a function of the long modes power spectra and the local non-linear
parameter.

3.1 Two-point function

We start with the computation of the two-point function

P Po o,
(27_‘_)3 (271')3 £img

<Fé1m171+5 (k) FZ2m2,1+S (k)> = (47T)2 (_2-)51—52 / (dl) }/fzmz (QQ)
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Using the orthonormality of the spherical harmonics and for the choice of a scale invariant
power spectra of the long modes P¢, (¢) = P¢, , the previous expression becomes

. 3\? . 2 1
(Ceymy, 145 () Tpymy 145 (F)) = 00165 0mymydm <5) {1 - fNL(k;)i| mpcp (3.19)



Following the notation of [45], one can define the two-point function as

(Coyma,1+8 (B) Tiymy 145 (k) = 0e1,0myms Cor+5 (k) (3.20)
such that one finally gets
L(+1) 3 : 1/2 a1+ f (R) P V2
) B = 2] B P =281 L
\/ or Cerrs () = g |1+ fra (k)] Py, 510 10 221079

(3.21)

which has been evaluated for value of the non-linear parameter close to its upper bound (3.2)
and using the CMB value for the power spectrum of the long modes.
3.2 Three-point function

For the computation of the three-point function we need to go to the next-to-leading order
in the non-linear parameter fy., such that the expression of the initial condition term I'; in
the £, m space becomes

d3p

3 ~
T (0) =t (=0 [ 205 %5, 0) e alom =) S 0 02 @0+ 2 fon [ 25 0@

(2) (2m)

(3.22)

At this order in the long perturbations (;, also the propagation term gets a contribution
proportional to the non-linear parameter as 3/5 fNLC%,a so that the total term becomes

3 ~
s () = 47 () [ 255 Y6, @ e 0 m —m) {g 14 fu ()] & @
3 3
gt 13k 0] [ GG @@ } (323)

where we stress once again that all the long modes (7, in this expression are Gaussian fields.
We can now start the evaluation of the three-point function

’ rrtatts 81 R . Bq [ dq
<£[1Feimi,z+s <k>> = (m? (i) S [ B )] (L 3F )] [ o) / )

3 3 3
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(3.24)

After having performed the contractions of the long modes with the Wick theorem, one
can introduce the bispectrum of the modes in momentum space Br, such that the previous
expression becomes

3 3 3 3
<Hrfimi,1+s (k)> = (4m)® (—i)ﬁﬁgﬁ&/ (2:)13 / (6;73)23 / (C;:)gglgr (k, a1, a2, q3)
-1
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with
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2

1
(3.26)
Using the representation of the Dirac §-function in terms of the spherical harmonics, and
using their orthonormality, one gets after some algebra

3 3
mimam o 2 . .
<H Coim, 145 (7@)> =G0ty /O drr® I |:7r/d%' a; e, (gi (M0 — M) Je, (a 7")} Br (k. a1, g2, 43)
i=1 =1

(3.27)
where one could recognize the Gaunt integral
Grizi™ = [ 48 Vi, () Vi, (%) Vi, (). 3.29

In the limit of one sufficiently large ¢, it is then possible to evaluate one of the ¢ integral, for
each of the three permutations in the bispectrum, by using the approximation

_3m—r) (3.29)

2
1 o

2 . .
p / dq q*je (gmo) je(qr)

and then use the resulting Dirac delta to integrate over r. The result of this computation is
therefore

3 162 . 2 .
<Hnm&ww>=%%gmwﬁhﬁ+nmﬂ (143 (1)
1=1

dqy . dqs .
< (4 [2057 @m Pe @) (17 [ 225 (m) Py, (@) + 2perm. (330

Finally, one can factorize the tensorial structures following from statistical isotropy to define
the three-point function as [58]

(Cevma, 148 (B)L tyma, 145 (k) Legmy, 1+5(K)) = Gyl 2™ beyess, 145 (k) 5 (3.31)
where, in terms of the two-point functions found in Eq. (3.21), the expression becomes
2 fa. 143 fao (K)]

[1 + fNL (k)] i

beitats 145 (k) ~ (Co1.145 Cra 145 + Coy 145 Cog. 145 + Coy 145 Cry 145] -

(3.32)

We dedicate the next sections to the discussion of these results.

4 Short summary of the isocurvature constraints on non-Gaussianity

The presence of such a non-Gaussianity in the comoving curvature perturbation has a small
effect on the value of the threshold which is necessary to the overdensity to collapse into PBHs,
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see Ref. [59] for details, while it induces a significant large-scale variation of the primordial
black holes abundance through the modulation of the power on small scales induced by
the long modes. If all or a part of the dark matter is composed by PBHs, then this non-
Gaussianity is responsible for the production of isocurvature modes in the DM density fluid,
which are strongly constrained by the CMB observations.

The present bounds provided by the Planck experiments on the relative abundance of
the isocurvature modes are, at 95% CL, [60]

1008550 < 0.095 for fully correlated,
100850 < 0.107 for fully anti-correlated, (4.1)
where by fully correlated (fully anti-correlated) we mean a positive (negative) fyr.

Following the results obtained in [47], one can express the PBH mass fraction in the
presence of non-Gaussianity. It reads (see also [61])

2 o0 C2 ¢_ C2
st _ | VL e (i) ¢ e ()] o v
= ) - <2
Pc\Tin ) 00 o
o [/<+ d¢ exp <_%§) —/_ d¢ exp (_%3)] for fa <0,
(4.2)
where [47]

—5 % /25 + 60 fx1, + 36 /2,02
C+=
6fNL
and (. is the threshold for collapse of PBH in the presence of non-Gaussianity recently
calculated in Ref. [62], and o2 is the variance of the short modes. B
The corresponding mass fraction perturbation with respect to the average value 8 at
leading order in the long modes is

_B=B _ [ 25+30Cfxu + 363,02 — 5¢/25 + 60C. fui + 362,02
B 3fxn024/25 + 60C. fxr + 362,02

One can express the relative abundance of the isocurvature modes in terms of the bias b
induced by the long mode as

(4.3)

op

) (L=b(r. (4.4)

Piso _ b2 fPQBH
Piso + PCL b2fP2BH + 1’

where we used the fact that local non-Gaussianity induces the bias Piso = b? f25,Pe, , where
freu is the fraction of dark matter in PBH. Once written in terms of b and fpgy, the bounds
(4.1) become

ﬁiso =

(4.5)

—0.0327 < bfppu < 0.0308. (4.6)

One can finally relate the bias to the parameter of non-Gaussianity as done in [47], giving
the colored allowed region in Fig. 4. In making the plot, we are assuming that the value of
local fyi, has no scale dependence, as explained in the Introduction. From the plot it is clear
that a large value of the non-linear parameter implies that only a small fraction of DM can
be composed by PBHs. We remind to the reader the fact that the non-linear parameter has
a lower bound due to the inadequacy of the perturbative approach in the computation of the
PBH abundance [63, 64], because of which we decided to cut the allowed region in the plot
at fua, > —1/3.
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5 Results

To have a more physical intuition of the amount of anisotropy in the GWs abundance, we
express the above results in terms of the GW density contrast dqw rather than of I'. We thus
define the two and three point functions as

(Scwtm O grmr ) = 020y Co (K)

<5GW,51m15GW,€2m26GW,f3m3> = gZLé;ZL;ms 6&62@3 (k), (5.1)

where we have again factorised the tensorial structures dictated by statistical isotropy, such
that the above results then become

“gr Co) = 1+ ) ’4 —omk | T
. fa [1+3JENL(k’)] . A A . ..
beraty (k) ~ 7 (G Co+ G G+ G Cy) . (52)

4 [1 + fa (k)]

We can now discuss the limits in which the anisotropies are dominated by the propagation
term or by the initial condition term.

In the case in which the propagation term dominates, one can formally consider the
limit fx, — 0, and thus find

Le dlnQ , 1/2
IR (R e

Dominated by propagation : (5.3)
B€1£2€3 (k) = ifNL [éel 052 + 6’51 é@g + CA(EQ éﬁ3:| )

which agrees with the results of the previous paper [45].
In the case in which the initial condition term dominates, one can instead consider the
limit fy, — 0o. The correlators for dqw then become

f(gj;l) CAVE (k) ~ Q?jl |fNL| Pé[/lz,

Dominated by initial condition : (5.4)
B£1£2£3 (k) = % (éfl 052 + Ogl é@g + éfg é€3> 9

where we note that fy, has disappeared from the last expression, since I'; is maximally
non-Gaussian (as opposite to I'g, that is Gaussian up to O (fx.) non-Gaussianity).

In Fig. 4 we show the two-point function anisotropy Cy for the density contrast, for
the choice of a Dirac delta and gaussian power spectrum of the curvature perturbation on
small scales. The peak frequency of this signal has been chosen as the one corresponding
to PBH masses given by Mpgy = 10_12M@ for which PBHs can represent all the DM, also
coinciding with the frequency of maximum sensitivity at LISA. The dot-dashed lines identify
the corresponding GWs abundance computed at present time and at the peak frequency.
Finally, the results for different masses of PBH do not change significantly.
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U+ 1)Cy(k.) /27 for Pe, = Ak.d (k — k.) VU +1)Co(k) /2 for P, = Pyexp [—log? (k/k.) /2]

1.x107 1.25%107%

T Qaw(me, k)R

8.x107* 1.x107%

A8 00 e o

6.x107* 7.5%1074

78X 0 e

4.x107* 5.x107
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1x107° ] 2.x107*

1074 1073 1072 107! 1
fren 0.

Figure 4. Contour plot of \/6(6 +1)Cy(k,)/27 in the region permitted by the constraints of Planck
on fppy and fyg, for the choice of a Dirac delta and gaussian power spectrum of the short modes,
respectively. The peak frequency has been chosen to correspond to Mpgy = 107'2M. The dot-
dashed lines identify the corresponding GWs abundance. Notice that the results shown here only
hold for a local, scale-invariant primordial non-Gaussianity of scalar perturbations.

6 Conclusions

The measurement of a SGWB is one of the main goals of future experiments devoted to the
detection of sources of GWs. One possible and well-motivated source of GWs from the early
universe is associated to the birth of PBHs when enhanced scalar perturbations created during
inflation re-enter the horizon and collapse into BHs. This phenomenon is accompanied by the
generation of GWs at second-order in perturbation theory. In particular, it turns out that for
PBHs of masses around 10~ '2M,, which can still play the role of dark matter in its totality,
the frequency of the GWs is located in the mHz range where the LISA mission happens to
have the maximum sensitivity. In the positive case of a detection of the SGWB, the next
step will be to identify the source and therefore any characterisation of the background will
be extremely useful. In this sense, its anisotropies will bring important information.

In this paper we have studied in detail the strength of the GW anisotropies associated
to the production of the PBHs. There are two contributions to the anisotropy, the first one
is created at the generation epoch and the second one is due to the propagation effects from
the time of production down to the detection time. In order to have the first source on large
scales a non-vanishing squeezed type of non-Gaussianity must be present in the curvature
perturbation in order to create a cross-talk between the PBH short wavelengths and the
large scales at which the anisotropies are tested. At the same time, the amount of primordial
non-Gaussianity is constrained by the requirement of not generating a too large amount of
isocurvature perturbations, in the case in which PBHs compose a sizeable fraction of the
dark matter.

We have considered the simplest possibility, namely a primordial scale-invariant local
non-Gaussianity for the curvature perturbations. Under such an assumption, our results
are summarised in Fig. 4 out of which we conclude that the typical anisotropies are of the
order of (5 ~ 1074, Correspondingly, the reduced bispectrum is of the order of ¢? ~ 1075
Our findings show also that, if the PBHs compose a large fraction of the dark matter, the
SGWB must be highly isotropic and Gaussian, up to propagation effects. A large amount of
anisotropy and non-Gaussianity would imply, within our mechanism, a PBH population well
below the measured dark matter abundance.
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Such conclusions hold only in the case of our working hypothesis, namely a local model
of primordial non-Gaussianity with fxy, = const for the curvature perturbations. In this case,
one is directly using the Planck constraints on fyy, (and the isocurvature limits discussed in
Sec. 4) down to the scales typical of PBH formation. However, if that is not the case, then
our constraints shown in Fig. 4 can be relaxed, with PBHs that might constitute all of the
measured dark matter. For example, one possibility might be to extend our computation by
considering a running (local) non-Gaussianity [65], which is presently constrained by CMB
temperature measurements [66] and might possibly avoid the isocurvature bounds. We leave
it for further studies.

The next step is of course understanding if such small anisotropies can be detected by
the current and future experiments and, if so, at which angular resolution [67]. In particular,
for a SGWB of cosmological origin only anisotropies at low multipoles, ¢ < 10, can be
resolved. To resolve the angular features of the SGWB at larger multipoles, a gravitational
wave telescope characterised by a ~ AU effective baseline seems to represent the best option
[67].
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A Conventions and computational details on the SGWB energy density

In this Appendix we list our conventions and some explicit expressions that are relevant for
the GW energy density in eq. (2.2). We introduce the GW field through the line element

ds® = a*(n) [—dn* + (6i + hij) da'da’] (A1)
and we decompose it as
. d*k 7 2N iRE
hi (0, @) = [ ——5 D ha, k) ega(k) ™, (A.2)
2m)" TR

where the circular polarization operators are transverse and traceless, and satisfy the nor-

- -,

malization condition eij,,\(k)e;kj’)\,(k) = d,y. The second-order production from the scalar
perturbations then gives, in the radiation dominated era [49], 7

- 3 - - — —
B = g | s S PO [ZF, 7 cos bon) + T E, 7 sin k)] (A3)

"We note an additional factor 1/2 in this solution with respect to the expression in [49], which comes from
the different normalization of the metric perturbation, which we adopt to be consistent with the notation of
[51].
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where eA(E, P) = e, A(l%)ﬁiﬁj, and where the two functions Z. s have been computed analyti-
cally in [49, 50]

24 2 9)2
To(x,y) = —SGWWG(S —1y, (A.4)
24+ d?—2) [(s2+d?> -2 1—d?
Is($,y):_36<(8;__ d2)2) ( (;__Cp) )log (‘32_1‘) +2, (A.5)
with
dz;%x—yh sz;%@+y% (d,s) € [0,1/v/3] x [1/V/3, +00). (A.6)

We insert these expressions into the GW energy density [51]

por = = (hao (b, &) b (8, 7)) (A7)

where the dots denote differentiation with respect to physical time, and we obtain the expres-
sion (2.2) in the main text. The GW polarization operators enter in this expression through
the combination

T [fﬁ, k2, P, 272] = Y eija (kr)eiy x, (kr)eijng (B2)elq x, (k) PraP1oPachad: (A.8)
A1,A2

Using the identity

— (815 = ks ) (8 = alr) (A.9)
we obtain, after some algebra,
Tl o35 = [P0 B B B oo By b Bt by By R
g | ()| [ (o) = (o) 2k b i = ()
- (iﬁ.ﬁlﬂ [pg (k- 72) = (k- 2) + 21 o by oo (o) (e
e ()] = ()] i (o) (a10

B Connected contributions to GW energy density two-point function
In this appendix we give a sketch of the contribution of the connected diagrams of the

energy density two-point function, giving rise to an anisotropy at extremely small scales. We
compute the two-point function starting from the definition of the energy density operator
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Figure 5. Connected diagrams in the energy density two-point functions, case B, C, D respectively.

in Eq. (2.2) as

2
M2 d3k1d3k2d3p1d3p2 1 e T A A
— 2\ — 4 Zx~(k1+k2)T |:k: k — —’:|
{pave (m, @) paw (112, ) (81a2(n1)a2(n2)nmz> / (2m) 12 K252 © b PP

Plsd®kad®psd®ps 1 ki Fr o o
/ ) e i (Rs+ka) [k37 ks, s, p4} <Cﬁ1Cg1_ﬁlCﬁzC,;'2_,;2 CﬁgC,;‘g_ﬁgCﬁ4Cg4_ﬁ4>

X <|:Is(];:17 71) cos (ki) — Ze(k1, p1) sin (klnl)} |:IS(E27 72) cos (ko) — Lo (K, Pa) sin (k‘zm)] >T
X < |:IS(E37 73) cos (ksnz) — Ze(ks3, p3) sin (k3772)} {Is(@, 74) cos (kamp) — Lo(K4, Py) sin (k4772)] >T

(B.1)

where we have introduced the notation (3 = ((¢). Now we can perform the stochastic average
of the 8-point correlator, which can be expressed as

(iG55 55 i)
= 465G (G, ) (GS) (GG
+8 (a3, Gy ) <C,;1_51C;g3_53> (Cmlp) <CE2—524124—54>
+32 (GG} () (G ) (o)
+16 (( G ) <CEI—;51<E4—54> <CE2—52<E3_,73> (CpaCp) (B.2)
where the first line indicates the disconnected contribution (case A), while the remaining

lines correspond to the connected pieces (case B, C, D, respectively) and are plotted dia-
grammatically in Fig. 5.

The case A gives rise to a constant contribution to the equal-time two-point function
proportional to the square of the expectation value of the energy density field as

(paw (0, &) paw (1, 7)) a = (paw (1, T)) {paw (0, §)) = (paw (0))” - (B.3)

In order to show that the remaining diagrams are suppressed at large scales, in the following
we start by computing diagram B. Inserting the correlators of the curvature perturbation
in terms of its power spectrum and performing the time averages, one finds the equal time
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two-point function
2
1 M? P
= ) — d3k d3 d3ki d3 z(:c—y)~(k‘1—k:4)
<pGW (TL .17) Pew (777 y)>B 277'['4 <81(L2772> / 1G-P1 404°Pyg €
o 1 11 1 1
ARl a7

=T [1%1, —ka, 1, —154] T [—iﬁl, ka, —P1, P
k1 —p1

ks — 234‘)
sin (A34T) sin (A12T>
TAszy TAy

X P¢(p1)Pe(pa)Pe (’EI _51D Pe (

X (ZSIISQ + ICIICQ) (Is3Is4 + IC3IC4) (B4)

where Z. 5 ; = 073(121,]5'1), A;j = k; — kj, and the T—dependent terms are the leading ones
after performing the time average. Now we explicitly insert a Dirac delta power spectrum,
change the integration variables into ¢ = El — E4 and § = p; — El and rotate the reference
frame such that ¢ is aligned with the Z axis, obtaining

1 M2A2\>
(paw (1, T) pew (0, ¥))B = 12n) (81227782) /dqq?jo(qk* !f—zﬂ)/dﬂs/dﬂm /de

1 1 pL—3 qé,+5—p .
x0(lgéz+8—=p1+pa|—1) ——5———7 2[]21 g 231,1)1,294}
1p1 — 8|7 |gé. + § — pu D1 — 3| |qéx + 8 — pi|
1 1 1 1
>< IS</\ 5]’ D A>Is< 2 S D ’ C S p >+
Ip1 — 8| [p1 — 3 lgé. +3—p1] [gé. + 35— pil
2
1 1 1 1 in (A T)1?
IC<A )I( I ) [Smw)] (B.5)
lp1 — 8| [p1 — 3 lgé. +3—p1] [qé. + 35— pil AT
with
AT = A3 T = (k1 — k) T = {[p1 — 3| — |qgé. + 5 —p1|} ki T, (B.6)

where we have redefined ¢ = k.q’ and dropped the prime.
The spherical Bessel function plays a role of a window function that forces its argument

to be of order one, and so
1

q~ﬁ<<l B.7
AER B0

since we are looking at anisotropies on scales |¥ — g] > ki In the limit of small external
momentum ¢, the time averaged term goes to 1 and we have

, » 1 (Maz L Vs B.S
(paw (1, T) paw (0, ¥))B =~ 4(2m)3 \ 81a2i2 X m X OB (B.8)
where we defined
L R 1
Sp = /dQs/del/deé(s—pl il 1)
1 —

p1— 5 p1—58 . .
XT2|:A NERETA Aapla_p4:|
’pl—é” \Pl—s\

2
1 1
IQ<A ) (B.9)
\pl—s\ ’pl—s\
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The integral can be performed numerically, and expressing the results in terms of the GWs
density contrast, one finds finally

. . 1 °
(Oaw (n, @) daw (1, 9))p =~ 2 - 102 <k|f_?j|> (B.10)

which is highly suppressed. A similar suppression is expected for the other two connected
diagrams, which therefore give a negligible contribution to the GWs anisotropy.
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