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Abstract

To study the quantized Coulomb branch of 3d N = 4 unitary SQCD theories, we

propose a new method to compute correlators of monopole and Casimir operators that

are inserted in the R × R2
ε Omega background. This method combines results from

supersymmetric localization with inputs from the brane realisation of the correlators in

type IIB string theory. The main challenge is the computation of the partition functions

of certain Super-Matrix-Models (SMMs), which appear in the contribution of monopole

bubbling sectors and are realised as the theory living on the D1 strings in the brane

construction. We find that the non-commutativity arising in the monopole operator

insertions is related to a wall-crossing phenomenon in the FI parameter space of the

SMM. We illustrate our method in various examples and we provide explicit results

for arbitrary correlators of non-bubbling bare monopole operators. We also discuss the

realisation of the non-commutative product as a Moyal (star) product and use it to

successfully test our results.
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1 Introduction

Coulomb branches of three-dimensional (3d) supersymmetric gauge theories are subva-

rieties of the moduli space of supersymmetric vacua, in which vector multiplet scalars

acquire VEVs. It is not an easy task to characterise their geometry. For instance, the

metric on the Coulomb branch of non-abelian theories receives non-perturbative quan-

tum corrections, which are notably hard to compute. Nevertheless, significant progress

has been made in recent years for 3d theories with N = 4 supersymmetry, see [1–12] for

a physics perspective and [13–18] and references thereof for a rigourous mathematical

construction. We will take the physics perspective in this paper. The majority of these

results have utilised the description of the Coulomb branch as a complex algebraic

variety, hence bypassing difficulties related to the metric. The key players in this de-

scription are chiral operators, including standard Casimir invariant operators, and also

importantly monopole operators [19]. The VEVs of these chiral operators parametrise

the Coulomb branch and the algebraic relations that they satisfy give the chiral ring

relations. Although there is always an infinite number of monopole operators, it is

believed (but not proved) that the Coulomb branch is finitely generated, namely that

every Coulomb branch admits a finite basis of generators, which are constrained by

some algebraic relations. The goal then becomes to isolate such a basis and to extract

the relations.

One can go a step further. The coordinate ring C[C] of the Coulomb branch C

has the structure of a Poisson algebra and admits a deformation quantization Cε[C]

[5, 14, 20], with parameter ε, which is an associative, non-commutative algebra.1 This

is referred to as the “quantized Coulomb branch”. It is a richer object compared to

the simple Coulomb branch, and thus it is desirable to study. In particular, obtaining

the deformed Coulomb branch relations is a useful task. Several methods have been

proposed to study the quantized Coulomb branch and we will briefly review some of

these proposals in section 2.

In this paper we study the quantized Coulomb branch of 3d N = 4 SQCD theories

by leveraging inputs from supersymmetric localization and brane constructions [21].

Our setup allows us in principle to compute any correlator of monopole and Casimir

operators on R ×R2
ε , where R2

ε is the Omega background with deformation parameter

ε, and the operators are inserted along the line at the origin of R2
ε as in [5]. These

correlators are topological in the sense that they depend only on the ordering of the

insertions along this line, but not on their actual positions. We find (following [5]) that

they are expressed as rational functions of abelian coordinate VEVs, which are the

1In the mathematics literature the quantization parameter is denoted h̵, not to be confused with

the Planck constant of the three-dimensional quantum field theory.
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VEVs of Cartan scalars and dual photons in the vector multiplet.2 The knowledge of

these correlators can be used to extract a monopole basis and reconstruct the quantized

Coulomb branch relations. In practice however, we will only be able to give explicit

expressions for correlators of certain monopole operators of low magnetic charges. As

we will explain, more general correlators are obtained by computing certain matrix

models, whose precise contour of integration remains to be studied. For SQCD theories

it turns out that these low charge monopoles contain a basis of generators and thus

we are still able to describe the quantized Coulomb branch. We will devote this paper

only to the study and computation of such correlators.

First, we exploit the power of supersymmetric localization, recycling the compu-

tations of ’t Hooft loops in 4d from [22] and performing the dimensional reduction to

3d, to extract an expression for a monopole operator VEV and then a correlator of

monopole operators, written in terms of a sum over monopole bubbling sectors. These

are the sectors of the path integral where the magnetic charge of the defect is screened

by the magnetic charge of a smooth ’t Hooft-Polyakov monopole [23]. A given bubbling

sector contribution contains a product of several factors. All of these factors are well

understood, apart from a rational function of the abelian VEVs, ZSMM, which is the

partition function of an N = (0,4) Super-Matrix-Model, a 0d supersymmetric gauge

theory.3 Here lies the difficulty in the computation. First, it is not obvious to determine

what these SMM are, and it is certainly not obvious how to evaluate them.

To solve these issues we rely on a realisation of monopole insertions in a type IIB

brane setup (see [29] for a first study of this setup in abelian theories). We are able to

map each bubbling (and non-bubbling) contribution in the monopole VEV expansion,

or in the correlator expansion, to a corresponding brane setup. We then read off the

SMM as the theory living on the D1 strings. These are gauged quiver SMM with

(bi)fundamental hypermultiplets and Fermi multiplets. Once the SMM is known, it

remains to determine a contour of integration for the eigenvalues of the matrix model

ZSMM. For SMM that appear in generic correlators, this is a difficult problem that we

do not address in this paper. It is related to the fact that these SMM have vanishing

Fayet-Iliopoulos (FI) parameters. However, for correlators of non-bubbling monopoles,

the contour is given by the Jeffrey-Kirwan (JK) residue prescription [30] and we are

able to give the final evaluation of such correlators.

We apply our method in several examples and provide some general results in the

U(N) SQCD theory. Since we study the quantized Coulomb branch, we find non-

2As we will explain in the core of the paper, the correct abelian variables are actually abelian

monopole VEVs and complex scalar VEVs.
3The same factor appears in the computation of supersymmetric ’t Hooft loops in 4d N = 2 theories,

except that it is a partition function of a SQM theory, rather than SMM theory. The computation of

such a factor can be quite subtle, as has been demonstrated recently in [24–27] (see also [28]).
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commuting monopole operators and we compute their commutators. Interestingly, the

non-commutativity is tied to a wall-crossing phenomenon in the gauged SMM, which

is similar to an observation in [31] for gauged SQM related to non-commutative ’t

Hooft loop operators. The choice in the ordering of the monopole insertions along the

line in R × R2
ε is directly related to a choice in the signs of the FI parameters in the

gauged SMM. When we reverse the order of two insertions, we cross a codimension

one hyperplane – a wall – in the FI parameter space and the JK contour changes,

instructing us to pick contributions at different poles, and the partition function of

the SMM may change. In simple cases, the commutators are simply related to the

residues of poles at infinity in the matrix models. We provide several examples of

this wall-crossing phenomenon. Beyond pedagogical examples, we give explicit results

for arbitrary correlators of “minimal” bare monopole operators (non-bubbling bare

monopoles), whose magnetic charges are highest weights of minuscule representations.

We prove that all positively charged (or all negatively charged) monopole operators

commute among themselves. On the other hand, we show that positively and negatively

charged monopole operators generically do not commute.

Another important feature is the observation that the non-commutative product of

monopole operators can be effectively computed as a Moyal (star) product. This can be

inferred from the localization results in 4d, and imported to 3d. A similar property was

also central in the bootstrap approach in [12]. The explicit results that we obtain using

the brane construction are all in agreement with this Moyal product representation.

This paper is organised as follows. In section 2 we review some results in the

literature on Coulomb branches and we extract the 3d localization formulae from the

reduction of the 4d ones. We also introduce and discuss the non-commutative product

and the Moyal product formulae. In section 3 we propose a type IIB brane setup for

realising bare monopole operators in U(N) SQCD theories. We relate brane setups

to monopole bubbling contributions in the localization formula and explain how to

read the SMM and compute ZSMM (at non-zero FI parameters). We then illustrate the

method by providing several examples of computations of two and three-point functions

in U(2) SQCD. In section 4 we use our brane construction to provide a closed formula

for correlation functions of non-bubbling bare monopole operators in U(N) SQCD.

We also study various examples of correlators containing bare monopole operators of

minimal positive and negative charge, investigating the wall-crossing phenomenon and

making connection with the Moyal product. Along the way we outline a correspondence

between the data of our brane construction and the geometry of the affine Grassman-

nian, which plays a key role in the mathematical definition of the Coulomb branch,

although we do not rely on this correspondence for any of our computations. In section

5 we extend the discussion to include Casimir operators and dressed monopoles. We

propose a brane realisation for those operators and compute some simple correlators.
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Finally, in section 6 we conclude by discussing the remaining issues and possible future

work. In particular, the analysis carried out in this paper using brane constructions

has the potential to be extended to gauge theories with N < 4 supersymmetry, where a

mathematical description along the lines of [13, 14] has not been developed. We collect

several details of the computations of SMM partition functions in various appendices.

Note: During the completion of this paper we became aware of an independent

related work by T. Okuda and Y. Yoshida [32]. We are grateful to them for agreeing

to a coordinated submission.

2 Quantized Coulomb branches and Localization formulae

2.1 The Coulomb branch in 3d N = 4 theories

In this paper we consider 3d N = 4 gauge theories. The Lagrangian theory is fixed

by the choice of a gauge group G, which comes with an N = 4 vector multiplet, and

a pseudo-real representation Rp−r of G, under which matter multiplets transform. We

will consider only matter hypermultiplets that come in pairs of chiral multiplets trans-

forming in complex conjugate representations, namely Rp−r = R⊕R∗.

The space of vacua is a union of intersecting branches. Generically there are two

distinguished branches: the Higgs branch H, on which only the SU(2)C R-symmetry

does not act, and the Coulomb branch C, on which only the SU(2)H R-symmetry does

not act. The remaining mixed branches are products of subspaces of the Higgs and

Coulomb branches, on which the full R-symmetry SU(2)H ×SU(2)C acts non-trivially.

The Higgs branch is parameterised by VEVs of scalar fields in hypermultiplets,

subject to the D- and F-term constraints. It is elegantly described as a hyperkähler

quotient R4 dimR////G [33] and is protected against quantum corrections [34].

In this paper we focus instead on the Coulomb branch, which is parameterised by

the VEVs of scalar fields in vector multiplets, which take values in the Lie algebra g of

the gauge group G, and of dual photons. The potentials in the action impose that only

scalars valued in a Cartan subalgebra t ⊂ g can take VEV. The Coulomb branch moduli

are thus captured by complex scalars ϕa, real scalars σa and dual photons γa, which

arise from the dualization of Cartan gauge fields, with a = 1, . . . , rk(G). Dual photons

are compact scalars, which we normalise to have periodicity 2π. These combine with

the non-compact real scalars σa to form the single-valued chiral VEVs

eχa = e
2π
g2
σa+iγa , (2.1)

where g2 is the Yang-Mills coupling (of the relevant gauge group factor).
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This leads to the “classical” Coulomb branch, which is parameterised by the Cartan

VEVs ϕa and eχa modulo residual gauge transformation in the Weyl group W:

Cclassical = (C ×C∗)rk(G)/W . (2.2)

The classical Coulomb branch receives quantum corrections, which, roughly speaking,

encode the fact that the dualization that defines the dual photons γa is valid at generic

points on the Coulomb branch but fails at loci where matters fields or W-bosons become

massless. Along these subspaces of C, the radii of the circles parameterised by some

dual photons shrink to zero or diverge, and therefore the eχa are not good coordinates

on the full Coulomb branch. Instead, there should be combinations of ϕa and eχa

that are well-defined everywhere and parametrize C. In general, C will be described as

a complex algebraic variety, with the “good coordinates” as generators and relations

between them.

Deformation quantization

Before discussing approaches describing the “quantized” Coulomb branch, it is

important to mention that, as a hyperkähler manifold, C has a holomorphic symplectic

structure which defines a Poisson bracket. Thus, the coordinate ring of holomorphic

functions on C, which is physically realised in terms of the VEVs of Coulomb operators,

also has the structure of a Poisson algebra. It admits a natural quantization, where

the VEVs of Coulomb operators are replaced by operators and the Poisson bracket is

replaced by a Lie bracket, or commutator, with quantization parameter ε. Equivalently,

the coordinate ring C[C] of C admits a deformation quantization which gives it the

structure of an associative, non-commutative algebra, with deformation parameter ε.4

We will denote the non-commutative product between VEVs by a star ⋆, and the

deformed coordinate algebra by Cε[C].

Abelianization approach

In the physics literature indirect methods have been proposed to compute the

quantum corrected Coulomb branch.5 In [5] it was proposed that one should work in

the complement of the loci where W-bosons and hypermultiplets respectively become

massless and use abelian variables uv, with integer vectors v = (va)a=1,...,N , replacing all

the combinations ev.χ ∶= e∑a v
aχa , and consider first the “abelianized” Coulomb branch

Cabelian parameterised by the uv, subject to a set of quantum relations. The uv are

understood as the VEVs of abelian monopole operators and are labelled by magnetic

4See [20] and references therein for more background on deformation quantization.
5Here we are referring to the standard quantum corrections in the gauge theory that are weighted

by Planck’s constant h̵, and not by the deformation quantization parameter ε, which instead physically

controls an Omega deformation.

6



charges v ∈ Λcochar, the cocharacter lattice of G. The precise conjectured relations are6

uv1uv2 = uv1+v2

∏
k

∏
w(k)∈Rk

(w(k).ϕ −mk)
h(w(k),v1,v2)

∏
α∈G

(α.ϕ)h(α,v1,v2)
, (2.3)

where α ∈ G denotes the non-zero roots α of the gauge algebra and w(k) ∈ Rk denotes

the weights w(k) of the representation Rk. The relations also depend on complex masses

mk of the hypermultiplets in the theory. Finally we have

h(σ, v1, v2) ∶=
1

2
(∣σ.v1∣ + ∣σ.v2∣ − ∣σ.(v1 + v2)∣) ∈ Z≥0 . (2.4)

The exact Coulomb branch C should then be described as the quotient of Cabelian

by the Weyl group, Cabelian/W, extended to the loci which support massless W-bosons.

The final description contains the generators Φn and VB,p(ϕ), the VEVs of Casimir

invariant operators (Weyl invariants of the ϕa) and the VEVs of non-abelian monopoles

operators (Weyl invariants of the uv and ϕa) labelled by magnetic charges B ∈ Λcochar/W

(dominant cocharacters), respectively, and a dressing polynomial p(ϕ), which is an

invariant of WB, the stabiliser of B in W. These generators are subject to complex

algebraic relations which follow from the abelian relations (2.3). In all the cases that

we know of, most of the VB are generated and the final description of C is in terms of

finitely many generators and relations.7

The same construction generalises to the quantized Coulomb branch, where the

abelian relations become abelian operator relations.

While this description has passed many consistency tests, it was still observed, for

instance in [9], that some ingredients in the construction are missing. In particular, one

should allow certain rational functions of the ϕa (instead of only polynomial functions)

in the construction of the monopole generators VB. This is tied to ambiguities of the

extension of Cabelian/W to the loci where massless W-bosons arise.

A refined construction was put forward in [11], based on mathematical works, where

one includes a few simple rational functions of the ϕa in the form of BGG-Demazure

operators before performing the Weyl quotient. Precisely, the space constructed there

is a subspace of Cε[C] and it is believed to be exactly Cε[C], at least in quiver theories

(it was shown in linear quiver theories). We refer to the paper for details and references

on this approach.

6These relations can be seen as quantum corrections of the classical relations uv1uv2 = uv1+v2 for

the classical abelian monopole operators uv = e
vaχa .

7It is expected that Coulomb branches of 3d N = 4 theories are affine varieties and therefore that

their coordinate rings are finitely generated, but to the best of our knowledge this has not been proven.
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It would be interesting to justify this construction by direct computations. One

drawback of this approach is that the physics of monopole bubbling is not manifest.

Localization-bootstrap approach

Another construction was developed in the papers [8, 12].8 The sphere partition

function with BPS monopole singularities inserted at the two poles of S3 was computed

using supersymmetric localization. An essential ingredient in the construction is a

certain overlap ⟨σ,B∣Ψb⟩, computing the hemisphere partition function with a BPS

monopole defect of magnetic charge b inserted at the pole of the hemisphere and BPS

boundary conditions at the S2 boundary, imposing (in particular) a magnetic flux

B and a constant vector multiplet scalar σ. The sphere partition function is then

obtained by a gluing formula, which includes a sum over Weyl transformations and a

sum over monopole bubbling sectors, which we will explain in a moment. The results

are completely known for abelian gauge theories, which have no bubbling sectors, but

it is still unknown how to compute directly the bubbling contributions in non-abelian

theories. The authors of [12] bypass this issue by bootstrapping the form of these terms.

First, they consider the algebra of (dressed) monopole and Casimir operators acting

on the hemisphere partition function, introducing the corresponding operator insertion

at the pole. They then observe that the bubbling terms can be absorbed as abelian

bubbling operators into the monopole operators. The exact form of these bubbling

operators is fixed, up to ambiguities, by requiring operator products, acting on the

hemisphere partition function, to be polynomials of a chosen basis of operators. The

ambiguities can be understood as operator mixings and fixing such ambiguities is syn-

onymous with choosing a basis of (dressed) monopole operators.

In this construction the algebra of monopole operators is associative but not com-

mutative, with the inverse radius of the three-sphere ε = r−1 playing the role of the

non-commutative parameter. The algebra is thus a quantization of C and the unde-

formed Coulomb branch chiral ring is obtained by taking the limit ε → 0. In this

limit the operator product becomes commutative and taking the VEV of the operator

relations yields the description of C as an algebraic variety. The mixing ambiguities

discussed above disappear in this limit, since they arise from operators multiplied by

positive powers of r−1.

This construction is very general. It can be applied to any Lagrangian gauge theory

and it reproduces the abelian relations (2.3). We refer to [12] for details and examples.

The main drawback of this approach is that the computations involved are case-by-

case and become rapidly involved as the rank of the gauge group increases. Moreover,

monopole operators in this approach are considered up to operator mixings, whereas

one might want to select a distinguished basis of monopole operators, which are those

8See [35] for earlier work on localization results and the Higgs branch.
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defined by BPS monopole singuarities in the path integral. Such a preferred basis

cannot be found from this method. It would also be desirable to find a direct method

for computing monopole bubbling factors, compared to a bootstrap approach. Finally,

one might prefer to compute correlators of monopoles on R × R2
ε rather than on S3,

studying directly Cε[C].

A first principle approach

In this paper we propose a new approach to the quantized Coulomb branch Cε[C],

using results from localization computations on R×R2
ε with monopole insertions along

the R line, which we parametrize by a Euclidean time coordinate x0. The R2
ε directions

stand for the Omega background [36] with parameter ε. Mathematically, this amounts

to working equivariantly with respect to rotations in the R2
ε plane, with equivariant

parameter ε. The insertion of a BPS monopole of charge B ∈ Λcochar/W is defined by

requiring in the path integral the singular BPS profile

F = −
B

2
⋆ d(

1

r
) , σ =

B

2r
, (2.5)

in the vicinity of the insertion point (with r the radial distance). Due to the Weyl

average, Weyl equivalent profiles (B → w(B), for w ∈ W) are also allowed and summed

over. Strictly speaking (2.5) is valid at ε = 0. When ε ≠ 0 the Omega background

localizes the flux to the line at the origin of the Omega plane, with a discontinuity at

the insertion point.

The background with Coulomb operators Oi inserted at the origin of R2
ε and

at arbitrary but different positions x0
i preserves two supercharges.9 The correlators

⟨O1(x0
1)O2(x0

2)⋯⟩ computed in this way are topological, in the sense that they do not

depend on the actual positions x0
i , except (possibly) for their ordering along R.

For a single insertion, the VEV is simply independent of the position and we define

O ∶= ⟨O(x0)⟩ . (2.6)

The VEVs O of Coulomb operators define elements of the ring Cε[C].

For two local operator insertions, the correlators define an associative but non-

commutative product, with

O1 ⋆O2 ∶= ⟨O1(x
0 + δ)O2(x

0 − δ)⟩ , δ > 0 . (2.7)

The right hand side is independent of δ, as long as δ > 0, and the limit δ → 0+ yields the

VEV of a local chiral operator. It therefore belongs to Cε[C]. Thus the star product is

9The 3d N = 4 theory preserves eight Poincaré supercharges. The insertion of half-BPS Coulomb

operators breaks supersymmetry by a half, and the Omega background on R2
ε by another half. The

resulting two supercharges generate a 0d N = 2 supersymmetry algebra.
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an associative non-commutative product on Cε[C]. The Omega background parameter

ε is interpreted as the deformation parameter, as anticipated in the notation. In the

limit ε → 0, we obtain Coulomb operator insertions on flat R3, which are independent

of the positions in R3. There is no ordering anymore and the star product becomes the

usual commutative product between holomorphic functions on C.

From the localization results, one can determine the quantized Coulomb branch

(namely Cε[C]), since localization provides exact computations for correlators, such

as O1 ⋆ O2, and allows us to determine the (deformed) Coulomb branch relations. In

addition, one may want to characterise the commutators [O1,O2]⋆, for any O1,O2.

Our first objective will be to compute correlators of monopole operators in SQCD

theories, using localization and some insights from brane constructions. As we will

see, the results from localization on R×R2
ε will be closely related to the abelianization

approach that appeared in previous works.

2.2 Localization formulae

The localization of Coulomb operators in the R×R2
ε background has not been performed

to our knowledge. This is a long computation that would deserve a paper in itself.

Fortunately a closely related computation has been performed. In [22] the VEV of

’t Hooft lines of 4d N = 2 theories on R × R2
ε × S

1,10 wrapping S1 and inserted at

points on R, were computed using supersymmetric localization. Upon reduction along

S1, ’t Hooft loops become local ’t Hooft monopole operator insertions. Thus, the 3d

localization results can be inferred from the 4d results by taking an appropriate limit,

which truncates the Kaluza-Klein towers on S1 to their zero modes.

The 4d localization result

The result of the computation in [22] can be recast as follows (in the spirit of [12]).

The VEV of a ’t Hooft loop LB of magnetic charge B ∈ Λcochar/W takes the form11

⟨LB⟩ =
1

∣WB ∣
∑

w∈W

eB
w.bZ1−loop(ε, a,m;Bw)

+ ∑
∣v∣<∣B∣

1

∣Wv ∣
∑

w∈W

ev
w.bZ1−loop(ε, a,m; vw)Zbub(ε, a,m;Bw, vw) ,

(2.8)

where the first sum is over the Weyl group and carries the contributions of the non-

bubbling abelian magnetic sectors Bw. The second sum is over monopole bubbling

sectors labelled by v, which are the dominant weights (other than B) appearing in

the representation of highest weight B of the dual gauge group G∨ (this is symbolised

10What we denote schematically as R2
ε × S

1 is more precisely an S1 fibration over R2, where the

periodicity conditions on the circle are twisted by a rotation in the plane.
11For a vector x = (x1, . . . , xn), we define xw = (xw(1), . . . , xw(n)) for w ∈ W, n = rk(G).
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by the notation ∣v∣ < ∣B∣). This implies B − v ∈ Λcr, the coroot lattice of G. The

electric chemical potentials aa, with a = 1, . . . , rk(G), are the VEVs of the real parts

of the eigenvalues of the adjoint complex scalars in the 4d N = 2 vector multiplet,

complexified by the holonomies of their photon superpartners. Similarly, the magnetic

chemical potentials ba are the VEVs of the imaginary parts of the eigenvalues of the

adjoint complex scalars, complexified by the holonomies of the dual photons (which

are gauge bosons in four dimensions). The masses mk are analogues of aa for flavour

symmetries. Finally, WB is the stabiliser of B in W and ∣WB ∣ is its order.

The one-loop contribution is given by a product of contributions from the vector

multiplet and hypermultiplets,

Zvec
1−loop(v) = ∏

α∈G
α>0

∣α.v∣−1

∏
j=0

sh[ ± (α.a) + (∣α.v∣ − 2j)ε]
−1/2

Zhyp
1−loop(v) = ∏

w∈R

∣w.v∣−1

∏
j=0

sh[w.a −m + (∣w.v∣ − 1 − 2j)ε]
1/2

,

(2.9)

with sh(x) ∶= 2 sinh(x2) and f(x ± y) ∶= f(x + y)f(x − y).

The factor Zbub(B,v), on the other hand, arises physically from the modes living

on the defect when a screening smooth monopole collapses onto the ’t Hooft loop. It

is computed as the Witten index of a specific N = (0,2) deformation of an ADHM

N = (0,4) supersymmetric quantum mechanics (SQM). The N = (0,2) deformation,

which we may call N = (0,2)∗ borrowing a common terminology in related contexts,

is constructed by selecting an N = (0,2) subalgebra of the N = (0,4) supersymmetry

algebra and turning on a constant background proportional to ε for the Cartan gen-

erator of the R-symmetry of the N = (0,4) supersymmetry algebra, which commutes

with the selected N = (0,2) subalgebra. The computation of this Witten index can be

rather subtle [27, 28].

From 4d to 3d

In the above formulae, the S1 radius R has been set to one. We can re-introduce

it by rescaling the dimensionful parameters by R to build the dimensionless quantities:

aa → Raa,mk → Rmk, ε → Rε. The 3d limit is then obtained by taking R → 0, keeping

aa, mk, ε and ba fixed, and renormalising the leading order term by an appropriate

power of R that is fixed by dimensional analysis to obtain a finite result. After a

change of complex structure,12 the complex scalars aa and ba can be identified with the

3d complex scalars ϕa and χa =
1
g2σa + iγa, respectively.

12The purely three-dimensional N = 4 theory (with no Kaluza-Klein states) has three equivalent

complex structures in a triplet of the SU(2)C R-symmetry that acts on its hyperkähler Coulomb

branch, so this change of complex structure is inconsequential.
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In this limit the form of the result as a sum over monopole bubbling configurations

is preserved and the one-loop determinants simplify from trigonometric to rational

functions, which can alternatively be obtained by truncating the Kaluza-Klein towers

on the circle to their zero-modes. We obtain the following 3d localization formulae.

The VEV of a bare monopole operator VB of magnetic charge Λcochar/W is given by

VB =
1

∣WB ∣
∑

w∈W

eB
w.χZ1−loop(ε,ϕ,m;Bw)

+ ∑
∣v∣<∣B∣

1

∣Wv ∣
∑

w∈W

ev
w.χZ1−loop(ε,ϕ,m; vw)Zbub(ε,ϕ,m;Bw, vw) ,

(2.10)

and the one-loop contributions are

Zvec
1−loop(ϕ; v) = ∏

α∈G
α>0

∣α.v∣−1

∏
j=0

[ ± (α.ϕ) + (∣α.v∣ − 2j)ε]
−1/2

Zhyp
1−loop(ϕ; v) = ∏

w∈R

∣w.v∣−1

∏
j=0

[w.ϕ −m + (∣w.v∣ − 1 − 2j)ε]
1/2

.

(2.11)

The factors Zbub(ϕ;B,v) now refer to the 3d bubbling factors, each of which is com-

puted by the partition function of an N = 2 deformation of an N = (0,4) SMM (Super-

Matrix-Model) ADHM-like theory. This theory can be read off from brane constructions

for theories with classical gauge groups. We will discuss it further in section 3.

We notice that the one-loop factors are square roots and as such have sign ambigu-

ities. It is not clear to us how the localization computation should be modified to lift

these sign ambiguities. We will make a proposal for how to resolve this issue shortly.

Dressed monopoles

As already mentioned, a monopole insertion with magnetic charge B can be dressed

with the extra insertion of a polynomial p(ϕ) that is invariant under WB, the stabiliser

of B in the Weyl group. This means that in the path integral, the sector with monopole

singularity Bw, for w ∈ W/WB, carries the insertion of p(ϕw−1
) at the same point in

space. This defines the dressed monopole VB,p(ϕ). For a given B, there are always only

a finite number of independent dressed monopoles VB,p(ϕ) [1].

The localization argument in the presence of the polynomial insertion p(ϕ) goes

through without modification and the result is simply the same as before, with only two

differences: the non-bubbling terms carry the factors p(ϕ) and the SMM computing

the monopole bubbling terms may be modified. This last point is visible from the brane

picture that we will develop in the next section.13

13A more uniform way to look at the localization expression is to understand the dressing terms

p(ϕ) also as SMM factors, as will stem from the brane discussion.
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The localization result thus takes the form

VB,p(ϕ) =
1

∣WB ∣
∑

w∈W

p(ϕw−1

)eB
w.χZ1−loop(ε,ϕ,m;Bw)

+ ∑
∣v∣<∣B∣

1

∣Wv ∣
∑

w∈W

ev
w.χZ1−loop(ε,ϕ,m; vw)Zbub(ε,ϕ,m;Bw, vw, pw−1

) .
(2.12)

Abelian variables

In the localization result (2.10), one immediately identifies the abelian monopole

VEVs discussed in [5],

uv = e
v.χZ1−loop(ϕ; v) = ev.χ

⎛
⎜
⎜
⎜
⎜
⎝

∏
w∈R

∣w.v∣−1

∏
j=0

[w.ϕ −m + (∣w.v∣ − 1 − 2j)ε]

∏
α∈G

∣α.v∣−1

∏
j=0

[α.ϕ + (∣α.v∣ − 2j)ε]

⎞
⎟
⎟
⎟
⎟
⎠

1/2

. (2.13)

In terms of the abelian monopole variables uv, the localization formula for bare monopole

VEVs takes the simpler form

VB =
1

∣WB ∣
∑

w∈W

uBw + ∑
∣v∣<∣B∣

1

∣Wv ∣
∑

w∈W

uvw Zbub(ε,ϕ,m;Bw, vw) , (2.14)

reminiscent of the formulae in [12]. The formula for dressed monopoles simplifies sim-

ilarly.

Now we notice that the sign ambiguities, due to the square roots in the formulae,

have been absorbed into the definition of the abelian variables uv, which we regard as

single valued (lifting sign ambiguities).

Comment on the action of PT

An important consistency check of our results will be related to the action of

the spacetime symmetry PT on monopole operators, where we define PT to act as a

reflection on Euclidean time x0 → −x0 and one coordinate x1 → −x1, which is nothing

but a rotation by π in the 01 plane. The reflection leaves invariant a monopole operator

sitting at the origin (the reflection P or T alone would instead reverse the magnetic

flux). On R × R2
ε the P symmetry can be implemented as the reversal of the Omega

background parameter ε → −ε, while the T action simply reverses the locations of

insertion points on the R axis.

For a single monopole operator sitting at the origin, this symmetry implies that

the exact VEVs obey the property

VB(ε) = VB(−ε) . (2.15)
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For the insertion of two monopoles, that are brought to the origin, the T action reverses

their ordering, therefore we have the relation

VB1 ⋆ VB2(ε) = VB2 ⋆ VB1(−ε) . (2.16)

Other identities in the same vein hold for higher point functions. Similar observations

were made in [20].

Examining the various terms in the localization formula (2.10), we observe that

the one-loop contributions are invariant under ε→ −ε. The relation (2.15) then implies

that each bubbling term has the symmetry

Zbub(ε;B,v) = Zbub(−ε;B,v) . (2.17)

In addition, we observe that the abelian monopole variables uv are also invariant under

ε→ −ε, extending the property (2.15) to abelian operators VEVs.

Formula for star products/correlators

There is a variation of the localization formula (2.14) that computes correlators

of “minimal” monopoles, compared to the VEV of a single monopole. Instead of

considering the VEV of a single monopole, one can consider a correlation function14

⟨∏i(Vhi)
ni⟩ = ⟨(Vh1)

n1(Vh2)
n2⋯⟩, with ni ∈ Z>0, where hi are generators in the various

chambers of the magnetic lattice Λcochar. We will refer to the hi as “minimal” mag-

netic charges. One important property of minimal monopoles is that they do not have

bubbling sectors, so that we already know their exact VEVs.

The correlator ⟨∏i(Vhi)
ni⟩ defines a local chiral operator (since the insertion points

can be collapsed at a single point) and it can be expanded in a linear combination

of monopole VEVs. This linear combination must involve a monopole operator of

magnetic charge B = ∑i nihi, which can be a dressed monopole, plus monopoles of

lower magnetic charges that arise from the bubbling sectors. Such an expansion is

formally similar to (2.14). It takes the generic form

⟨∏
i

(Vhi)
ni⟩∣

τ
= ∑

∣v∣≤∣B∣

1

∣Wv ∣
∑

w∈W

uvw Z
(τ)
SMM(ε,ϕ,m;Bw, vw) , τ ∈ SN , (2.18)

where the sum over v comprises all the weights that appear in the representation

of highest weight B, namely the bubbling and non-bubbling sectors. Each abelian

monopole sector is weighted with a Super-Matrix-Model factor Z
(τ)
SMM, which can be a

factor 1, or a dressing term in a non-bubbling sector, or a non-trivial SMM factor in a

14In such expressions where we do not write the insertion positions x0i explicitly, it is assumed that

the monopoles are already time ordered.
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bubbling sector. Again, the SMM computing the various factors can be found by using

the brane realisation of the monopole correlator, when available.

This formula involves a permutation τ ∈ SN , where we define N = ∑i ni, which

describes the ordering of the minimal monopoles Vhi in the correlator. Correspondingly,

the right hand side should depend on τ . In the next section we will argue, from the brane

realisation of monopole correlators, that the dependence of the ordering τ is directly

connected to the chamber in which the FI parameter vector of the SMM belongs. We

will provide the explicit relation between the ordering τ and the FI signs in examples.

As we will see, the SMM are readily evaluated when the FI parameters are away

from certains walls (hyperplanes in FI space), allowing us to compute correlators of

minimal monopoles with (2.18) efficiently. We will thus relate the non-commutativity

in monopole correlators to a wall-crossing phenomenon in the matrix models.

On the other hand, the evaluation of matrix models on the FI space walls, which

is necessary to evaluate VEVs of higher charge monopoles with (2.14), is a more chal-

lenging task and we will postpone it to a future work.

2.3 Star product as a Moyal product and abelian relations

Another nice input from the 4d analysis in [22] is the explicit definition of the non-

commutative star product as a Moyal product,

(f ⋆ g)(ϕ,χ) ∶= eε∑a(∂χ′a∂ϕa−∂ϕ′a∂χa)f(ϕ,χ)g(ϕ′, χ′)∣
ϕ′=ϕ
χ′=χ

. (2.19)

The star product between two VEVs can be computed via the following formula. With

the VEV of a monopole operator V given by the expansion

V = ∑
v

ev.χZV (ϕ; v) ∶= ∑
v

ZV,tot(ϕ,χ; v) , (2.20)

we have

⟨V1V2⟩ ∶= V1 ⋆ V2 = ∑
v1

∑
v2

ZV1,tot(ϕ + εv2, χ; v1)ZV2,tot(ϕ − εv1, χ; v2)

= ∑
v1

∑
v2

e(v1+v2).χZV1(ϕ + εv2; v1)ZV2(ϕ − εv1; v2) .
(2.21)

This formula will prove very useful in our analysis.

Computing the star product of two abelian monopole variables we find the general

abelian relations

uv1 ⋆ uv2 = uv1+v2

∏
w∈R

h−(w,v1,v2)−1

2

∏
jw=−

h−(w,v1,v2)−1

2

[w.ϕ −m − sgn(w.v12)h+(w, v1, v2)ε + 2jwε]

∏
α∈G

h−(α,v1,v2)−1

2

∏
jα=−

h−(α,v1,v2)−1

2

[α.ϕ − sgn(α.v12)h+(α, v1, v2)ε + (2jα + 1)ε]

, (2.22)
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with

h±(σ, v1, v2) ∶=
1

2
(∣σ.v1∣ + ∣σ.v2∣ ± ∣σ.(v1 + v2)∣) , (2.23)

and v12 = v1 − v2. More generally

(uv1f1(ϕ)) ⋆ (uv2f2(ϕ)) = (uv1 ⋆ uv2)f1(ϕ + v2ε)f2(ϕ − v1ε) , (2.24)

and in particular

uv ⋆ f(ϕ) = uv ⋅ f(ϕ − vε) , f(ϕ) ⋆ uv = uv ⋅ f(ϕ + vε) . (2.25)

These are the “quantized” abelian relations. They nicely reduce to the abelian relations

(2.3) conjectured in [5] in the commutative limit ε→ 0.

Since the star product is a product on Cε[C], it can be used to generate monopole

operators with higher magnetic charge from products of monopole operators with lower

magnetic charges, or dressed monopoles from products of bare monopoles and Casimir

operators. However, to identify the precise operators that appear in a product, one

first needs to know the explicit expression (2.14) for monopole operators in terms of

abelian variables.

2.4 Some applications in U(N) SQCD

To close this section we would like to put this machinery to use for the SQCD the-

ory with gauge group U(N) and Nf flavours of hypermultiplets in the fundamental

representation, which is the main focus in this paper.

The cocharacter lattice allows for non-abelian magnetic charges B ∈ ZN/SN . The

bare monopoles of smallest charge are V(1,0N−1) and V(0N−1,−1). The coroot lattice is

generated by the simple coroots α∨n = (0n−1,1,−1,0N−n−1) for n = 1, . . . ,N − 1, and the

above monopoles have no bubbling sector. Their VEVs are simply

V(±1,0N−1) =
N

∑
a=1

u±ea , (2.26)

where ea ∶= (0a−1,1,0N−a). Explicitly, the abelian monopole operators of minimal charge

are

u±ea = e
±χa

⎛
⎜
⎜
⎜
⎜
⎝

Nf

∏
k=1

(ϕa −mk)

∏
b≠a

(±ϕab + ε)

⎞
⎟
⎟
⎟
⎟
⎠

1/2

. (2.27)
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These obey the star product relations

uea ⋆ u−ea = (−1)N−1

Nf

∏
k=1

(ϕa −mk − ε)

∏
b≠a
ϕab(ϕab − 2ε)

, a = 1, . . . ,N ,

u−ea ⋆ uea = (−1)N−1

Nf

∏
k=1

(ϕa −mk + ε)

∏
b≠a
ϕab(ϕab + 2ε)

, a = 1, . . . ,N ,

uea ⋆ u−eb = u−eb ⋆ uea = uea−eb , a ≠ b ,

uea ⋆ ueb = −
1

ϕab(ϕab − 2ε)
uea+eb ,

u−ea ⋆ u−eb = −
1

ϕab(ϕab + 2ε)
u−ea−eb ,

(u±ea)
⋆n = u±nea , n > 0 ,

(2.28)

where we have explicitly

uea+eb = e
χa+χb

⎛
⎜
⎜
⎜
⎜
⎝

Nf

∏
k=1

(ϕa −mk)(ϕb −mk)

∏
c≠a,b

(±ϕac + ε)(±ϕbc + ε)

⎞
⎟
⎟
⎟
⎟
⎠

1/2

,

uea−eb = e
χab

⎛
⎜
⎜
⎜
⎜
⎝

Nf

∏
k=1

(ϕa −mk)(ϕb −mk)

(±ϕab)(±ϕab + 2ε) ∏
c≠a,b

(±ϕac + ε)(±ϕbc + ε)

⎞
⎟
⎟
⎟
⎟
⎠

1/2

,

unea = e
nχa

⎛
⎜
⎜
⎜
⎜
⎝

Nf

∏
k=1

∣n∣−1

∏
j=0

[ϕa −mk + (∣n∣ − 1 − 2j)ε]

∏
b≠a

∣n∣−1

∏
j=0

[±ϕab + (∣n∣ − 2j)ε]

⎞
⎟
⎟
⎟
⎟
⎠

1/2

, n ∈ Z .

(2.29)

From these relations we compute for instance

V(1,0N−1) ⋆ V(1,0N−1) =
N

∑
a=1

u2ea −∑
a≠b

1

ϕab(ϕab − 2ε)
uea+eb ,

V(1,0N−1) ⋆ V(0N−1,−1) = ∑
a≠b

uea−eb + (−1)N−1
N

∑
a=1

Nf

∏
k=1

(ϕa −mk − ε)

∏
b≠a
ϕab(ϕab − 2ε)

,

V(0N−1,−1) ⋆ V(1,0N−1) = ∑
a≠b

uea−eb + (−1)N−1
N

∑
a=1

Nf

∏
k=1

(ϕa −mk + ε)

∏
b≠a
ϕab(ϕab + 2ε)

,

(2.30)
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where the third product is obtained from the second by reversing the sign of ε, in

agreement with (2.16).

We would like to identify the right hand sides with combinations of monopole

operators V(2,0N−1), V(12,0N−2), V(1,0N−2,−1) and Casimir operators P (ϕ). To do this we

need to know the exact bubbling factors for these monopoles (except for V(12,0N−2),

which has no bubbling). To compute these bubbling factors we are going to propose

to use a type IIB brane realisation of monopole operators. Unfortunately, we will not

be able to extract explicit results for the bubbling factors of non-minimal monopoles.

What we will be able to do instead is to reproduce the above formulae, by computing

correlators of minimal monopole operators, including all bubbling factors.

3 Brane constructions and monopole bubbling

In this section we explain how to realise monopole operators in brane systems and how

to read off the SMM which encodes the monopole bubbling contributions. We focus

here on U(2) SQCD with Nf flavours and generalise to U(N) in section 4.

3.1 Brane realisation of monopoles and localization formula

The brane realisation of monopole operators in abelian 3d N = 4 gauge theories was

introduced and studied in [29] (see also [37] for the analogue in N = 3 Chern-Simons-

Matter theories). Here we extend the construction of [29] to non-abelian SQCD theories.

To realise the 3d theory we consider the usual Hanany-Witten brane setup with D3,

D5 and NS5’ branes oriented as the three first entries in Table 1. n D3 branes stretched

between two NS5’ branes realise a 3d U(n) gauge group. m D5 branes intersecting the

n D3 segments realise m fundamental hypermultiplets for this gauge group.

0 1 2 3 4 5 6 7 8 9

D3 X X X X

D5 X X X X X X

NS5’ X X X X X X

D1 X X

D3’ X X X X

NS5 X X X X X X

Table 1. Brane array for 3d N = 4 theories and half-BPS local operators.

The D1 string, D3’ and NS5 branes that appear in Table 1 realise the insertion of

Coulomb branch operators in the theory.
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An important property is that the triple (NS5, D3, D1) is a Hanany-Witten triple,

which means that there is a D1 creation/annihilation effect as an NS5 and a D3 cross

each other. It also means that there is an s-rule: at most one D1 string can be stretched

between an NS5 and a D3 [21].

We can define a linking number ` for a D3 brane as follows:

` =
1

2
[n(NS5L) − n(NS5R)] + n(D1R) − n(D1L) , (3.1)

where n(NS5L), or n(NS5R), is the number of NS5 on the left, or on the right, of the

D3 brane along the x7 direction. Similarly, n(D1L), or n(D1R), is the number of D1

strings ending on the D3 brane from the left, or from the right, along x7. For the U(2)

theory we have only two linking numbers (`1, `2) for the two D3 branes.

Similarly we can define a linking number h for an NS5 brane,

h =
1

2
[n̂(D3R) − n̂(D3L)] + n̂(D1L) − n̂(D1R) , (3.2)

with similar definitions for the n̂ numbers. These definitions are such that ∑b hb = ∑a `a.

We denote the two partitions of linking numbers by ρ = p[(hb)] and σ = p[(`a)],

with p representing the operation of ordering in non-increasing fashion. In principle, hb
and `a can be half-integers, but we will only consider situations where they are integers.

In this section we will only consider situations where the hb are already ordered, so that

ρ = (hb). On the other hand, the `a can be unordered and we define v = (`a).

In a given brane configuration, the D3 branes are taken separated, indicating that

we consider a Coulomb branch configuration where the gauge group is broken to a

maximal torus. With this point of view, we associate a given brane setup to the

realisation of an abelian monopole operator. In the above notation, the brane

configuration realises the insertion of an abelian monopole of charge v = (`a).

In the following we will call NS5+, or NS5−, an NS5 brane placed to the right, or

to the left, of all the D3 branes and D5 branes in the x7 direction. An “NS5 pair”

will refer to a pair (NS5+, NS5−) of NS5 branes. We also label the D3 branes as D3a,

a = 1, . . . ,N .

To realise a configuration with partitions (ρ, σ), we add NS5 pairs to the brane

setup and we stretch D1 strings between the D3s and the NS5±. For `a > 0, we let

`a D1s end on the right of the a-th D3, for `a < 0, we let −`a D1s end on the left

of the a-th D3. The other ends of those D1 strings terminate on the NS5± branes in

agreement with their linking numbers hb. We add as many NS5 pairs as needed for

the construction and we order the NS5± such that linking numbers hb decrease towards

x7 → +∞.
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Brane configuration - abelian VEV dictionary

A given brane configuration is described by two vectors (ρ, σ) – up to ordering of

the `a – collecting the linking numbers of the NS5 branes and the D3 branes.15 In the

following we will use a more convenient characterization of a brane configuration in

terms of two pairs of partitions (ρ+, σ+) and (ρ−, σ−).

The partitions ρ+ = (h+i ) and ρ− = (h−i ) collect different linking numbers of the

NS5+ branes and NS5− branes respectively, defined by h+ = n̂(D3R)+ n̂(D1L)− n̂(D1R)

for an NS5+ and h− = n̂(D3L) + n̂(D1R) − n̂(D1L) for an NS5−.16 NS5± branes with

vanishing h± linking numbers are spectator branes (decoupled from the other branes)

and we do not include them in ρ±. We will always consider partitions ρ± ordered in

non-increasing fashion, namely h±i ≥ h
±
i+1.

The partitions σ± are defined more simply by the schematic split σ = (σ+, 0⃗,−σ−),

where σ+ = p(`+a) collects the positive D3 linking numbers `+a = `a > 0, as defined

above, and σ− = p(`−a) collects the negative D3 linking numbers `−a = −`a > 0, ordered

non-increasingly.

These definitions are such that the four partitions ρ±, σ± contain only strictly posi-

tive integers, ordered non-increasingly. The partitions are simply read from the pattern

of D1 strings stretched between the D3 and NS5+ branes for (ρ+, σ+), and of D1 strings

stretched between the D3 and NS5− branes for (ρ−, σ−).

We then relate a given brane configuration to a specific abelian monopole VEV.

Let’s assume for simplicity that σ = v, namely the linking numbers `a are ordered.

Then we have the relation

Brane setup (ρ, σ) ←→ uσZρ,σ(ϕ) , (3.3)

where uσ is the abelian monopole VEV of charge v = σ = (σ+, 0⃗,−σ−) and Zρ,σ is the

matrix model that describes the low-energy theory living on the D1 strings. When

σ ≠ v, the right hand side becomes uvZρ,σ(p(ϕ)), where p is the ordering operation

σ = p(v).

To read off the SMM living on the D1s, one has to move the D3s along x7, taking

into account Hanany-Witten string creation/annihilation effects, until no D1 ends on

any D3s anymore. This leads to configurations with D1 strings stretched between NS5

branes, supporting unitary gauge nodes of an N = (0,4) SMM (or rather N = 2⋆ when

ε ≠ 0). D3 branes are the source of hypermultiplets in the SMM, while D5 branes are

15Strictly speaking the positions of the D5 branes relative to the NS5 branes is also important,

because they form a Hanany-Witten triple (NS5, D5, D3’) with the D3’ brane. Here we always take

the D5s to lie between the NS5− and NS5+ branes.
16These linking numbers h± are related but not equal to the linking numbers h defined in (3.2). The

relation is ha = ±(h
±

a −N/2) for NS5± branes, respectively.
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Figure 1. Brane setup realising the insertion of the abelian monopole ue1 . We depicted the setup

in the x37 plane and in the x78 plane (in this case the NS5’ branes span the whole plane).

the source of Fermi mulitplets. If the configuration reached has no D1 strings left, we

simply have Zρ,σ = 1.

Let us give a simple example. In Figure 1-a we illustrate the brane setup for

the U(2) SQCD theory with Nf flavours, realised with D3, NS5’ and D5 branes. In

addition, there is an NS5 pair and a stretched D1 string realising an abelian monopole

operator. Since the string ends on the first D3, i. e. D31, the abelian magnetic charge

is v = (1,0) and the setup realises the abelian monopole ue1 . The partitions for this

setup are ρ = σ = (1,0), or ρ+ = σ+ = (1) and ρ− = σ− = () (empty vector). Figure

1-b represents the same setup but in the x78 plane, which is more convenient (we will

always draw configurations in this plane henceforth). There, the NS5’ branes are not

visible as they fill the whole plane.

There is no dressing term Zρ,σ here since, after moving the D3 brane to the right

(in Figure 1-b) the D1 string is annihilated, so Zρ,σ = 1.

Non-abelian VEV

The evaluation of the VEV of a monopole operator in the non-abelian theory is

then obtained by summing over the contributions of abelian monopole sectors, as in

the localization formula (2.14).

To obtain the VEV of a non-abelian monopole VB, one has to sum over all the

brane setups with fixed ρ± = ρ±B. This means that we sum over patterns of the D1

strings attached to the NS5± in the specific arrangement given by the partition ρB, and

ending on the D3 branes in any possible way, compatible with the s-rule. In the above

notation, we sum over all possible v. The partitions ρ±B are defined as ρ±B = B̂±, where
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B̂± are the transpose of B± seen as Young tableaux, and B± are the partitions obtained

by the split B = (B+, 0⃗,−B−), which is shorthand for Ba = B+
a −B

−
N+1−a.

This definition of ρB is such that the abelian configurations contributing with

trivial SMM (ZρB ,σ = 1), i.e. the non-bubbling contributions, are those with v = B and

permutations, as expected. We will observe it in examples.

The (non-abelian) monopoles of smallest magnetic charge in the U(2) SQCD theory

are V(1,0) and V(0,−1).

For V(1,0) we have ρ+ = (1) and ρ− = () (empty). Thus, there is one NS5 pair with a

D1 string emanating from the NS5+. This D1 string can end on either of the two D3s,

leading to two possible abelian configurations, with v = (1,0) = e1 or v = (0,1) = e2.

Both configurations correspond to σ+ = (1) and σ− = () (because the two v’s are identical

after reordering). These two configurations are depicted in Figure 2-a. According to

the previous discussion they are associated to the abelian VEVs ue1 and ue2 with trivial

dressing factor Z = 1. Consequently, V(1,0) is then given by the sum

V(1,0) = ue1 + ue2 , (3.4)

reproducing the known formula.

Similarly, for V(0,−1) we have ρ− = (1) and ρ+ = (). There is a single NS5− brane

with one D1 attached. This D1 can end on either of the D3s (see Figure 2-b), leading

to two abelian configurations, for u−e1 and u−e2 . We obtain

V(0,−1) = u−e1 + u−e2 . (3.5)

Let us now consider the monopole V(1,1). We have ρ+ = (2), ρ− = (), with two D1

strings ending on the NS5+ of an NS5 pair. Because of the s-rule the two D1s must end

on different D3s, leading to a single configuration with abelian charge v = (1,1) = e1+e2.

This is shown in Figure 3-a. If we move the D3s to the right, both D1s disappear, leaving

a configuration without D1s, so that the dressing is again trivial Z = 1. We obtain

V(1,1) = ue1+e2 . (3.6)

A more elaborate example is the computation of V(2,0). We have ρ+ = (1,1), ρ− = ().

There are two NS5+, each with a D1 ending on it. The two D1s can end on the two D3s

in three ways, as shown in Figure 3-b. Both D1s can end on D31, or on D32, leading to

the undressed abelian VEVs u2e1 and u2e2 , respectively. The third possibility is to have

one D1 ending on each D3, realising ue1+e2 . In this third case we observe (see Figure

3-b) that after moving the D3s to the right, there is a D1 string remaining, stretched

between the two NS5+. This configuration is associated to the N = (0,4) SMM with a
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Figure 2. Brane setups for the two abelian contributions to a) V(1,0) = ue1 + ue2 and b) V(0,−1) =

u−e1 + u−e2 , depicted in the x78 plane.
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Figure 3. Setup realising abelian contributions: a) A single contribution for V(1,1) = ue1+e2 ; b)

Three contributions for V(20) = u2e1 +u2e2 +ue1+e2Z1. The bubbling factor Z1 is computed as the SMM

described by the quiver in Figure (iii).

U(1) gauge node and two hypermulitplets (from the D3-D1 modes) with masses ϕ1 and

ϕ2 (the distances between D1 and D3s along x8+i9). Therefore, there is a non-trivial
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Figure 4. The three configurations contributing to V(1,−1). a) ue1−e2 , b) u−e1+e2 , c) Z2.

dressing by a factor ZSMM ∶= Z1 equal to the matrix model of this SMM. We obtain

V(2,0) = u2e1 + u2e2 + ue1+e2Z1 . (3.7)

Finally, let us look at V(1,−1), which has ρ+ = ρ− = (1). It is realised with a single NS5

pair, with one D1 string attached to the NS5+ and another one attached to the NS5−.

The D1s can either end on different D3s, leading to abelian VEVs ue1−e2 or u−e1+e2 , or

alternatively they can reconnect, leaving the D3s unconnected. In that case we have a

single configuration with a D1 string stretched all the way from the NS5− to the NS5+.

There is no monopole charge, but only the dressing factor ZSMM ∶= Z2 given by the

N = (0,4) SMM living on the D1s. This is a U(1) theory with two hypermultiplets,

with mass ϕa=1,2 from the D1-D3 modes and Nf Fermi multiplets with mass mk=1,⋯,Nf

from the D1-D5 modes. This is illustrated in Figure 4. We obtain

V(1,−1) = ue1−e2 + u−e1+e2 +Z2 . (3.8)

The hypermultiplet masses ϕa are identified with the Coulomb parameters of the 3d

theory and the Fermi masses mk are identified with the 3d hypermultiplet masses. This

is read from the brane picture. It indicates that there are couplings between 0d and 3d

fields at the location of the defect, which identify the 0d flavour symmetries with 3d

gauge or flavour symmetries. These results reproduce the structure of the localization

formula (2.14), supporting our proposal for the brane realisation of monopoles. In prin-

ciple, we have all the ingredients to write down the exact VEVs of monopole operators

in the U(2) SQCD theory.

To complete the computation one would like to evaluate the matrix models ZSMM

that appear in the bubbling terms. Unfortunately, a complication arises. As we will ex-

plain shortly, these SMM can be readily evaluated from the Jeffrey-Kirwan recipe when

the FI parameters are non-vanishing. The FI parameters of the SMM are read from

the brane configurations as the separations between the NS5 branes in the x0 direction.
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In the realisation of a given monopole VB, the NS5 branes sit at the same position in

x0 and the FI parameters of the SMM for the bubbling terms are all vanishing. This

is the precise situation when we do not know how to evaluate the matrix models from

standard recipes. We therefore cannot at the moment provide more explicit formulae,

for the VEVs VB, than those in terms of the SMM factor ZSMM.

On the other hand, we know how to evaluate the SMM at non-zero FI, which means

when NS5 branes are separated along x0. These situations correspond to the insertion

of multiple “minimal” monopoles, here V(±1,0) and V±(1,1), at different positions on x0.

Each NS5 pair is responsible for the insertion of one monopole. This means that we can

evaluate explicitly correlators of these monopoles. We will focus on these computations

in the rest of the paper.

We will now pause to explain how to compute SMM at non-zero FI and then we

will explicitly compute some monopole correlators in the U(2) SQCD theory.

3.2 Bubbling SMM

The Super-Matrix-Model (SMM) multiplets and Lagrangian in the ε → 0 limit can be

viewed as the dimensional reduction of 2d N = (0,4) multiplets and Lagrangian (see

[38, 39] for reviews) down to zero dimensions. The Omega deformation further breaks

(the dimensional reduction of) N = (0,4) supersymmetry down to (the dimensional

reduction of) N = (0,2) supersymmetry as will be discussed below.17

We will follow the conventions of [38] for 2d N = (0,2) and N = (0,4) Minkowski

supersymmetry. The R-symmetry automorphism of the 2d N = (0,4) SUSY algebra is

SU(2)1×SU(2)2, under which the right-moving supercharges Qαβ̇,+ transform as (2,2).

Here α = ± and β̇ = ±̇ are doublet indices for SU(2)1 and SU(2)2 respectively, whereas

the Lorentz spin + indicates that the supercharges are right-moving. We then select

an N = (0,2) subalgebra of the N = (0,4) superalgebra, with U(1)R R-symmetry

generated by R = J
(1)
3 + J

(2)
3 , the diagonal combination of the Cartan generators of

SU(2)1 and SU(2)2. The N = (0,2) supercharges are Q+ ≡ Q−−̇,+ and Q̄+ ≡ Q++̇,+,

which carry charges −1 and +1 under the U(1)R R-symmetry and are invariant under

a flavour symmetry generated by F = 2(J
(1)
3 − J

(2)
3 ). The Omega deformation with

parameter ε breaks SUSY to N = (0,2) by turning on a background for the U(1)F
flavour symmetry: N = (0,2) multiplets with flavour charge F acquire a mass Fε.

We then Wick rotate to Euclidean signature, after which we use a tilde to denote

what was Hermitian conjugation in Minkowski space, and finally we dimensionally

reduce to zero dimensions. The resulting 0d theories gain an extra U(1)r R-symmetry

arising from the 2d Lorentz group, which we normalise to have integer charges. Thus,

17The dimensional reduction of 2d N = (0,2) supersymmetry to 0d N = 2 was described in [40]. See

also [41] for N = 1 SMM details.
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the R-symmetry of a 0d N = (0,4) theory is SU(2)1×SU(2)2×U(1)r, under which the

supercharges Qαβ̇ transform as (2,2)1.18 In the brane construction we identify SU(2)1 ∼

SO(3)012, SU(2)2 ∼ SO(3)456 and U(1)r ∼ SO(2)89. The Omega background breaks 0d

N = (0,4) supersymmetry to an N = 2 subalgebra, which is the dimensional reduction

of 2d N = (0,2) supersymmetry, with a U(1)R × U(1)r R-symmetry under which the

supercharges Q = Q−−̇, Q̃ = Q++̇ have charges (R, r) = (−1,1) and (R, r) = (1,1). In

addition, there is a U(1)F flavour symmetry under which the supercharges are neutral.

Following common conventions, we denote the supersymmetry of the deformed model

in zero dimensions by N = 2⋆.

Next, we describe the content of the relevant N = 2 and N = (0,4) supermultiplets

in zero dimensions. The N = 2 multiplets are:

• Gauge multiplet (in Wess-Zumino (WZ) gauge): a complex scalar σ̃, fermions

ζ and ζ̃ and an auxiliary field D in Adj(G) representation. A second (SUSY

singlet) complex scalar σ is needed to write an action.19

• Chiral multiplet: a complex scalar φ and a complex fermion ψ.

• Fermi multiplet: a complex fermion λ and a complex auxiliary field G.

The N = (0,4) multiplets that arise from string excitations in our brane setups are:

• Gauge multiplet: an N = 2 gauge superfield U with charges (R,F ) = (0,0) and an

N = 2 Fermi superfield Θ with charges (R,F ) = (0,−2) in Adj(G) representation.

It arises from D1-D1 string modes, with the D1 stretched between NS5 branes in

both the x3 and x7 directions.

• Hypermultiplet: two N = 2 chiral superfield Φ, Φ̃ with charges (R,F ) = (1
2 ,1) in

conjugate representations of G. A fundamental hypermultiplet arises from D1-D3

string modes; a bifundamental hypermultiplet arises from D1-D1’ string modes

across an NS5 brane.

• Fermi multiplet: a single N = 2 Fermi superfield Λ with charges (R,F ) = (0,0)

[38]. This is sometimes called an N = (0,4) half-Fermi multiplet [42]. It arises

from D1-D5 string modes, or from strings stretched between two D1s across an

NS5 brane, or from D3-D3’ intersections.

18We denote by N = (0,4) the supersymmetry of the 0d theory, even though there is no notion

of chirality in 0d. This refers to the R-symmetry and multiplet content of the theory obtained by

dimensional reduction from 2d N = (0,4), which differs from, for instance, the reduction from 2d

N = (2,2).
19ζ and ζ̃ are not Hermitian conjugates. The u0 −u1 component of the 2d Minkowski gauge field uµ

gives rise to −σ̃ in 0d. The u0 + u1 component is a SUSY singlet in WZ gauge and becomes σ in 0d.
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The components of theN = (0,4) multiplets transform as follows under the SU(2)1×

SU(2)2 ×U(1)r R-symmetry:20

N = (0,4) Multiplet Components SU(2)1 × SU(2)2 ×U(1)r

Gauge (σ̃, λαβ̇,D(αα′);σ) (1,1)−2, (2,2)−1, (3,1)0; (1,1)2

Hyper (qα, ψβ̇) (2,1)0, (1,2)1

Fermi (λ,G) (1,1)−1, (1,1)0

In terms of the N = 2 subalgebra, its U(1)R × U(1)r R-symmetry and the U(1)F
flavour symmetry, the charges are:

N = 2 Multiplet Components U(1)R ×U(1)r ×U(1)F

Gauge U (σ̃, ζ, ζ̃,D;σ) (0,−2,0), (1,−1,0), (−1,−1,0), (0,0,0); (0,2,0)

Fermi Θ (ϑ, g) (0,−1,−2), (−1,0,−2)

Chiral Φ (φ,ψ) (1
2 ,0,1), (−1

2 ,1,1)

Chiral Φ̃ (φ̃, ψ̃) (1
2 ,0,1), (−1

2 ,1,1)

Fermi Λ (λ,G) (0,−1,0), (−1,0,0)

The action for the N = (0,4) SMM is easily obtained from [38] upon Wick rotation

and dimensional reduction, so we omit the details. An important deformation term in

our analysis is the FI term

SFI = ξTr (D) , (3.9)

with real parameter ξ and D is the auxiliary field in the N = 2 gauge multiplet. This

FI term breaks the SU(2)1 R-symmetry to U(1) ∼ SO(2)12.

Contributions to the matrix model

The resulting supersymmetric matrix model can be localized using the N = 2 ac-

tions that descend from 2d kinetic terms. This type of computation is by now standard

and even easier in our zero dimensional setup, so we will be schematic.21 Localizing

the gauge multiplet first leads to a BPS locus parameterised by commuting σ and σ̃

(all other fields vanish). They can therefore be diagonalized simultaneously by a com-

plexified gauge transformation, reducing to an integral over a Cartan subalgebra of the

gauge group, modulo the action of the Weyl group. Supersymmetry ensures that the

dependence on σ̃ drops out, so the partition function is computed by a holomorphic

contour integral in za, the eigenvalues of σ.

20See [43] for details on the 2d parent theories and [44] for a thorough discussion of Fermi multiplets.
21See [45–48] for related localization computations in higher dimensions.
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The determination of the contour of integration for the resulting integral is subtle

and can be worked out by carefully analysing the matrix model when integrating out

the auxiliary field D (see for instance [47] in the context of SQM). The outcome of such

a careful analysis is the Jeffrey-Kirwan (JK) prescription [30]. We refer to [46] for a

review of the JK prescription. In the following we identify the unphysical JK parameter

with the physical FI parameter ξ in (3.9), which ensures that the integration cycle has

no contributions at infinity. The multi-dimensional poles that are encircled by the

JK integration cycle are then in one-to-one correspondence with the Higgs vacua of

the theory. When the vector of FI parameters ξ is generic (that is, it lies is in the

interior of a chamber in FI space, where the Higgs vacua are isolated), the prescription

is simple: the choice of contour only depends on the chamber that ξ belongs to. When

ξ lies on a wall separating two different chambers, the contour integral is more subtle

to determine and we will not attempt such computations in this paper.

At generic non-zero FI parameters, the matrix model takes the form

ZSMM(ξ) =
1

∣W∣
∮

JK(ξ)
∏
a

dza
2πi

ZgaugeZhyperZF . (3.10)

The integral is over za taking values in a complexified Cartan subalgebra of the gauge

group G and ∣W∣ denotes the order of the Weyl group of G. The precise contour JK(ξ)

is given by the JK prescription with JK parameter identified with the FI parameter ξ.

The integrand factors come from integrating out the fields of the corresponding

N = (0,4) multiplets near the BPS locus. Alternatively, one may simply borrow the

results of SQM matrix models and take the 1d → 0d limit, replacing trigonometric

functions by rational functions (of the complex masses). For G = U(k), we find

Gauge ∶ Zgauge = (2ε)k∏
a≠b

zab(zab + 2ε) ,

Fundamental hyper ∶ Zhyper =
k

∏
a=1

1

±(za −m) + ε
,

Bifundamental hyper ∶ Zb−hyper =∏
a,b

1

±(za − ẑb) + ε
,

Fundamental Fermi ∶ ZF =
k

∏
a=1

(za −m) ,

(3.11)

where zab ∶= za−zb, (±x+y) ∶= (x+y)(−x+y) and m is the complex mass of the multiplet

(we will not need masses for bifundamental hypermultiplets).22

22There are sign ambiguities in the one-loop determinants, which are counterparts of sign ambiguities

in the definition of abelian monopoles. We picked a convention compatible with the star product

structure. The signs in the one-loop determinants above follow from the action in [38] using the

convention ∫ dη̃dη ηη̃ = 1 for integrals of Grassann variables η, η̃ if the Fermi multiplets Λ are actually

anti -fundamentals. We will nevertheless call them fundamentals in the following.
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Computing Z1 and Z2 at ξ ≠ 0

As an example we compute the SMM Z1 and Z2 that appeared as bubbling factors

in (3.7) and (3.8), but at non-zero FI parameters. As explained, these are not the actual

bubbling factors of V(2,0) and V(1,−1), which would be the SMM at zero FI parameter,

instead they are factors in monopole correlators, as we explain in the next subsection.

The SMM for Z1 is the U(1) theory with two fundamental hypermultiplets of

respective masses ϕ1 and ϕ2. The matrix model is thus

Z1(ξ) = ∮
JK(ξ)

dz

2πi

2ε

∏
a=1,2

[±(z − ϕa) + ε]
. (3.12)

The JK prescription for an FI parameter ξ > 0 is to pick the residues at z = ϕa − ε, for

a = 1,2, while at ξ < 0 we pick the residues at z = ϕa + ε. After simplification, this leads

to the same result in both cases:

Z1(ξ) =
2

±ϕ12 + 2ε
, ξ ≠ 0 . (3.13)

Although it may be tempting to conjecture that this is also the result at ξ = 0, we will

not do so since we have no evidence for it. In fact, we suspect that the result at ξ = 0

is different.23

For Z2 the SMM has Nf extra Fermi multiplets with masses mk,

Z2(ξ) = ∮
JK(ξ)

dz

2πi

2ε
Nf

∏
k=1

(z −mk)

∏
a=1,2

[±(z − ϕa) + ε]
. (3.14)

The JK prescription is the same as before. We now obtain two different results, de-

pending on the sign of ξ:

Z2(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−

Nf

∏
k=1

(ϕ1−mk−ε)

ϕ12(ϕ12−2ε) + (ϕ1 ↔ ϕ2) , ξ > 0

−

Nf

∏
k=1

(ϕ1−mk+ε)

ϕ12(ϕ12+2ε) + (ϕ1 ↔ ϕ2) , ξ < 0 .

(3.15)

We will see examples of non-abelian SMMs in later sections.

3.3 Monopole correlators and Wall-Crossing

We will now focus on correlators of the “minimal” monopoles V(1,0), V(0,−1), V(1,1), and

V(−1,−1) in the U(2) SQCD theory, which are the generators of the chambers in the

23We thank D. Dorigoni for instructive discussions on this point.
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magnetic weight lattice and are the non-bubbling monopoles in the theory. Their

VEVs, expressed in terms of abelian monopoles, are

V(1,0) = ue1 + ue2 , V(0,−1) = u−e1 + u−e2 ,

V(1,1) = ue1+e2 , V(−1,−1) = u−e1−e2 .
(3.16)

We can evaluate any correlator of these monopoles inserted along the x0 line, at the

origin of the Omega background R2
ε , using the tools developed in the previous sections.

The method starts by considering the brane realisation of the monopole correlator.

The correlator is then given by a sum of contributions associated to each allowed

pattern of D1 strings in the brane configuration. To each pattern of D1s corresponds a

given abelian monopole VEV uv and a dressing factor ZSMM equal to the matrix model

(or partition function) of the SMM theory living on the D1 strings. The resulting

contribution to the correlator is uvZSMM. We have already showed that the simple

expressions (3.16), which are one-point correlators, can be derived from this perspective.

This leads to the same structure for the VEVs of correlators as that of arbitrary

monopole operators (2.18) derived from localization, except that the dressing factors

ZSMM cannot easily be interpreted as “bubbling” contributions. Importantly, the matrix

models ZSMM that appear in correlators of minimal monopoles will have non-vanishing

FI parameters, which will allow us to evaluate them.

Let us start with two-point correlators. We will look at ⟨V 2
(1,0)

⟩, ⟨V 2
(1,1)

⟩, ⟨V(1,0)V(1,1)⟩,

⟨V(1,0)V(0,−1)⟩, ⟨V(1,1)V(0,−1)⟩, and ⟨V(1,1)V(−1,−1)⟩, with both orderings when relevant. We

do not write the insertion points x0
i of the operators, assuming they are time-ordered.

⟨V 2
(1,0)

⟩:

The brane realisation is the same as for V(2,0). There are two NS5 pairs, with one

D1 emanating from each NS5+ (and the NS5−s are spectators). The difference with

the V(2,0) configuration is that the NS5+ sit at different positions along x0. Here the

ordering along x0 should not matter since we are inserting the same monopole V(1,0)

twice. The two D1s can end on the D3s in three different patterns, leading to three

contributions to ⟨V 2
(1,0)

⟩. This is all the same as for V(2,0) (see Figure 3-b and (3.7)).

The only difference is the matrix model factor Z1(ξ) should be evaluated at ξ > 0 or

ξ < 0, as in (3.13) (instead of ξ = 0). Consequently, we obtain

⟨V 2
(1,0)⟩ = u2e1 + u2e2 + ue1+e2Z1(ξ > 0)

= u2e1 + u2e2 +
2

±ϕ12 + 2ε
ue1+e2 .

(3.17)

⟨V 2
(1,1)

⟩:

The brane configuration has two NS5 pairs (one for each V(1,1) insertion) with two

D1s emanating from each NS5+. Because of the s-rule, there is no choice in the pattern
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Figure 5. Brane patterns for two-point correlators in the U(2) SQCD theory and associated SMM.

a) ⟨V 2
(1,1)⟩, b) ⟨V(1,0)V(1,1)⟩, c) ⟨V(1,1)V(0,−1)⟩, d) ⟨V(1,1)V(−1,−1)⟩.

of D1s ending on D3s: each D3 has two D1s ending on it (see Figure 5-a). The abelian

monopole is u2e1+2e2 and the dressing factor is trivial (since all the D1s disappear after

moving the D3s to the right of the NS5+s). Consequently, we obtain

⟨V 2
(1,1)⟩ = u2e1+2e2 . (3.18)

⟨V(1,0)V(1,1)⟩:

The brane configuration has two NS5 pairs with two D1s attached to the left-most

NS5+ and one D1 attached to the right-most NS5+ (the ordering of NS5+ along x7 is

non-increasing in linking numbers, as discussed). There are two possible D1 patterns:

two D1s end on D31 and one on D32, or vice versa (see Figure 5-b). They correspond

to the abelian monopoles u2e1+e2 and ue1+2e2 . After moving the D3 branes, we see that

the dressing factors are trivial, since there are no D1s left. We thus obtain

⟨V(1,0)V(1,1)⟩ = u2e1+e2 + ue1+2e2 . (3.19)

Reversing the order of the insertions does not change the argument, so we conclude

that the two operators commute

⟨V(1,1)V(1,0)⟩ = ⟨V(1,0)V(1,1)⟩ . (3.20)

⟨V(1,0)V(0,−1)⟩:
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The brane configuration necessitates only a single NS5 pair,24 with one D1 ema-

nating from the NS5+ and one emanating from the NS5−. This is the same as for the

monopole V(1,−1), except that the NS5+ and NS5− sit at different positions along x0

(each NS5 inserts one monopole operator). As in the case of V(1,−1) and (3.8), there are

three patterns of D1s (see Figure 4) and the correlator is given by the right hand side

of (3.8). The difference is that the FI parameter ξ is positive:

⟨V(1,0)V(0,−1)⟩ = ue1−e2 + u−e1+e2 +Z2(ξ > 0)

= ue1−e2 + u−e1+e2 −

Nf

∏
k=1

(ϕ1 −mk − ε)

ϕ12(ϕ12 − 2ε)
+ (ϕ1 ↔ ϕ2) .

(3.21)

We used our evaluation of Z2(ξ > 0) in (3.15). Exchanging the ordering of the insertions

corresponds to having ξ < 0 in the matrix model and we get instead

⟨V(0,−1)V(1,0)⟩ = ue1−e2 + u−e1+e2 +Z2(ξ < 0)

= ue1−e2 + u−e1+e2 −

Nf

∏
k=1

(ϕ1 −mk + ε)

ϕ12(ϕ12 + 2ε)
+ (ϕ1 ↔ ϕ2) .

(3.22)

We observe that in this case the two operators do not manifestly commute. A closer

inspection, with the help of Mathematica, reveals that the two expressions are actually

equal for Nf = 0,1,2, but start to differ for Nf ≥ 3, with the difference being a poly-

nomial in ϕa and ε, symmetric in ϕa. Thus, it is a combination of Casimir operator

VEVs. This is a non-trivial result. For small Nf we have

⟨[V(1,0), V(0,−1)]⟩ = 0 , Nf ∈ {0,1,2} ,

= 2ε , Nf = 3 ,

= −2ε(
4

∑
k=1

mk − 2ϕ1 − 2ϕ2) , Nf = 4 ,

= ε[4ε2 + (2ϕ2
1 + 2ϕ2

2 −∑
k

m2
k) + (2ϕ1 + 2ϕ2 −∑

k

mk)
2
] , Nf = 5 .

(3.23)

This is our first encounter with a wall-crossing phenomenon in SMM: as the FI param-

eter crosses the ξ = 0 wall, the SMM changes with contributions coming from residues

at different poles. This is the 0d analogue of having a change in the spectrum of BPS

states in SQM. As a result, the two monopole operators do not commute.

24To be consistent we should always introduce one pair of NS5 brane per minimal monopole inserted,

with the two NS5 of a pair sitting at the same x0 position. Among each pair, one NS5 is a spectator.

Here this results in having a spectator NS5+ and a spectator NS5−, which we simply suppress. But

the remaining NS5+ and NS5− sit at different positions in x0.
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⟨V(1,1)V(0,−1)⟩:

The brane configuration has two NS5 pairs with two D1s emanating from the

left-most NS5+ and one D1 emanating from the right-most NS5−. There are two D1

patterns, each with two D1s reconnecting and one D1 ending on D31 or on D32 from

the right (see Figure 5-c). We get

⟨V(1,1)V(0,−1)⟩ = ue1Z3(ϕ2, ξ > 0) + ue2Z3(ϕ1, ξ > 0) , (3.24)

where Z3 is the SMM living on the D1 strings. It is a U(1) theory with a hypermultiplet

of mass x = ϕ2 or x = ϕ1, and Nf fundamental Fermi multiplets of masses mk. The

matrix model is

Z3(x, ξ) = ∮
JK(ξ)

dz

2πi

2ε∏
Nf
k=1(z −mk)

±(z − x) + ε
. (3.25)

With ξ > 0, we pick the residue at z = x − ε, leading to

Z3(x, ξ > 0) =
Nf

∏
k=1

(x −mk − ε) , (3.26)

and

⟨V(1,1)V(0,−1)⟩ = ue1

Nf

∏
k=1

(ϕ2 −mk − ε) + ue2

Nf

∏
k=1

(ϕ1 −mk − ε) . (3.27)

Permuting the order of the operator insertions changes the sign of the FI parameter in

the SMM (ξ < 0) and we must pick the poles at z = x + ε instead. This leads to the

same result with ε reversed, as expected:

⟨V(0,−1)V(1,1)⟩ = ue1

Nf

∏
k=1

(ϕ2 −mk + ε) + ue2

Nf

∏
k=1

(ϕ1 −mk + ε) . (3.28)

As soon as Nf ≥ 1, we observe a wall-crossing phenomenon, meaning a non-trivial

commutator ⟨[V(1,1), V(0,−1)]⟩ ≠ 0. This commutator is manifestly a polynomial in ϕa, ε,

symmetric in ϕa, i.e. it is a combination of (VEVs of) Casimir operators.

⟨V(1,1)V(−1,−1)⟩:

The brane configuration has two NS5 pairs with two D1s emanating from the left-

most NS5+ and two D1s emanating from the right-most NS5−. There is a single D1

pattern, with each D3 having a D1 ending on its left and another on its right (see

Figure 5-d). This corresponds to the setup where the D1s fully reconnect and the

abelian magnetic charge vanishes. We obtain

⟨V(1,1)V(−1,−1)⟩ = Z4(ξ > 0) , (3.29)
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where Z4 is the SMM living on the D1 strings. It is a U(2) theory with two hyper-

multiplets of masses ϕ1, ϕ2, and Nf fundamental Fermi multiplets of masses mk. The

matrix model is

Z4(x, ξ) = ∮
JK(ξ)

dz1dz2

(2πi)2

1

2

(2ε)2(±z12)(±z12 + 2ε)
Nf

∏
k=1
∏
i
(zi −mk)

∏
a
∏
i
(±(zi − ϕa) + ε)

. (3.30)

In the evaluation of Z3 at ξ > 0, the only poles contributing are at (z1, z2) = (ϕ1−ε,ϕ2−ε)

and the permutation z1 ↔ z2. After simplification, we obtain

Z4(x, ξ > 0) = ∏
a=1,2

Nf

∏
k=1

(ϕa −mk − ε) , (3.31)

and so

⟨V(1,1)V(−1,−1)⟩ = ∏
a=1,2

Nf

∏
k=1

(ϕa −mk − ε) . (3.32)

For the commuted correlator, we compute Z4(ξ < 0) and find the same result with

ε→ −ε as expected,

⟨V(−1,−1)V(1,1)⟩ = ∏
a=1,2

Nf

∏
k=1

(ϕa −mk + ε) . (3.33)

Again, the two monopoles do not commute and we observe wall-crossing, as soon as

Nf ≥ 1. The commutator is a well-defined Casimir operator.

Finally, to extend a little the range of examples that are meant to illustrate the

general procedure, we are going to compute two random instances of three-point cor-

relators: ⟨V 2
(1,0)

V(1,1)⟩ and ⟨V(1,0)V(1,1)V(0,−1)⟩.

⟨V 2
(1,0)

V(1,1)⟩:

The brane configuration has three NS5 pairs, one for each minimal monopole in-

serted, with two D1s emanating from the left-most NS5+ and one D1 emanating from

the two other NS5+. There are three D1 patterns, where the numbers of D1 strings

ending on (D31,D32) are given by (3,1), (2,2) and (1,3) respectively (see Figure 6-a).

We obtain
⟨V 2

(1,0)V(1,1)⟩ = u3e1+e2 + ue1+3e2 + u2e1+2e2Z1(ξ > 0)

= u3e1+e2 + ue1+3e2 + u2e1+2e2

2

±ϕ12 + 2ε
,

(3.34)

where Z1 is the SMM with gauge group U(1) theory and two hypermultiplets of mass

ϕ1, ϕ2, that we encountered before.

Changing the order of the insertions of the operators does not affect the final result.

This is because, as found earlier, V(1,0) and V(1,1) commute as operators.
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Figure 6. Brane patterns for three-point correlators in the U(2) SQCD theory and associated SMM.

a) ⟨V 2
(1,0)V(1,1)⟩, b) ⟨V(1,0)V(1,1)V(0,−1)⟩.

⟨V(1,0)V(1,1)V(0,−1)⟩:

The brane realisation has three NS5 pairs, with two D1s emanating from the left-

most NS5+ and one D1 emanating from the middle NS5+ and right-most NS5−. The

remaining NS5 branes are spectators. In the language of partitions this is ρ+ = (2,1),

ρ− = (1). There are three patterns of D1s, with a D1 reconnection always across the D3s

and the remaining D1s ending on the D3s, with either two D1s ending on a single D3

(σ+ = (2)), or one D1 ending on each D3 (σ+ = (1,1)) – see Figure 6-b. The correlator

is thus

⟨V(1,0)V(1,1)V(0,−1)⟩ = u2e1Z3(ϕ2, ξ > 0) + u2e2Z3(ϕ1, ξ > 0) + ue1+e2Z5(ξ1,2 > 0) , (3.35)

where Z3 is the SMM that already appeared in the two-point correlator ⟨V(1,1)V(0,−1)⟩

and Z5 is the SMM described by the right-most quiver in Figure 6-b. The quiver SMM

Z5 is computed by

Z5(ξ) = ∮
JK(ξ)

dz

2πi

dẑ

2πi

(2ε)2
Nf

∏
k=1

(z −mk)

[±(z − ẑ) + ε] ∏
a=1,2

[±(ẑ − ϕa) + ε]
. (3.36)

There are two FI parameters ξ ∶= (ξ1, ξ2), one for each gauge node. In the case when

they are both positive, we pick residues at z = ẑ − ε and ẑ = ϕa − ε, for a = 1,2. This

gives

Z5(ξ1,2 > 0) = −

Nf

∏
k=1

(ϕ1 −mk − 2ε)

ϕ12(ϕ12 − 2ε)
+ (ϕ1 ↔ ϕ2) . (3.37)
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𝝃𝟏
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Figure 7. This figure illustrates the six distinct chambers in FI space. Each chamber corresponds

to a specific ordering of the monopole operators V(1,0), V(1,1) and V(0,−1).

In fine, we have

⟨V(1,0)V(1,1)V(0,−1)⟩ = u2e1P (ϕ2 − ε) + u2e2P (ϕ1 − ε) − ue1+e2[
P (ϕ1 − 2ε)

ϕ12(ϕ12 − 2ε)
+ (ϕ1 ↔ ϕ2)] ,

(3.38)

with

P (x) ∶=
Nf

∏
k=1

(x −mk) . (3.39)

The other operator orderings in the correlator are given by the same computation

but with FI parameters in different chambers. There are six possible orderings of

these monopole operators, which we illustrate in Figure 7. Here ξ1 is both the single FI

parameter of Z3 and the left node FI parameter of Z5, while ξ2 is only the FI parameter

of the right node in Z5. Exchanging V(1,0) and V(1,1) corresponds to crossing the ξ1 = 0

axis. In addition, exchanging V(1,1) and V(0,−1) corresponds to crossing the ξ2 = 0 axis.

Finally, exchanging V(1,0) and V(0,−1) corresponds to crossing the ξ1 + ξ2 = 0 line.

This is all worked out from the brane setup. Each SMM node corresponds to D1

strings stretched between two NS5s. These two NS5s are associated to two monopole

operator insertions and their positions along x0 determine the FI parameter of the node
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ξ = x0
right − x

0
left. By looking at the ordering in the operator insertions in the correlator,

we can determine the chamber in FI space.

We leave the computation of the SMM is these various cases as an exercise to the

enthusiastic reader. In the end, there is wall-crossing when V(0,−1) is commuted with

either V(1,0) (wall at ξ1 + ξ2 = 0) or V(1,1) (wall at ξ2 = 0).

Star product

To conclude this section, we want to show that the above results are compatible

with the Moyal product structure on the quantized Coulomb branch, which we derived

from the dimensional reduction of 4d to 3d.

In section 2.3 we described the Moyal, or star, product structure that should exist

on the Coulomb branch. The explicit formula (2.21) allows us to compute the star

product between any two monopole operators, and, by iteration, the star product of

any number of operators. The star product is supposed to compute correlators (see

(2.7)), therefore we can check whether it agrees with the computations presented above,

based on the brane contructions.

Remember that in order to use the formula (2.21), one needs to first express the

abelian monopoles uv in terms of the abelian variables χa, ϕa, with (2.13).

In section 2.4 we already computed some star products in the U(N) SQCD theory,

which we can evaluate for N = 2:

V(1,0) ⋆ V(1,0) = u2e1 + u2e2 + ue1+e2
2

±ϕ12 + 2ε
= ⟨V 2

(1,0)⟩ ,

V(1,0) ⋆ V(0,−1) = ue1−e2 + u−e1+e2 − [
P (ϕ1 − ε)

ϕ12(ϕ12 − 2ε)
+ (ϕ1 ↔ ϕ2)] = ⟨V(1,0)V(0,−1)⟩ ,

V(0,−1) ⋆ V(1,0) = ue1−e2 + u−e1+e2 − [
P (ϕ1 + ε)

ϕ12(ϕ12 + 2ε)
+ (ϕ1 ↔ ϕ2)] = ⟨V(0,−1)V(1,0)⟩ .

(3.40)

We find agreement in all cases.

Let us show some other examples.

V(1,0) ⋆ V(1,1) = [eχ1 (
P (ϕ1)

±ϕ12 + ε
)

1/2

+ (...1 ↔ ...2)] ⋆ [eχ1+χ2(P (ϕ1)P (ϕ2))
1/2]

= e2χ1+χ2 (
P (ϕ1 + ε)P (ϕ1 − ε)P (ϕ2)

±ϕ12 + ε
)

1/2

+ (...1 ↔ ...2)

= u2e1+e2 + ue1+2e2 .

(3.41)
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V(1,0) ⋆ V(1,1) ⋆ V(0,−1) = [e2χ1+χ2 (
P (ϕ1 + ε)P (ϕ1 − ε)P (ϕ2)

±ϕ12 + ε
)

1/2

+ (...1 ↔ ...2)]

⋆ [e−χ1 (
P (ϕ1)

±ϕ12 + ε
)

1/2

+ (...1 ↔ ...2)]

= eχ1+χ2 (
P (ϕ1)P (ϕ1 − 2ε)2P (ϕ2)

ϕ2
12(ϕ12 − 2ε)2

)

1/2

+ e2χ1 (
P (ϕ1 + ε)P (ϕ1 − ε)P (ϕ2 − ε)2

(±ϕ12 + 2ε)(±ϕ12)
)

1/2

+ (...1 ↔ ...2)

= −ue1+e2[
P (ϕ1 − 2ε)

ϕ12(ϕ12 − 2ε)
+ (ϕ1 ↔ ϕ2)] + u2e1P (ϕ2 − ε) + u2e2P (ϕ1 − ε) .

(3.42)

This is in perfect agreement once again. It is easy to check that the other correlators

computed through the star product formula all agree with the computations based on

branes. This is a strong consistency check of both our brane method and the star

product formula.

Now that we have a clear procedure for computing monopole correlators in SQCD

theories, we derive in the next section general formulae for arbitrary correlators of

minimal monopoles in the U(N) SQCD theory, from brane constructions and SMM

computations.

4 U(N) SQCD theories

In this section we use the brane construction from section 3 to write down the topologi-

cal correlator of bare monopole operators for U(N) SQCD in terms of abelian monopole

operators and the bubbling terms associated to gauged SMMs. We also discuss how

branes encode the relevant aspects of the geometry of the affine Grassmannian. We

then present the general result for correlators containing bare monopole operators of

positive and negative charges. Finally, we study some examples of such correlators

focusing on their wall-crossing behaviour.25

4.1 SMMs for a general bare monopole correlator

In this section we use the type IIB brane construction to derive the SMMs whose

partition functions encode the coefficients (valued in the field of rational functions of

ϕ) in the expansion of the VEV of a product of non-abelian bare monopole operators in

terms of abelian monopole operator VEVs. We will consider the insertion at separated

points of bare monopole operators. These generate the chambers in the magnetic charge

25See [49] for a detailed mathematical analysis of the Coulomb branch of the related 3d N = 4 SQCD

theory with a massive adjoint hypermultiplet.
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lattice, which are domains of linearity of the R-charge formula for monopole operators.

The location of the operators along the line transverse to the 2d Omega background

is specified by the FI parameters of the SMM. The partition function of the SMM is a

piecewise constant function of the FI parameters, which is constant in the chambers of

FI space and jumps at codimension-one walls where a 0d Coulomb branch opens up,

corresponding to two operators crossing each other along the line. Generic monopole

operators can in principle be obtained by colliding multiple monopole generators in a

given chamber. The associated bubbling factors are on-the-wall partition functions of

the relevant SMMs, which we cannot compute using the Jeffrey-Kirwan prescription

(but see [27] for the analogous computation in one dimension higher).

The bare monopole operators

Before we discuss the brane construction, let us briefly recall that the R-charge of a

bare monopole operator is a piecewise linear function of the magnetic charge B = (Ba),

whose domains of linearity define subchambers of the positive Weyl chamber in the

cocharacter lattice.26 For U(N) SQCD with Nf fundamental hypermultiplets, the R-

charge

R[B] =
Nf

2

N

∑
a=1

∣Ba∣ − ∑
1≤a<b≤N

∣Ba −Bb∣ (4.1)

is linear in N + 1 subchambers of the positive Weyl chamber

Ck = {(B1, . . . ,BN) ∈ ZN ∣ B1 ≥ B2 ≥ ⋅ ⋅ ⋅ ≥ Bk ≥ 0 ≥ Bk+1 ≥ ⋅ ⋅ ⋅ ≥ BN} (4.2)

labelled by k = 0,1, . . . ,N . The k-th subchamber is generated by the N lattice vectors

(1a,0N−a) and (0N−b, (−1)b) with a = 1, . . . , k and b = 1, . . . ,N −k, respectively.27 These

are the magnetic charges of the N bare monopole generators for chamber Ck referred

to above. If we consider instead the union of all subchambers, we need a total of 2N

bare monopole generators, N with positive charges and N with negative charges:

U+
a ∶= V(1a,0N−a) (a = 1, . . . ,N) ,

U−
b ∶= V(0N−b,(−1)b) (b = 1, . . . ,N) .

(4.3)

We remark that these are “generators” only within the sector of bare monopole op-

erators that we are discussing so far. When dressed monopole operators and Casimir

invariants are included, only the operators U±
1 among (4.3) are actual generators [1, 5].

In this section we will be general and consider the insertion of bare monopole

operators (4.3) along the x0 line transverse to the Omega deformed plane, rather than

26We are interested in gauge invariant monopole operators, so we restrict to the positive Weyl

chamber in the cocharacter lattice (the R-charge formula is gauge invariant). The discussion can be

easily extended to abelian monopole operators with charge in the full cocharacter lattice.
27We use xa to denote x, . . . , x (repeated a times).

39



restricting to a specific subchamber (4.2). We will therefore consider VEVs of operators

which are words in the letters (4.3), made of n+a letters U+
a and n−b letters U−

b :

⟨T (
N

∏
a=1

(U+
a )

n+a
N

∏
b=1

(U−
b )

n−b)⟩ , (4.4)

where T denotes the time ordering of the operators along x0 (and we have suppressed

the insertion points of the operators along x0 to ease the notation).

We would like to express (4.4) as a linear combination of abelian variables uv. The

coefficients in this linear combination are specific rational functions of ϕa, mk and ε,

which are given by the partition function of SMMs that we will identify using a brane

construction.

The brane construction

U(N) SQCD with fundamental hypermultiplets is realised by a brane construction

with N D3 branes and Nf D5 branes suspended between two NS5’ branes, see Table 1

[21]. To insert a gauge invariant bare monopole operator (4.3) in the three-dimensional

SQCD theory, we introduce an NS5 pair in this brane construction. An NS5 pair

with linking numbers (h−, h+) = (0, a) inserts a gauge invariant monopole operator

U+
a = V(1a,0N−a), whereas an NS5 pair with linking numbers (h−, h+) = (b,0) inserts

a gauge invariant monopole operator U−
b = V(0N−b,(−1)b).

28 In our convention, we will

always keep the NS5+ (respectively NS5−) branes to the right (resp. left) of all the

D3 and D5 branes along the x7 direction. Therefore, an NS5+ (resp. NS5−) brane

with linking number h+ = a (resp. h− = a) has a D1 strings attached to its left (resp.

right). In a departure from the previous section, we will not necessarily order the NS5±
with non-increasing linking numbers as we move towards x7 → ±∞. We collect the

NS5± linking numbers in two integer vectors ρ± = (ρ±i ) = (h±i ) representing unordered

partitions.

We can then rewrite the topological correlator (4.4) by making the insertion points

manifest:

⟨T ( ∏
i

U−
ρ−i
(x0

−i)∏
i

U+
ρ+i
(x0

+i))⟩ . (4.5)

We identify the insertion points x0
±i of the monopole operators with the positions of

the i-th NS5± branes in the x0 direction. (Note that in this convention there is no x0
0

insertion point and that the spectator NS5 branes trivially insert the identity operator.)

The D1 strings emanating from the NS5 branes are not allowed to extend to x7 =

±∞, so they must either end on other NS5 branes or on D3 branes, in a way consist

with the s-rule. We sum over all configurations with fixed linking numbers for the NS5

28One of the two NS5 branes in each pair is a spectator. We introduce it to ensure that h± are

integers, but it plays no role in the following.
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branes. D1 strings stretched between NS5 and D3 branes realise abelian monopole

operators uv in the effective abelian 3d gauge theory on the Coulomb branch. The

vector of linking numbers (`a) of the D3 branes, which encodes how the D1 strings end

on the N D3 branes, determines the magnetic charge v = (`a) of the abelian monopole

operator uv. On the one hand, it turns out to be convenient to separate the N D3 branes

into three sets with positive, vanishing and negative linking numbers, respectively. We

collect the positive D3 brane linking numbers `+a = `a > 0 in an unordered partition

v+ = (`+a) and a corresponding ordered partition σ+ = (σ+i ) = p(v
+), and similarly the

absolute values of the negative D3 brane linking numbers `−a = −`a > 0 in an unordered

partition v− = (`−a) and a corresponding ordered partition σ− = (σ−i ) = p(v−). By

construction, the sum of the lengths of σ+ and σ− must be less than or equal to N .

We remark that the partitions σ+ and ρ+ (and similarly σ− and ρ−) do not neces-

sarily have the same magnitude (the magnitude of a partition µ is ∣µ∣ ∶= ∑
k
µk). Rather

∣σ±∣ ≤ ∣ρ±∣, as will become clearer below. There is however a constraint

∣ρ−∣ − ∣σ−∣ = ∣ρ+∣ − ∣σ+∣ , (4.6)

which arises from requiring that all D1 strings end on NS5 or D3 branes on both sides.

Finally, we introduce an alternative notation for the brane configuration that we

will use in the upcoming computations. In this notation, we drop all spectator NS5

branes and label the brane configuration by the linking numbers of all D3 branes, the

linking numbers of all (active) NS5 branes, and an extra integer L that specifies the

NS5 brane interval in which the D5 branes lie. We choose not to move the D5 branes

across the NS5 branes to avoid creating D3’ branes, so the D5 branes still separate the

NS5− from the NS5+ branes. Therefore, the Nf D5 branes lie in the interval between

the L-th and (L + 1)-th NS5 along x7, where

L = `(ρ−) (4.7)

is the length (i.e. the number of non-zero entries) of ρ−, namely the number of active

NS5− branes. Analogously, R = `(ρ+) is the number of active NS5+ branes.

For future convenience, we redefine the linking numbers asymmetrically as follows:

D3 ∶ `′ ∶= n(NS5L) + n(D1R) − n(D1L) = ` +L ,

NS5 ∶ h′ ∶= n̂(D3R) + n̂(D1L) − n̂(D1R) = h +N/2 .
(4.8)

These linking numbers can be read off by moving all the D3 branes across all the NS5−
branes, so that they lie to the left of all the NS5 branes, and counting the net number

of D1 strings ending on the D3 branes from the right and on the NS5 branes from the
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left. The D3 brane linking numbers are v′ = (`′a) = v +L ≡ (`a +L). The corresponding

ordered partition is

σ′ = p(v′) = (σ+ +L,LN−`(σ
+)−`(σ−),−σ− +L) , (4.9)

where we use the shorthand notation −µ ∶= (−µ`, . . . ,−µ1) and k+µ ∶= (k+µ1, . . . , k+µ`)

for a partition µ = (µ1, . . . , µ`) and an integer k.

Similarly, we label NS5 branes with increasing x7 by an integer I = 1, . . . , L+R (so

x7
I+1 > x

7
I) and we collect their linking numbers in an unordered partition29

ρ′ = (ρ′I) = (N − ρ−, ρ+) . (4.10)

Using the constraint (4.6), we see that σ′ and ρ′ are partitions of the same number n:

∣σ′∣ = NL + ∣σ+∣ − ∣σ−∣ = NL + ∣ρ+∣ − ∣ρ−∣ = ∣ρ′∣ ≡ n . (4.11)

From now on we will always use this second notation to describe the brane configura-

tions and we will omit the primes from the notation.

The gauged SMM

The prefactor that multiplies the VEV of the abelian monopole operator uv in the

expansion of the topological correlation function (4.5) is the partition function of the

gauged N = 2∗ SMM, which describes the low-energy physics on the worldvolume of

the D1 strings. We denote the generic SMM by T σρ,L[SU(n)] where σ and ρ are given

by (4.9) and (4.10), respectively (with primes omitted). When no Fermi fundamentals

are present we use the standard notation T σρ [SU(n)].

To read off the gauge group and matter content of the gauged SMM, we move

D3 branes along the x7 direction, crossing NS5 branes until they no longer have any

D1 strings attached, following the philosophy of [21]. We then count the number of

D1 strings (which contribute vector multiplets from D1-D1 strings), D3 branes (which

contribute fundamental hypermultiplets from D3-D1 strings) and D5 branes (which

contribute fundamental Fermi multiplets from D5-D1 strings) in each interval between

two adjacent NS5 branes. The NS5 branes themselves contribute bifundamental hy-

permultiplets for adjacent gauge groups, from D1i−D1i+1 strings.

The gauge and flavour nodes are labelled by a non-negative integer I = 1, . . . , L +

R − 1, corresponding to the interval between the I-th and the (I + 1)-th NS5 branes

along x7. The SMM quiver is then the same as for T σρ [SU(n)] [50], reduced to zero

dimensions and further decorated by Nf extra fundamental Fermi multiplets attached

29Note that NS5+ branes with h+ = a and NS5− branes with h− = N − a have the same linking

numbers h′ = a with D3 branes. They are however distinguished by their linking numbers with D5

branes (for the (NS5, D5, D3’) Hanany-Witten triple), which differ by Nf .
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N1 N2
. . . NL−1 NL NL+1

. . . NL+R−2 NL+R−1

M1 M2
. . .

ML−1 ML ML+1
. . . ML+R−2 ML+R−1

Nf

Figure 8. Quiver diagram for a generic gauged SMM from the brane construction.

to the L-th gauge node.30 The number of flavours of fundamental hypermultiplets MI ,

the ranks NI , and the FI parameters ξI of the I-th gauge node (I = 1, . . . , L +R − 1)

are given by

MI = σ̂I − σ̂I+1 ,

NI = ∑
K>I

ρK − ∑
K>I

σ̂K ,

ξI = xI+1 − xI ,

(4.12)

where xI ≡ x0
I is the position of the I-th NS5 brane along x0 and a hat denotes the

dual (or transposed) partition. The FI parameters of the gauge nodes are related to

the insertion points of the monopole operators along the line in the correlator (4.5).

We encode the field content of the gauged SMM in a quiver, as depicted in Figure

8, or equivalently in the matrix notation by

⎡
⎢
⎢
⎢
⎢
⎣

M1 M2 . . . ML−1 ML ML+1 . . . ML+R−2 ML+R−1

N1 N2 . . . NL−1 NL NL+1 . . . NL+R−2 NL+R−1

⎤
⎥
⎥
⎥
⎥
⎦

, (4.13)

where the underline indicates the presence of Nf extra fundamental Fermi multiplets.

To avoid violating the s-rule and breaking supersymmetry [21], the NS5 brane

partition ρ and the D3 brane partition σ must satisfy the inequalities31

∑
K>I

p(ρ)K ≥ ∑
K>I

σ̂K ∀ I , `(σ) ≤ N , (4.14)

30We relax the requirement that ρ is ordered, which would make the undecorated quiver good. The

formulae for the ranks in the quiver apply nonetheless.
31Recall, p(ρ)K denotes the ordered partition associated to ρK .
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otherwise the SMM partition function vanishes. The relevant D3 partitions σ, which

appear for a given NS5 partition ρ, can be obtained by starting from the Young tableau

associated to p̂(ρ) and consecutively moving boxes in σ down to the next row or column.

The partition function of the SMM T σρ,L[SU(n)]

The partition function of T σρ,L[SU(n)] is a meromorphic function of the complex

masses (or equivariant parameters) for the global symmetries:

• m = {mα}
Nf
α=1 for the U(Nf) flavour symmetry acting on the fundamental Fermi

multiplets charged under the L-th gauge group;

• ϕ̃K = {ϕ̃K,r}
MK
r=1 for the U(MK) flavour symmetry acting on the fundamental

hypermultiplets of the K-th gauge group. We gather all the ϕ̃K in a vector

ϕ̃ = (ϕ̃K).

• ε for the R-symmetry of the N = (0,4) superalgebra which commutes with the

N = 2 subalgebra preserved by the N = 2∗ theory.

With this notation and conventions, the partition function of T σρ,L[SU(n)] is computed

by the integral

ZTσρ,L[SU(n)](ϕ,m, ε; ξ) = ∮
JK(ξ)

∏
K

[
dNKzK

(2πi)NKNK !
(2ε)NK

NK

∏
I≠J

zK,IJ(zK,IJ + 2ε)]

⋅∏
K

1
NK

∏
I=1

[
NK+1

∏
J=1

(±(zK,I − zK+1,J) + ε)
MK

∏
r=1

(±(zK,I − ϕ̃K,r) + ε))]

⋅
NL

∏
I=1

Nf

∏
α=1

(zL,I −mα) ,

(4.15)

where the products over gauge groups in the first and second line run from K = 1

to K = L + R − 1, and the ϕ̃ variables are related to the ϕ variables as above. The

three lines in the RHS of (4.15) account for the contributions of 0d vector multiplets,

hypermultiplets and Fermi multiplets, respectively. The integral is over the Jeffrey-

Kirwan cycle determined by the vector of FI parameters ξ = (ξK). It is a piecewise

constant function of ξ, which is constant in the interior of the chambers in FI space,

but might jump at codimension-one walls separating different chambers, where the JK

integral is ill-defined and a 0d Coulomb branch opens up.

The abelian expansion of the topological correlator (4.5)

We are now ready to write down the expansion of the topological correlator (4.5)

in the abelian monopole operators uv, where the abelian magnetic charge v is encoded
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in the D3 brane linking numbers of the brane configuration. The brane construction

described above shows that the 0d field theory that dresses the abelian variable uv in the

expansion of the correlator (4.5) is the SMM T σρ,L[SU(n)] with L = `(ρ−), σ = p(v)+L,

ρ = (N −ρ−, ρ+), complex masses p(ϕ), m, ε and FI parameters ξ. We therefore deduce

that

⟨T(
L

∏
i=1

U−
ρ−i
(x0

−i)
R

∏
i=1

U+
ρ+i
(x0

i ))⟩ = ∑
v

Z
T
p(v)+L

(N−ρ−,ρ+),L
[SU(n)]

(p(ϕ),m, ε; ξ) ⋅ uv . (4.16)

The sum over the abelian magnetic charges v is equivalent to the sum over ordered par-

titions σ and their permutations as described above. Although the distinction between

non-bubbling and bubbling sectors is not well-motivated when computing monopole

correlators, we can still recognise the non-bubbling terms as those with trivial SMM

(Z = 1). They arise from the initial partitions σ̂ = p(ρ). The bubbling contributions will

arise from all the other partitions σ (with non-vanishing contribution). The piecewise

constant dependence of the SMM partition functions on the FI parameters in the RHS

reflects the topological nature of the correlation function in the LHS.

4.2 Affine Grassmannian, monopole operators and branes

Before we explicitly calculate correlation functions of ’t Hooft monopole operators in

the next subsection, we now take a detour to outline how the brane construction that

we have introduced to engineer these correlation functions is related to the geometry of

the affine Grassmannian, which is exploited in the mathematical definition of Coulomb

branches of 3d N = 4 gauge theories of [14, 15]. The relationship between the brane

construction and the affine Grassmannian is not needed for any of the calculations that

we perform in this paper, so readers who are more interested in the physics of the

problem than in its mathematical interpretation may skip this subsection.

The affine Grassmannian is an infinite-dimensional complex algebraic variety which

describes the moduli space of all Hecke modifications of G-bundles, which are imple-

mented by the insertion of monopole operators for a gauge group G. We start by

recalling some basic facts about the affine Grassmannian and monopole operators. We

refer the reader to [23] for a physicist-friendly introduction to the affine Grassmannian

and a detailed explanation of the correspondence between ’t Hooft operators and Hecke

modifications. At the end of the subsection we will discuss the brane realisation of the

main geometrical ingredients.

The basic setup involves solutions with pointlike singularities of the Bogomol’nyi

equations on the product of a Riemann surface C with complex coordinate z and a

line (or an interval with suitable boundary conditions) with real coordinate y. In our

case, the Riemann surface is the Omega-deformed complex plane Cε with coordinate

z = x1+ix2, and the transverse line is the Euclidean time y ≡ x0 of the three-dimensional
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field theory. In the absence of singularities, the holomorphic type of the G-bundle on

the Riemann surface Cy = C × {y} does not depend on y. If a monopole operator

singularity is inserted at (z0, y0), the holomorphic G-bundle on Cy jumps at y = y0 in a

way that is trivial away from the insertion point z0. For gauge group G = U(N), we can

describe the modification of the G-bundle in terms of its action on the fundamental

representation V , which defines an N -dimensional vector bundle E. Given a local

decomposition of E into a sum of N line bundles ⊕iLi, the insertion of a monopole

operator of magnetic charge B = (B1, . . . ,BN) at z0 twists the line bundles as

Li → Li ⊗O(z0)
Bi , (4.17)

where O(z0) is a singular line bundle with unit curvature localized at z = z0. This twist

is called a Hecke modification of type B at z0.

The holomorphic perspective taken above is very natural in the context of the

Omega deformation, where the physical configurations are holomorphic, monopole op-

erators are forced to lie on the line {z = 0} ×R ⊂ Cε ×R transverse to the origin of the

Omega deformation plane, and the magnetic flux emanating from monopole operators

is confined to this line [5, 6, 22].

Since the Hecke modification is local, we can take C = C and put the singularity

at z = 0. In terms of a basis of N holomorphic sections si(z) of Li which are linearly

independent at z = 0, a general section of E transforms locally as

s(z) = ∑
i

gi(z)si(z) → s′(z) = ∑
i

gi(z)si(z)z
−Bi , (4.18)

under the Hecke modification, where gi(z) are N locally holomorphic functions. We

can assume without loss of generality that E is trivial before the modification, so that

the section s(z) is holomorphic. Then the Hecke modification introduces a polar part to

s′(z), where the magnetic charges Bi control the change in the orders of the poles. The

polar part of s′(z) modulo holomorphic redefinitions of {gi(z)} parametrizes the moduli

space Y(B) of Hecke modifications of type B. It is a finite-dimensional subvariety of

complex dimension

dimY(B) = ∑
i<j

∣Bi −Bj ∣ (4.19)

of the infinite-dimensional affine Grassmannian GrN , which is a union of strata Y(B)

for all integer tuples B1 ≥ B2 ≥ ⋅ ⋅ ⋅ ≥ BN .32 The strata of the affine Grassmannian,

which are interpreted as spaces of Hecke modifications Y(B), are called Schubert cells.

32To be more precise, the space of Hecke modification is unaffected if E is tensored with O(z0)
k,

which is invertible. This corresponds to an extra insertion of the ’t Hooft operator V k
(1N ), which shifts

Bi → Bi +k for all i. For the purpose of studying Hecke modifications we may set BN = 0 without loss

of generality: this leads to the affine Grassmannian GrN of PGL(N).
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Unless B is the highest weight of a minuscule representation of the Langlands dual

group (for us, G∨ = U(N)), Schubert cells Y(B) are not compact, but they admit a

natural compactification in terms of their closures

Y(B) = ⊔
v≤B

Y(v) , (4.20)

which in addition to Y(B) contain lower-dimensional strata Y(v) for every dominant

weight v in the irreducible representation of G∨ with highest weight B. The closure

(4.20) of a Schubert cell is called a Schubert cycle. The lower-dimensional Schubert

cells Y(v) are obtained by suitable scaling limits towards the boundaries of the top-

dimensional cell Y(B). One says that the G-bundle associated to Hecke modifications

of type B is unstable towards becoming a G-bundle associated to Hecke modifications

of type v. The process continues until a stable bundle is reached, corresponding to a v

which is the highest weight of a minuscule representation. The physical interpretation

of this process is monopole bubbling, whereby dynamical pointlike monopoles screen

the ’t Hooft monopole operator, thus reducing its charge. In our physical setup of 3d

N = 4 SQCD with gauge group G = U(N) on Cε × R, the stratification (4.20) of the

Schubert cycle into several Schubert cells manifests itself in the decomposition (2.10)

of the VEV of a bare monopole operator of charge B. The bubbling contribution

Zbub(B,v) is associated to the slice transverse to Y(v) inside Y(B).

In the compactification (4.20), the lower-dimensional strata Y(v) appear as singular

loci of Y(B). The singularities of Y(B) can be resolved or deformed by splitting the

single insertion of a monopole operator of charge B into the insertion at separated

points of several constituent monopole operators of lower charges B(1), . . . ,B(k), such

that ∑
k
j=1B

(j). This configuration then computes a correlation function of k monopole

operators. Separating the insertion points along C is a complex structure deformation,

which is obstructed in the case of interest to us, where C is replaced by the Omega-

background Cε. We can however separate the constituent monopole operators along

the transverse R, where different orderings lead to (in principle) different resolutions.

The singularities in (4.20) are what makes it difficult to compute the VEV (2.10)

and similarly correlation functions involving non-minuscule monopole operators. In

terms of the SMM encoding the bubbling contributions, we are on a wall in FI space.

However, if the monopole operator of chargeB is split into separate constituent monopole

operators with charges B(j) which are all highest weights of minuscule representations,

then we are at a generic point in the Kähler moduli space of Y(B) and the singularity

is completely resolved. Correspondingly, the SMM is in the interior of a maximal-

dimensional chamber in FI space and we can compute the correlation function (4.16)

using the Jeffrey-Kirwan prescription in the SMM.

Now that we have introduced all the necessary ingredients in the geometrical de-

scription of the affine Grassmannian, we can relate them to their counterparts in the
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brane construction that we have introduced in sections 3 and 4.1. To keep the discus-

sion simple, we will only consider positive magnetic charges and therefore NS5+ branes,

which also allows us to neglect the D5 branes. This assumption can be relaxed and we

leave the general case as an exercise to the reader. We will also omit the + subscript

for NS5+ branes in the following.

The Schubert cycle Y(B) in the left hand side of (4.20) is associated to a configu-

ration of NS5-branes with (ordered) linking numbers ρ. Viewed as partitions, B and ρ

are related by transposition: B̂ = ρ. We then consider all possible D3-D1-NS5 super-

symmetric brane configurations with such NS5 brane linking numbers. The Schubert

cells Y(v) in the right hand side of (4.20) are associated to the configurations with D3

brane linking numbers σ equal to v up to permutations. The requirement that v ≤ B,

or equivalently σ ≤ ρ̂, is nothing but the s-rule. Interestingly, the dimension (4.19) of

the Schubert cell Y(v) can be interpreted in terms of branes as

dimY(v) = ∑
i<j

∣vi − vj ∣ = ∑
i<j

#(NS5 between D3i and D3j) , (4.21)

where the number of NS5 branes between a pair of D3 branes in the right hand side

is counted once the D3 branes have undergone sufficient Hanany-Witten transitions

so that none of them have D1 strings attached. Finally, we can think of the affine

Grassmannian GrN in terms of branes as describing all the possible D3-D1-NS5 brane

configurations compatible with the s-rule, for a fixed number N of D3 branes and an

arbitrary number of NS5 branes and D1 strings.

A complete resolution of the singular Schubert cycle Y(B) is achieved by separating

the NS5 branes in the x0 direction. Then NS5 branes with linking number ρi located

at x0 = x0
i insert minuscule monopole operators V(1ρi ,0N−ρi)(x

0
i ). As we mentioned

above, the effect of monopole bubbling in the resulting correlation function of monopole

operators is controlled by the slice transverse to the Schubert cell Y(v) in Y(B). In the

brane interpretation, the degrees of freedom of the transverse slice are the open strings

that start or end on the D1 branes in the resulting intersecting D3-D1-NS5 brane

system, which in the IR describes our zero-dimensional bubbling SMM. The Higgs

branch of this SMM, which can be visualised by the motions of D1 branes along the

D3 branes, is the slice transverse to the Schubert cell Y(v) in Y(B), and the monopole

bubbling contribution Zbub(B,v) is the partition function of this SMM.33

Finally, we note that the well-known fact that the space of Hecke modifications

is independent of tensoring the vector bundle E with a power of O(z0) also has a

33If a combination of positively and negatively charged monopole operators are inserted then we

also need to include NS5− branes in the construction and the D5 branes are no longer spectators.

The extra D5-D1 strings add fermionic degrees of freedom, which do not change the Higgs branch of

the SMM but affect the SMM partition function, making it dependent on the chamber in FI space or

equivalently on the specific resolution of Y(B).
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natural brane interpretation: it corresponds to inserting an extra NS5 brane with

linking number N . After a Hanany-Witten transition across all N D3 branes, this NS5

brane is disconnected from the active part of the brane configuration and plays no role

in the bubbling SMM.

4.3 Results for U(N) SQCD

In this section we discuss our results for SQCD theory with gauge group U(N) and Nf

flavours of hypermultiplets in the fundamental representation. We first evaluate corre-

lators of bare monopole operators of positive charge and then generalise to correlators

of monopole operators of positive and negative charges. We then analyse in more detail

some examples involving the products of bare monopole operators of minimal positive

and negative charge. We evaluate the bubbling factors using the JK prescription, and

our results are verified by comparison with the vacuum expectation values found using

the star product from section 2. Finally, we discuss wall-crossing phenomena, which

are related to the exchange of operators in the VEV.

4.3.1 A warm-up: powers of the U+
1 bare monopole operator

Let us start by computing the VEV of the product of n identical operators V(1,0N−1) = U
+
1 ,

which corresponds to having ρ = ρ+ = (1n) and empty ρ−. In the brane construction

we can neglect the NS5− branes and the D5 branes, which are spectators. The active

branes consist of n D1 strings stretched between n NS5+ branes and N D3 branes, as

encoded by an ordered partition σ = σ+ of n and permutations thereof (σ− is empty).

A configuration in which the N D3 branes have v = (va)Na=1 D1 branes attached

realises the abelian monopole uv with ∑
N
a=1 va = n. The SMM whose partition function

dresses uv is the 0d N = 2∗ version of the T p(v)[SU(n)] theory of [50], with complex

masses p(ϕ) for the flavour symmetry acting on the fundamental hypermultiplets and

ε for F . There are no Fermi multiplets, so the masses m do not appear. We therefore

deduce that

⟨T (
n

∏
i=1

U+
1 (xi))⟩ = ∑

v

ZT p(v)[SU(n)](p(ϕ), ε; ξ) ⋅ uv (4.22)

where the sum is over unordered partitions of n with at most N parts. As we show

in appendix A.1, the partition functions in the RHS are the same in the interior of all

chambers, in agreement with the fact that the operators in the LHS commute.

We can compute the SMM partition functions in several ways, finding agreement.

First, we note that the partition function of the 0d T σ[SU(n)] theory is the equivariant

volume of the Higgs branch of the theory, with equivariant parameters identified with

the complex masses. The Higgs branch of T σ[SU(n)] is the intersection of the S lodowy

slice Sσ with the nilpotent cone N of SU(n) [51]. Its equivariant volume can be

obtained by equivariant localization similarly to the Hilbert series HSσ∩N (t, x), which
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can be found in (3.29) of [2] (see [4] for a derivation), or by extracting the coefficient

of the leading pole in the small chemical potential expansion of the Hilbert series:34

ZTσ[SU(n)](ϕ, ε) = lim
R→0

RdimC(Sσ∩N)HSσ∩N (x = e−Rϕ, t = e−Rε) , (4.23)

where the order of the pole at R = 0 is the complex dimension of Sσ ∩N

dimC(Sσ ∩N) = ∑
i

σ̂2
i − n . (4.24)

Either way, we find the result

ZTσ[SU(n)](ϕ, ε) =

n

∏
k=1

(2kε)

l(σ̂)

∏
i=1

σ̂i

∏
a,b=1

[ϕab + (σa + σb − 2i + 2)ε]

=
n!

l(σ)

∏
a=1

σa!

⋅
1

l(σ̂)

∏
i=1

∏
1≤a<b≤σ̂i

[±ϕab + (σa + σb − 2i + 2)ε]

,

(4.25)

where ϕab ∶= ϕa−ϕb. The multinomial coefficient in the second line of (4.25) arises from

the numerator and the a = b factors in the denominator of the first line.

We can compare the RHS of (4.22) with the n-th Moyal star product of the VEV

(2.26) of the bare monopole operator U+
1 . First, we insert our result (4.25) and the

definition of the abelian variables (2.13) into the RHS of (4.22). This can be massaged

into the form

⟨(U+
1 )

n⟩ = ∑
v1,...,vN≥0
∑a va=n

ev⋅χ
n!

∏a va!

N

∏
a=1

va−1

∏
ia=0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

P (ϕa + (va − 1 − 2ia)ε)

∏
b≠a

[±ϕab + (va + vb − 2ia)ε)]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1/2

. (4.26)

One can then prove by induction that (4.26) equals the n-th star power ⟨U+
1 ⟩

⋆n
. Indeed

(4.26) reduces to (2.26) for n = 1. Using (2.21), one can compute ⟨U+
1 ⟩

⋆n
⋆ ⟨U+

1 ⟩. This

can be shown to equal (4.26) with n→ n + 1 with the help of the identity

N

∑
a=1

va∏
b≠a

(1 +
vb

yb − ya
) =

N

∑
b=1

vb (4.27)

for all y = (ya) and v = (va). This identity follows from the simpler fact35

n

∑
a=1

∏
b≠a

1

yb − ya
= 0 ∀n > 1 , (4.28)

34We rescale t→ t2 in [2] to have integer powers of t.
35We thank Patrick Dorey for providing this proof.
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which can be proven by showing that the left hand side has no poles when yb = ya for

all b ≠ a, as can be easily seen. Since the rational function on the left hand side is

homogeneous of degree 1−n < 0 in y, it must vanish, which proves the desired identity.

An alternative simple method to derive the result (4.25), following the logic of

[4, 52], is to start from the partition function of the T [SU(n)] SMM

ZT [SU(n)](ϕ, ε) = ∑
w∈Sn

1

∏
1≤a<b≤n

ϕw
ab(ϕ

w
ba + 2ε sgn(xab))

=
n!

∏
1≤a<b≤n

[±ϕab + 2ε]
, (4.29)

which we compute in appendix A.1 by evaluating the JK residues, and then take

appropriate residues in the flavour parameters ϕ to obtain the partition function of

T σ[SU(n)]. Each residue implements the move of a single box in the Young tableaux

of σ, reducing the flavour symmetry. We refer to appendix B for details of this residue

calculation.

4.3.2 Bare monopole operators of positive charge

The computation of the previous subsection can be generalised to a correlator involv-

ing only bare monopole operators of positive charge, by allowing a general unordered

partition ρ = ρ+ of magnitude ∣ρ+∣ = n and parts smaller than or equal to N , we find

that

⟨T(
R

∏
i=1

U+
ρi
(xi))⟩ = ∑

v

Z
T
p(v)
ρ [SU(n)]

(p(ϕ), ε; ξ) ⋅ uv , (4.30)

where the relevant SMM is the 0d N = 2∗ version of the T σρ [SU(n)] theory of [50]

with ρ = ρ+ and σ = σ+ = p(v), and R = `(ρ) is the length of ρ. The sum is effectively

restricted to positive magnetic charges v such that p̂(ρ) ≥ p(v). It turns out that

the relevant SMM partition functions are chamber independent, hence we omit the FI

parameter ξ in the argument of the partition functions in the following.

As in the case of trivial ρ, the partition function of the T σρ [SU(n)] SMM is the

equivariant volume of its Higgs branch, which is Sσ∩Oρ̂, the intersection of the S lodowy

slice of type σ with the closure of the nilpotent orbit of type ρ̂.36 See [53–55] for a

discussion of the isomorphism of Sσ ∩Oρ̂ with slices to Schubert varieties in the affine

Grassmannian of PGLn. The equivariant volume can again be obtained directly by a

fixed point formula, analogously to the Hilbert series (4.2) in [4], or from the coefficient

of the leading pole of that same Hilbert series at R = 0,

ZTσρ [SU(n)](ϕ, ε) = lim
R→0

RdimC(Sσ∩Oρ̂)HSσ∩Oρ̂
(x = e−Rϕ, t = e−Rε) , (4.31)

where the order of the pole is controlled by the complex dimension of Sσ ∩Oρ̂

dimC(Sσ ∩Oρ̂) = ∑
i

σ̂2
i −∑

j

ρ2
j . (4.32)

36To be precise, of type p̂(ρ). We abuse notation in this paragraph for the sake of readability.
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The result is expressed in terms of the data of the partitions σ and ρ as follows:

ZTσρ [SU(n)](ϕ, ε) =
q̂ρ(aσ(ϕ, ε), ε)

l(σ)

∏
a=1

σa!
l(σ̂)

∏
i=1

∏
1≤a<b≤σ̂i

[±ϕab + (σa + σb − 2i + 2)ε]

.
(4.33)

Here

q̂ρ(y, ε) =
1

l(ρ)

∏
j=1

ρj!

∑
w∈Sn

∏
α∈∆ρ

(−α ⋅ yw)(α ⋅ yw + 2ε) ∏
γ∈∆+

γ ⋅ yw − 2ε

γ ⋅ yw
(4.34)

where y = (y1, . . . , yn), ∆+ is the set of positive roots of SU(n) and ∆ρ is the set of

positive roots in the Jordan blocks associated to ρ:

∆+ = {ea − eb ∣ 1 ≤ a < b ≤ n}

∆ρ = {ea − eb ∣
k−1

∑
j=1

ρj + 1 ≤ a < b ≤
k

∑
j=1

ρj for some k} .
(4.35)

Finally, the first argument aσ(ϕ, ε) of q̂ρ has components

(aσ(ϕ, ε))a,ha = ϕa − (σa − 2ha + 1)ε , ha = 1, . . . , σa , a = 1, . . . , `(σ) . (4.36)

Because of the sum over permutations in (4.34), the order of the components does not

matter, so aσ(ϕ, ε) is better thought of as a set rather than a vector.

As a check, note that if ρ = (1n), ∆ρ is empty and q̂(1n) = n!, since the ε-dependent

terms average out to zero. Formula (4.33) then reduces correctly to (4.25).

As in the previous subsection, the partition function (4.33) can be computed in

two steps, first calculating it for trivial σ = (1n) and then taking residues in the flavour

fugacities to obtain the result for a general σ. We refer the reader to appendices A.2

and B for details. There we show explicitly that the relevant SMM partition functions

do not depend on the chamber in FI space in which they are computed, in agreement

with the (not so obvious) field theory fact that the monopole operators in the LHS of

(4.30) commute, and neither on the ordering of ρ.

4.3.3 General correlators of non-bubbling bare monopole operators

Finally, the general topological correlation function (4.16) of bare monopole operators

of positive and negative charges is expressed in terms of partition functions (4.15)

of the general T σρ,L[SU(n)] SMMs, which now exhibit chamber dependence and wall-

crossing due to the extra Fermi multiplets. We compute the SMM partition functions

in appendix A.3 for the case of a trivial D3 brane partition σ = (1n) and we explain

how to introduce a non-trivial σ by computing residues in the flavour fugacities of the
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SMM in appendix B. Putting together these results, we can write the partition function

of the T σρ,L[SU(n)] SMM as

ZTσρ,L[SU(n)](ϕ,m, ε;x) =
qρ,L(aσ(ϕ, ε),m, ε;x)

`(σ)

∏
a=1

σa!
`(σ̂)

∏
i=1

∏
1≤a<b≤σ̂i

[±ϕab + (σa + σb − 2i + 2)ε]

⋅
1

`(σ)

∏
a=1

σa

∏
ha=L+1

P ((aσ(ϕ, ε))a,ha −Lε)

,

(4.37)

where qρ,L is defined in (A.23), aσ is defined in (4.36), P (x) = ∏
Nf
k=1(x − mk) as in

(3.39) and it is understood that products over empty sets are equal to one. Note that

the Fermi factors of P in the second line all cancel against equal factors in qρ,L when

evaluated at aσ, as is clear from the original integral formula (4.15).

The SMM partition function (4.37) depends on the FI parameters ξ or the insertion

points x through qρ,L as in the case of trivial σ obtained in appendix A.3. Every time

we cross a wall at which two monopole operators of opposite charge (or equivalently an

NS5+ and an NS5− brane) change order, the partition function jumps. If instead the

sign of the charge of the two monopole operators that are exchanged is the same, as in

the previous subsection, the partition function does not jump across the wall.

4.4 Examples: wall-crossing, poles at infinity and star product

To conclude our analysis of topological correlation functions of bare monopole oper-

ators, we study a few correlators with a low number of bare monopole operators of

minimal positive and negative charge. The bubbling terms are determined by following

the JK prescription to compute the partition functions for the relevant SMMs. We focus

in particular on the relationship between the correlation functions containing a com-

mutator of monopole operators, the non-zero contributions to the partition functions

from poles at infinity and wall-crossing phenomena.

4.4.1 One positive and one negative minimal monopole operator

Firstly, we consider the VEV of the product of two minimal bare monopole operators

of opposite charge, U+
1 ≡ V(1,0N−1) and U−

1 ≡ V(0N−1,−1). Depending on the order of these

operators, we obtain two different results. To compute these results we require a setup

containing an NS5+ and an NS5− brane, from each of which emanates a D1 string, that

is ρ+ = ρ− = (1). In total, there are N(N − 1) + 1 configurations contributing to the

VEVs. There are N(N − 1) configurations with the NS5+ and the NS5− connected to

different D3 branes and the remaining N − 2 D3 branes are unconnected (σ+ = σ− =

(1)), corresponding to an abelian magnetic charge ea − eb, with a ≠ b. There is one
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configuration where the NS5 branes are connected by the D1 strings joining and the N

D3 branes remain unconnected, with vanishing abelian magnetic charge (σ+ = σ− = ()).

This tells us that
⟨U+

1 U
−
1 ⟩ = ∑

a≠b

uea−eb +Z
+−(ϕ,m, ε) ,

⟨U−
1 U

+
1 ⟩ = ∑

a≠b

uea−eb +Z
−+(ϕ,m, ε) ,

(4.38)

where ea ∶= (0a−1,1,0N−a) and a, b = 0, . . . ,N .

As expected, the first term in each VEV has no bubbling factor. The bubbling

factors, Z±∓(ϕ,m, ε), arise from the configuration where the D1s are connected to each

other. These are computed as the SMM described by the abelian quiver (in matrix

notation)
⎡
⎢
⎢
⎢
⎢
⎣

N

1

⎤
⎥
⎥
⎥
⎥
⎦

, (4.39)

whose partition function is given by (we omit unnecessary subscripts in z1 and ξ1)

Z±∓(ϕ,m, ε) = ∮
JK(±ξ>0)

dz

2πi

(2ε)
Nf

∏
k=1

[z −mk]

N

∏
a=1

[±(z − ϕa) + ε]

, (4.40)

where ± in Z±∓ corresponds to the FI chamber ±ξ > 0 used in evaluating the integral,

which is directly linked to the order of the operators in the VEV (but it is unrelated

to the product over ± in the integrand). The FI parameter is given by the difference in

the positions of the NS5 branes, ξ = x2−x1, where x2/x1 labels the NS5+/NS5− position

along x0. This JK integral is ill-defined at the codimension-one wall corresponding to

the FI parameter ξ = 0, which is the situation where the NS5+ and NS5− are at the

same x0 position and the operators V(1,0N−1) and V(0N−1,−1) collide (such a configuration

realises the bare monopole V(1,0N−2,−1)).

The poles contributing in FI chamber ±ξ > 0 are at z = ϕa ∓ ε, where a = 1, . . . ,N ,

and the partition function evaluates to

Z±∓(ϕ,m, ε) = (−1)N−1
N

∑
a=1

Nf

∏
k=1

[ϕa −mk ∓ ε]

∏
b≠a

[ϕab (ϕab ∓ 2ε)]
. (4.41)

As expected, the two results are related by sending ε→ −ε (see (2.16)).

54



Consequently, for the product of one minimal positive operator and one minimal

negative operator we find

⟨U+
1 U

−
1 ⟩ = ∑

a≠b

uea−eb + (−1)N−1
N

∑
a=1

Nf

∏
k=1

[ϕa −mk − ε]

∏
b≠a

[ϕab (ϕab − 2ε)]
,

⟨U−
1 U

+
1 ⟩ = ∑

a≠b

uea−eb + (−1)N−1
N

∑
a=1

Nf

∏
k=1

[ϕa −mk + ε]

∏
b≠a

[ϕab (ϕab + 2ε)]
,

(4.42)

which matches the results found previously using the star product in (2.30). These

results are our 3d analogue of the results obtained in section 3.2.2 of [31].

The vacuum expectation value of the commutator [U+
1 , U

−
1 ], which is the difference

between the results computed in the two chambers, is related to the non-zero contri-

bution Z∞(ϕ,m, ε) from evaluating the residue of the integrand in (4.40) at z = ∞,

⟨[U+
1 , U

−
1 ]⟩ = Z

+−(ϕ,m, ε) −Z−+(ϕ,m, ε) = −Z∞(ϕ,m, ε) , (4.43)

where

Z∞(ϕ,m, ε) = Res
z=∞

(2ε)
Nf

∏
k=1

[z −mk]

N

∏
a=1

[±(z − ϕa) + ε]

. (4.44)

Therefore, to obtain the result for the partition function of the SMM in one chamber

from the other chamber, we add or subtract the contribution from evaluating the residue

of the pole at infinity. This corresponds to crossing the codimension-one wall where the

FI parameter is zero, which is the location where the 0d Coulomb branch opens up.

For low values of Nf , there is no pole at infinity and the two monopole operators

commute. The first non-zero contribution from the pole at infinity occurs at Nf =

2N − 1. This gives a polynomial of degree 1 in ε. In general, the contribution from

evaluating the residue of the pole at infinity will be a polynomial in ϕ, m and ε of

total degree Nf − 2N + 2. This follows from an R-symmetry selection rule and can be

seen by Taylor expanding the integrand of (4.40) about z = ∞. It is possible to express

the general form of the contribution from the pole at infinity in terms of a sum of

symmetric polynomials. However, we find this to be unilluminating. Instead, we finish

this discussion by writing the explicit contributions from the pole at infinity, which

computes the monopole commutator in (4.43), for small values of Nf ,

• Nf = 0,1, . . . ,2N − 2

Z∞(ϕ,m, ε) = 0 . (4.45)
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• Nf = 2N − 1

Z∞(ϕ,m, ε) = (−1)N−1(2ε) . (4.46)

• Nf = 2N

Z∞(ϕ,m, ε) = (−1)N−1(2ε)
⎛

⎝
2
N

∑
a=1

ϕa −
Nf

∑
k=1

mk

⎞

⎠
. (4.47)

• Nf = 2N + 1

Z∞(ϕ,m, ε) = (−1)N−1ε

⎡
⎢
⎢
⎢
⎢
⎣

2Nε2 + (2∑
a

ϕ2
a −∑

k

m2
k) + (2∑

a

ϕa −∑
k

mk)

2⎤
⎥
⎥
⎥
⎥
⎦

. (4.48)

4.4.2 Two positive and one negative minimal monopole operators

We now expand our analysis by introducing a second minimal positive operator: we

compute the VEV of the product of two minimal positive operators and one minimal

negative operator. In this scenario we find three different results depending on the

order of the operators. We require a setup containing two NS5 pairs and we sum

over configurations with three D1 strings, where a single string emanates from the

two NS5+, one string emanates from the innermost NS5− and the remaining NS5− is a

spectator. The configurations contributing to the VEV are shown in Figure 9. There

are N(N − 1) configurations with both the NS5+ connected to the same D3 brane, the

NS5− connected to a different D3, and N − 2 D3s remain unconnected. Additionally,

there are N configurations where the NS5− is connected to one of the NS5+, the other

NS5+ is connected to a D3 and the remaining N−1 D3 branes are unconnected. Finally,

there are N(N−1)(N−2)/2 configurations where the three NS5 branes are all connected

to three different D3 branes and the remaining N − 3 D3s are unconnected. This tells

us that the vacuum expectation value for the product of these monopole operators is

given by

⟨T ((U+
1 )

2U−
1 )⟩ = ∑

a≠b

u2ea−eb +∑
a

ueaZa(ϕ,m, ε; ξ) + ∑
a≠b,c
b≠c

uea+eb−ecZab(ϕ,m, ε) . (4.49)

The first term on the RHS in the VEV has no monopole bubbling contribution, the

partition function of the associated SMM is trivial. The third term in the VEV comes

from the cases where the NS5s are all connected to different D3s and the bubbling

factor is computed as the SMM described by the matrix notation

⎡
⎢
⎢
⎢
⎢
⎣

2

1

⎤
⎥
⎥
⎥
⎥
⎦

, (4.50)
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N-2

a)

N-2

N-1

b)

N-1

N-3

c)

N-3

Figure 9. This figure illustrates the brane setup for the configurations contributing to the vacuum

expectation value of two minimal positive operators and one minimal negative operator. The setup is

depicted in the x78 plane, where the NS5−/NS5+ branes are drawn to the left/right of the D5 branes

in each diagram. a), b) and c) are an example of one of the diagrams contributing to each of the sums

in the first, second and third term on the RHS of (4.49). The other terms contributing to these sums

are given by permutations of the D3 branes.

so the SMM is the 0d SQED theory with two hypermultiplets of masses ϕa and ϕb. The

partition function of this quiver was computed earlier in (3.13) and we simply state the

result again,

Zab(ϕ,m, ε) = ∮
JK

dz

2πi

2ε

[±(z − ϕa) + ε] [±(z − ϕb) + ε]
=

2

(±ϕab + 2ε)
. (4.51)

where a and b are the D3 branes that are connected to the two NS5+ branes in the

construction, see Figure 9-c. It is important to highlight that this result is the same

regardless of the chamber in which we compute the JK integral.

The other bubbling factor in the VEV (4.49) is computed as the SMM described

by the quiver
⎡
⎢
⎢
⎢
⎢
⎣

N − 1 1

1 1

⎤
⎥
⎥
⎥
⎥
⎦

, (4.52)

where we underline the U(1) gauge node attached to the Fermi multiplets. The parti-

tion function of this theory is given by

Za(ϕ,m, ε; ξ) = ∮
JK(ξ)

dz0dz1

(2πi)2

(2ε)2
Nf

∏
k=1

(z0 −mk)

∏
b≠a

[±(z0 − ϕb) + ε] [±(z0 − z1) + ε] [±(z1 − ϕa) + ε]
, (4.53)
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where a labels the single D3 brane that is located in the interval between the two NS5+
branes and the remaining N −1 D3s are between the innermost NS5− and the innermost

NS5+, see Figure 9-b. The bubbling factors for the different orderings of the monopole

operators are obtained by evaluating this integral in the different FI chambers. The

ordering of the operators is linked to the order of the NS5 branes, which affects the

sign of the FI parameters and leads to the different chambers. In this case, there are

two FI parameters, which are given by

ξ0 = x1 − x−1 , ξ1 = x2 − x1 , (4.54)

where x1, x2 are the x0 coordinates of the two NS5+ branes and x−1 of the inner NS5−.

The outer NS5− is a spectator and plays no role here.

By naively considering the order of these NS5 branes, one expects to find 6 chambers

from the permutations of x1, x2, x−1. However, there is a symmetry under the exchange

of x1 and x2, which tells us that (ξ1, ξ0) is equivalent to (−ξ1, ξ0 + ξ1). Consequently,

there are only 3 distinct chambers, which are illustrated in Figure 10, where:

• The + + − chamber satisfies the region ξ0 > 0, ξ0 + ξ1 > 0.

• The − − + chamber satisfies the region ξ0 < 0, ξ0 + ξ1 < 0.

• The final chamber, +−+, contains the remaining regions described by ξ1 > 0, ξ0 <

0, ξ0 + ξ1 > 0 and ξ1 < 0, ξ0 > 0, ξ0 + ξ1 < 0.

In general, for a VEV ⟨T ((U+
1 )

A(U−
1 )

B)⟩ there will be (A+B)!
A!B! inequivalent chambers, in

correspondence to all the orderings of A U+
1 operators and B U−

1 operators.

The JK prescription tells us that the multi-dimensional poles contributing to the

JK integral in (4.53) are different in the different regions of the FI space. In Table 2 we

list the poles contributing to the integral in each chamber. We apply the constructive

definition of the JK residue [56], where each term in the sum of residues comes with

an appropriate ± sign, which is called ν(F ) in section 2.4.3 of [46], and depends on the

orientation of the ordered basis used to determine the order in which to perform the

iterated residue for each pole.
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Figure 10. This figure illustrates how the 6 regions of the FI space (separated by the solid black

lines) are grouped into 3 distinct chambers, due to the symmetry under the exchange of the two NS5+
branes. Each chamber corresponds to a different ordering of the operators in the correlator (4.49).

Evaluating (4.53) in each of the three chambers we find

Z++−
a =

(−1)N−1P (ϕa − 2ε)

∏
b≠a

[(ϕab − ε) (ϕab − 3ε)]
+∑
b≠a

2(−1)N−1P (ϕb − ε)

(ϕab − ε) (ϕab + 3ε) ∏
c≠b,a
b≠a

[ϕbc (ϕbc − 2ε)]
(4.55)

Z+−+
a =

P (ϕa)

∏
b≠a

[±ϕab + ε]
+∑
b≠a

⎡
⎢
⎢
⎢
⎢
⎣

(−1)N−1P (ϕb + ε)

(ϕab − ε) (ϕab − 3ε) ∏
c≠b,a
b≠a

[ϕbc (ϕbc + 2ε)]
+ (ε→ −ε)

⎤
⎥
⎥
⎥
⎥
⎦

(4.56)

Z−−+
a =

(−1)N−1P (ϕa + 2ε)

∏
b≠a

[(ϕab + ε) (ϕab + 3ε)]
+∑
b≠a

2(−1)N−1P (ϕb + ε)

(ϕab + ε) (ϕab − 3ε) ∏
c≠b,a
b≠a

[ϕbc (ϕbc + 2ε)]
(4.57)

As expected, Z++−
a and Z−++

a are related by ε→ −ε while Z+−+
a is invariant.

Consequently, we find the following results for the correlator (4.49):

⟨U+
1 U

+
1 U

−
1 ⟩ = ∑

a≠b

u2ea−eb +∑
a

ueaZ
++−
a + ∑

a≠b,c
b≠c

uea+eb−ec
2

(±ϕab + 2ε)
,

⟨U+
1 U

−
1 U

+
1 ⟩ = ∑

a≠b

u2ea−eb +∑
a

ueaZ
+−+
a + ∑

a≠b,c
b≠c

uea+eb−ec
2

(±ϕab + 2ε)
,

⟨U−
1 U

+
1 U

+
1 ⟩ = ∑

a≠b

u2ea−eb +∑
a

ueaZ
−++
a + ∑

a≠b,c
b≠c

uea+eb−ec
2

(±ϕab + 2ε)
,

(4.58)
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Region of FI space Chamber Multi-dimensional Pole (z0, z1)

ξ0 > 0 (ϕa − 2ε,ϕa − ε)

ξ1 > 0 + + − (ϕb − ε,ϕb − 2ε)

ξ0 + ξ1 > 0 (ϕb − ε,ϕa − ε)

ξ0 > 0 (ϕa − 2ε,ϕa − ε)

ξ1 < 0 + + − (ϕb − ε,ϕb)

ξ0 + ξ1 > 0 (ϕb − ε,ϕa + ε)

ξ0 < 0 (ϕa, ϕa − ε)

ξ1 > 0 + − + (ϕb − ε,ϕb − 2ε)

ξ0 + ξ1 > 0 (ϕb + ε,ϕa − ε)

ξ0 > 0 (ϕa, ϕa + ε)

ξ1 < 0 + − + (ϕb + ε,ϕb + 2ε)

ξ0 + ξ1 < 0 (ϕb − ε,ϕa + ε)

ξ0 < 0 (ϕa + 2ε,ϕa + ε)

ξ1 < 0 − + + (ϕb + ε,ϕb + 2ε)

ξ0 + ξ1 < 0 (ϕb + ε,ϕa + ε)

ξ0 < 0 (ϕa + 2ε,ϕa + ε)

ξ1 > 0 − + + (ϕb + ε,ϕb)

ξ0 + ξ1 < 0 (ϕb + ε,ϕa − ε)

Table 2. Multi-dimensional poles contributing to the integral (4.53) in each chamber, where a has a

fixed value and b = 1, . . . , a − 1, a + 1, . . . ,N .

where Z++−
a , Z+−+

a and Z−++
a are given in (4.55), (4.56) and (4.57). We have checked

that these results agree with those obtained using (2.26) and the star product. These

correlation functions are our 3d analogue of the results obtained in section 4.2.2 of [31].

The correlators of two minimal negative operators and one minimal positive operator

can also be obtained from these results by sending U+
1 ↔ U−

1 and ea↔ e−a.

We can now study the relationship between the results computed in the different

chambers and wall-crossing. The jump between chamber + + − and + − + is given by

⟨U+
1 [U+

1 , U
−
1 ]⟩ = ∑

a

uea (Z
++−
a (ϕ,m, ε) −Z+−+

a (ϕ,m, ε)) . (4.59)

The difference between the SMM partition functions Za of (4.53) computed in the ++−

and + − + chambers is captured by the residue of a pole at infinity. To obtain Z+−+
a
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from Z++−
a there are two options. The first option involves setting ξ0 = 0 and crossing

the ξ1 axis, see Figure 10. This corresponds to adding the contribution from the pole

where z1 is finite and z0 →∞,

Z++−
a (ϕ,m, ε) −Z+−+

a (ϕ,m, ε) = −Res
z0=∞

Res
z1=ϕa−ε

Ia(z,ϕ,m, ε) , (4.60)

where Ia(z,ϕ,m, ε) is the integrand in (4.53). The second option involves crossing the

line ξ0 + ξ1 = 0, which corresponds to adding the contribution from the pole where

z1 →∞, z0 →∞ with finite z1 − z0,

Z++−
a (ϕ,m, ε) −Z+−+

a (ϕ,m, ε) = −Res
z1=∞

Res
z0=z1−ε

Ia(z,ϕ,m, ε) . (4.61)

These two options are identical, since the contributions from the poles at infinity obey

the following relations,

Res
z0=∞

Res
z1=ϕa−ε

Ia = Res
z1=ϕa−ε

Res
z0=∞

Ia = Res
z1=∞

Res
z0=z1−ε

Ia = −Res
z0=∞

Res
z1=z0+ε

Ia . (4.62)

Consequently, we can write

⟨U+
1 [U+

1 , U
−
1 ]⟩ = −∑

a

uea Res
z0=∞

Res
z1=ϕa−ε

Ia(z,ϕ,m, ε) = −∑
a

ueaZ
∞(ϕ − eaε,m, ε) , (4.63)

which is obtained by evaluating the residue for the pole z1 = ϕa − ε and then using the

definition of Z∞(ϕ,m, ε) in (4.44). We can now link this with our discussion of the star

product by using the quantized abelian relations from section 2.3. In particular, using

uea ⋅ f(ϕ − eaε) = uea ⋆ f(ϕ), we find

⟨U+
1 [U+

1 , U
−
1 ]⟩ = ∑

a

uea ⋆ [−Z∞(ϕ,m, ε)] = ⟨U+
1 ⟩ ⋆ ⟨[U+

1 , U
−
1 ]⟩ , (4.64)

where the last equality is obtained using the VEV of the commutator in (4.43).

Similarly, we find that the jump between chambers + − + and − + + is

⟨[U+
1 , U

−
1 ]U

+
1 ⟩ = ∑

a

uea (Z
+−+
a −Z−++

a ) = −Z∞(ϕ,m, ε)⋆∑
a

uea = ⟨[U+
1 , U

−
1 ]⟩⋆ ⟨U+

1 ⟩ (4.65)

after applying the relation uea ⋅ f(ϕ + eaε) = f(ϕ) ⋆ uea in (2.25). Lastly,

⟨[(U+
1 )

2, U−
1 ]⟩ = ⟨U+

1 [U+
1 , U

−
1 ]⟩ + ⟨[U+

1 , U
−
1 ]U

+
1 ⟩ = ∑

a

uea (Z
++−
a −Z−++

a ) , (4.66)

which involves a sum of two commutators since to obtain Z−++
a from Z++−

a we must

cross two codimension-one walls.

In this discussion we have not mentioned what happens when we set ξ1 = 0 and

cross the ξ0 axis. This situation corresponds to reversing the order of two NS5+ branes.

Hence, crossing the codimension-one wall given by ξ1 = 0 is related to exchanging the
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two minimal positive operators in the VEV, which does not change the result since they

obviously commute. We can also explain this by looking at the contribution from the

appropriate pole at infinity. Crossing the ξ0 axis corresponds to adding the contribution

from the pole where z0 is finite and z1 →∞. Evaluating the residue of the integrand in

(4.53) at this pole, we find zero.

Consequently, this analysis is consistent with the ordering of the NS5 branes de-

scribed earlier, which explained how the 6 regions of FI space are actually grouped

into only 3 inequivalent chambers, due to the symmetry under the exchange of the

two NS5+ branes. The difference in the ordering of the operators in the vacuum ex-

pectation value is related to the signs and relevant magnitudes of the FI parameters.

The codimension-one wall-crossing phenomenon is manifest when we exchange two op-

erators of a different type, and the contribution from evaluating the residue of the

appropriate pole at infinity is non-zero. The pole at infinity is specified entirely by

crossing the codimension-one wall between the relevant chambers. When the contribu-

tion from a particular pole at infinity is zero, the VEV is unchanged which corresponds

to the exchange of two commuting (and in this case identical) operators.

4.4.3 Two positive and two negative minimal monopole operator

We finish our analysis by studying the VEV of the product of two minimal positive

operators and two minimal negative operators, which is an example of a computation

where a bubbling term with a non-abelian unitary gauge node emerges. Depending on

the order of the operators, we obtain six different results. We require a setup containing

two NS5 pairs and we sum over configurations with four D1 strings, where a single string

emanates from each of the NS5 branes.

The VEV of the product of these monopole operators is given by

⟨T ((U+
1 )

2(U−
1 )

2)⟩ = ∑
a,b

u2ea−2eb + ∑
a,b,c

u2ea−eb−ecZ
−
bc + ∑

a,b,c

u−2ea+eb+ecZ
+
bc

+ ∑
a,b,c,d

uea+eb−ec−edZab,cd +∑
a,b

uea−ebZab(ξ) +Z(ξ) ,
(4.67)

where a, b, c, d = 1, . . . ,N and it is understood that all indices that are summed over

are different. We have indicated explicitly the SMM partition functions that exhibit a

non-trivial dependence on the FI parameters ξ and the brane configurations for these

two terms are illustrated in Figure 11.

The first term on the RHS in the VEV, which has no monopole bubbling factor,

arises from the configurations where one of the D3 branes is connected to both NS5+,

another D3 is connected to both NS5− and N −2 D3s remain unconnected. The second

term on the RHS in (4.67) comes from the cases where both of the NS5+ are connected

to the same D3, the two NS5− are connected to different D3s and N − 3 branes are
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N
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1
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Figure 11. This figures illustrates the brane configurations and their associated SMMs for the

chamber dependent terms that arise in the correlator ⟨T ((U+

1 )
2(U−

1 )
2)⟩ (4.67).

unconnected. The bubbling factor is computed as the SMM described by the quiver

⎡
⎢
⎢
⎢
⎢
⎣

2

1

⎤
⎥
⎥
⎥
⎥
⎦

. (4.68)

The partition function of this theory has already been computed previously and is

Z−
bc = ∮

JK

dz

2πi

2ε

[±(z − ϕb) + ε] [±(z − ϕc) + ε]
=

2

(±ϕbc + 2ε)
, (4.69)

where b and c are the D3 branes that are connected to the two NS5− in the construction.

The third term in the VEV is given by a left-right mirror configuration, where both

of the NS5− are connected to the same D3, the two NS5+ are connected to different

D3s and N − 3 branes remain unconnected. The bubbling factor is computed as the

partition function of SMM described by the same quiver as (4.68). Its partition function

is Z+
bc = Z

−
bc, where now b and c represent the D3 branes that are connected to the two

NS5+ branes in the construction. The next term in (4.67) arises from the cases where

all of the NS5 branes are connected to different D3s and N − 4 D3s are unconnected.

The resulting bubbling term factorises into a product of the two previous bubbling

factors,

Zab,cd = Z
+
abZ

−
cd =

4

(±ϕab + 2ε) (±ϕcd + 2ε)
, (4.70)

where a, b (c, d) denote the D3 branes that are connected to the NS5+ (NS5−).

All of the terms discussed so far are chamber independent. The different orderings

of the operators in the VEV are encoded in the last two terms of (4.67), where the
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bubbling factors carry FI chamber dependence. The first term in this final line arises

from the configurations where a single NS5+ and a single NS5− are connected, and

the other NS5+ and NS5− are connected to different D3s, with N − 2 D3s remaining

unconnected, see Figure 11-a. The bubbling factor is computed as the SMM described

by the quiver
⎡
⎢
⎢
⎢
⎢
⎣

1 N − 2 1

1 1 1

⎤
⎥
⎥
⎥
⎥
⎦

, (4.71)

where again we underline the gauge node that is attached to the Fermi multiplets. The

partition function of this theory is given by

Zab(ξ) = ∮
JK(ξ)

dz−1dz0dz1

(2πi)3

(2ε)3P (z0)

∆(z)
, (4.72)

where

∆(z) = [±(z−1 − ϕb) + ε] [±(z1 − ϕa) + ε] ∏
s=±1

[±(z0 − zs) + ε] ∏
c≠a,b

[±(z0 − ϕc) + ε] , (4.73)

where a(b) denotes the single D3 brane that is connected to the NS5+ (NS5−), namely

the D3 brane that is located in the interval between the two NS5+ (NS5−), after applying

a Hanany-Witten transition. Finally, there is one configuration where all of the NS5s

are connected by the D1 strings and N D3 branes remain unconnected, as shown in

Figure 11-b. This gives the remaining bubbling factor, which is computed as the SMM

described by the quiver
⎡
⎢
⎢
⎢
⎢
⎣

0 N 0

1 2 1

⎤
⎥
⎥
⎥
⎥
⎦

, (4.74)

whose partition function is given by

Z(ξ) = ∮
JK(ξ)

dz−1dz1

2

∏
i=1
dz0,i

2(2πi)4

(2ε)4 [±z0,12] [±z0,12 + 2ε]
2

∏
i=1
P (z0,i)

2

∏
i=1

[ ∏
s=±1

[±(z0,i − zs) + ε]
N

∏
a=1

[±(z0,i − ϕa) + ε]]

. (4.75)

All of the N D3 branes are located in the interval between the innermost NS5+ and

the innermost NS5−. The explicit details of the computation of the monopole bubbling

factors (4.72) and (4.75) has been relegated to appendix C.

The ordering of the NS5 branes affects the signs of the FI parameters, which leads

to the different chambers. In this case, there are three FI parameters given by

ξ−1 = x−1 − x−2 , ξ0 = x1 − x−1 , ξ1 = x2 − x1 , (4.76)
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where x1, x2 are the x0 coordinates of the two NS5+ branes and x−1, x−2 of the two NS5−
branes. These FI parameters tell us that

ξ−1 + ξ0 = x1 − x−2 , ξ0 + ξ1 = x2 − x−1 , ξ−1 + ξ0 + ξ1 = x2 − x−2 . (4.77)

By naively considering the order of these four NS5 branes, one expects to find

24 chambers from the permutations of x−2, x−1, x1, x2. However, there is a symmetry

under the exchange of x1 and x2 and another symmetry under the exchange of x−1

and x−2. Consequently, there are only 6 distinct chambers, which are given up to the

aforementioned permutations by:

• + + −− chamber: x−2 < x−1 < x1 < x2.

• + − +− chamber: x−2 < x1 < x−1 < x2.

• + − −+ chamber: x1 < x−2 < x−1 < x2.

• − − ++ chamber: x1 < x2 < x−2 < x−1.

• − + −+ chamber: x1 < x−2 < x2 < x−1.

• − + +− chamber: x−2 < x1 < x2 < x−1.

For the chamber dependent SMM partition functions Zab(ξ) and Z(ξ) in (4.67), we

will denote the chamber in which the partition function is computed by a superscript,

e.g. Z++−−
ab is Zab evaluated in the + + −− chamber.

We conclude our analysis by studying one example of wall-crossing between the

results for (4.67) computed in two adjacent chambers, + + −− and + − +−. Then

⟨U+
1 [U+

1 , U
−
1 ]U

−
1 ⟩ = ∑

a≠b

uea−eb (Z
++−−
ab −Z+−+−

ab ) + (Z++−− −Z+−+−) . (4.78)

Firstly, to obtain Z+−+−
ab from Z++−−

ab we cross the plane ξ0 = 0, which corresponds to

adding the contribution from the pole where z1 and z−1 are finite and z0 →∞,

Z++−−
ab −Z+−+−

ab = − Res
z0=∞

Res
z1=ϕa−ε

Res
z−1=ϕb−ε

Iab , (4.79)

where Iab is the integrand in (4.72). Analogously, to obtain Z+−+− from Z++−− we must

also cross ξ0 = 0. Taking into account both the gauge and flavour symmetry, we find

Z++−− −Z+−+− = −
N

∑
a=1

( Res
z0,1=∞

Res
z−1=ϕa−2ε

Res
z1=ϕa−2ε

Res
z0,2=ϕa−ε

I + (z0,1 ↔ z0,2)) , (4.80)

where I is the integrand in (4.75). Due to the gauge symmetry, we find

Res
z0,1=∞

Res
z−1=ϕa−2ε

Res
z1=ϕa−2ε

Res
z0,2=ϕa−ε

I = Res
z0,2=∞

Res
z−1=ϕa−2ε

Res
z1=ϕa−2ε

Res
z0,1=ϕa−ε

I . (4.81)
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By evaluating the residues of the poles not at infinity and using our definition of

Z∞ in (4.44), it is possible to write

⟨U+
1 [U+

1 , U
−
1 ]U

−
1 ⟩ = −

N

∑
a≠b

uea−ebZ
∞(ϕ − (ea + eb)ε,m, ε)

−
N

∑
a=1

Z∞(ϕ − 2eaε,m, ε)

(−1)N−1
Nf

∏
k=1

[ϕa −mk − ε]

∏
b≠a
ϕab (ϕab − 2ε)

.

(4.82)

Comparing with (2.28), we see that the final term in bracket is just uea ⋆u−ea and using

our quantized abelian relations from section 2.3 along with (4.43), it is easy to see that

⟨U+
1 [U+

1 , U
−
1 ]U

−
1 ⟩ = ⟨U+

1 ⟩ ⋆ ⟨[U+
1 , U

−
1 ]⟩ ⋆ ⟨U−

1 ⟩ , (4.83)

showing agreement with the result expected from the star product.

5 Casimir and Dressed Monopole Operators

In this section we discuss the brane realisation of Casimir and dressed monopole oper-

ators in the U(N) SQCD theory and the evaluation of correlators involving them.

5.1 Brane realisations

The realisation of Casimir operators in the type IIB setup is achieved by adding D3’

branes oriented as descibed in Table 1, along x4567. To be more precise, there will be

D3’ branes stretched between pairs of NS5 branes with a fixed number of F1 strings

(fundamental strings) attached. This corresponds to an electric charge in the D3’

worldvolume theory that can be measured at spatial infinity in x456. In the following,

we may omit mentioning the pair of NS5 branes that (always) accompany a given D3’

brane. Unless otherwise stated explicitly, we always insert the D3’ at x8 = x9 = 0.

For the U(N) SQCD theory, we propose that a single D3’ brane with n units of

electric flux realises the insertion of the Casimir operator

Φn ∶= ∑
a1<a2<...<an

ϕa1ϕa2 . . . ϕan ←→ D3’ brane with n units of flux, (5.1)

where we assume n ≤ N .

This is understood as follows. The n units of flux correspond to n F1 strings

emanating from the D3’ brane. These strings must end on the N D3 branes realising

the SQCD theory, however, because of the s-rule (the D3’-D3-F1 system is of Hanany-

Witten type), the n F1 strings must end on different D3 branes. The lowest excitation

on such a string is a complex fermion of mass ϕai , where ai labels the D3 brane with
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N

D3'

F1

Figure 12. Brane setup realising the insertion of the Casimir operator Φ2 = ∑
a<b

ϕaϕb, where the D3’

brane has two F1 strings attached. Only one pattern of strings is shown here.

the i-th string attached. Integrating out this fermion leads to the insertion of ϕai .

Summing over all the possible patterns of F1s ending on D3s leads to the expression

for Φn given above. The antisymmetric index structure in (5.1) is a consequence of the

s-rule of [21] (or Pauli exclusion). The situation when n = 2 is illustrated in Figure 12.

Note that the Casimir operators Φn with 1 ≤ n ≤ N generate the whole ring of

Casimir operators. If n > N , the operator Φn vanishes by antisymmetry. Correspond-

ingly, inserting a D3’ brane with n > N units of flux leads to a violation of the s-rule.

For dressed monopole operators, it is natural to propose that they are realised in

the brane picture with both D1 strings emanating from NS5 branes and F1 strings

emanating from D3’ branes.

We will only provide the brane realisation of “minimal” dressed monopoles in the

U(N) SQCD theory, which are monopoles with magnetic charges generating the cham-

bers in the magnetic charge lattice and dressed with polynomials in ϕa of degree less

than N . They form a natural extension of the bare monopole and Casimir operators

discussed so far. Concretely we define, for 0 ≤m + n ≤ N ,

U+
m,n ∶= V(1m,0N−m),Pn(ϕ) = ∑

a1<...<am

uea1+...+eam ∑
b1<...<bn
bi≠aj

ϕb1 . . . ϕbn ,

U−
m,n ∶= V(0N−m,(−1)m),Pn(ϕ) = ∑

a1<...<am

u−ea1−...−eam ∑
b1<...<bn
bi≠aj

ϕb1 . . . ϕbn .
(5.2)

Note that U±
m,0 = U

±
m, with m > 0, are the bare monopoles defined in (4.3) and U±

0,n = Φn,

with n > 0, are the Casimir operators discussed above (by convention U±
0,0 = 1).

We propose that the insertion of the dressed monopole U±
m,n is realised by the

configuration containing a pair of NS5 branes with m D1 strings emanating from the
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D3'

F1

D1

Figure 13. Brane setup realising the insertion of the dressed monopole U+

2,2, with two D1s emanating

from the NS5+ and two F1s emanating from the D3’. Only one pattern of strings is shown here, with

strings (D1 and F1) ending on different D3s.

NS5± and with a D3’ brane stretched between the same two NS5s, with n units of flux.

Schematically, we have

U±
m,n ←→ NS5 pair with a stretched D3’ + m D1s from NS5± + n F1s from D3’.

(5.3)

We provide an example in Figure 13.

The argument for this proposal is the following. Because of the s-rule, the D1

strings emanating from the NS5± must end on different D3s, so each configuration is

associated to an abelian magnetic charge ±(ea1 + . . . + eam), with ai all different. In

such a setup, all of the D3s with a D1 string attached may be pulled out of the central

region, crossing the NS5± and annihilating the D1s. There are N −m D3s remaining in

the central region, on which the n F1 strings emanating from the D3’ can terminate.

Again each F1 must end on a different D3 (so that we need n ≤ N −m). The resulting

setup is associated to the dressed abelian monopole

u±(ea1+...+eam) ∑
b1<⋯<bn
bi≠aj

ϕb1 . . . ϕbn . (5.4)

Summing over all the possible patterns of strings one obtains the expression for U±
m,n.

Importantly, from this discussion, we understand that the F1 and D1 strings are not

allowed to end on the same D3 brane (although this was not a priori obvious).

The discussion so far has involved a single D3’ brane located at the origin in x89.

If we instead consider the D3’ inserted at a generic position x8 + ix9 = w, then the LHS

of (5.1) becomes

Φn(w) ∶= ∑
a1<a2<...<an

(ϕa1 −w)(ϕa2 −w) . . . (ϕan −w) . (5.5)
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This defines polynomials in w valued in Cε[C]. In particular, the coefficients of the

generating polynomial ΦN(w) are the Casimir operators Φn.

Similarly, if the D3’ in (5.3) is placed at x8 + ix9 = w, then (5.2) becomes

U+
m,n(w) ∶= ∑

a1<...<am

uea1+...+eam ∑
b1<...<bn
bi≠aj

(ϕb1 −w) . . . (ϕbn −w) ,

U−
m,n(w) ∶= ∑

a1<...<am

u−ea1−...−eam ∑
b1<...<bn
bi≠aj

(ϕb1 −w) . . . (ϕbn −w) .
(5.6)

We can then package all the bare and dressed monopole operators U±
m,n as coefficients

of two generating polynomials U±
m,N(w).

We will not use these generating polynomials any further, but computing correla-

tors of such generating polynomial operators may prove very useful in finding Coulomb

branch relations efficiently, as shown in [5, 7, 9].

5.2 Correlators in U(N) SQCD

We extend here the computations of the previous sections to correlators involving

Casimir operators and dressed monopoles, in simple examples. We will show that

our computations are compatible with the Moyal product representation of the star

product on the quantized Coulomb branch.

⟨U+
1 Φn⟩:

First we consider the correlator ⟨U+
1 Φn⟩ between a Casimir operator Φn and the

bare monopole operator U+
1 ∶= U+

1,0. The brane configuration realising this correlator

has two pairs of NS5s, one for each operator insertion. Here we have several choices of

ordering along x7 for the NS5 branes. We will consider the inner pair as associated with

the Φn insertion and the outer pair to be associated with the U+
1 insertion. In this case

there is a D3’ stretched between the inner pair of NS5s, with n F1 strings attached,

and one D1 string emanating from the outer NS5+. This is the setup of Figure 14.

The D1 string can end on a D3 brane – this gives N possibilities – which can be

moved from the central region to the region between the two NS5+ (see Figure 14). This

configuration allows for patterns of F1 strings ending on either the remaining N −1 D3s

in the central region or ending on the remaining D1 segment that is stretched between

the two NS5+. Because of the s-rule we only have two sectors: either all of the n F1

strings end on the D3s or n − 1 of them end on the D3s and the remaining string ends

on the D1 segment, so that it is stretched across the inner NS5+. For the case n = N ,

only the latter sector is possible, since there are only N − 1 D3s in the central region.

The abelian magnetic flux is v = ea, where a labels the D3 brane that has been

moved in-between the NS5+ branes. In the sector where all of the F1s end on D3s, the

dressing factor is ϕb1ϕb2 . . . ϕbn with b1 < b2 < . . . < bn and bi ≠ a, where the ϕbi factors
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D3'

F1

D1N N-1
1

1

1

Figure 14. A string pattern contributing to the correlator ⟨U+

1 Φn⟩ (here n = 3). The figure on the

right (after Hanany-Witten move) allows us to read the SMM on the D1 segment.

arise from the D3’-D3 fermion modes. In the sector with a F1 string stretched across

the inner NS5+, the dressing factor is ϕb1ϕb2⋯ϕbn−1ZSMM(ϕa) with b1 < b2 < . . . < bn−1

and bi ≠ a, where ZSMM(ϕa) is the SMM living on the D1 segment. In this case the

SMM has a U(1) gauge group, one fundamental hypermultiplet of mass ϕa from the

D3-D1 lowest excitations and one fundamental Fermi multiplet of zero mass, which is

the D3’-D1 lowest excitation (from strings stretched across the left NS5+).37 The SMM

is given by the quiver in Figure 14, which we encode in matrix notation by

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.7)

where now the top line denotes the number of fundamental hypers, the middle line

denotes the rank of the gauge group and the bottom line denotes the number of fun-

damental Fermi multiplets. We introduced the bottom line for future convenience,

departing from the matrix notation (4.13). This is nothing but the Z3 matrix model,

with Nf = 1 and vanishing Fermi mass, computed in (3.26) for ξ > 0.

37We deduce that this excitation is a Fermi multiplet by thinking of the same configuration but

with the D1 segment ending on a (new) D3 instead of the right NS5+. Moving the D3 past the left

NS5+, the D1 is annihilated and the lowest string mode corresponds to the D3’-D3 excitation, which

is a Fermi multiplet.
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We thus obtain

⟨U+
1 Φn⟩ =

N

∑
a=1

uea[ ∑
b1<...<bn
bi≠a

ϕb1 . . . ϕbn + ∑
b1<...<bn−1

bi≠a

ϕb1 . . . ϕbn−1Z3(ϕa,Nf = 1, ξ > 0)]

=
N

∑
a=1

uea[ ∑
b1<...<bn
bi≠a

b1 . . . bn + ∑
b1<...<bn−1

bi≠a

ϕb1 . . . ϕbn−1(ϕa − ε)]

=
N

∑
a=1

uea ∑
b1<...<bn

ϕb1 . . . ϕbn ∣ϕa→ϕa−ε .

(5.8)

Reversing the order of the insertions along x0 affects the sign of the FI parameter in

Z3 and the computation leads to

⟨ΦnU
+
1 ⟩ =

N

∑
a=1

uea ∑
b1<...<bn

ϕb1 . . . ϕbn ∣ϕa→ϕa+ε . (5.9)

This agrees very nicely with the Moyal product formula (2.21) applied to these two

Coulomb branch operators.

The right hand side of these correlators can be recognised as a linear combination

of the dressed monopoles U+
1,n, U+

1,n−1 and another dressed monopole that is not in the

basis discussed so far (it is generated in these products). The commutator is simply

expressed as

[U+
1 ,Φn] = −2εU+

1,n−1 . (5.10)

⟨U+
mΦn⟩:

The ⟨U+
1 Φn⟩ computation generalises to the case ⟨U+

mΦn⟩, where we recall that

U+
m ∶= U+

m,0. The brane configuration realising this correlator again has two pairs of

NS5s and we choose the inner pair to be associated with the Φn insertion and the outer

pair as associated with the U+
m insertion. This setup is identical to the one in Figure 14,

except now we have m D1 strings emanating from the outermost NS5+. The correlator

⟨U+
mΦn⟩ is computed in an identical fashion to ⟨U+

1 Φn⟩ and, skipping the explicit details

of the brane configurations, we find

⟨U+
mΦn⟩ = ∑

a1<...<am

uea1+...eam

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m

∑
j=0

∑
b1<...<bn−j
bi≠ak

ϕb1 . . . ϕbn−jZm,j

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.11)

The bubbling term Zm,j is given by

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m

m

⋀
j

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.12)
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where the Fermi multiplets transform in a single j-th antisymmetric tensor power of the

fundamental representation, ⋀j, with j ∈ [0,m]. The partition function of the SMM

for this bubbling term is

Zm,j = ∮
JK(ξ)

m

∏
i=1
dzi

(2πi)m
(2ε)m

m!

∏
1≤i<k≤m

[±zik (±zik + 2ε)]

m

∏
i,k=1

[±(zi − ϕak) + ε]

m

∑
c1<...<cj

zc1 . . . zcj . (5.13)

The poles for this integral, in the positive FI chamber, are given by z1 = ϕa1 − ε, z2 =

ϕa2 − ε, . . . , zm = ϕam − ε plus permutations of the mass parameters for the U(m) gauge

node. Performing the JK integral we find

Zm,j =
m

∑
c1<...<cj

(ϕc1 − ε) . . . (ϕcj − ε) , (5.14)

and combining everything we obtain the general result

⟨U+
mΦn⟩ = ∑

a1<...<am

uea1+...eam ∑
b1<...<bn

ϕb1 . . . ϕbn ∣ϕai→ϕai−ε
, (5.15)

which agrees with the star product computation. Sending ε→ −ε, we obtain the result

for the correlator ⟨ΦnU+
m⟩, where the order of the operators has been reversed.

⟨U+
1,1U

+
1,0⟩:

Finally, we study the correlator ⟨U+
1,1U

+
1,0⟩ between the dressed minimal positive

operator U+
1,1 and the bare monopole operator U+

1,0 for N = 2. Explicit computation

using the star product tells us that

⟨U+
1,1U

+
1,0⟩ = U

+
1,1 ⋆U

+
1,0 = u2e1ϕ2 + u2e2ϕ1 − ue1+e2 (

(ϕ2 + ε)

ϕ12 (ϕ12 − 2ε)
+

(ϕ1 + ε)

ϕ12 (ϕ12 + 2ε)
) ,

⟨U+
1,0U

+
1,1⟩ = U

+
1,0 ⋆U

+
1,1 = u2e1ϕ2 + u2e2ϕ1 − ue1+e2 (

(ϕ2 − ε)

ϕ12 (ϕ12 + 2ε)
+

(ϕ1 − ε)

ϕ12 (ϕ12 − 2ε)
) .

(5.16)

To compute these correlators using the brane construction, we require two pairs of

NS5 branes. There are four different options for the NS5+ and NS5− pair that the D3’

(with one F1 string attached) stretches between: inner NS5−-inner NS5+, inner NS5−-

outer NS5+, outer NS5−-inner NS5+, and outer NS5−-outer NS5+. The final result is

the same regardless of the option that we choose so we will pick the inner-inner case

and leave it to the enthusiastic reader to check the validity of the other options.

For our case, we have a D1 string emanating from each of the NS5+, the D3’ is

stretched between the inner NS5− and the inner NS5+ with one F1 string attached

and two D3 branes are located in this interval. There are three configurations that
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Figure 15. Two brane setups contributing to ⟨U+

1,1U
+

1,0⟩.

contribute to the VEV: two configurations with both the D1s connected to the same

D3 and one configuration where the D1s connect to different D3s, as shown in Figure

15. This tells us that

⟨T (U+
1,1U

+
1,0)⟩ = u2e1ϕ2 + u2e2ϕ1 + ue1+e2Z2(ϕ,Nf = 1; ξ) (5.17)

where Z2 is the bubbling term computed in (3.15), with Nf = 1 and vanishing Fermi

mass, whose SMM is given by
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.18)

The FI parameter is given by the difference in the x0 positions of the U+
1,0 NS5 pair

and the U+
1,1 pair, ξ = x0

U+

1,0
− x0

U+

1,1
. For x0

U+

1,0
> x0

U+

1,1
we compute Z2 in the positive

FI chamber and match the result for ⟨U+
1,0U

+
1,1⟩. On the other hand, computing the

bubbling term in the negative FI chamber corresponds to the scenario x0
U+

1,0
< x0

U+

1,1
and

we match the star product result for ⟨U+
1,1U

+
1,0⟩.

So far we have found perfect agreement between star product computations and

the brane construction. However, we begin to run into issues when we consider combi-

nations of positive and negative dressed and bare monopole operators.

For example, consider the correlator ⟨U+
1,1U

−
1,0⟩, containing a dressed minimal pos-

itive operator U+
1,1 and a negatively charged bare monopole operator U−

1,0, with a D3’
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f

Figure 16. One of the brane setups contributing to the correlator ⟨U+

1,1U
−

1,0⟩. The partition function

of the SMM given in the quiver diagram is an example of an on-the-wall partition function, which

cannot be computed using the JK prescription, since the inner NS5− and inner NS5+ are connected

by the D3’ and thus the FI parameter for the central U(1) gauge node is zero.

(with one F1 attached) stretched between the inner NS5− and the inner NS5+, a D1

string emanating from the inner NS5+ and the outer NS5−, and N D3 branes. One

of the configurations contributing to this VEV is given by the case where the D1s

are reconnected and the F1 string is attached to one of the D3s, see Figure 16. This

configuration is dressed by a bubbling term, whose SMM is

⎡
⎢
⎢
⎢
⎢
⎣

0 N

1 1

⎤
⎥
⎥
⎥
⎥
⎦

. (5.19)

The inner NS5− and NS5+ are connected by the D3’, which means that they share

the same x0 position and the corresponding FI parameter for the central U(1) gauge

node is zero. Consequently, the partition function for this SMM cannot be computed

using the JK residue prescription, since it is an example of an on-the-wall partition

function. This situation arises generically, pointing again to the missing ingredient in

our construction: the computation of ZSMM on the FI walls.

The computation of this correlator using the star product hints that something

is missing in the previous analysis. Perhaps the missing ingredients could come from

the 3d theory living on the D3’ branes, which we have neglected so far according to

the (naive?) logic that higher-dimensional modes are frozen in the eyes of a lower-

dimensional observer. This deserves further investigation.

6 Discussion

In this paper we have proposed a method to compute correlators of monopole (and

Casimir) operators, based on localization results and the brane realisation of these op-

erators in type IIB string theory. This method has various limitations. In particular, it
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requires a brane realisation of the 3d gauge theory, which is only available for quiver-like

theories with classical gauge group factors. Even with a brane realisation, the method

may become tedious for long quivers. One may argue that for complicated theories,

any method will necessarily be tedious anyway. On the other hand, for simple theories,

like the SQCD theory that we have focused on, our method has several advantages.

First, it is a direct approach, computing correlators from supersymmetric localization,

so it does not rely on assumptions, unlike other methods. It can also be applied for

arbitrary gauge group rank. In addition, it provides evidence for the Moyal product

realisation of the non-commutative product. Finally, most importantly for us, it makes

the physics of the results transparent.

Nevertheless there is still quite some work left to be done to complete this work.

The main point is the computation of the matrix models ZSMM at zero FI parameters,

which is the key to the final expressions for generic monopole VEVs and correlators.

This is a technical task that we believe can be accomplished in the near future. Another

issue, to complete nicely the picture that we have developed, would be to resolve the

tension that we observe in the evaluation of dressed monopole correlators using different

brane setups, as discussed at the end of section 5.

This work can be extended to study the quantized Coulomb branch of various 3d

gauge theories (with brane realisations). Furthermore, these exact results for correlators

of Coulomb branch operators should be used to address various physics questions, in

particular how to determine the quantized monopole relations and the precise map

of operators under mirror symmetry. In section 5.1 of this paper we have identified

the brane realisation of the generating polynomials of monopole operators and Casimir

operators, which feature prominently in the algebraic definition of the Coulomb branch

of U(N) SQCD [5]. It would be desirable to determine the relations that the generating

polynomials satisfy and their map under mirror symmetry directly from the brane

construction, as was achieved in the context of abelian theories in [29]. This could then

be generalised to a large class of quiver gauge theories which can be engineered using

Hanany-Witten brane setups.

Finally, while much is known on the Coulomb branch of 3d N = 4 theories thanks to

the recent mathematical progress, a lot remains to be understood about moduli spaces

of vacua, chiral rings and their quantization in the context of non-abelian gauge theories

with N = 3 or N = 2 supersymmetry (see [57–59] for some partial results using Hilbert

series). One of the main motivations for our work was that Hanany-Witten brane

constructions can be easily generalised to configurations with lower supersymmetry [60],

so it is natural to expect that our approach to the computation of correlation functions

of chiral operators can lead to new exact results for three-dimensional theories with

N = 3 or N = 2 supersymmetry. We hope to address some of these questions in the

future.
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A SMM partition functions for trivial σ

In this appendix we compute explicitly the partition functions of the zero-dimensional

T [SU(n)], Tρ[SU(n)] and Tρ,L[SU(n)] matrix models. We show that the former two

are chamber independent, whereas the latter is not.

A.1 T [SU(n)]

Consider first the N = 2∗ T [SU(n)] matrix model, the linear balanced quiver with

SU(n) flavour symmetry, which is described in matrix notation by

⎡
⎢
⎢
⎢
⎢
⎣

n 0 0 . . . 0 0 0

n − 1 n − 2 n − 3 . . . 3 2 1

⎤
⎥
⎥
⎥
⎥
⎦

, (A.1)

starting from node 1 on the left. The partition function of this theory is given by

ZT [SU(n)](ϕ, ε; ξ) = ∮
JK(ξ)

n−1

∏
k=1

⎡
⎢
⎢
⎢
⎢
⎣

dn−kzk
(2πi)n−k(n − k)!

(2ε)n−k
n−k

∏
i≠j
zk,ij(zk,ij + 2ε)

n−k

∏
i=1

n−k+1

∏
j=1

(±(zk,i − zk−1,j) + ε)

⎤
⎥
⎥
⎥
⎥
⎦

= ∮
JK(ξ)

n−1

∏
k=1

⎡
⎢
⎢
⎢
⎢
⎣

dn−k(2εzk)

(2πi)n−k(n − k)!
∏

1≤i<j≤n−k

W (zk,ij) ⋅
n−k

∏
i=1

n−k+1

∏
j=1

H(zk,i − zk−1,j)

⎤
⎥
⎥
⎥
⎥
⎦

,

(A.2)

where z0,a ∶= ϕa are the complex hypermultiplet masses. In the second line we introduce

the shorthand notation

H(x) ∶=
1

±x + ε
, W (x) ∶= (±x)(±x + 2ε) =H(x ± ε)−1 , (A.3)

for the one-loop determinants of the hypermultiplets and the W-boson pairs, respec-

tively.

In this case it is easy to see that the integrand has no poles at infinity, which implies

that the partition function is the same in all chambers. We will however show this by

calculating the integral explicitly in all chambers, a method which is best suited for

generalization.
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We first identify the multi-dimensional poles that contribute to the JK residue,

which are in one-to-one correspondence with the Higgs vacua in each chamber, as

collections of one-dimensional poles. We start by discussing these poles in a cham-

ber independent way and we explain the chamber-dependence only afterwards. One-

dimensional poles in the integral (A.2) only arise due to the hypermultiplet factors. A

one-dimensional pole associated to a hypermultiplet factor H(zk+1,ik+1−zk,ik) determines

the integration variable zk,ik in terms of zk+1,ik+1 . Iterating this procedure starting from

the rightmost (abelian) gauge node and moving towards the left of the quiver, we span

a linear abelian subquiver of length n, with n− 1 gauge nodes and one flavour node on

the left: the edges of the subquiver are associated to the hypermultiplets responsible

for the poles (or the Higgs VEV); the nodes of the subquiver are associated to the z

integration variables which are iteratively determined in terms of the flavour mass ϕ.

We then repeat the procedure starting from the leftover integration variable of the U(2)

gauge node, spanning an abelian linear subquiver of length n−1. The two abelian linear

quivers cannot overlap because the W-boson factors in (A.2) cancel the would-be poles.

Iterating this procedure, we can associate to each multi-dimensional pole contributing

to the JK residue (A.2) a collection of linear abelian subquivers of decreasing lengths.

We can therefore denote a multi-dimensional pole diagrammatically as follows:

ϕn
xn−x1
——– z1,n−1 ≡ ϕn,1

xn−x2
——– . . .

xn−xn−2
——– zn−2,2 ≡ ϕn,n−2

xn−xn−1
——– zn−1,1 ≡ ϕn,n−1

ϕn−1
xn−1−x1
——– z1,n−2 ≡ ϕn−1,1

xn−1−x2
——– . . .

xn−1−xn−2
——– zn−2,1 ≡ ϕn−1,n−2

⋮ ⋮ . .
.

ϕ2
x2−x1
——– z1,1 ≡ ϕ2,1

ϕ1

(A.4)

where the left column denotes the flavour nodes and the other columns denote the gauge

nodes (the expressions above the edges are for future reference). We use the invariance

under the Weyl subgroup of the gauge group to permute the z variables within each

column and we chose a particular ordering of the ϕa. Other multi-dimensional poles

are obtained by permuting the ϕa, for a total of n! multi-dimensional poles in each

chamber. In terms of branes, a linear abelian subquiver corresponds to a D1 string

suspended between an NS5 brane and a D3 brane, intersecting a subset of the other

NS5 branes. The n! multi-dimensional poles correspond to all the possible pairings of

NS5 branes with D3 branes.

We have not yet specified which of the two chiral multiplets in the hypermultiplet

associated to an edge is responsible for the pole. This depends on the chamber in FI

space and determines the precise multi-dimensional pole. It is easier to see how this
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comes about if we observe that a [1] − (1) − ⋅ ⋅ ⋅ − (1) linear abelian subquiver with n

gauge nodes decouples into n copies of SQED with a single charged hypermultiplet: the

hypermultiplet is an edge in the linear abelian subquiver, and the gauge U(1) is the

diagonal combination of the gauge U(1) factors associated to the nodes to the right of

the edge in the subquiver. We indicate the FI parameter for the relevant diagonal U(1)

gauge group above each edge of a linear abelian subquiver in (A.4), and use the third

line of (4.12) to express it as a difference xa − xi between the insertion points of two

monopole operators (or the position of two NS5 branes) along x0. It is then clear that

the chambers in FI space correspond to the orderings of the NS5 branes or monopole

operators along x0, in agreement with field theory expectations.

Denoting a bifundamental chiral multiplet by an arrow using standard quiver nota-

tion, we can therefore be more precise and replace each edge in (A.4), which represents

a one-dimensional pole due to a hypermultiplet, by an arrow representing a pole due

to one of the two chiral multiplets in the hypermultiplet as follows:

( ϕa,i−1
xa−xi

——– ϕa,i ) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

ϕa,i−1 ←Ð ϕa,i = ϕa,i−1 − ε , xa > xi

ϕa,i−1 Ð→ ϕa,i = ϕa,i−1 + ε , xa < xi
. (A.5)

In the first case, it is the chiral multiplet in the fundamental representation of the i-th

gauge node and antifundamental of the (i−1)-th gauge node that is responsible for the

1d pole (or equivalently, which takes VEV). This occurs when xa −xi = ∑i≤j<a ξj > 0. If

instead xa − xi < 0, it is the oppositely charged chiral that is responsible for the pole.

The multi-dimensional pole associated to the trivial (identity) permutation of the ϕa
is therefore encoded by a collection of abelian subquivers of increasing lengths as in

(A.4), together with the assignment of an arrow to each edge, the orientation of which

is determined by the chamber in FI space as in (A.5). We can therefore summarise

the chamber dependence of the value of the gauge parameters at the multi-dimensional

pole encoded by the diagram (A.4) using

zi,a−i ≡ ϕa,i = ϕa + ε
i

∑
j=1

sgn(xj − xa) . (A.6)

Next, we compute the residue at the pole (A.6). Let us consider a pair of rows

(or abelian subquivers) in (A.4), starting from ϕa and ϕb, respectively. The pair con-

tributes various factors to the multi-dimensional residue due to the massive W-bosons

(which we can picture as vertical links between the two rows) and massive bifundamen-

tal hypermultiplets (diagonal links between two entries in different rows and adjacent

columns). Due to the fundamental relation W (x) = H(x ± ε)−1 in (A.3), the one-loop

determinants of massive W-bosons and hypermultiplets charged under the two abelian

subquivers give telescopic products that largely cancel out, leaving an overall factor of
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H(ϕab − ε sgn(xab)) for each pair (a, b) of rows in (A.4). Taking into account all pairs

and summing over the n! multi-dimensional poles labelled by the permutations of the

ϕa, we obtain the result

ZT [SU(n)](ϕ, ε; ξ) = ∑
w∈Sn

∏
1≤a<b≤n

H(ϕw
ab − ε sgn(xab))

= ∑
w∈Sn

1

∏
1≤a<b≤n

ϕw
ab(ϕ

w
ba + 2ε sgn(xab))

=
n!

∆(ϕ) ∏
1≤a<b≤n

(±ϕab + 2ε)
⋅

1

n!
∑

w∈Sn

(−1)σ(w)
∏

1≤a<b≤n

(ϕw
ab + 2ε sgn(xab))

=
n!

∏
1≤a<b≤n

(±ϕab + 2ε)
,

(A.7)

where σ(w) is the signature of the permutation w. The average over the permutations in

the third line reproduces the Vandermonde determinant ∆(ϕ) = ∏a<bϕab: the ε- (and x-

) dependent terms average out to zero for symmetry reasons. The final result is therefore

independent of x or ξ, showing explicitly that the partition function of T [SU(n)] is

chamber independent, as expected from the commutativity of the monopole operators

inserted in the correlation function.

A.2 Tρ[SU(n)]

We now generalise to the Tρ[SU(n)] matrix models, which are described in matrix

notation by
⎡
⎢
⎢
⎢
⎢
⎣

n 0 0 . . . 0 0

N1 N2 N3 . . . Nl(ρ)−2 Nl(ρ)−1

⎤
⎥
⎥
⎥
⎥
⎦

, (A.8)

with Nk = ∑i>k ρi and n ≡ N0 = ∣ρ∣. Their partition functions are given by

ZTρ[SU(n)](ϕ, ε; ξ) = ∮
JK(ξ)

`(ρ)−1

∏
k=1

⎡
⎢
⎢
⎢
⎢
⎣

dNkzk
(2πi)NkNk!

(2ε)Nk
Nk

∏
i≠j
zk,ij(zk,ij + 2ε)

Nk

∏
i=1

Nk−1

∏
j=1

(±(zk,i − zk−1,j) + ε)

⎤
⎥
⎥
⎥
⎥
⎦

= ∮
JK(ξ)

`(ρ)−1

∏
k=1

⎡
⎢
⎢
⎢
⎢
⎣

dNk(2εzk)

(2πi)NkNk!
∏

1≤i<j≤Nk

W (zk,ij) ⋅
Nk

∏
i=1

Nk−1

∏
j=1

H(zk,i − zk−1,j)

⎤
⎥
⎥
⎥
⎥
⎦

.

(A.9)

It turns out again that these partition functions are the same in all FI chambers,

in agreement with the field theory fact that bare monopole operators of positive charge

U+
a mutually commute. We will show this by explicit computation of the partition
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function (A.9), since some intermediate results will be useful later when we consider

the more general T σρ,L[SU(n)] SMM. We will also derive the related result that the

partition function (A.9) does not depend on how the parts of ρ are ordered.

The multi-dimensional poles can again be encoded by a collection of linear subquiv-

ers, which are now generically non-abelian. Let ρ = (ρ1, ρ2, . . . , ρR), with R = `(ρ). We

then associate to each part ρA of ρ a linear subquiver [ρA] − (ρA)− ⋅ ⋅ ⋅ − (ρA) with A− 1

unitary gauge nodes and a single unitary flavour node, all of equal rank ρA. This linear

subquiver is realised on the worldvolume of the ρA D1 strings suspended between the

A-th NS5 brane and ρA different D3 branes, intersecting A− 1 other NS5 branes along

the way. Analogously to the abelian case, once the mass parameters for the U(ρA)

flavour node are specified, the partition function of the linear subquiver is computed

by a single multi-dimensional residue in each chamber, corresponding to the fact that

the subquiver has a single Higgs vacuum. The pole can be determined by starting

from the rightmost gauge node, which has effectively as many flavours as colours, and

iterating the procedure as one moves towards the left in the quiver. Putting together

the linear subquivers associated to the different NS5 branes, we can therefore specify

a multi-dimensional pole diagrammatically as follows:

ϕρ1+⋅⋅⋅+ρR
xR−x1
——– ●

xR−x2
——– ● . . . ●

xR−xR−2
——– ●

xR−xR−1
——– ●

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

ϕρ1+⋅⋅⋅+ρR−1+1
xR−x1
——– ●

xR−x2
——– ● . . . ●

xR−xR−2
——– ●

xR−xR−1
——– ●

ϕρ1+⋅⋅⋅+ρR−1
xR−1−x1
——– ●

xR−1−x2
——– ● . . . ●

xR−1−xR−2
——– ●

⋮ ⋮ ⋮ ⋮ ⋮

ϕρ1+⋅⋅⋅+ρR−2+1
xR−1−x1
——– ●

xR−1−x2
——– ● . . . ●

xR−1−xR−2
——– ●

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮

ϕρ1+ρ2+ρ3
x3−x1
——– ●

x3−x2
——– ●

⋮ ⋮ ⋮

ϕρ1+ρ2+1
x3−x1
——– ●

x3−x2
——– ●

ϕρ1+ρ2
x2−x1
——– ●

⋮ ⋮

ϕρ1+1
x2−x1
——– ●

ϕρ1

⋮

ϕ1

(A.10)

80



We replace the gauge variables z by bullets for brevity: they are determined in each

chamber as in (A.5). We also pick a particular ordering of the flavour parameters ϕa for

definiteness. Other multi-dimensional poles are obtained by permuting the ϕa, except

that permutations within each block of size ρA can be undone by a Weyl transformation

in the gauge group. Multi-dimensional poles (or Higgs vacua) are therefore in one-to-one

correspondence with elements of Sn/×ASρA . This is manifest in the brane construction,

where we are partitioning the n D3 branes in parts of ρA, each of which is paired with

a different NS5 brane.

In view of the block (or strip) structure associated to the linear subquivers, which

is visible in (A.10), it is useful to introduce a shorthand block notation. Let

SA = {K ∈ N ∣ ∑
J<A

ρJ <K ≤ ∑
J≤A

ρJ} (A.11)

be the set of integer labels in each block, and

ϕ
A
= {ϕa ∣ a ∈ SA} (A.12)

be the set of associated ϕa mass parameters, for the ordering chosen in (A.10). We can

then rewrite (A.10) more simply as

ϕ
R

xR−x1
——– ●

xR−x2
——– ● . . . ●

xR−xR−2
——– ●

xR−xR−1
——– ●

ϕ
R−1

xR−1−x1
——– ●

xR−1−x2
——– ● . . . ●

xR−1−xR−2
——– ●

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮

ϕ
3

x3−x1
——– ●

x3−x2
——– ●

ϕ
2

x2−x1
——– ●

ϕ
1

(A.13)

It is straightforward to compute the residue at the multi-dimensional pole (A.10)

or equivalently (A.13). The linear subquivers have unit partition functions, so the only

contribution comes from massive hypermultiplets and W-bosons connecting different

linear subquivers. After cancellations, we find that each pair (A,B) of subquivers in

(A.13) contributes the factor

H(ϕ
AB

− ε sgn(xAB)) ∶= ∏
a∈SA
b∈SB

H(ϕab − ε sgn(xAB)) (A.14)

to the SMM partition function. Summing over all such pairs and over all multi-

dimensional poles, labelled by elements of Sn/ ×A SρA , we obtain the partition function

ZTρ[SU(n)](ϕ, ε;x) =
1

∏A ρA!
∑

w∈Sn

∏
1≤A<B≤n

H(ϕw

AB
− ε sgn(xAB)) , (A.15)
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where the permutation w acts on the n-tuple (ϕ1, . . . , ϕn).

Note that the SMM partition function (A.15) is manifestly invariant under a com-

mon permutation of (ρA), (xA) and (ϕ
A
), which corresponds to permuting the NS5

branes. So the Tρ[SU(n)] SMM is invariant under naive Seiberg duality (naive because

the Higgs branches agree only for generic FI parameters, as in [7]). We can also see that

the partition function is chamber independent, due to the average over permutations

w. This is perhaps more manifest if we rewrite the partition function as

ZTρ[SU(n)](ϕ, ε;x) =
1

∏A ρA!
∑

w∈Sn

∏
1≤A<B≤n

H(ϕw

P (A)P (B)
+ ε) , (A.16)

with the permutation P ∈ SR defined by xP (A) < xP (A+1) for all A = 1, . . . ,R.

Having proven chamber independence, we can work in the chamber where all the FI

parameters are positive for definiteness and rewrite more explicitly the SMM partition

function (A.15) as

ZTρ[SU(n)](ϕ, ε) =
1

∏A ρA!
∑

w∈Sn

∏
α∈∆+∖∆ρ

1

(−α ⋅ ϕw)(α ⋅ ϕw + 2ε)

=
1

∏
1≤a<b≤n

(±ϕab + 2ε)
q̂ρ(ϕ, ε) ,

(A.17)

where q̂ρ(ϕ, ε) and ∆+, ∆ρ are defined as in (4.34) and (4.35), respectively.

A.3 Tρ,L[SU(n)]

Finally, we extend the result to the general situation with trivial σ and compute the

partition function of the Tρ,L[SU(n)] SMM. The difference compared to the case of the

previous subsection is that there are Nf fundamental Fermi multiplets charged under

the L-th gauge node in the quiver, arising from D5-D1 strings in the brane construction,

and there are now L+R−1 gauge nodes instead of R−1. Recall that L = `(ρ−), R = `(ρ+)

and ρ = (N − ρ−, ρ+).

The quiver for the Tρ,L[SU(n)] matrix models is described in matrix notation by

⎡
⎢
⎢
⎢
⎢
⎣

n 0 . . . 0 0 0 . . . 0

N1 N2 . . . NL−1 NL NL+1 . . . NL+R−1

⎤
⎥
⎥
⎥
⎥
⎦

(A.18)

with Nk = ∑i>k ρi and n ≡ N0 = ∣ρ∣. Its partition function is computed by the integral

ZTρ,L[SU(n)](ϕ, ε; ξ) =

∮
JK(ξ)

L+R−1

∏
k=1

⎡
⎢
⎢
⎢
⎢
⎣

dNk(2εzk)

(2πi)NkNk!
∏

1≤i<j≤Nk

W (zk,ij) ⋅
Nk

∏
i=1

Nk−1

∏
j=1

H(zk,i − zk−1,j)

⎤
⎥
⎥
⎥
⎥
⎦

NL

∏
h=1

P (zL,h) ,

(A.19)
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where the P factors of (3.39) account for the Nf fundamental Fermi multiplets. We

will see shortly that the Fermi multiplets generically make the partition function (A.19)

dependent on the FI parameters, with jumps when certain walls in FI space are crossed.

To compute the partition function (A.19) we can recycle most of the calculations in

the previous subsection. The poles are unchanged since they are only due to hypermul-

tiplets, so we just need to evaluate the Fermi factors P (zL,h) at each multi-dimensional

pole. Using the block notation

f(ϕ
A
) ∶= ∏

a∈SA

f(ϕa) , (A.20)

the result is that the partition function becomes (compare with (A.15))

ZTρ,L[SU(n)](ϕ, ε;x) =
1

∏A ρA!
∑

w∈Sn

∏
A<B

H(ϕw

AB
− ε sgn(xAB))

⋅ ∏
C>L

P (ϕw

C
+ ε ∑

D≤L

sgn(xDC)) .
(A.21)

The partition function (A.21) is invariant under common permutations of the first

L elements or last R elements of (ρA), (ϕ
A
) and xA. This corresponds to the separate

permutations of NS5− branes (or bare monopole operators of negative charge) and

of NS5+ branes (or bare monopole operators of positive charge). If elements of the

positive and negative sets are instead permuted amongst themselves, the partition

function (A.21) changes because of the P factors. This reflects the fact that two bare

monopole operators commute if their charges are both positive or both negative, but

not if they are oppositely charged.

Finally, we can write the partition function (A.21) similarly to (A.17) as follows

ZTρ,L[SU(n)](ϕ, ε;x) =
1

∏
1≤a<b≤n

(±ϕab + 2ε)
qρ,L(ϕ,m, ε;x) , (A.22)

where now

qρ,L(ϕ,m, ε;x) =
1

∏A ρA!
∑

w∈Sn

[∏
A<B

ϕw
AB

+ 2ε sgn(xAB)

ϕw
AB

] [∏
A

(ϕ
AA

+ 2ε)′]

⋅ [∏
C>L

P (ϕw

C
+ ε ∑

D≤L

sgn(xDC))] ,

(A.23)

depends on the mass parameters m and the FI parameters ξ (or equivalently the

monopole insertion points x), in addition to ϕ and ε. In (A.23) we use the block

notation (A.20) and

g(ϕ
AB

) ∶= ∏
a∈SA
b∈SB

g(ϕab) , h(ϕ
AA

)′ ∶= ∏
a,a′∈SA
a≠a′

h(ϕaa′) . (A.24)

Stripping out the prefactor in front of q in (A.22) will prove useful in the next appendix

when we introduce a non-trivial D3 brane partition σ.
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B Residues in flavour fugacities and changing σ

In this appendix we show how the partition function of the T σρ,L[SU(n)] matrix model

(4.15) can be obtained from the partition function for the trivial D3 brane partition

σ = (1n) by taking appropriate residues in the flavour fugacities, which have the effect of

moving boxes in the Young tableaux associated to σ. We follow a related computation

performed for Hilbert series in appendix C of [4].

Any partition σ of n can be obtained from σ = (1n) by repeatedly moving the last

box to a previous row which is followed by rows of a single box only, so it is enough to

consider the move38

σ = (σ1, . . . , σd−h,H,1
h) → σ′ = (σ1, . . . , σd−h,H + 1,1h−1) , (B.1)

where the lengths of the partitions σ and σ′ are d + 1 and d, respectively. For brevity,

we will denote X = d − h + 1, so that σX = H and σ′X = H + 1. We assume σX−1 > H so

that the move is allowed. We claim that for such σ and σ′,

Res
z=0

ZTσρ,L[SU(n)]∣ =
P (ϕX + (H −L)ε)

(H + 1)(2ε)
d

∏
a=X+1

[±(ϕXa + (H − 1)ε) + ε]

ZTσ′ρ,L[SU(n)] , (B.2)

where ∣ denotes the substitution ϕX → ϕX −(ε−z), ϕd+1 → ϕX +H(ε−z) and Nf funda-

mental Fermi multiplets are attached to gauge node L. For L ≤H, the term containing

the Fermi multiplets is present since the rank of the gauge node attached to these multi-

plets reduces during the transition (B.1). In contrast, when L >H, the Fermi multiplets

are unaffected by the transition and it is understood that P (ϕX + (H −L)ε) → 1 in

(B.2).

To see this, recall that the quiver diagram of T σρ [SU(n)] is represented by the

matrix
⎡
⎢
⎢
⎢
⎢
⎣

0 h 0 . . . 1 MH+1 . . .

0 N1 N2 . . . NH NH+1 . . .

⎤
⎥
⎥
⎥
⎥
⎦

, (B.3)

where the first/second row in the matrix denotes the rank of a unitary flavour/gauge

group, starting from nodes labelled by i = 0. In the case L =H, for example, the Fermi

multiplets are attached to the U(NH) gauge group with a single flavour of fundamental

hypermultiplets with mass parameter ϕX , which can be illustrated by underlining NH

in the matrix above. The matrix notation for T σ
′

ρ [SU(n)] is given by

⎡
⎢
⎢
⎢
⎢
⎣

1 h − 1 0 . . . 0 MH+1 + 1 . . .

0 N1 − 1 N2 − 1 . . . NH − 1 NH+1 . . .

⎤
⎥
⎥
⎥
⎥
⎦

. (B.4)

38In the language of Kraft-Procesi transitions [61], in which moving a box up by k rows and to the

right by one column is an Ak transition, whereas moving a box up by one row and to the right by l

columns is an al transition, the move (B.1) realises an Ah−1 transition followed by an aH−1 transition.
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The ellipses on the right remain unchanged in the transition. In terms of these 0d

quivers and their partition functions (4.15), we identify ϕd+1 = ϕ̃1,h and ϕX = ϕ̃H,1,

so ϕd+1 is the mass parameter for one of the h fundamental hypermultiplets of gauge

group 1 and ϕX is the mass parameter for the fundamental hypermultiplet of gauge

group H.

The partition function in the LHS of (B.2) has a simple pole at z = 0 if the term

1

ϕX,d+1 + (H + 1)ε
, (B.5)

is present before the substitution. This term appears if the abelian subquiver

⎡
⎢
⎢
⎢
⎢
⎣

1 0 . . . 0 1

1 1 . . . 1 1

⎤
⎥
⎥
⎥
⎥
⎦

, (B.6)

where the left/right flavour node has mass parameter ϕd+1/ϕX and the gauge nodes

have parameters zi,Ni , leads to a multi-dimensional pole in the SMM integral given by

zi,Ni =

⎧⎪⎪
⎨
⎪⎪⎩

ϕd+1 − iε , 1 ≤ i ≤ a

ϕX + (H + 1 − i)ε , a + 1 ≤ i ≤H
(B.7)

for some integer a ∈ [0,H]. This multi-dimensional pole of the partition function of the

abelian subquiver can be illustrated diagrammatically by

ϕd+1 ϕX

↑ ↓

ϕd+1 − ε ← ϕd+1 − 2ε . . . ← ϕd+1 − aε ϕX + (H − a)ε ← . . . ϕX + 2ε ← ϕX + ε

1 2 . . . a a + 1 . . . H + 1 H

, (B.8)

where arrows indicate the chiral multiplets that contribute to the pole and the nodes

have been replaced by their corresponding parameters. Due to the massive hypermul-

tiplet associated to the missing link in the quiver (B.8), the residue of the abelian

subquiver partition function is [±(ϕX,d+1 +Hε) + ε]−1, which indeed contains the fac-

tor (B.5). Note that a pole of the type (B.8) for a certain value of a appears in any

chamber: the relevant value of a is determined by xa+1 = max{xb}H+1
b=1 .39

If we now embed the abelian subquiver in the full non-abelian quiver and evaluate

the integrals over zi,Ni for i = 1, . . . ,H at the poles (B.7) in the full SMM partition

functions, the gauge group (B.3) of the original SMM reduces to the gauge group

(B.4) of the new matrix model. Keeping track of the masses of the fields which enter

39Recall that the FI parameter for the a-th gauge node is given by xa+1 − xa.
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the one-loop determinants and following several cancellations, it is then tedious but

straightforward to obtain the RHS of (B.2), where the new ϕX is now identified with

an extra mass parameter for the flavour symmetry at node H + 1, as expected.

The general formula (4.37) for the partition function of the 0d N = 2∗ version of

T σρ,L[SU(n)] can then be obtained by induction. We start from (A.22) and show that

the residue formula (B.2) holds for any σ and σ′ related by the move (B.1). The pole

at z = 0 is due to the denominator of the first line of (4.37), which is independent of

ρ and behaves as discussed above. As for the numerator, the only effect of the residue

is to change the argument aσ(ϕ, ε) of qρ, which is defined in (4.36), according to the

substitution ϕX → ϕX − ε, ϕd+1 → ϕX +Hε. The only changes are in the a = X and

a = d + 1 entries in (4.36). Upon the previous substitution, they combine to become

ϕX + (H + 2 − 2j)ε , j = 1, . . . ,H + 1 , (B.9)

reproducing the a = X entries in aσ′(ϕ, ε). Finally, the denominator in the second line

of (4.37) accounts for the factors of P in the residues (B.2). Therefore, the formula

(4.37) for the partition function of T σρ,L[SU(n)] satisfies the residue relation (B.2),

which proves (4.37) by induction starting from (A.22).

C More on the computation of monopole bubbling factors

In this appendix we state the results for the partition functions (4.72) and (4.75) in

each of the 6 distinct chambers. These results have been computed by applying the JK

prescription and have been verified by following the residues in the flavour fugacities

procedure outlined in appendix B.

Evaluating (4.72) in each of the six chambers we find
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Z++−−
ab (ϕ,m, ε) =

⎛
⎜
⎜
⎜
⎜
⎝

(−1)N−1
Nf

∏
k=1

[ϕa −mk − 2ε]

ϕab (ϕab − 2ε) ∏
c≠b,a

[(ϕac − ε) (ϕac − 3ε)]

+

(−1)N−1
Nf

∏
k=1

[ϕa −mk − 2ε]

(ϕab − 2ε) (ϕab − 4ε) ∏
c≠b,a

[(ϕac − ε) (ϕac − 3ε)]
+ (a↔ b)

⎞
⎟
⎟
⎟
⎟
⎠

+ ∑
c≠b,a

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(−1)N−1
Nf

∏
k=1

[ϕc −mk − ε]

∏
r=a,b

(ϕrc + ε) (ϕrc + 3ε) ∏
d≠c,b,a

ϕcd (ϕcd − 2ε)
+

(−1)N−1
Nf

∏
k=1

[ϕc −mk − ε]

∏
r=a,b

(±ϕrc + ε) ∏
d≠c,b,a

ϕcd (ϕcd − 2ε)

+

⎛
⎜
⎜
⎜
⎜
⎝

(−1)N
Nf

∏
k=1

[ϕc −mk − ε]

(±ϕac + ε) (ϕbc + ε) (ϕbc + 3ε) ∏
d≠c,b,a

ϕcd (ϕcd − 2ε)
+ (a↔ b)

⎞
⎟
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(C.1)

Z−−++
ab (ϕ,m, ε) =

⎛
⎜
⎜
⎜
⎜
⎝

(−1)N−1
Nf

∏
k=1

[ϕa −mk + 2ε]

ϕab (ϕab + 2ε) ∏
c≠b,a

[(ϕac + ε) (ϕac + 3ε)]

+

(−1)N−1
Nf

∏
k=1

[ϕa −mk + 2ε]

(ϕab + 2ε) (ϕab + 4ε) ∏
c≠b,a

[(ϕac + ε) (ϕac + 3ε)]
+ (a↔ b)

⎞
⎟
⎟
⎟
⎟
⎠

+ ∑
c≠b,a

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(−1)N−1
Nf

∏
k=1

[ϕc −mk + ε]

∏
r=a,b

(ϕrc − ε) (ϕrc − 3ε) ∏
d≠c,b,a

ϕcd (ϕcd + 2ε)
+

(−1)N−1
Nf

∏
k=1

[ϕc −mk + ε]

∏
r=a,b

(ϕrc ± ε) ∏
d≠c,b,a

ϕcd (ϕcd + 2ε)

+

⎛
⎜
⎜
⎜
⎜
⎝

(−1)N
Nf

∏
k=1

[ϕc −mk + ε]

(ϕac − ε) (ϕac − 3ε) (±ϕbc + ε) ∏
d≠c,b,a

ϕcd (ϕcd + 2ε)
+ (a↔ b)

⎞
⎟
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(C.2)

87



Z+−+−
ab (ϕ,m, ε) =

⎛
⎜
⎜
⎜
⎜
⎝

(−1)N−1
Nf

∏
k=1

[ϕa −mk]

ϕab (ϕab + 2ε) ∏
c≠b,a

[(ϕac − ε) (ϕac + ε)]

+

(−1)N−1
Nf

∏
k=1

[ϕa −mk − 2ε]

(ϕab − 2ε) (ϕab − 4ε) ∏
c≠b,a

[(ϕac − ε) (ϕac − 3ε)]
+ (a↔ b)

⎞
⎟
⎟
⎟
⎟
⎠

+ ∑
c≠b,a

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎜
⎝

(−1)N−1
Nf

∏
k=1

[ϕc −mk + ε]

∏
r=a,b

(ϕrc − ε) (ϕrc − 3ε) ∏
d≠c,b,a

ϕcd (ϕcd + 2ε)
+ (ε→ −ε)

⎞
⎟
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎜
⎝

(−1)N
Nf

∏
k=1

[ϕc −mk − ε]

(±ϕac + ε) (ϕbc + ε) (ϕbc + 3ε) ∏
d≠c,b,a

ϕcd (ϕcd − 2ε)
+ (a↔ b)

⎞
⎟
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(C.3)

Z−+−+
ab (ϕ,m, ε) =

⎛
⎜
⎜
⎜
⎜
⎝

(−1)N−1
Nf

∏
k=1

[ϕa −mk]

ϕab (ϕab − 2ε) ∏
c≠b,a

[(ϕac − ε) (ϕac + ε)]

+

(−1)N−1
Nf

∏
k=1

[ϕa −mk + 2ε]

(ϕab + 2ε) (ϕab + 4ε) ∏
c≠b,a

[(ϕac + ε) (ϕac + 3ε)]
+ (a↔ b)

⎞
⎟
⎟
⎟
⎟
⎠

+ ∑
c≠b,a

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎜
⎝

(−1)N−1
Nf

∏
k=1

[ϕc −mk + ε]

∏
r=a,b

(ϕrc − ε) (ϕrc − 3ε) ∏
d≠c,b,a

ϕcd (ϕcd + 2ε)
+ (ε→ −ε)

⎞
⎟
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎜
⎝

(−1)N
Nf

∏
k=1

[ϕc −mk + ε]

(ϕac − ε) (ϕac − 3ε) (±ϕbc + ε) ∏
d≠c,b,a

ϕcd (ϕcd + 2ε)
+ (a↔ b)

⎞
⎟
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(C.4)
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Z+−−+
ab (ϕ,m, ε) =

(−1)N−1
Nf

∏
k=1

[ϕa −mk]

ϕab (ϕab − 2ε) ∏
c≠b,a

[(ϕac − ε) (ϕac + ε)]

+

(−1)N−1
Nf

∏
k=1

[ϕb −mk + 2ε]

(ϕab − 2ε) (ϕab − 4ε) ∏
c≠b,a

[(ϕbc + ε) (ϕbc + 3ε)]

+ ∑
c≠b,a

(−1)N−12
Nf

∏
k=1

[ϕc −mk + ε]

(ϕac − ε) (ϕac − 3ε) (ϕbc + ε) (ϕbc − 3ε) ∏
d≠c,b,a

ϕcd (ϕcd + 2ε)

+ (ε→ −ε) .

(C.5)

Z−++−
ab (ϕ,m, ε) =

(−1)N−1
Nf

∏
k=1

[ϕb −mk]

ϕab (ϕab − 2ε) ∏
c≠b,a

[(ϕbc − ε) (ϕbc + ε)]

+

(−1)N−1
Nf

∏
k=1

[ϕa −mk − 2ε]

(ϕab − 2ε) (ϕab − 4ε) ∏
c≠b,a

[(ϕac − ε) (ϕac − 3ε)]

+ ∑
c≠b,a

(−1)N−12
Nf

∏
k=1

[ϕc −mk − ε]

(ϕac − ε) (ϕac + 3ε) (ϕbc + ε) (ϕbc + 3ε) ∏
d≠c,b,a

ϕcd (ϕcd − 2ε)

+ (ε→ −ε) .

(C.6)

As expected from the action of PT, these results satisfy

Z++−−
ab (ϕ,m, ε) = Z−−++

ab (ϕ,m,−ε) ,

Z+−+−
ab (ϕ,m, ε) = Z−+−+

ab (ϕ,m,−ε) ,

Z+−−+
ab (ϕ,m, ε) = Z+−−+

ab (ϕ,m,−ε) ,

Z−++−
ab (ϕ,m, ε) = Z−++−

ab (ϕ,m,−ε) .

(C.7)

In addition, the correlator (4.67) is invariant under a “charge conjugation” C which re-

verses the sign of the charge of monopole operators (and of abelian monopole variables)

and sends ε→ −ε. This symmetry manifests itself in the identities

Z++−−
ab (ϕ,m, ε) = Z−−++

ba (ϕ,m,−ε) ,

Z+−+−
ab (ϕ,m, ε) = Z−+−+

ba (ϕ,m,−ε) ,

Z+−−+
ab (ϕ,m, ε) = Z−++−

ba (ϕ,m,−ε) .

(C.8)
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All of these 6 results agree when Nf = 0,1, . . . ,2N − 2, in which case the bubbling

factor is no longer chamber dependent.

Evaluating (4.75) in each of the six chambers we find

Z++−−(ϕ,m, ε) =
N

∑
a=1

Nf

∏
k=1

[(ϕa −mk − ε) (ϕa −mk − 3ε)]

∏
b≠a

[ϕab (ϕab − 2ε)
2
(ϕab − 4ε)]

+∑
a≠b

2
Nf

∏
k=1

[(ϕa −mk − ε) (ϕb −mk − ε)]

ϕab (ϕab + 2ε)
2
(ϕab − 2ε) ∏

c≠a,b
∏
r=a,b

ϕrc(ϕrc − 2ε)
.

(C.9)

Z−−++(ϕ,m, ε) =
N

∑
a=1

Nf

∏
k=1

[(ϕa −mk + ε) (ϕa −mk + 3ε)]

∏
b≠a

[ϕab (ϕab + 2ε)
2
(ϕab + 4ε)]

+∑
a≠b

2
Nf

∏
k=1

[(ϕa −mk + ε) (ϕb −mk + ε)]

ϕab (ϕab − 2ε)
2
(ϕab + 2ε) ∏

c≠a,b
∏
r=a,b

ϕrc(ϕrc + 2ε)
.

(C.10)

Z+−+−(ϕ,m, ε) =
N

∑
a=1

Nf

∏
k=1

(ϕa −mk − ε)
2

∏
b≠a

[ϕ2
ab (ϕab − 2ε)

2
]

+∑
a≠b

Nf

∏
k=1

[(ϕa −mk − ε) (ϕb −mk + ε)]

ϕab (ϕab − 2ε)
2
(ϕab − 4ε) ∏

c≠a,b
[ϕacϕbc (ϕac − 2ε) (ϕbc + 2ε)]

+∑
a≠b

Nf

∏
k=1

[(ϕa −mk − ε) (ϕb −mk − ε)]

ϕ2
ab (ϕab ± 2ε) ∏

c≠a,b
[ϕacϕbc (ϕac − 2ε) (ϕbc − 2ε)]

.

(C.11)
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Z−+−+(ϕ,m, ε) =
N

∑
a=1

Nf

∏
k=1

(ϕa −mk + ε)
2

∏
b≠a

[ϕ2
ab (ϕab + 2ε)

2
]

+∑
a≠b

Nf

∏
k=1

[(ϕa −mk + ε) (ϕb −mk − ε)]

ϕab (ϕab + 2ε)
2
(ϕab + 4ε) ∏

c≠a,b
[ϕacϕbc (ϕac + 2ε) (ϕbc − 2ε)]

+∑
a≠b

Nf

∏
k=1

[(ϕa −mk + ε) (ϕb −mk + ε)]

ϕ2
ab (ϕab ± 2ε) ∏

c≠a,b
[ϕacϕbc (ϕac + 2ε) (ϕbc + 2ε)]

.

(C.12)

Z+−−+(ϕ,m, ε) =
N

∑
a=1

Nf

∏
k=1

(ϕa −mk ± ε)

∏
b≠a

[ϕ2
ab (ϕab ± 2ε)]

+∑
a≠b

2
Nf

∏
k=1

[(ϕa −mk − ε) (ϕb −mk + ε)]

ϕ2
ab (ϕab − 2ε) (ϕab − 4ε) ∏

c≠a,b
[ϕacϕbc (ϕac − 2ε) (ϕbc + 2ε)]

.

(C.13)

Z−++−(ϕ,m, ε) =
N

∑
a=1

Nf

∏
k=1

(ϕa −mk ± ε)

∏
b≠a

[ϕ2
ab (ϕab ± 2ε)]

+∑
a≠b

2
Nf

∏
k=1

[(ϕa −mk + ε) (ϕb −mk − ε)]

ϕ2
ab (ϕab + 2ε) (ϕab + 4ε) ∏

c≠a,b
[ϕacϕbc (ϕac + 2ε) (ϕbc − 2ε)]

.

(C.14)

These results also transform appropriately under the discrete symmetries PT and

C, which manifest themselves in identities identical to (C.7) and (C.8) with a and

b removed. We have also checked that the chamber dependence disappears when

Nf = 0,1, . . . ,2N − 2, as expected from (4.45) and the Moyal product.
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