
CHEP 2019 
Adelaide 

5th November 2019  

Multithreaded simulation for ATLAS: 
challenges and validation strategy

Marilena Bandieramonte 
John Derek Chapman 

Heather Gray 
Miha Muskinja 

Yu Him Justin Chiu



!2

Computing complexity challenges 

• In Run3, 50% of simulation will rely on fast techniques (aim to reach ~75%), but full 
Geant4 simulation will be heavily used regardless

• In Run 4, Full Simulation is expected to be the largest CPU consumers (20-25%)
• Together with FastSim and FastReco it amounts to ~40% of all expected CPU 

consumption. 
• Any performance optimizations of ATLAS simulation have a big impact on the 

overall picture. 

M. Bandieramonte, University of Pittsburgh

[ATLAS public]

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults#Computing_TDR_and_related_Docume
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults#Computing_TDR_and_related_Docume


!3

Why multi-threading? 
• Evolution trend of faster single-threaded CPU performance broken more 

than 10 years ago

• Increase of CPU cores and more execution units to overcome stagnation 
in CPU Clock Speed

• low power core sharing a pool of memory

• We need 'Multi-Threaded (MT)' design to run effectively on modern 
architectures and profit from multi-core designs

• MT approach is critical for heterogeneous architectures (e.g. GPU 
HPCs)

• This approach scales better with respect to the multi-processing 
approach (AthenaMP) especially on the architectures that are 
foreseen to be used in the next LHC runs

• Production ready MT simulation is considered CRITICAL for Run 3 and 
BLOCKER for Run 4 

• to exploit the HL-LHC successfully

• What about vectorization? 

History of Intel chip introductions by clock  
speed and number of transistors

M. Bandieramonte, University of Pittsburgh

Moore’s Law

Clock Speed

Multi/Many core era



!4M. Bandieramonte, University of Pittsburgh

• The amount of MC samples producible already limits physics 
analysis

• with the upcoming runs and increased luminosity will be 
worse

• The current model, AthenaMP, relies on Linux’s copy-on-write 
mechanism for sharing memory pages between forks:

•  doesn't scale for Run-3 and beyond

• Ongoing effort to migrate ATLAS computing model to multi-
threaded AthenaMT 

• Finer-grained task parallelism, minimised memory footprint 
• Only execute() is concurrent
• Scheduler-driven, by dependency graph

• Simulation, Digitization and Reconstruction moving to MT 
paradigm using the AthenaMT/GaudiHive infrastructure.

• Better scaling in terms of memory footprint (leverage new 
architectures)

• Easy the investigation of heterogeneous computing 
architectures (e.g. use GPUs, FPGAs etc)

Why multi-threading?

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults#Computing_TDR_and_related_Docume
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults#Computing_TDR_and_related_Docume


!5

AthenaMT and Geant4MT

M. Bandieramonte, University of Pittsburgh

• AthenaMT is based on GaudiHive, a multi-threaded, concurrent-execution extension to Gaudi :  
• Concurrency model based on TBB
• Scheduling is driven by data-flow 
• Events processed in multiple threads 

• Geant4 has its own approach to parallel processing 
• Master-slave concurrency model, using pthreads
• Provides event-level parallelism
• Thread safety achieved using thread-local storage 

• Main Geant4MT components must be thread-local

• GaudiHive provides task locality, not thread locality 
• Cannot easily pin a Gaudi component to a specific thread
• Must decouple the Gaudi components from the Geant4 core functionality 
• Initialization is very tricky: G4 requires that thread-local objects  are initialized in their threads at the right time

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults#Computing_TDR_and_related_Docume
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults#Computing_TDR_and_related_Docume


!6

Thread coupling AthenaMT and G4MT

M. Bandieramonte, University of Pittsburgh

• Geant4MT has been successfully integrated in AthenaMT
• Inter-event rather than intra-event parallelism: 

• memory saving coming from sharing geometry and cross-
section tables between threads

• Segfaults during execution or finalization of MT jobs, due to the way TBB 
starts new threads:

• When finalizing a MT job:
• TBB creates extra-threads that are not catched by the 

ThreadPoolSvc -> no call to G4ThreadInitTool::initThread
• Crashes when G4ThreadInitTool::terminateThread is called 

for those threads

• During execution of a MT job:
• In some cases TBB can spawn new threads even after initialization is complete
• The simulation was aborted because the geometry was released after the initialization but it is always needed to initialize new 

threads

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults#Computing_TDR_and_related_Docume
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults#Computing_TDR_and_related_Docume


!7

Case study: Differences in LAr Hits

•  Differences in the LAr Hits affecting *very rarely* the energy:  

Ex: 
Py:diff-root         INFO comparing [22] leaves over entries... 
000.LArHitContainer_p2_LArHitEMB.m_energy.6891 3484255171L -> 1336771523L => diff= [22.27205722%] 
Py:diff-root         INFO Found [630943] identical leaves 
Py:diff-root         INFO Found [1] different leaves 

• LArG4SimpleSD instances are contained in SDWrapper, which has a common hit collection container for all SDs. 

• The SDWrapper is a derived G4VSensitiveDetector, and instances of SDWrapper are contained in a thread ID-
keyed map. 

• Problem was likely localized to ProcessHits.
 LArCalorimeter/LArG4/LArG4Barrel/src/LArBarrelCalibrationCalculator.cxx 
     LArCalorimeter/LArG4/LArG4Barrel/src/LArBarrelPresamplerCalculator.cxx 

M. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging
Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

M. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging

Increment the 
messaging level 
to DEBUG (~7GB 
for 10 ttbar evts)

Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

M. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging

Increment the 
messaging level 
to DEBUG (~7GB 
for 10 ttbar evts)

Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

Sequential 
mode

M. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging

Increment the 
messaging level 
to DEBUG (~7GB 
for 10 ttbar evts)

HITS

LOG

Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

Sequential 
mode

M. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging

Increment the 
messaging level 
to DEBUG (~7GB 
for 10 ttbar evts)

HITS

LOG

Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

Sequential 
mode

HITS

LOG

MT mode, 
nthreads=5

M. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging

Increment the 
messaging level 
to DEBUG (~7GB 
for 10 ttbar evts)

Split the HITS file 
into n files, one 

per eventID

HITS

LOG

Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

Sequential 
mode

HITS

LOG

MT mode, 
nthreads=5

M. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging

Increment the 
messaging level 
to DEBUG (~7GB 
for 10 ttbar evts)

Split the HITS file 
into n files, one 

per eventID

HITS

LOG

Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

Sequential 
mode

HITS

LOG

HITS_n

MT mode, 
nthreads=5

HITS_n
HITS_n

HITS_n

HITS_n
HITS_n

HITS_n
HITS_n

M. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging

Increment the 
messaging level 
to DEBUG (~7GB 
for 10 ttbar evts)

Split the HITS file 
into n files, one 

per eventID

Compare on 
eventID basis the 

HITS files

HITS

LOG

Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

Sequential 
mode

HITS

LOG

HITS_n

MT mode, 
nthreads=5

HITS_n
HITS_n

HITS_n

HITS_n
HITS_n

HITS_n
HITS_n

M. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging

Increment the 
messaging level 
to DEBUG (~7GB 
for 10 ttbar evts)

Split the HITS file 
into n files, one 

per eventID

Compare on 
eventID basis the 

HITS files

HITS

LOG

Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

Sequential 
mode

HITS

LOG

HITS_n

MT mode, 
nthreads=5

Same?

HITS_n
HITS_n

HITS_n

HITS_n
HITS_n

HITS_n
HITS_n

M. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging

Increment the 
messaging level 
to DEBUG (~7GB 
for 10 ttbar evts)

Split the HITS file 
into n files, one 

per eventID

Compare on 
eventID basis the 

HITS files

HITS

LOG

Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

Sequential 
mode

HITS

LOG

HITS_n

MT mode, 
nthreads=5

Same?

Yes

HITS_n
HITS_n

HITS_n

HITS_n
HITS_n

HITS_n
HITS_n

Go Back to 
the StartM. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging

Increment the 
messaging level 
to DEBUG (~7GB 
for 10 ttbar evts)

Split the HITS file 
into n files, one 

per eventID

Compare on 
eventID basis the 

HITS files

HITS

LOG

Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

Sequential 
mode

HITS

LOG

HITS_n

MT mode, 
nthreads=5

Same?

Yes

No

HITS_n
HITS_n

HITS_n

HITS_n
HITS_n

HITS_n
HITS_n

Go Back to 
the StartM. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging

Increment the 
messaging level 
to DEBUG (~7GB 
for 10 ttbar evts)

Split the HITS file 
into n files, one 

per eventID

Compare on 
eventID basis the 

HITS files

HITS

LOG

Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

Sequential 
mode

HITS

LOG

HITS_n

MT mode, 
nthreads=5

Same?

Yes

No

HITS_n
HITS_n

HITS_n

HITS_n
HITS_n

HITS_n
HITS_n

Filter, split and 
manipulate LOG file, 
into n files, one per 

eventID

Go Back to 
the StartM. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging

Increment the 
messaging level 
to DEBUG (~7GB 
for 10 ttbar evts)

Split the HITS file 
into n files, one 

per eventID

Compare on 
eventID basis the 

HITS files

HITS

LOG

Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

Sequential 
mode

HITS

LOG

HITS_n

MT mode, 
nthreads=5

Same?

Yes

No

HITS_n
HITS_n

HITS_n

HITS_n
HITS_n

HITS_n
HITS_n

Filter, split and 
manipulate LOG file, 
into n files, one per 

eventID

Go Back to 
the StartM. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging

Increment the 
messaging level 
to DEBUG (~7GB 
for 10 ttbar evts)

Split the HITS file 
into n files, one 

per eventID

Compare on 
eventID basis the 

HITS files

HITS

LOG

Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

Sequential 
mode

HITS

LOG

HITS_n

MT mode, 
nthreads=5

Same?

Yes

No

HITS_n
HITS_n

HITS_n

HITS_n
HITS_n

HITS_n
HITS_n

Filter, split and 
manipulate LOG file, 
into n files, one per 

eventID

HITS_nHITS_nHITS_nLOG_n

Go Back to 
the Start

HITS_nHITS_nHITS_nLOG_n

M. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging

Increment the 
messaging level 
to DEBUG (~7GB 
for 10 ttbar evts)

Split the HITS file 
into n files, one 

per eventID

Compare on 
eventID basis the 

HITS files

HITS

LOG

Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

Sequential 
mode

HITS

LOG

HITS_n

MT mode, 
nthreads=5

Same?

Yes

No

HITS_n
HITS_n

HITS_n

HITS_n
HITS_n

HITS_n
HITS_n

Filter, split and 
manipulate LOG file, 
into n files, one per 

eventID

HITS_nHITS_nHITS_nLOG_nCompare Log files 
and cross your fingers

Go Back to 
the Start

HITS_nHITS_nHITS_nLOG_n

M. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging

Increment the 
messaging level 
to DEBUG (~7GB 
for 10 ttbar evts)

Split the HITS file 
into n files, one 

per eventID

Compare on 
eventID basis the 

HITS files

HITS

LOG

Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

Sequential 
mode

HITS

LOG

HITS_n

MT mode, 
nthreads=5

Same?

Yes

No

HITS_n
HITS_n

HITS_n

HITS_n
HITS_n

HITS_n
HITS_n

Filter, split and 
manipulate LOG file, 
into n files, one per 

eventID

HITS_nHITS_nHITS_nLOG_nCompare Log files 
and cross your fingers

Cross your 
fingers again…

Go Back to 
the Start

HITS_nHITS_nHITS_nLOG_n

M. Bandieramonte, University of Pittsburgh



!8

Strategy for MT debugging

Increment the 
messaging level 
to DEBUG (~7GB 
for 10 ttbar evts)

Split the HITS file 
into n files, one 

per eventID

Compare on 
eventID basis the 

HITS files

HITS

LOG

Simulation with 10 ttbar events, 
sequential mode vs MT with 5 threads

Sequential 
mode

HITS

LOG

HITS_n

MT mode, 
nthreads=5

Same?

Yes

No

HITS_n
HITS_n

HITS_n

HITS_n
HITS_n

HITS_n
HITS_n

Filter, split and 
manipulate LOG file, 
into n files, one per 

eventID

HITS_nHITS_nHITS_nLOG_nCompare Log files 
and cross your fingers

Cross your 
fingers again…

Go Back to 
the Start

HITS_nHITS_nHITS_nLOG_n

 

10673650 EMBPresamplerCa...  DEBUG  module,x0,y0,current0 from map 5 0.541834 0.234809 [-1.03946-] {+1.08644+} 
10673651 EMBPresamplerCa...  DEBUG    Energy for sub step 0.0246629 
10673652 EMBPresamplerCa...  DEBUG  set current map for module 5 
10673653 EMBPresamplerCa...  DEBUG  module,x0,y0,current0 from map 5 0.523319 0.204478 [-1.00652-] {+1.04875+} 
10673654 EMBPresamplerCa...  DEBUG    Energy for sub step 0.0246629 
10673655 EMBPresamplerCa...  DEBUG  set current map for module 5 
10673656 EMBPresamplerCa...  DEBUG  module,x0,y0,current0 from map 5 0.504805 0.174147 [-0.973578-] {+1.01106+} 
10673657 EMBPresamplerCa...  DEBUG    Energy for sub step 0.0246629 
10673658 EMBPresamplerCa...  DEBUG  set current map for module 5 
10673659 EMBPresamplerCa...  DEBUG  module,x0,y0,current0 from map 5 0.48629 0.143817 [-0.932291-] {+0.970216+} 
10673660 EMBPresamplerCa...  DEBUG Hit Energy/Time [-0.175662-] {+0.179722+} 87.253

EMBPresamplerCalculator

M. Bandieramonte, University of Pittsburgh



!9

The problem & the fix
PsMap is a singleton and SetMap() method was not thread-safe:

• set the current “Current map” in its private member m_curr 
• store the module in m_module.

• ! Data race  in the 
LArBarrelPresamplerCalculator: 

• SetMap could be called by 
another thread before the 
current values were obtained 

 LArBarrelPresamplerCalculator.cxx 

PsMap.cxx

m_psmap->SetMap(imodule); 
m_psmap->Map()-> GetAll(x0,y0,&gap,&current0,&current1,&current2);

void PsMap::SetMap(int module) 
{ 
  if (m_module==module) return; 
  m_module=module; 
  […] 
  if (m_theMap.find(code) != m_theMap.end()) 
    m_curr = m_theMap[code]; 
  else { 
        m_curr=0; 
  } 
}

M. Bandieramonte, University of Pittsburgh



!9

The problem & the fix
PsMap is a singleton and SetMap() method was not thread-safe:

• set the current “Current map” in its private member m_curr 
• store the module in m_module.

• ! Data race  in the 
LArBarrelPresamplerCalculator: 

• SetMap could be called by 
another thread before the 
current values were obtained 

 LArBarrelPresamplerCalculator.cxx 

PsMap.cxx

m_psmap->SetMap(imodule); 
m_psmap->Map()-> GetAll(x0,y0,&gap,&current0,&current1,&current2);

void PsMap::SetMap(int module) 
{ 
  if (m_module==module) return; 
  m_module=module; 
  […] 
  if (m_theMap.find(code) != m_theMap.end()) 
    m_curr = m_theMap[code]; 
  else { 
        m_curr=0; 
  } 
}

• ! Data race  in the 
LArBarrelPresamplerCalculator: 

• SetMap could be called by 
another thread before the 
current values were obtained 

• Remove SetMap()function  and      
c m_curr and m_module 
members 

• Implement CurrMap* 
GetMap(imodule) const 
method 

CurrMap* cm = m_psmap->GetMap(imodule);

CurrMap* PsMap::GetMap(int module) const 
{ 
  [..] 
  auto it = m_theMap.find(code); 
  if (it != m_theMap.end()) 
    return  it->second; 
  else { 
        return nullptr; 
  } 
}

M. Bandieramonte, University of Pittsburgh



!9

The problem & the fix
PsMap is a singleton and SetMap() method was not thread-safe:

• set the current “Current map” in its private member m_curr 
• store the module in m_module.

• ! Data race  in the 
LArBarrelPresamplerCalculator: 

• SetMap could be called by 
another thread before the 
current values were obtained 

 LArBarrelPresamplerCalculator.cxx 

PsMap.cxx

m_psmap->SetMap(imodule); 
m_psmap->Map()-> GetAll(x0,y0,&gap,&current0,&current1,&current2);

void PsMap::SetMap(int module) 
{ 
  if (m_module==module) return; 
  m_module=module; 
  […] 
  if (m_theMap.find(code) != m_theMap.end()) 
    m_curr = m_theMap[code]; 
  else { 
        m_curr=0; 
  } 
}

• ! Data race  in the 
LArBarrelPresamplerCalculator: 

• SetMap could be called by 
another thread before the 
current values were obtained 

• Remove SetMap()function  and      
c m_curr and m_module 
members 

• Implement CurrMap* 
GetMap(imodule) const 
method 

CurrMap* cm = m_psmap->GetMap(imodule);

CurrMap* PsMap::GetMap(int module) const 
{ 
  [..] 
  auto it = m_theMap.find(code); 
  if (it != m_theMap.end()) 
    return  it->second; 
  else { 
        return nullptr; 
  } 
} Tested with 100 ttbar with MT 10 

threads ! Solved!

M. Bandieramonte, University of Pittsburgh



!10

Tools to detect thread related issues

M. Bandieramonte, University of Pittsburgh



!11

• Collection of data races detected in AthenaMT simulation with Intel Inspector:

Data races in AthenaMT

Problem: 
static const G4String tileVolumeString("Tile"); 
Was not thread-safe, substituted with:
static const char * const tileVolumeString = "Tile" ; 
That is initialised before the first call

M. Bandieramonte, University of Pittsburgh



!12

• Collection of lock hierarchy violations detected in AthenaMT simulation with Intel Inspector:

• It happens when two threads are trying to access and lock two critical sections in a different order. Possible 
deadlock.

Lock Hierarchy Violations

M. Bandieramonte, University of Pittsburgh



!13

AthenaMT & Geant4MT validation
• Recent progress highlights:  

• Output validation: 

• Fixed: thread-unsafety causing difference in HITS of LAr sensitive detector (~1-2%)  
• Fixed: thread-unsafety causing difference in HITS of Tile sensitive detector (~1-5%)  
• Fixed:  simulation with CaloCalibrationHit (~50% of Dead material hits)  

• Confirmed reproducibility of simulation with SUSY/Exotics G4Extensions enabled:  
• We currently have six packages which add support for additional particles and physics processes to Geant4 

• Charginos - Stable and Decaying Charginos – OK   
• Gauginos - OK 
• Neutralinos - Decaying - OK 
• Monopoles - OK 
• Quirks - Postponed - lack of samples (no associated physics analysis) 
• RHadrons - waiting for samples 
• Sleptons - Stable, Decaying taus, Decaying light - OK 

We can now run reliably full single-threaded and multi-threaded simulations, results are fully consistent 
(read identical) ! physics validation in progress. 

M. Bandieramonte, University of Pittsburgh



!14

AthenaMT vs AthenaMP benchmarks

M. Bandieramonte, University of Pittsburgh

Architecture:          x86_64 
CPU op-mode(s):        32-bit, 64-bit 
Byte Order:            Little Endian 
CPU(s):                32 
On-line CPU(s) list:   0-31 
Thread(s) per core:    2 
Core(s) per socket:    8 
Socket(s):             2 
NUMA node(s):          2 
Model:                 79 
Model name:            Intel(R) Xeon(R)  
     CPU E5-2620 v4 @ 2.10GHz 
Test on 100 ttbar events, with prom 
Athena, r2019-09-30T2130,master 

results are AVG of 5 separate runs (from 1-32 
threads/processes) - the machine was quiet all the 
time (me as only user) 

physical cores limit hyper-threading regime

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  4  8  12  16  20  24  28  32

Th
ro

ug
hp

ut
 [

Ev
./m

in
.]

#threads/#processes

Throughput[Ev./min.] AthenaMT vs AthenaMP

IdealMT
AthenaMT

IdealMP
AthenaMP

 0

 4

 8

 12

 16

 20

 24

 28

 32

 0  4  8  12  16  20  24  28  32

Sp
ee

du
p

#threads/#processes

Wall-time speedup AthenaMT vs AthenaMP

Ideal
AthenaMT
AthenaMP

physical cores limit hyper-threading regimeAthenaMT Speedupth_n = Wall-timeth_1/ Wall-timeth_n

AthenaMP Speedupproc_n = Wall-timeproc_1/ Wall-timeproc_n

Wall-Time [min.] 1 thread/process

AthenaMT 169.6733333

AthenaMP 173.9166667



!15M. Bandieramonte, University of Pittsburgh

 1

 2

 3

 4

 5

 6

 7

 0  4  8  12  16  20  24  28  32

M
em

or
y 

[G
B]

#threads/#processes

Proportional Set Size AthenaMT vs AthenaMP

AthenaMT
AthenaMP

~ +27.25 MB per thread

~ +214.33 MB per process

The Proportional Set Size (PSS) is the portion of main memory occupied by a process and is composed by the private 
memory of that process plus the proportion of shared memory with one or more other processes

AthenaMT vs AthenaMP benchmarks
Architecture:          x86_64 
CPU op-mode(s):        32-bit, 64-bit 
Byte Order:            Little Endian 
CPU(s):                32 
On-line CPU(s) list:   0-31 
Thread(s) per core:    2 
Core(s) per socket:    8 
Socket(s):             2 
NUMA node(s):          2 
Model:                 79 
Model name:            Intel(R) Xeon(R)  
     CPU E5-2620 v4 @ 2.10GHz 
Test on 100 ttbar events, with prom 
Athena, r2019-09-30T2130,master 

results are AVG of 5 separate runs (from 1-32 
threads/processes) - the machine was quiet all the 
time (me as only user) 

PSS[GB] 1 thread/process

AthenaMT 1.482771301

AthenaMP 1.628312683



!16M. Bandieramonte, University of Pittsburgh

 0

 10

 20

 30

 40

 50

 60

 0  4  8  12  16  20  24  28  32

M
em

or
y 

[G
B]

#processes

Memory Footprint AthenaMP

Virtual Memory
Resident Set Size

Proportional Set Size

 1

 1.5

 2

 2.5

 3

 3.5

 0  4  8  12  16  20  24  28  32
M

em
or

y 
[G

B]

#threads

Memory Footprint AthenaMT

Virtual Memory
Resident Set Size

Proportional Set Size

AthenaMT vs AthenaMP benchmarks
Architecture:          x86_64 
CPU op-mode(s):        32-bit, 64-bit 
Byte Order:            Little Endian 
CPU(s):                32 
On-line CPU(s) list:   0-31 
Thread(s) per core:    2 
Core(s) per socket:    8 
Socket(s):             2 
NUMA node(s):          2 
Model:                 79 
Model name:            Intel(R) Xeon(R)  
     CPU E5-2620 v4 @ 2.10GHz 
Test on 100 ttbar events, with prom 
Athena, r2019-09-30T2130,master 

results are AVG of 5 separate runs (from 1-32 
threads/processes) - the machine was quiet all the 
time (me as only user) 



!17

Summary

• The Athena Multi-threaded simulation with Geant4MT is fully functional

• Outside of ISF:
• The G4 single threaded vs multi-threaded output has been confirmed to be identical 
• 100k grid test were ran with 8 cores without reported issues (physics validation in progress)

• Inside ISF:
• simulation runs correctly in multi-threaded mode with 1 thread and the output has been validated

• Next steps
• Solve the thread-unsafely issues and assure that G4MT simulation works with more than one thread and 

that the results are reproducible

M. Bandieramonte, University of Pittsburgh



Marilena Bandieramonte
marilena.bandieramonte@cern.ch

Thanks for your attention.



Backup slides



!20

AthenaMT vs AthenaMP benchmarks

M. Bandieramonte, University of Pittsburgh

 0

 10

 20

 30

 40

 0  4  8  12  16  20  24  28  32

M
em

or
y 

[G
B]

#threads/#processes

Virtual Memory  AthenaMT vs AthenaMP

AthenaMT
AthenaMP

 0

 10

 20

 30

 40

 0  4  8  12  16  20  24  28  32
M

em
or

y 
[G

B]

#threads/#processes

Virtual Memory  AthenaMT vs AthenaMP

AthenaMT
AthenaMP

Architecture:          x86_64 
CPU op-mode(s):        32-bit, 64-bit 
Byte Order:            Little Endian 
CPU(s):                32 
On-line CPU(s) list:   0-31 
Thread(s) per core:    2 
Core(s) per socket:    8 
Socket(s):             2 
NUMA node(s):          2 
Model:                 79 
Model name:            Intel(R) Xeon(R)  
     CPU E5-2620 v4 @ 2.10GHz 
Test on 100 ttbar events, with prom 
Athena, r2019-09-30T2130,master 

results are AVG of 5 separate runs (from 1-32 
threads/processes) - the machine was quiet all the 
time (me as only user) 


