
ATLAS Release Tester (ART)

Tülay Çuhadar Dönszelmann, Walter Lampl, Graeme Stewart

CHEP 2019
Adelaide, South Australia

 4-8 November 2019

1

Introduction

• ATLAS Offline Software Release
— Lives in one large git repository
— One branch for each release-series (Tier0-production, simulation,
development)
— Code-base is sub-divided into “packages” (feature of our build system)
— We can defined Projects (subset of packages)

• Example: Event Generation releases use only a subset of packages

• Nightly Builds
— HEAD of each branch

— Tagged for each nightly by timestamp
— Multiple platforms and multiple projects

• Nightly Tests

— Run for each of the nightly builds
— Short Tests (executed locally)

— Long Tests (executed on Grid)
2

Previous Nightly Testing System

• Run Time Tester (RTT) framework has been used in ATLAS for a long
time
— The system was bound to specific clusters at CERN
— Depended on AFS
— Running a single test was not straightforward, because all tests were
defined in a single XML file

A new framework for the ATLAS testing system was needed to address
these issues

3

What is ART ?

• ATLAS Release Tester (ART) provides a unified testing system

— One tool (art command line)

— One set of tests (for grid or local)

• It allows to submit:

— Long tests to the GRID

— Short tests on local machines, to be run in parallel

• It is used by:

— Automatic Nightly Submission

• After the nightly release is built

• Using the gitlab-ci system to manage the submission

— Users

• To run jobs locally or on the GRID

4

Features of ART

• Simple Test Definition
 — Shell or Python tests
 — Adorned with headers to instruct ART
 — Full control by developers
 — Easy to run and reproduce any failure
 — Easy to submit job to GRID

• Predefined set of possible input files (bytestream, simulation, ...)
 — Either on CVMFS or on GRID (rucio)

• Possibility to run post processing
 — Regression tests
 — Histogram comparison

• Automatic download and storage of results

5

ART - ATLAS Release Tester.

Usage:
 art.py run [-v -q --type=<T> --max-jobs=<N> --ci --run-all-tests --timeout=<S> --copy=<dir>]
<script_directory> <sequence_tag> [<test_names>...]
 art.py grid [-v -q --type=<T> --max-jobs=<N> -n --run-all-tests] <script_directory> <sequence_tag>
 art.py submit [-v -q --type=<T> --max-jobs=<N> --config=<file> -n --run-all-tests] <sequence_tag>
[<packages>...]
 art.py copy [-v -q --user=<user> --dst=<dir> --unpack --tmp=<dir> --seq=<N> --keep-tmp] <indexed_package>
 art.py validate [-v -q] [<script_directory>]
 art.py included [-v -q --type=<T> --test-type=<TT> --out=<file>] [<script_directory>]
 art.py download [-v -q --max-refs=<N> --user=<user> --dst=<dir>] <package> <test_name>
 art.py compare grid [-v -q --max-refs=<N> --user=<user> --entries=<entries> --file=<pattern>... --txt-file=<file>...
--mode=<mode> --diff-pool --diff-root --out=<file> --order-trees] <package> <test_name>

ART Command Line Utilities

• User defines test and adds art-headers in the form of key-value pairs:

• User run jobs in parallel or submits to GRID using ART

waits for grid result to be ready to copy to EOS using ART:

• Some ART Command line utilities (CLU):

6

test_example.sh(.py)
#art-type: grid
#art-input: …
…

<actual test lines go here>

 art.py copy <indexed_package>

 art.py run [options] <script_directory> <sequence_tag> [<test_names>…]
 art.py grid [options] <script_directory> <sequence_tag>

 # art-type : grid | build (To run on grid or locally)
 # art-include: <String> (Nightlies the script must run on)
 # art-input: <String> (Name of the dataset to be read in the grid)
 # art-nfiles: <Int> (Number of files to be read from the dataset)

ART Implementation

• Simple class hierarchy to handle local and grid jobs

— Fully written in python

• Helper classes to abstract different functionality for 
things such as configuration, headers, Rucio:

— ArtConfiguration, ArtHeader, ArtRucio

• Some scripts to handle different functionality:

— art.py (main script), art-trigger.py (sending trigger to git-lab-ci), art-
share.py (input management)

• ART is on gitlab https://gitlab.cern.ch/art in four projects:

art-sw: ART software project, Classes and command-line tool
art-submit: ART grid submission project, receiving the trigger and
submitting the jobs
art-gitlab-ci-runner: Runner images (slc6, cc7, grid and local) for ART
art-www: ART project web site and asciidoc manual

7

ArtBase

ArtGrid ArtBuild

https://gitlab.cern.ch/art

Automatic Nightly Submission
• Nightly Build triggers the ART gitlab-ci system, which runs through 4 stages:

 checkout: Checks out a proper copy of ART

configure: Verifies if testing is required

cvmfs: Verifies the availability of the nightly release on CVMFS (which is
distributed to the GRID)

submit: Submits jobs to grid (ART CLU) and waits for results to be copied

• The 4 stages above run on a set of 5 Virtual Machines for ART, each loaded with
docker images to run the ART command line and submit jobs to the grid.

• Jobs can be consulted using a Web Interface looking at either gitlab or GRID output.

8
CVMFS

Nightly
Build

GRID

Monitoring via Web

GITLAB
CI

OpenStack VM

ART

GITLAB-CI
Runner

Docker / Image

art-submit Pipeline

9

Each job corresponds to submission for a nightly

ART’s own Continuous Integration (CI)

• Unit and Integration Tests for ART try to cover all its code, runs in gitlab-ci in three
phases at every commit.

 Checks: ATLAS setup, python-flake8, shell check (30 seconds)

Unittests: For each of the classes/modules (2 min)

Atlastests: Local tests to setup and download files (10 min)

Gridtests: Run when repo is tagged: submit simple job and check results (30 min)

• Coverage: gather all coverage information of unittests and grid-tests and publish

➢ Coverage of the code is around 90%

➢ Test reports per branch available on EOS

10

Used Technologies
docopt.py: To handle the command-line and its options

yaml and json: For configuration and status files

gitlab-ci: To submit nightly tests and wait for their results

open stack Virtual Machines (VM): To run all the gitlab-ci jobs on

docker and docker-images: To have the same environment on all the
VMs

BigPANDA: For GRID job submission and monitoring

Rucio: To download results into the VMs

EOS and xrdcp: To copy results back from the VMs into EOS

asciidoc and asciidocter:

— To write the ART Manual

— To convert the asciidoc manual to pdf and a website

11

Summary

• ART is a tool to test the ATLAS offline software

• ART is in production since more than a year now

 — Replacing a system that was bound to legacy infrastructure

• ART continues to evolve depending on the needs of ATLAS and on
the evolution of the underlying infrastructure

12

