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Abstract: As a refinement of the Swampland Distance Conjecture, we propose that a
quantum gravitational theory in an infinite distance limit of its moduli space either decom-
pactifies, or reduces to an asymptotically tensionless, weakly coupled string theory. We
support our claim by classifying, as special cases, the behaviour of M-Theory and Type
IIA string theory compactifications on Calabi-Yau three-folds at infinite distances in Kähler
moduli space.

The analysis comprises three parts: we first classify the possible infinite distance lim-
its in the classical Kähler moduli space of a Calabi-Yau three-fold. Each such limit at
finite volume is characterized by a universal fibration structure, for which the generic fiber
shrinking in the limit is either an elliptic curve, a K3 surface, or an Abelian surface.

In the second part we focus on M-Theory and investigate the nature of the towers
of asymptotically massless states that arise from branes wrapped on the shrinking fibers.
Depending on which of the three classes of fibrations are considered, we obtain decompact-
ification to F-Theory, or a theory with a unique asymptotically tensionless, weakly coupled
heterotic or Type II string, respectively. The latter probes a dual D-manifold which is in
general non-geometric. In addition to the intrinsic string excitations, towers of states from
M2-branes along non-contractible curves become light and correspond to further wrapping
and winding modes of the tensionless heterotic or Type II string.

In the third part of the analysis, we consider Type IIA string theory on Calabi-Yau
three-folds and show that quantum effects obstruct taking finite volume infinite distance
limits in the Kähler moduli space. The only possible infinite distance limit which is not
a decompactification limit involves K3-fibrations with string scale fiber volume and gives
rise to an emergent tensionless heterotic string.
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1 Introduction and summary

Investigating a physical theory at the boundaries of its moduli space oftentimes reveals
interesting insights about its dynamics. For example, in a supersymmetric theory with
gauge degrees of freedom, strong coupling regimes are typically located at finite distance
loci of the moduli space. In such regimes, either a dynamically generated scale far below
the Planck scale emerges and the physics below this scale decouples from gravity, or the
theory approaches a superconformal fixed point decoupled from gravity. Asymptotic weak
coupling regimes, on the other hand, are expected to lie at infinite distances in moduli
space. Studying the dynamics of such limits within a gravitational theory should similarly
lead to valuable information about the nature of the degrees of freedom of quantum gravity.

According to the so-called Swampland Distance Conjecture [1], infinite distance limits
in a theory of quantum gravity are necessarily accompanied by an infinite tower of asymp-
totically massless degrees of freedom. This conjecture has recently been confirmed quanti-
tatively and further discussed in various different classes of string compactifications [2–21].
Apart from being interesting by itself, the appearance of a light tower of states at infinite
distance is also linked to other recent conjectures on the nature of quantum gravity such
as [22–25]. Detailed reviews of the Swampland Programme are provided in [26, 27].

An obvious example for a tower of asymptotically massless states at infinite distance
are the Kaluza-Klein (KK) states, which become light as some of the directions in the
compactification space of a higher-dimensional theory are taken to be large such that
the total internal volume diverges (in units of the higher-dimensional Planck scale). The
importance of these KK states has been stressed in the swampland context in particular
in [1, 9, 18]. Such a decompactification limit to a higher dimensional theory leads to a
diverging Planck scale as viewed from the original theory, and indeed the dominant Kaluza-
Klein spectrum is of purely field theoretical nature. To go beyond situations dominated by
such a tower of light, field theoretical KK excitations we must, by contrast, focus on equi-
dimensional infinite distance limits leading to a gravitational theory in the same number
of effective space-time dimensions as the starting point of the trajectory in moduli space.
Only then can the dominant lowest mass states be interpreted in terms of an intrinsically
gravitational theory.
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1.1 Emergent strings

What could such a weakly coupled theory in presence of gravity be? One natural expec-
tation would be that this is a string theory and the tower of states appearing are related,
one way or another, to a weakly coupled and light fundamental string. Clearly this pat-
tern has long been familiar in ten dimensions, however more recently it has been observed
in [10] also for the most general1 weak coupling limits at infinite distance of geometric
F-Theory/heterotic compactifications to six dimensions, with N = (1, 0) supersymmetry.
Here the light modes at infinite distance turn out to be the excitation modes of a solitonic
heterotic string, which turns into a fundamental heterotic string upon passing to a weakly
coupled duality frame. A similar pattern has been found, barring possible non-perturbative
quantum obstructions, in F-Theory compactifications to four dimensions [15] with N = 1
supersymmetry. Likewise, for Type IIB string theory compactified on a K3 surface to six
dimensions, an infinite distance limit in Kähler moduli space leads to a light Type II string
furnishing a tower of particle excitations [19].

In these situations, the limits are equi-dimensional in the sense that the tower of
KK states appear parametrically at the same mass scale as the string states, and not, as
for a decompactification limit, with masses suppressed by additional powers of the large
parameter that governs the large distance limit. The interplay of the KK scale and the
mass scales associated with solitonic strings, as well as with domain walls from wrapped
branes, has recently been studied in [18] in the context of Type II compactifications on
Calabi-Yau three-folds (and their orientifolds).

A most basic characteristic of the spectrum of a weakly coupled string is that it
is much denser than a field theoretic KK spectrum, with a level-mass relation given by
M2
n ∼ nM2

string for sufficiently large n, rather than by M2
n ∼ n2M2

KK. This changes quali-
tatively the behaviour of the theory compared to a conventional decompactification limit.
A question is now if any other type of particle tower could appear at a similar parametric
mass scale (up to finite factors), but with a denser spectrum than the high-level KK states.
From experience with attempts of defining theories of quantum gravity in terms of higher-
dimensional fundamental objects different from strings, one might expect that this is not
the case. This would suggest that the KK spectrum either dominates the infinite distance
limit completely, in which case the limit is not equi-dimensional, or that there emerges a
light fundamental string.2

In this paper we will provide further support for this picture by classifying all possible
equi-dimensional infinite distance limits in the vector multiplet moduli space of M-Theory
and Type IIA string theory, compactified on a Calabi-Yau three-fold. Maybe more surpris-
ing than the very fact that in such limits Type II or heterotic strings emerge, is the way
how they are realized as solitonic objects that become light in suitable regions in moduli
space. As we will see, this hinges upon highly non-trivial geometrical properties of the

1Subject to that requirement that the volume of the internal space is kept fixed thus to avoid decom-
pactification.

2Here and in the remainder of this article the term ‘emergence’ is used in a weaker sense than in the
‘emergence proposals’ of [4–6, 8, 27], which relate the polynomial behaviour of couplings at infinite distance
in moduli space, to a tower of asymptotically light particles.
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Kähler moduli space. The uniqueness of the emergent weakly coupled strings points to an
intriguing level of consistency in the geometry as probed by M- and string theory. The
appearance of further infinite towers of particles that can be interpreted as wrapping modes
of these emerging strings, can also be independently confirmed in terms of non-vanishing
BPS invariants that figure as Fourier coefficients of certain modular forms.

Encouraged by this circumstantial evidence we make the following

Proposal 1 (String emergence at infinite distance) Any equi-dimensional infinite
distance limit in the moduli space of a d-dimensional theory of quantum gravity, reduces
to a weakly coupled string theory. In particular, there appears an infinite tower of asymp-
totically massless states which form the particle excitations of a unique weakly coupled,
asymptotically tensionless Type II or heterotic string in d dimensions.

An important point in sharpening the above conjecture from a pure effective field
theory perspective concerns the precise definition of the term equi-dimensional limit. In
the Einstein frame we can always set the value of the Planck scale to one and measure
all masses and volumes with respect to this scale. Partial decompactification occurs if
there appears a tower of asymptotically light KK states (with respect to this scale) that
is parametrically lighter than any other tower of states. In the following we take as our
working definition that a KK tower is a tower which for high values of n scales as

M2
n

M2
Pl
∼ n2M

2
KK

M2
Pl

for n→∞ . (1.1)

Clearly this is the behaviour of field theoretic KK modes associated with the mass operator
on a flat internal manifold, and at sufficiently small length scales the details of the internal
space should not matter, as far as the spectrum is concerned.

If the above proposal is true, all infinite distance limits in the classical moduli space
of a gravitational theory for which no light fundamental string degrees of freedom emerge
must be either (at least partial) decompactification limits, or be obstructed by quantum
effects. An example where quantum effects majorly affect the dynamics has been studied
already in [17].

Certainly all this is in line with general expectations based on dualities, and in partic-
ular conforms with the intuition gained in 10 dimensions [28] (famously an 11th dimension
can arise as a strong coupling decompactification limit). However, a priori it might have
been that exotic gravitational theories could arise, in analogy with the zoo of exotic strongly
coupled non-critical string and superconformal theories without gravity that arise at finite
distance loci in the moduli space. For example, one might have discovered the heterotic
string via dualities if it had not been known before. Furthermore, the conjecture could
easily fail if for instance several Type II or heterotic strings became light at the same para-
metric rate: in this case we would encounter a highly non-perturbative theory without a
clear interpretation in terms of a definite, weakly coupled string theory. That this does
not happen in the framework that we will study explicitly is a consequence of some rather
intricate uniqueness results concerning the Kähler geometry at infinite distance that we
will establish in this paper.
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While proving or disproving our conjecture more generally is beyond the scope of this
article, we will instead analyze in detail how the conjecture is realized in the vector moduli
space of M-Theory and Type IIA string compactifications on Calabi-Yau three-folds. If we
consider an equi-dimensional limit in the compactification of a higher dimensional theory,
a necessary condition is that the volume of the internal manifold, measured with respect
to the higher-dimensional Planck scale, stays finite in the limit. Otherwise, a tower of
KK modes emerges from the large extra dimensions that is parametrically leading. The
criterion of arriving at finite volume is however only necessary, not sufficient: as is well
known, towers of BPS particles arising from wrapped branes (as analysed in infinite distance
limits in [8, 12, 14]) can scale as in (1.1), and hence can mimic, and so effectively implement,
decompactification as well. We will indeed encounter this phenomenon frequently.

1.2 Summary of results

Our analysis comprises three major parts: the first step consists of a purely mathematical
classification of finite volume limits at infinite distance in the classical Kähler moduli space
of Calabi-Yau three-folds; we will denote such spaces summarily by Y . The requirement of
finite total volume may also easily be dropped, which then leads to a complete picture of
infinite distance limits (see section 3.4). As described in section 2.1, all finite volume limits
are characterized by two different types of scaling behavior for the Kähler parameters of
Y , which we call limits of J-Class A and J-Class B. Our analysis is a refinement of the
investigation of finite volume limits for Kähler three-folds put forward in [15], using sim-
ilar reasoning as previously for Kähler surfaces in [10]. Though following a very different
method, our conclusions are in agreement with the classification of infinite distance limits
(generally not of finite volume) in the Kähler moduli space of Calabi-Yau three-folds pre-
sented in ref. [14] (see also [21]), based on the analysis of infinite distance limits in complex
structure moduli space given in [8, 12].

In section 2.2 we present the main results of our geometric analysis: as summarized
in Theorem 1, all infinite distance finite volume limits are characterized by some specific
fibration structure of a given Calabi-Yau three-fold, Y . The fiber is either a genus-one
curve T 2, a K3-surface, or an Abelian surface T 4. In the limit, the respective fiber is
precisely the cycle that shrinks at the fastest rate, while the base of the fibration expands
such as to keep the overall volume finite. If the three-fold Y exhibits several topological
fibrations at the same time, we prove that the fibration type with the fastest shrinking fiber
is in fact unique. As noted already, this is crucial in order to establish an unambiguous
physical interpretation of the limits and hence forms one of our central results. The proof
of this structure is rather elaborate and presented in the two technical appendices A and B.
A schematic overview of the types of limits which can occur is given in figure 1.

After this general geometric analysis we investigate, as the second main part of the
paper, in section 3 the physics of M-Theory compactified on a three-fold Y undergoing
one of the possible types of infinite distance limits. Indeed, M-Theory probes the classical
Kähler moduli space and hence the geometry is not subject to quantum corrections.

We find that each of the three types of finite volume limits realizes one of the possible
outcomes for infinite distance finite volume limits: partial decompactification, the emer-
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Type T2 F-theory/
CY3

heterotic/
K3 x S1

Type II /
D-manif.

Type K3

Type T4

J-class A

J-class B

decomp

equi-dim

equi-dim

Figure 1. Classification of large distance finite volume limits in classical Kähler moduli space,
in terms of fibration types of Calabi-Yau three-folds, Y . Shown are also the corresponding dual
stringy geometries that emerge from M-Theory on Y in the respective limits. Thus only limits of
Type K3 and T 4 are equi-dimensional. As will be discussed later, for Type IIA strings on Y the
situation is quite different.

gence of a unique light heterotic string, or the emergence of a unique light Type II string.
Infinite volume limits, on the other hand, always imply decompactification in M-Theory.

Limits of Type T 2 are decompactification limits despite the fact that the total three-
fold volume is fixed in terms of the M-Theory scale. The reason is that a tower of M2-branes
along the torus fiber effectively acts as a KK tower that implements decompactification
from five to six dimensions. This type of infinite distance limit is identical to taking a
conventional F-Theory [29] limit, as had already been pointed out in [19] (see also [14]).

Limits of Type K3 and T 4, on the other hand, are truly equi-dimensional in the sense
of our definition. For limits of Type K3, we identify two competing towers of light particle
states sitting parametrically at the same scale as the KK tower, which is weakly suppressed
by the finite Calabi-Yau volume as measured in units of the M-Theory scale. The first tower
of particles are the excitations of a light and weakly coupled heterotic string associated
with an M5-brane wrapped around the shrinking K3 fiber. The second type of tower
arises from M2-branes wrapping curves of non-negative self-intersection in the fiber. As
we discuss, invoking general facts from heterotic/Type IIA duality, this tower of particles
can be understood as wrapping modes of a dual fundamental heterotic string on a circle.
Geometrically, the fact that M2-branes along said fibral curves give rise to an infinite tower
of states, rather than a finite number of states, is reflected by the infinitely many non-zero
Gopakumar-Vafa invariants which correspond to Fourier coefficients of certain meromorphic
forms [30–32]. In this sense, both towers manifest the emergence of an asymptotically light
heterotic string.

An analogous picture is found for limits of Type T 4. Such limits are governed by the
emergence of a light string (including its wrapping modes) that arises from an M5-brane
along the T 4 fiber. In a suitable dual weakly coupled frame, this string can be interpreted
as a Type IIB string probing a (generically non-geometric) D-manifold in the sense of [33],
with spacetime-filling 5-branes backreacting on the geometry.

– 5 –
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In section 3.4 we drop the requirement of working at finite volume and will indeed
confirm, based on our classification of finite volume limits, the expectation that all infinite
volume limits in M-Theory are pure decompactification limits.

In the third part of our analysis, presented in section 4, we investigate how quantum
effects modify the appearance of equi-dimensional limits, as compared to the classical
moduli space. To this end, we pass from M-Theory to Type IIA string theory compactified
on the three-fold Y . In Type IIA string theory, we must distinguish between limits leaving
the volume of Y finite, and limits keeping the four-dimensional Planck scale,

M2
Pl

M2
s

= 4π
g2

IIA
VY , (1.2)

finite. Since a finite volume limit at infinite distance necessarily involves the shrinking
of some cycles in Y , non-perturbative quantum geometry effects are generically expected
to play a crucial role. As we will recall in section 4.1, the only way to sensibly describe
the regime of small fiber volumes is to analyze the complex structure moduli space of
the three-fold X that is mirror-dual to Y . Key is to analytically continue the period
integrals of X from the large complex structure point to the regime of interest, where —
naively — some cycle volumes become small. We will argue that in the quantum corrected
Kähler moduli space of Type IIA string theory, no finite volume limits exist at infinite
distance. Nonetheless the Planck scale (1.2) can be kept finite by suitably co-scaling the
ten-dimensional dilaton gIIA, and the interesting question is whether such co-scalings can
lead to an equi-dimensional limit in the sense of our definition. A schematic overview of
our results is given in figure 2.

Specifically, for limits of Type T 2, the limit of vanishing fiber volume is in fact T-dual
to the large Kähler regime, as noted already in [14, 34–37]. We will see that such limits
always imply a partial decompactification to five-dimensional M-Theory on Y , irrespective
of whether (1.2) is kept finite by co-scaling gIIA or not; in the latter case, the theory is
guaranteed to decompactify even further. For limits of Type K3, on the other hand, we
observe a quantum obstruction against taking the limit of zero fiber volume, by carefully
computing the quantum volume via mirror symmetry. This can also be understood in
terms of a 1-loop correction in M-Theory, which reflects the vacuum energy of the solitonic
heterotic string that becomes light semi-classically. As a result, the total volume of Y
diverges. In fact such limits of Type K3 realize [38] the rigid, weak coupling limit of Seiberg-
Witten gauge theory [39], and we carefully analyze the towers of states that become light
with respect to the Planck scale. If gIIA is not co-scaled such as to achieve a finite Planck
scale (1.2), the KK tower is found to be parametrically lighter than all other states, and we
again run into a decompactication limit. Interestingly, this conclusion can be avoided by
forcing a finite Planck scale by co-scaling gIIA: in this case we will find a tower of massless
D0-branes, KK states and heterotic string excitations at the same parametric mass scale,
leading to an equi-dimensional quantum limit.

The quantum limit of Type T 4 behaves similar as the limit of Type T 2, in that T-
duality relates small fiber volume to the large volume regime at strong coupling. Unlike
for limits of Type T 2, such limits are automatically at finite Planck scale. Thus the theory

– 6 –
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decompact.

Type T2 M-theory ≥5d
decompact.

M-theory ≥5d
decompact.

decompact.

equ-dimensional
heterotic 4d

M-theory 5d

Type K3

Type T4

co-scale

no co-scaling

no co-scaling

co-scale

(any)

Figure 2. Basic infinite distance limits in the quantum Kähler moduli space for Type IIA string
theory on a Calabi-Yau three-fold. All further possible limits are decompactifications limits.

is found to decompactify to M-Theory, however without an additional decompactification
beyond the M-Theory limit.

We conclude in section 5 and put our findings into a broader perspective of how the
emergent string conjecture could be realized in other types of compactifications, comment-
ing in particular on mirror dual infinite distance limits in complex structure moduli space.

2 Large distance limits in the classical Kähler moduli space of Calabi-
Yau three-folds

As explained in the introduction, our goal is to study equi-dimensional infinite distance
limits in the Kähler moduli space of a Calabi-Yau three-fold Y , probed by M-Theory or
Type IIA string theory. These are infinite distance limits for which the gravitational inter-
actions of the original five- or, respectively, four-dimensional effective supergravity theory
remain dynamical. It is generally expected — and will be confirmed — that as a necessary
condition for this to be the case, the five- or four-dimensional Planck scale must stay finite
(in fundamental units of M-Theory or Type II string theory). For compactifications of
M-Theory on Y such limits leave the volume VY of Y finite.3

Our first task is therefore to characterize finite volume limits in the classical Käh-
ler moduli space of Y . The classical Kähler moduli space is the moduli space probed by
M-Theory compactified on Y , which yields a five-dimensional supergravity theory with 8
supercharges. Our results are summarized in Theorem 1 in section 2.2, and we encourage
the reader who is interested more in the physics applications rather than in the technical
details of the geometry to jump directly to this section. From a mathematical perspective,
this analysis leads to a classification of all infinite distance limit in the classical Kähler mod-
uli space (including the infinite volume limits) if we drop, in a second step, the restriction
on the total volume to remain finite.

3In the context of Type IIA string compactifications infinite volume limits can lead to a finite Planck
scale as long as the string coupling gIIA is suitably co-scaled with the Kähler moduli. We will consider such
double-scaling limits in section 4.

– 7 –
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There are two ways in which the result of the classification can be phrased. The
first is in terms of intersection numbers of the Kähler cone generators whose associated
Kähler parameters are taken to infinity. This analysis has been presented already in [15]
for general Kähler three-folds (following the same techniques applied previously in [10] to
complex Kähler surfaces.) In section 2.1 we will summarize and specialise these results to
Calabi-Yau three-folds. The outcome of this classification scheme is closely related to the
classification of infinite distance limits in the Kähler moduli space of Calabi-Yau three-
folds as obtained in [14]. We will comment on the relation of both approaches at the end
of section 2.1.

To analyze the physical implications of the infinite distance limits for M-Theory or
Type IIA string theory, it is important to reorganize the different classes of infinite distance
limits according to which type of cycles shrink at the fastest rate compared to the total
volume. We will find three qualitatively different classes of finite volume limits at infinite
distance, according to this physically relevant criterion. These limits are summarized in
Theorem 1 of section 2.2. Strikingly, in all finite volume limits at infinite distance the fiber
of a certain uniquely distinguished fibration vanishes while its base expands. This is key
to unravelling the asymptotic physics of these limits in subsequent sections.

The derivation of Theorem 1 based on the classification scheme of section 2.1 is rele-
gated to appendices A and B.

2.1 Kähler form structure of infinite distance limits

Consider a Calabi-Yau three-fold Y and parametrise its Kähler form J as

J =
∑
i∈I

T iJi , T i ≥ 0 ∀i ∈ I , (2.1)

where the divisor classes Ji, i ∈ I, generate the Kähler cone. We are interested in infinite
distance limits in the classical Kähler moduli space of Y . To take such a limit, at least one
real Kähler parameter T i must be taken to infinity. If the classical volume

VY = 1
3!

∫
Y
J3 (2.2)

stays finite, we call this an infinite distance finite volume limit. Generically, however, taking
some of the Kähler parameters to infinity will force the total volume VY to diverge. We
can parametrise the scaling of VY as

VY = µV ′Y with µ→∞ , V ′Y finite . (2.3)

Here µ denotes some combination of the Kähler parameters which scales to infinity, and
the finite volume contribution V ′Y is determined from the uniformly rescaled Kähler form

J ′ = µ−1/3J =:
∑

T ′
i
Ji . (2.4)

There are now two, fundamentally different possibilities: the first option is that the Kähler
parameters T ′i of J ′ are either finite or some of them scale to zero in the limit µ → ∞.

– 8 –
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This can at best lead to the shrinking (with respect to J ′) of contractible divisors or curves
on Y . Alternatively, at least one of the parameters T ′i scales to infinity, but in such a way
that the volume V ′Y remains finite. Obviously, in this case, V ′Y can only remain finite if
other Kähler parameters T j ′ scale to zero with a suitable inverse power. This leads to the
asymptotic shrinking of a non-contractible cycle.

The first possibility is what characterizes a finite distance limit in the moduli space
after rescaling: a contractible cycle can shrink (at finite V ′Y ) without the volume of any
other dual cycle diverging. Branes wrapping contractible cycles do generally not give rise to
a tower of weakly coupled states. The second possibility refers to an infinite distance limit
where some of the Kähler parameters T ′i scale to infinity. For explicit recent computations
of distances in moduli space with respect to the relevant Kähler metrics, see [8–11, 14, 18].

The important point to note is that it suffices to classify the behaviour of J ′ which
realizes the second, large distance limit type of behaviour. These finite volume limits
can then be superimposed with an overall rescaling of all Kähler parameters with scaling
parameter µ1/3 on top of all the scalings of the T ′i that we will describe. This brings us
back to the original Kähler form J without the extra constraint that the volume remains
finite. By including also those Kähler forms J ′ for which all T ′i are finite or scale to zero
before rescaling with µ1/3 this reproduces all types of infinite distance limits.

With this general picture in mind, we now specialise to infinite distance limits at
finite volume. To avoid clutter of notation we omit the primes on J ′ and on the Kähler
parameters T ′i, with the understanding the total volume remains finite and fixed. As
mentioned already, every infinite distance finite volume limit requires now the scaling of
least one Kähler parameter to infinity. Clearly there can be several Kähler parameters
which scale to infinity, and to compare their parametric behaviour, we will use the following
notation: given two functions A(λ) and B(λ), we write

A(λ) ∼ B(λ) (resp. A ≺ B and A - B) , (2.5)

to indicate in a certain limit for λ that

A(λ)
B(λ) → c , with 0 < c <∞ (resp. c = 0 and 0 ≤ c <∞) . (2.6)

Assume that the Kähler parameter scaling to infinity at the fastest rate scales as λ,
and define an index set Iλ ⊆ I by stating that the Kähler parameters of all Ji for i ∈ Iλ
scale at this rate λ. In other words,

T i ∼ λ ∀i ∈ Iλ , T j ≺ λ ∀j ∈ I \ Iλ . (2.7)

Here I labels all the Kähler cone generators as in (2.1). Imposing finiteness of VY im-
plies that

J3
i = 0 ∀ i ∈ Iλ , (2.8)

and similarly for all other generators whose Kähler parameter scales as T j � 1. We
furthermore split

Iλ = IAλ ∪ IBλ (2.9)
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according to the criterion that

J2
i 6= 0 if i ∈ IAλ (2.10)
J2
i = 0 if i ∈ IBλ . (2.11)

There are then two types of limits which can be denoted and distinguished as follows:4

J-class A : IAλ 6= ∅ (2.12)
J-class B : IAλ = ∅ . (2.13)

If IAλ 6= ∅ we pick an arbitrary Kähler cone generator labelled by IAλ and call it J0. If
IAλ = ∅, we pick instead an arbitrary Kähler cone generator labelled by IBλ and call it J0.
In either case, all the other Kähler parameters are of order λ or less, i.e. T j - λ for j 6= 0.
Explicitly, we can split the index set I which labels the Kähler cone generators as

I = I0 ∪ I1 ∪ I2 ∪ I3 , (2.14)

and write the most general Kähler form as

J = λJ0 +
∑
α∈I1

aαJα +
∑
µ∈I2

bµJµ +
∑
r∈I3

crJr . (2.15)

In the splitting (2.14) of the index set, I0 only labels the distinguished generator J0 and
the remaining three subsets are defined with respect to J0 in such a way that

J2
0 · Jα 6= 0 ∀α ∈ I1 , (2.16)
J2

0 · Jµ = 0 ∀µ ∈ I2 , and J0 · Jµ · Jν 6= 0 for some ν ∈ I2 , (2.17)
J2

0 · Jr = 0 ∀r ∈ I3 , and J0 · Jr · Ji = 0 for all i ∈ I2 ∪ I3 . (2.18)

The two classes of limits have the following properties.

J-class A: J3
0 = 0, but J2

0 6= 0. The index set I2 is empty and the Kähler class J
takes the form

J = λJ0 +
∑
α∈I1

aαJα +
∑
r∈I3

crJr , (2.19)

where
aα = âαλ

−2 , cr = ĉr λ
γr (γr ≤ 1) , (2.20)

with âν and ĉr finite for λ→∞. The parametric behavior (2.20) was derived in appendix D
of [15] for a general Kähler three-fold, and the results apply to Calabi-Yau three-folds as
well. The generators with indices in I3 satisfy

Jr · Js = nrs J0 · J0 , nrs ≥ 0 , (2.21)

and hence also Jr · Js · Jt = 0 for any triple (r, s, t). Note that the latter is a necessary
condition for finiteness of VY , for those cases where crcsct � 1.

4This definition is a slight refinement of the definition given in ref. [15], to whose appendix D we refer
for more details.
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J-class B: J2
0 = 0. The index sets I1 and I3 are empty and the Kähler class J takes

the form
J = λJ0 +

∑
µ∈I2

bµJµ , (2.22)

where
bµ = b̂µ λ

βµ (βµ ≤ 1) , (2.23)

with b̂µ staying finite for λ→∞. The parameters b̂µ are further constrained by demanding
that VY be finite as we discuss in detail in appendix B.

It is interesting to compare the above results to the classification of [14] of infinite
distance limits in Calabi-Yau three-folds in the large volume regime. The methodology of
both approaches is very different: while our approach, based on [10, 15], starts directly
from the Kähler form of Y , ref. [14] uses the classification of degenerations in the complex
structure moduli space of a mirror three-fold based on the theory of limiting mixed Hodge
structures [8, 12]. Ref. [14] finds three types of infinite distance limits at large Kähler
volume which are distinguished by the structure of intersection numbers of the Kähler cone
generators which scale to infinity. They are called limits of Type II, III and IV, respectively.
A priori, no distinction is made as to whether or not the total volume diverges. The limit
of Type IV of [14] always leads to a diverging volume. The cases of Type II and Type
III are closely related to our J-class B and J-class A limits, respectively, possibly upon
rescaling by the overall volume.

2.2 Finite volume limits at infinite distance as vanishing fiber limits

In this section we characterize the finite volume limits of the previous section in a way
that most directly reveals the physics, as probed by M-Theory or Type IIA string theory.
Understanding the physics requires us to analyze the cycles of Y whose volume vanishes at
the fastest rate in the infinite distance limit. These cycles give rise to light towers of BPS
states via wrapped branes, whose properties reflect the possible weakly coupled theories
that emerge at the boundary of moduli space.

Our main result, summarized in Theorem 1 below, is that the limits of J-class A and B
are only possible if Y admits some definite fibration structure and that the relevant cycles
of Y that vanish at the fastest rate lie in the fiber.

More precisely, in order to allow for a limit of J-class A or B, the Calabi-Yau three-fold
Y must be a fibration with generic fiber being either a genus-one curve T 2, a K3-surface, or
an Abelian surface, T 4. As explained in appendix A, this follows by noting that the Kähler
cone generator J0 that appears in (2.19) or (2.22) satisfies one of the three criteria of [40],
which then implies a corresponding fibration structure for Y . In a first approximation,
limits of J-class A imply that Y must admit a T 2-fibration while limits of J-class B imply
that Y admits a K3- (or T 4-) fibration if J0 ·c2(Y ) 6= 0 (or = 0). However, the fiber topology
by itself does not unambiguously distinguish what we will define as Type T 2, Type K3 and
Type T 4 limits in Theorem 1. This is because a three-fold can for instance be K3-fibered
with an additional compatible T 2-fibration, in which case the physics of the limit depends
on additional details of the scaling behavior of various cycles. The definitions in Theorem 1
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below are carefully chosen such that they give rise to three different and mutually exclusive
physical limits, which cover all possible situations compatible with finite volume limits at
infinite distance.

Using the notation (2.5), we are now ready to state our main classification theorem
as follows.

Theorem 1 Consider an infinite distance limit in the classical Kähler moduli space of a
Calabi-Yau three-fold Y , subject to the constraint that the total volume

VY = 1
3!

∫
Y
J3 (2.24)

remains finite. The Kähler form must be of J-class A or J-class B, as summarized in
section 2.1. Furthermore, the geometry of Y necessarily falls into one of the following
three classes, which are mutually exclusive and hence well-defined:

1. Type T 2

Y is a genus-one fibration5 over some two-dimensional base, B2, and the volumes of
the fiber and the base scale in the limit as

VT 2 ∼ λ−2 , VB2 ∼ λ2 , (2.25)

where the parameter λ→∞ characterizes the infinite distance limit.6

Suppose Y admits in addition a compatible K3- or T 4-fibration, i.e. suppose the base
B2 is itself a fibration over base P1

b with a generic fiber F being either a rational
curve, P1

f , or a genus-one curve, T 2
f . Then in order for the limit to lie in Type T 2,

the respective volumes scale as

VT 2 ∼ λ−2 , λ−2 ≺ VF , VP1
b
∼ λ2

VF
, λ−4 ≺ VK3/T 4 . (2.26)

2. Type K3
Y is a K3-fibration over a base P1

b , such that their volumes scale in the limit as

VK3 ∼ λ−1 , VP1
b
∼ λ , (2.27)

where λ → ∞, and the volume of every curve class C lying in the K3-fiber of self-
intersection C ·K3 C ≥ 0 scales as

VC ∼ λ−1/2 . (2.28)
5Throughout this article, our notion of a “genus-one” fibration assumes the existence of at least a k-

section σ which embeds the base as a cycle into the full space. For notational simplicity we do not distinguish
between the base and its image under this (multi-)section.

6If the limit arises from a J-class A limit, λ is the parameter appearing in (2.19). If the limit arises
from a J-class B limit, we identify λ with the parameter µ in eq. (A.2), whose relation to the parameter
appearing in (2.22) is given in (A.3).
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3. Type T 4

Y is a T 4-fibration over a base P1
b such that their volumes scale in the limit as

VT 4 ∼ λ−1 , VP1
b
∼ λ , (2.29)

where λ → ∞, and the volume of every curve class C lying in the T 4-fiber of self-
intersection C ·T 4 C ≥ 0 scales as

VC ∼ λ−1/2 . (2.30)

For each of the three classes above, the corresponding fibration with the parametrically
smallest fiber volume is unique, even when there exist multiple fibrations of the same
fiber topology.

As alluded to before, a priori an ambiguity can arise if a K3-fibration admits an
additional compatible T 2-fibration. The physics depends on whether the base P1

f of the
K3-fiber or the genus-one fiber T 2 vanishes at a faster rate. We call the fibration of Type T 2

if the T 2 fiber vanishes at the faster rate. This is taken care of by the requirement (2.26).
Indeed, the requirements (2.26) and (2.28) are mutually exclusive if the K3 fibration admits
a compatible genus-one fibration. Analogous statements hold for T 4-fibrations with a
compatible T 2-fibration, see (2.26) and (2.30). This resolves all ambiguities and ensures
that the three Types as defined in Theorem 1 are mutually exclusive.

We leave a careful derivation of the above classification to appendix A. In appendix A.1
we show that a Kähler form limit of J-class A gives rise to an infinite distance limit of Type
T 2, for which in particular the scaling behaviour (2.25) holds. In appendix A.2 we prove
that limits of J-class B imply the existence of a K3 (or T 4) fibration, and that one of the
following two situations can occur: either all fibral curves of non-negative self-intersection
scale as in (2.28) (or (2.30)), in which case the limit is of Type K3 (or T 4), respectively.
Or, in every other situation, the K3 (or T 4) fibration must admit a compatible T 2-fibration
and the scaling (2.26) occurs. This abstract structure is illustrated in a concrete example
in appendix A.3.

In appendix B we show that if Y admits several types of incompatible fibration struc-
tures, there is a unique fibration which is singled out by the fact that its volume vanishes
at the fastest rate in the infinite distance limit. The precise statements are given in Propo-
sitions 1, 2 and 3. This is pivotal for identifying the relevant physics of this limit.

Just to give an idea how non-trivial these uniqueness results are, suppose a three-fold
Y admits two different K3 (or T 4)-fibrations such that the volume of the two generic fibers
scales at the same rate λ−1 in a finite volume limit. If the limit is of J-class A, this is not
a problem because such limits are always of Type T 2, i.e. the K3-fibers in question scale
at a rate slower that twice of the rate of the vanishing genus-one fiber whose existence
is guaranteed in J-class A limits (see appendix A.1 and B.1). On the other hand, if the
limit is of J-class B, we will prove in appendix B.2 that in this case Y necessarily admits a
genus-one fibration whose fiber vanishes at a rate λ−2 or faster, i.e. the limit is again really
a limit of Type T 2. Furthermore all limits of Type T 2 from J-class B limits are unique, as
proven in appendix B.3.
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2.3 Infinite distance limits as weak coupling limits

Even before delving into a more detailed analysis of the physical implications of infinite
distance limits described in the previous section, we recall that such limits correspond to
the weak coupling regime for some of the gauge fields in a compactification of string or
M-Theory on the three-fold Y . Naively, since by definition we keep the volume finite,
gravity remains dynamical, but this statement will need to be carefully revisited in the
next section. The relation between weak coupling and infinite distance limits is a general
theme which has recently played an important role in the context of various weak gravity
conjecures [8, 10–12, 14, 15, 17–19, 21].

The following discussion applies morally equally well to the effective action of Type
IIA string theory and M-Theory on a Calabi-Yau three-fold, Y . For definiteness we phrase
the discussion in M-Theory and start from the bosonic part of the 11-dimensional effec-
tive action

S = 2π
`911

(∫
R1,10

√
−gR− 1

2

∫
R1,10

dC3 ∧ ∗dC3 + · · ·
)
, (2.31)

where the ellipses indicate the flux contribution as well as the higher curvature term, both
of which will not concern us. Upon compactifying on the three-fold Y , equipped with
some basis ωα of H1,1(Y ), the 3-form C3 decomposes into abelian gauge potentials as
C3 = `11A

α ∧ ωα + . . ., and we read off the relevant kinetic terms in the five-dimensional
effective action as

S5 =
∫
R1,4

1
2M

3
PlR ∗ 1− 2π

2

∫
R1,4

gαβF
α ∧ ∗F β + · · · . (2.32)

Here the 5d Planck mass is given as the volume of the internal manifold in units of
`11 = M−1

11 ,
M3

Pl
M3

11
= 4πVY , (2.33)

and the dimensionless quantity `11gαβ is determined as

`11 gαβ = 1
`611

∫
Y
ωα ∧ ∗ωβ (2.34)

= 3
2

∫
Y J

2 ∧ ωα
∫
Y J

2 ∧ ωβ∫
Y J

3 −
∫
Y
J ∧ ωα ∧ ωβ .

Note that the latter can be rewritten as

`11 gαβ = VαVβ
V
− Vαβ , (2.35)

where
V = 1

3!

∫
X
J3 , Vα = 1

2!

∫
Sα
J2 , Vαβ =

∫
Cαβ

J , (2.36)

denote the volume (in units of `11) of the Calabi-Yau three-fold Y , and those of the surfaces
Sα as well as the curves Cαβ . The classes of the latter are defined by

[Sα] = ωα , [Cαβ ] = ωα ∧ ωβ . (2.37)
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In order for (at least) one linear combination of the gauge fields to be weakly coupled, while
five-dimensional gravity remains dynamical, there must exist a diverging eigenvalue of the
matrix `11gαβ of gauge kinetic terms. In addition, the Planck scale, MPl, must remain
finite with respect to `11. This can only be achieved if either the divisor volume Vα or the
curve volume Vαβ (both measured with respect to `11) tends to infinity for some Sα or Cαβ .
In other words, one must reach a limiting regime in the moduli space where the volume
of a subvariety, be it a surface or a curve, scales to infinity while the total volume of the
three-fold Y stays fixed. These are precisely the limits studied in the previous section.

3 M-Theory on Calabi-Yau 3-folds in finite volume infinite distance
limits

We are now ready to analyze the physical implications of the limits in the classical Kähler
geometry of a Calabi-Yau three-fold, as studied in section 2.2. This classical geometry is
the geometry probed by M-Theory compactified on Y to d = 5 dimensions, with 8 unbroken
real supercharges (provided that Y does not have reduced holonomy, which we assume).

With the exception of our analysis in section 3.4, we will consider limits for which
the total volume of Y remains finite. Hence the Planck scale as given (2.33) is fixed, and
we obtain a theory with dynamical gravity, which at the same time is at weak coupling,
in the sense described in section 2.3. Of course a first guess would be that a weakly
coupled quantum gravitational theory should be a string theory — as otherwise one would
have found a new perturbative theory of quantum gravity. Indeed this expectation will
be confirmed: modulo an important caveat, the effective theory indeed reduces, in the
geometric large distance limit, to a theory of weakly coupled, asymptotically tensionless
strings of either heterotic type or of Type II. This is analogous to the emergence of heterotic
and Type II strings as discussed in [10, 15] and [19], respectively.

The caveat is that even when the total volume stays finite, a distinguished tower of light
modes from wrapped branes may appear that mimic a (partial) decompactification of the
theory. In such a case, the theory flows to a gravitational theory in one or several dimensions
higher, which need not be weakly coupled and hence not be a theory of light strings.

We will analyze the situation explicitly for the three types of finite volume limits at
infinite distance, as distinguished in section 2.2. Our findings can be summarized as follows:

1. In a limit of Type T 2, the five-dimensional theory of M-Theory on Y asymptotes to
a six-dimensional compactification of F-Theory on Y , i.e. the limit of Type T 2 is a
conventional F-Theory limit. In this sense, limits of Type T 2 are not equi-dimensional
limits. The light tower of modes responsible for the decompactification is the tower of
M2-branes along the T 2-fiber, as is well-known from standard F/M-Theory duality.
This will be discussed in section 3.1.

2. Limits of Type K3 are truly equi-dimensional weak coupling limits which lead to
emergent tensionless heterotic strings. As has been familiar since long [41], such
heterotic strings arise from M5-branes that wrap the small K3-fiber and give rise
to a tower of light particle excitations. Another tower of light particles arises from
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M2-branes on curves of non-negative self-intersection in the K3-fiber. Their BPS-
indices are counted by coefficients of meromorphic modular forms. These particles
arise, when viewed in the proper duality frame, from the heterotic string wrapped on
a circle. The limit is equi-dimensional in the sense that the Kaluza-Klein scale sits at
the same scale as the scale of the emergent heterotic string and the M2-brane states.
The analysis of this limit is performed in section 3.2.

3. Limits of Type T 4 are likewise equi-dimensional weak coupling limits with an emer-
gent tensionless Type II string. This string probes a dual D-manifold (in general
non-geometric), which subsumes the backreaction of certain 5-branes. In the M-
Theory picture, it arises from an M5-brane that wraps the small T 4 fiber. Its tower
of light BPS excitations is augmented by the spectrum of M2-branes wrapping fibral
curves, which can analogously be understood as modes of a wrapped Type II string
on a circle. This limit is the subject of section 3.3.

4. In section 3.4 we consider the most general infinite distance limits in the Kähler mod-
uli space of M-Theory, without the additional requirement that the volume remains
finite. This analysis shows explicitly how all such limits can be recovered from the
three types of finite volume limits of our classification, via the procedure outlined at
the beginning of section 2.1. We will confirm that all limits at infinite volume are
decompactification limits, i.e. no light strings can compete with the KK scale.

3.1 The Type T 2 limit as an F-Theory limit

In this section we explain how M-Theory compactified on a Calabi-Yau 3-fold, in a large
distance limit of Type T 2, approaches partial decompactification from five to six dimen-
sions. The resulting effective theory is described by F-Theory compactified on the base
B2 of the genus-one fibration. If the three-fold Y admits in addition a compatible K3 or
T 4-fibration with λ−4 ≺ VK3/T 4 ≺ λ−1, this theory undergoes an additional weak coupling
limit, where a tensionless Type II or heterotic string appears in six dimensions.

The analogue of this phenomenon has been pointed out already in [19] for M-Theory
compactified on a K3-surface, in a comparable finite volume limit in Kähler moduli space.
The physics of the F/M-Theory limit has also been discussed from the perspective of
infinite distance limits on Calabi-Yau 3-folds in [14]. Since the duality between M- and
F-Theory is standard and well understood in the literature, we can be brief. Our main
point is to explain under which conditions a limit at finite volume can nonetheless undergo
a partial decompactification due to the appearance of an extra, distinguished tower of
massless states.

The relevant scales for M-Theory compactified on Y , for a limit of Type T 2, are as
follows: the five-dimensional Planck mass (2.33) is by construction finite with respect to
the 11-dimensional fundamental length scale, `11 = M−1

11 . Hence as far as the spectrum of
Kaluza-Klein modes associated with the overall volume VY is concerned, one would naively
expect the limit to be equi-dimensional. That the theory nonetheless undergoes a partial
decompactification to six dimensions, is due to a tower of asymptotically massless BPS
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states from M2-branes wrapping the genus-one fiber arbitrarily many, say n, times. Their
mass is

Mn

M11
= 2πVnT 2 ∼

n

λ2 , λ→∞ , (3.1)

where λ the infinite distance scaling parameter defined in (2.25). In order for such a tower
of states to mimic the Kaluza-Klein tower associated with decompactification on a large
S1 to six dimensions, three additional conditions must be met:

1. The tower of BPS states must be charged under an asymptotically weakly coupled
abelian gauge symmetry.

This condition ensures that we can interpret the associated abelian gauge boson as a
Kaluza-Klein vector boson; that it is satisfied follows from the discussion in section 2.3.

2. The multiplicities of the states at every level n must be equal.

This is indeed the case because the curve that is wrapped n times is the T 2 fiber. In fact,
the 5d index of BPS particles that arise from M2-branes wrapping a torus fiber n times, is
given by certain Gopakumar-Vafa invariants [42, 43], and for a genus-one fibration Y these
take the form [36, 44]

NnT 2 = χ(Y ) , n ∈ Z \ {0} , (3.2)

where χ(Y ) is the Euler characteristic of Y . The resulting M2-brane spectrum hence
behaves exactly like the Kaluza-Klein spectrum associated with the circle reduction of a
six-dimensional theory to five dimensions.

3. The BPS tower from M2-branes on T 2 is parametrically leading as λ → ∞, as com-
pared to any other tower of light BPS states coupling only to a weakly coupled gauge
sector, in the sense that the mass scale of any other tower scales as λ−2+∆ for ∆ > 0.

To verify this condition, we have to discuss the two possible sources for such BPS states:
M2-branes along curves different from T 2, and light strings from M5-branes along divisors
and their potential excitations.7

Potential towers from M2-branes. We begin with the M2-brane states and assume
first that the genus-one fibration is flat. We can then choose a basis of H2(Y,Z) generated
by curves lying either entirely in the fiber, called Cf , or by curves, Cb, lying entirely in the
base, B2. Schematically:

H2(Y,Z) = 〈T 2; {Cb}; {Cf}〉 . (3.3)

As is familiar from the F-Theory literature,8 the fibral curves other than T 2 are rational
curves associated with the weight lattice of some Lie algebra. M2-branes along such curves
do not create a tower of infinitely many BPS states, but rather only a finite number of
states which are in one-to-one correspondence with a finite set of representations of the
Lie algebra. Mathematically, the reason is that given a linear combination Cw of fibral

7The supergravity KK states from curves or divisors can easily been shown to be subleading.
8See e.g. the review [45] for details on the types of fibral curves and the original literature.
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curves associated with a weight w (not including the total fiber class), the Gopakumar-
Vafa invariants for nCw vanish, NnCw = 0, if |n| > 1.

Similarly, M2-branes along curves Cb entirely in the base B2 do not create towers of
BPS particles that could compete with the states from the fiber, in a limit of Type T 2.
Of course, the base can always contain contractible curves, i.e. rational curves of self-
intersection Cb ·B2 Cb ≤ −1, which may shrink at any rate, and in particular at rate λ−2−∆

for ∆ ≥ 0. However, the BPS invariants associated with multiples of such curves vanish for
all but a finite number of wrappings, n. Thus the only potential extra tower of BPS states
can come from non-contractible curves with Cb ·B2 Cb ≥ 0. By Lemma 1 of appendix A.4,
if the volume of such a curve vanishes in a limit that keeps the volume of B2 fixed, B2 must
be a rational or genus-one fibration and the curve Cb is the generic fiber, be it P1

f or T 2
f ,

of this fibration. The point is now that by the requirement (2.26), these curves vanish at a
rate λ−2+∆ with ∆ > 0, if the limit is of Type T 2. This is the reason why we have defined
the limits of Type T 2 via (2.26) for situations where B2 admits a fibration structure: it
guarantees that the physics is that of an F-Theory limit.

Finally, let us drop the restriction that the fibration Y is flat. In this case, the dimen-
sion of the fiber can jump over points on B2 such that

Sp = π−1(p) (3.4)

is a contractible Kähler surface. In general, Sp does contain curve classes which give rise to
infinite towers of BPS states. Contracting Sp to a point is possible only at finite distance
in the moduli space [46]. As this happens, a strongly coupled superconformal fixed point
is approached [44, 47, 48] (see in particular [49] for a systematic study of such non-flat
fibrations in this context). A priori it may not be clear if the tower of BPS states obtained
in this way survive the strong coupling regime as stable, nearly massless states, but in
any case the appearance of a strongly coupled tower of states per se does not indicate a
decompactification limit as noted above.

Potential tensionless strings from M5-branes. We now analyze the nearly massless
states due to asymptotically tensionless strings that arise from M5-branes that wrap a
shrinking divisor, D. The tension of such a solitonic string is given by

T

M2
11

= 2πVD . (3.5)

Concerning the spectra of pointlike excitations of the resulting strings, not every shrinking
divisor gives rise to a tower of weakly coupled BPS states. As long as the divisor is
contractible on Y at some finite distance in the moduli space, the resulting tensionless
string is a non-critical string, and this indicates the appearance of a strongly coupled
superconformal point. An example is the type of divisors we introduced in eq. (3.4).

Towers of weakly coupled BPS excitations are expected to arise only from a tensionless
critical string. Apart from the fibral divisors Sp, the divisor class group of a genus-one
fibration Y is generated by the (multi-)sections, the exceptional divisors responsible for the
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resolution of singularities in the fiber, and the vertical divisors. Recall that the latter are
of the form

DCb = π∗Cb , Cb ∈ H2(B2) . (3.6)

For our purpose of identifying nearly massless BPS towers from asymptotically tensionless
weakly coupled strings, it suffices to focus on the last class of divisors. If Cb ·B2 Cb < 0,
the M5-brane gives rise to a non-critical string which is expected not to lead to a tower
of BPS particles relevant for our discussion. In fact, after flopping the curve Cb into the
fiber, the string is described by an M5-brane associated with a fibral divisor of the type
discussed around eq. (3.4) [44, 47]. It therefore suffices to check the vanishing rate of VDCb
for Cb ·B2 Cb ≥ 0. If such a curve vanishes on B2, no flop to a non-flat fibration is possible.
Importantly, Lemma 2 in appendix A.4 guarantees that in a limit of Type T 2, the volume
VDCb

vanishes at the rate

VDCb
∼ λ−4+∆ , with ∆ > 0 if Cb ·B2 Cb ≥ 0 , (3.7)

and therefore
T

M2
11

= 2πVDCb
∼ 1
λ4−∆ ∆ > 0 . (3.8)

The associated mass scale is parametrically subleading with respect to (3.1). We hence first
reach the 6d Kaluza-Klein scale before these strings become relevant in the effective theory.9

Nested limits in 6d. On top of this partial decompactification, the effective six-
dimensional theory may undergo a further infinite distance limit which leads to emergent
tensionless, weakly coupled strings in six dimensions. To determine when this happens, note
that in the six-dimensional theory the strings from an M5-brane along the divisors (3.6)
map to strings from D3-branes wrapping the curves Cb. The question is therefore under
which conditions the tension of these strings vanishes, as measured in the 6d frame, for
curves with Cb ·B2 Cb ≥ 0.10

To answer this, we first match the Planck scales in d = 5 and d = 6, i.e. we identify

M3
Pl,5

M3
11

=
M4

Pl,6
M4
s

, (3.9)

where Ms = `−1
s is the 10d string scale. The left is given by the Calabi-Yau volume in

the five-dimensional frame (2.33), while the right corresponds to the volume of B2 in the
six-dimensional F-Theory frame,

M4
Pl,6
M4
s

= 4πVB2,F =: 2π
∫
B2
J2
B2,F . (3.10)

9In the context of 5d N = 1 theories, ref. [50] has independently observed that a BPS string has vanishing
tension at every boundary of the extended Kähler cone, whereas for an F-Theory limit, the string tension
vanishes relative to the five-dimensional Planck scale, but remains finite relative to the six-dimensional
Planck scale.

10As recalled above, if Cb ·B2 Cb < 0, the associated string can become tensionless, however only at finite
distance in moduli space.
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The Kähler form in the six-dimensional frame is related to the pullback of Kähler form
from the base on Y via

JB2,F = V1/2
T 2 JB2 = λ−1JB2 . (3.11)

In the six-dimensional frame, the volumes in units of Ms are hence

VB2,F = λ−2 VB2 ∼ 1 , VCb,F = λ−1 VCb ∀ Cb ∈ H2(B2,Z) . (3.12)

In the six-dimensional theory, the tension of the string obtained by wrapping Cb by a
D3-brane in the limit λ→∞ is to be measured in units of `s and reads

T

M2
s

= 2πVCb,F . (3.13)

Depending on the details of the limit, we find the following pattern: suppose first that
there exists a curve Cb = C0 on B2 with C0 ·B2 C0 ≥ 0 such that in the M-Theory frame

VC0 ≺ λ =⇒ VC0,F ≺ 1 . (3.14)

This means that the volume of C0 as measured in the 6d F-Theory frame vanishes asymp-
totically, while the volume VB2,F stays finite. As explained in appendix A.4, in this case
the base B2 itself is a fibration with fiber P1

f or T 2
f , and the curve C0 is the generic fiber of

one of these two fibrations. In the first case, a D3-brane along P1
f gives rise to a tensionless,

weakly coupled heterotic string [10]. In the second situation a D3-brane on T 2
f describes a

weakly coupled tensionless Type II string whose physics will be discussed in more detail in
section 3.3. Therefore the situations in which a weakly coupled string becomes tensionless
in an infinite distance limit of Type T 2 are precisely the cases where the three-fold Y has
an extra compatible K3 or T 4-fibration and the fiber vanishes at a rate VK3/T 4 ≺ λ−1.

To summarise, in a limit of Type T 2 which is also K3 or T 4-fibered and obeys VP1
f
/T 2
f
≺

λ, M-Theory on Y is effectively described by an F-Theory compactification to six dimen-
sions, which undergoes an extra weak coupling limit where a tensionless heterotic or Type
II string appears. The condition VP1

f
/T 2
f
≺ λ is equivalent to stating that VK3/T 4 ≺ λ−1

for the K3 or T 4 fibers. For VP1
f
/T 2 % λ, or in absence of a compatible K3/T 4-fibration,

M-Theory on Y decompactifies to a six-dimensional F-Theory in a Type T 2 limit that
does not undergo any further infinite distance limit, and no weakly coupled tensionless
string appears.

3.2 The Type K3 limit and an emergent heterotic string

We will now describe the implications of taking a limit of Type K3 for M-Theory on a
suitably fibered Calabi-Yau three-fold, Y . Certainly the appearence of heterotic strings
from K3 surfaces is a classic result [41], and K3-fibrations are familiar from refs. [51–54].
However, our main point is the emergence of an asymptotically tensionless, critical heterotic
string, as a consequence of taking a truly equi-dimensional infinite distance limit. This is
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signified by two universally present types of towers of asymptotically massless BPS states.
All-in-all we have:

1. The asymptotically tensionless, weakly coupled heterotic string itself emerges in the
infinite distance limit from a single M5-brane wrapping the K3-fiber of Y . Its exci-
tations furnish a tower of asymptotically massless BPS states of mass scale

M2
n

M2
Pl
∼ n Thet

M2
Pl

= 2π nVK3
M2

11
M2

Pl
= 2πn

λ
V1/3
Y , (3.15)

where Thet denotes the tension of the heterotic solitonic string and λ is the scaling
parameter that appears in eq. (2.27).

2. M2-branes wrapping n times any distinguished curve class C0 ⊂ K3, with the prop-
erty C0 ·K3C0 > 0, give rise each to an infinite tower of asymptotically massless BPS
states at scale

M2
n

M2
Pl
∼ (2π)2n2V2

C0

M2
11

M2
Pl

= (2π)2n
2

λ
V2/3
Y . (3.16)

The BPS indices of these states are determined by the coefficients of some meromor-
phic modular form. In less generic situations, even higher-dimensional lattices of BPS
towers can become light, for which C0 then generates a one-dimensional sublattice.

3. In addition, there exists a tower of ordinary Kaluza-Klein states associated with
the scale

M2
KK

M2
Pl
∼ 1
λ

1
V4/3
Y

. (3.17)

These KK states are only suppressed by powers of the finite volume VY with respect
to the BPS towers from Point 1 and 2. Therefore, they do not signal a decompacti-
fication limit.

The first point indicates that in a limit of Type K3, one can change the duality frame to
that of a weakly coupled and asymptotically tensionless string. This explicitly realizes the
famous duality [55]

M-Theory on
K3-fibration Y

←→ Heterotic on
K̂3× S1

A

Under this duality, an M5-brane wrapping the K3-fiber of Y precisely once maps to a
fundamental heterotic string that probes some dual geometry. As we will furthermore
explain, the BPS particles from the M2-brane that wraps multiples of the distinguished
curves C0 in the K3-fiber of Y map to certain excitations of the dual heterotic string
wrapped on S1

A.
To understand this, let us first recall the well-known fact that the solitonic string

obtained by wrapping an M5-brane along a K3-surface is indeed described by a heterotic
worldsheet theory [41]. The tension of this solitonic string in units of the 11d Planck mass
is given by

Thet
M2

11
= 2πVK3 . (3.18)
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Together with (2.27) and (2.33), this indeed reproduces the parametric behaviour (3.15)
for the excitations of the heterotic sotlitonic string at level n.

Importantly, this tower of string excitations scales in the same way with λ as the
Kaluza-Klein tower, whose scaling is set by the inverse volume of the largest cycle of Y .
From the discussion in section A.2, we note that this cycle equals the base P1

b , and this
leads to

M2
KK

M2
11
∼ 1
VP1

b

∼ 1
λ
. (3.19)

It remains to explain the appearance of the second type of BPS states, as referred to
in (3.16). For this we recall some relevant facts about K3-fibrations [53, 54]: since the K3
fiber is a divisor of Y with embedding

ι : K3 ↪→ Y , (3.20)

it contains at least one algebraic curve; such K3 surfaces are called algebraic. For any such
algebraic K3, the Picard lattice

Pic(K3) = H1,1(K3) ∩H2(K3,Z) (3.21)

of algebraic curves is a lattice of signature (1, ρ − 1) with 1 ≤ ρ ≤ 20. Not all of the
homologically independent algebraic curves of K3, viewed as curves or their dual divisors
of Y , need to be homologically independent on Y . In this case one defines instead a lattice

Λ = [ι∗H2(Y,Z)]∨ , (3.22)

where by [. . .]∨ we mean the dual lattice. This is a rational lattice of signature (1, r − 1)
with r ≤ ρ.11 Upon suitably rescaling Λ, it is the lattice of algebraic curve classes of K3
which are homologically independent in Y .

In the limit where the K3-fiber shrinks, these fibral curves necessarily shrink as well.
Importantly for us, since the signature of Λ is (1, r− 1), it is furthermore guaranteed that
the K3 fiber contains a curve class C0 with C0 ·C0 > 0, i.e. there exists a one-dimensional
sublattice

Lk := {C0 |C0 · C0 = k > 0} ⊆ Λ . (3.23)

In limits of Type K3, such curves shrink at a rate as indicated in (2.28) and as derived in
appendix A.2. Together with (2.33), this establishes the scaling behaviour (3.16).

The crucial point is that given such a fibral curve class C0, one obtains a tower of BPS
states by wrapping M2-branes n times around C0 for infinitely many values of n. In fact,
it can be shown that the 5d BPS index — or Gopakumar-Vafa invariant — associated with
an M2-brane wrapping nC0 is

NnC0 6= 0 ∀n ≥ 1 , (3.24)
11One can always find a basis {D0 = J0, Dµ, DA} of H2(Y,Z) with the property that D0 · Dµ 6= 0 and

D0 ·DA = 0, where µ ∈ {1, . . . , r}. Then ηµν := D0 ·Dµ ·Dν has signature (1, r − 1).
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because C0 · C0 > 0. As will be elaborated in more detail below, (3.24) is a consequence
of the related duality between Type IIA string theory on Y and the heterotic string com-
pactified on K̂3×T 2 as studied in [30]. By comparing the quantum corrected prepotential
in the weak coupling limit of both sides, one concludes that the BPS invariants for a curve
inside the K3 fiber with class 0 < α ∈ Λ are counted by [30]

Nα = c

(
α2

2

)
. (3.25)

Here the c(m) are the Fourier coefficients of some meromorphic modular form of weight −2:

Θ(q) =
∑
m≥−1

c(m)qm . (3.26)

While the specifics of the modular form Θ(q) depends on the model Y , it is universally
true by modularity that for m ≥ −1 its Fourier coefficients c(m) are non-zero, i.e.

Nα 6= 0 for α2 ≥ −2 . (3.27)

In particular, as long the curve C0 satisfies C2
0 ≥ 0, the BPS invariants for any multiple

nC0 are guaranteed to be non-zero. This is to be contrasted with the behaviour of negative
self-intersection curves on the K3-fiber of Y , for which the BPS invariants with multiplicity
bigger than one manifestly vanish.

Note that for a generic K3 fiber, only a one-dimensional sublattice of its Picard group
gives rise to independent curve classes in Y . In this case, Lk = Λ, and hence represents the
full lattice of infinitely many asymptotically massless BPS states associated with wrapped
M2-branes in the K3-fiber. More generally, the lattice of BPS states may contain additional
towers, in particular due to curves of self-intersection zero in Λ which are not contained in
Lk as defined in (3.23).

To explain the origin of the tower of BPS states associated with the (sub-)lattice Lk, it
is necessary to scrutinize in more detail the duality with the heterotic string that underlies
eqs. (3.25) and (3.24). We split the discussion in two parts, starting first with non-generic
K3-fibrations, whose K3-fiber is itself genus-one fibered, and then generalize to more generic
fibrations. The reader not interested in the rationale behind the counting in (3.25) may
want to skip this discussion on a first reading.

3.2.1 Genus-one fibered K3

Consider first K3 fibrations whose K3 fiber admits in addition a compatible genus-one
fibration

r : T 2 → K3
↓
P1
f

(3.28)

Apart from the presumed existence of such a fibration, the following discussion is general
and not restricted to any specific model.
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Of special importance for us are the three following independent curve classes on Y

denoted respectively by

CS := P1
b , CU := P1

f + T 2 , CT := T 2 , (3.29)

where we recall from (A.18) that P1
b is the base of the K3-fibration of Y . The respective

volumes in units of `11 are given by

VCS =: S , VCU =: U , VCT =: T . (3.30)

The divisors Di dual to the curves Ci generate three universal abelian gauge symmetries,
denoted by U(1)S , U(1)T and U(1)U , respectively. In particular, the divisor DS coincides
with the K3-fiber. The corresponding gauge bosons sit in three 5d N = 1 vector multiplets,
together with the scalar fields that parametrize the volumes of the respective curve classes.

For definiteness we assume the existence of a single section for the fibration (3.28).12

Hence P1
f ·K3 T

2 = 1, or

CU ·K3 CU = 0 CT ·K3 CT = 0 , CT ·K3 CU = 1 . (3.31)

Consequently, CU and CT generate a hyperbolic sublattice,

H ⊆ Λ ⊆ Pic(K3) , (3.32)

of signature (1, 1) within the lattice Λ defined in (3.22). Depending on the specific realisa-
tion of the elliptic fibration (3.28), there may appear additional curve classes in Λ which
populate the negative definite piece of Λ. From our general discussion we know that curve
classes lying entirely in this negative-definite, model-dependent sublattice do not generate
additional towers of BPS states by themselves, but only finitely many BPS particles. With-
out loss of generality we can therefore assume that Λ = H, or else focus on the relevant
hyperbolic sublattice of Λ.

Our goal is to understand the tower of BPS states arising from wrapped M2-branes
along the fibral curve class

Ck,l = k CT + l CU with Ck,l ·K3 Ck,l = 2 k l (3.33)

for kl ≥ 0, in terms of suitable modes of the heterotic string wrapped on S1
A. To make

contact with (3.23), we note that the curve C1,1 generates a sublattice

L2 ⊂ H ⊆ Λ . (3.34)

The states associated with Ck,l hence include precisely the tower of light BPS particles
advertised as a characteristic feature of limits of Type K3 at the beginning of this section.

12Our analysis can be easily generalized to genus-one fibrations with a k-section, in which case
P1
f ·K3 T

2 = k.
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This tower of BPS states can be further characterized as follows:

1. F/M-Theory duality implies the identification

5d BPS tower of M2-brane
states on
CM2 = Ck,l ≡ k CT + l CU

←→
Heterotic string wrapped on
S1
A with wrapping number l

and KK momentum k

2. The BPS numbers of the tower of M2-branes states on Ck,l are counted as in (3.25)
with α = 2kl. In particular, this implies an infinite tower of asymptotically massless
BPS states.

The first point is a consequence of the following chain of dualities for M-Theory on a
K3-fibration Y that has a compatible T 2 fibration induced by (3.28):

Heterotic on
K̂3× S1

F

←→ F-Theory on
Y × S1

F

←→ M-Theory
on Y

←→ Heterotic on
K̂3× S1

A

Before explaining the implications of these dualities for the BPS states, let us point
out that the heterotic string compactified on K̂3 × S1

A gives rise to three universal types
of abelian gauge groups, which parallel the appearance of the abelian gauge group factors
in M-Theory reviewed above: the heterotic string on S1

A at generic radius RA gives rise to
a gauge group U(1)L × U(1)R that corresponds to the KK reduction of the 6d metric and
2-form field B2 on S1

A. A third universal gauge field is obtained by reduction of the dual of
the 10-dimensional tensor field B6 on K̂3× S1

A. Additional gauge fields correspond to the
unbroken piece of the 10d heterotic E8×E8 gauge group, whose sublattice of charged BPS
states maps to the negative-definite sublattice of Λ. As noted above, this plays no role in
our context. We henceforth assume that the only massless gauge fields on the heterotic
side are given by the three universal abelian gauge factors. They form 5d N = 1 vector
multiplets involving suitable combinations of the three independent real scalar fields, which
are associated with the volume modulus V

K̂3, the radius RA,13 and the heterotic dilaton
ghet = eφ10 , respectively.

Now, the above identification of BPS states is a special case of the more general
relation [44] between wrapped solitonic strings in F-Theory on Y × S1

F , and BPS particles
in M-Theory on Y : on the F-Theory side, consider a solitonic string obtained by wrapping a
D3-brane along a curve Cb on the base B2 of Y . Wrapping this solitonic string l times along
S1
F , with KK momentum k, yields a BPS particle that is obtained in the dual M-Theory

from wrapping an M2-brane along the curve

CM2 = l Cb + (k − l E0)T 2 . (3.35)

Here T 2 is the fiber of Y , and the offset, E0, reflects the quantized Casimir energy along
the single-wrapped string on S1

F [10]. In the present context, we specialise to the solitonic
heterotic string in F-Theory obtained by wrapping a D3-brane along the curve Cb = P1

f ,
with [10]

E0 = −1
2Cb ·B2 K̄ = −1

2P
1
f ·B2 K̄ = −1 . (3.36)

13Measured in units of the heterotic string scale, `het = M−1
het.
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Thus the curve becomes

CM2 = l (P1
f + T 2) + kT 2 ≡ l CU + k CT = Ck,l , (3.37)

which establishes the claim above.
This identification is readily checked at the level of masses. The mass of an M2-brane

wrapping the curve Ck,l on Y in units of the 5d Planck mass MPl, as computed in the
M-Theory frame, is given by

M2
k,l

M2
Pl

= (2π)2 V2
Ck,l

M2
11

M2
Pl

= (2π)2 (kT + lU)2 M2
11

M2
Pl
. (3.38)

Here the curve volumes (3.30) are measured in units of `11 = M−1
11 . A heterotic string with

wrapping number l and KK momentum k, on the other hand, has mass:

M2
k,l

M2
Pl,het

= (2π)2
(
lRA + k

RA

)2 M2
het

M2
Pl,het

. (3.39)

Here RA measures the radius of S1
A in units of `het = M−1

het, and the Planck mass as
computed in the heterotic duality frame is given by

M3
Pl,het
M3

het
= 4π

V
K̂3RA

g2
het

. (3.40)

In the limit, we identify the solitonic heterotic string that arises from an M5-brane wrapping
the K3-fiber of Y , with the fundamental heterotic string of the dual frame. This amounts
to matching their tensions as measured in units of the Planck mass via

Thet
M2

Pl
= 2πM2

het
M2

Pl,het
, (3.41)

and hence
VK3

V2/3
Y

= g
4/3
het

(V
K̂3RA)2/3 . (3.42)

Comparing now the mass formulae (3.38) and (3.39), we find in particular that

T

U
= 1
R2
A

. (3.43)

For later purposes, let us note that we can identify the U(1)KK Kaluza-Klein gauge
symmetry associated with S1

A, as well as the ‘winding U(1)w’ (under which an l-times
wrapped string has charge qw = l), with the abelian gauge groups on the M-Theory side
as follows:

U(1)KK = U(1)T , (3.44)
U(1)w = U(1)U .
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As an important check, note also that at the self-dual radius RA = 1, the left-moving U(1)L
of the heterotic string enhances to SU(2)L. On the M-Theory side we therefore expect a
massless BPS particle that represents the W-boson. Indeed, for T = U the holomorphic
curve C(1,−1) = U − T = P̂1

f approaches zero volume, and the expected massless W-boson
is furnished by an M2-brane wrapping this curve.

The final task is to understand the counting of the BPS states, and in particular to
prove that the states associated with Ck,l generally give rise to an infinite tower of states.
From M-Theory/F-Theory duality, we know that the Gopakumar-Vafa invariants counting
the BPS states along the curve Ck,l are encoded in the elliptic genus of the wrapped
heterotic string. This is reflected by the fact that the meromorphic modular form, which
also characterizes the 1-loop quantum corrections to the prepotential for the heterotic
compacitifcation on K̂3× S1

A, has the following infinite expansion [30, 56]

Θ(q) = 2E4(q)E6(q)
η24(q) = −2

q
+ 480 + . . . =:

∑
n≥−1,n∈Z

c(n)qn . (3.45)

This coincides precisely with the elliptic genus [57] of the heterotic string on any K3 surface
(and in particular on the dual surface we denoted by K̂3). In particular the BPS invariants
for the curve Ck,l are given by

NCk,l = c

(1
2C

2
k,l

)
= c(kl) . (3.46)

It has been verified, e.g. in [56, 58], for explicit realizations of K3-fibrations Y of the
type under consideration, that these coefficients indeed correctly reproduce the genus-zero
Gopakumar-Vafa invariants associated with the curve classes Ck,l.

To summarize, we have established the interpretation of the lattice L2 in (3.34) in
terms of BPS excitations due to the wrapped heterotic string with equal quanta of winding
and momentum: k = l. As noted, this is only a sublattice of the tower of BPS states
which become asymptotically massless as the K3-fiber shrinks: for each Ck,l with k l ≥ −1,
there exists such a BPS state. Specifically there is an infinite tower of states with l = 0
for arbitrary k. These states represent the k-th Kaluza-Klein states associated with the
massless spectrum of the heterotic string on K̂3. In agreement with this, the BPS index
NCk,0 = c(0) coincides with the Euler characteristic of the Calabi-Yau Y .

3.2.2 One-parameter K3

For the previously discussed class of K3-fibrations, which have an extra, compatible genus-
one fibration, the infinite tower of BPS states that arise from wrapped M2-branes is encoded
in the hyperbolic sublattice (3.32) of the full BPS lattice, Λ. As discussed around (3.23), for
more generic K3-fibrations the lattice responsible for the BPS tower can be even smaller,
and in the extreme case is solely given solely by the one-dimensional sublattice

Λ = Lk , (3.47)

which is generated by some element f with f2 = k. Our claim is that the resulting tower
of BPS states is still related to a wrapped heterotic string.
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To understand this, we start from an elliptically fibered K3-fibration as discussed
above, and go to the point of self-dual radius RA = 1 of the heterotic dual, where U(1)L
enhances to SU(2)L. As explained in [55] in the context of Type IIA — heterotic duality
in four dimensions, one can now switch on an instanton background described by a vector
bundle on K̂3 with structure group SU(2)L. This breaks the SU(2)L gauge group and
reduces the rank of the gauge group by one. In the present 5d context it furthermore
freezes RA = 1 so that we cannot take a 6d limit any longer.

Our point is that there still exists a tower of 5d BPS particles obtained by wrapping
the fundamental heterotic string on S1

A, however with mutually locked momentum and
winding numbers. Indeed, the Cartan U(1)L of SU(2)L is given by the linear combination

U(1)L = U(1)KK −U(1)w ≡ U(1)T −U(1)U . (3.48)

This follows, for instance, from our identification of the SU(2)L W-boson, which carries
U(1)L charge qL = 2, with the BPS state with charges qU = 1 and qT = −1 on the
M-Theory side. Breaking SU(2)L and thus U(1)L by a gauge background therefore breaks

U(1)KK ×U(1)w −→ U(1)+ = 1
2(U(1)KK + U(1)w) . (3.49)

This leaves only states with charge qw = qKK in the spectrum, i.e. states with equal
momentum and winding numbers (we normalize here U(1)+ charge lattice such that the
minimal charge, corresponding to qKK = qw = 1, is q+ = 1).

As for the counterpart of the gauge symmetry breaking on the M-Theory side, note
that only formal multiples of the curve 1

2C1,1 can be realized geometrically. The important
factor of 1

2 reflects the correct normalization of U(1)+ charge lattice, which translates into
integrality conditions on the curve classes. One can think of this as the result of a topology
change from the elliptically fibered Calabi-Yau Y to a new K3-fibration, denoted by Ŷ ,
due to an extra monodromy action on the fibral curve classes CU and CT ,

Y
SU(2)L−−−−−−−→

background
Ŷ . (3.50)

At the self-dual point T = U on Y , the volumes of CU and CT are equal and we can
therefore envisage a monodromy action exchanging CU and CT along closed paths on P1

b .
The result of such a monodromy would be to project out all curve classes Ck,l with k 6= l,
keeping only integer multiples of the properly normalised class 1

2C1,1 with 1
2C1,1 · 12C1,1 = 1

2 .
Let us denote the curve corresponding to 1

2C1,1 by C0. This relates to a BPS sublattice

L1/2 ⊆ Λ (3.51)

pertaining to the new Calabi-Yau, Ŷ .
The tower of M2-branes wrapping the fibral curves kC0, for k ∈ Z, within Ŷ , there-

fore corresponds to a wrapped heterotic string with wrapping number and Kaluza-Klein
momentum k along the circle S1

A, at fixed self-dual radius RA = 1, after switching on an
SU(2)L bundle on the dual heterotic K̂3. The BPS numbers associated with this tower can
again be read off from the quantum corrected prepotential of the heterotic theory. Even
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without resorting to an explicit realisation of the geometry, modularity guarantees the
existence of a tower of BPS states because the BPS invariants for k ≥ 1 are non-vanishing.

As a concrete example, we consider the Calabi-Yau 3-fold Ŷ = P5
1,1,2,2,6[12], which

has been studied in great detail in the literature beginning with [59, 60]. The 3-fold is a
K3-fibration over base P1

b , which spans the Mori cone along with a rational curve C0 := P1
f

in the K3-fiber, ie.,
M(Ŷ ) = 〈P1

b ,P1
f 〉 . (3.52)

The dual Kähler cone generators JS and JT , defined as

JS · P1
b = 1 JS · P1

f = 0 (3.53)
JT · P1

b = 0 JT · P1
f = 1 , (3.54)

have the following triple intersection numbers

J3
T = 4 , J2

TJS = 2 , J2
SJT = 0 , J3

S = 0 . (3.55)

Note in particular that JS is the class of the K3 fiber of Ŷ . If we parametrise the classical
Kähler form as

J = TJT + SJS , (3.56)
the curve volumes in units of the string length are given by

VP1
b

= S , VP1
f

= T . (3.57)

Classically the limit

S = λ , T = a√
λ
, λ→∞ , a finite , (3.58)

realizes a limit of J-class B with the property that asymptotically

VY →
1
3a

2 , VK3 = a2

λ
→ 0 , VP1

b
= λ→∞ , VP1

f
= a√

λ
→ 0 . (3.59)

This is indeed the characteristic behaviour for a limit of Type K3.
Now, the lattice Λ as defined in (3.22), coincides with the lattice L1/2. The associated

heterotic prepotential was computed in [56]. The BPS numbers are encoded in a meromor-
phic modular form with respect to the modular subgroup Γ0(4), whose expansion reads

Θ(q) = 2E4(q)Ĝ6(τ)
η24(q) = 2

q
− 252− 2496q1/4 − 223752q − 725504q5/4 + . . . (3.60)

=
∑

n∈Z∪ 1
4Z

c(n)qn . (3.61)

For the definition of the meromorphic modular form Ĝ6(τ) we refer to [56]. The BPS
numbers for the curve class k C0, as predicted by the duality with the wrapped heterotic
string, then follow as

NkC0 = c
(
k2/4

)
. (3.62)

These indeed match [56] the Gopakumar-Vafa invariants on Ŷ = P5
1,1,2,2,6[12] as computed

in [31, 59, 60]. Further examples of K3-fibrations with a rank one lattice Λ and their BPS
numbers have been studied in [58].
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3.3 Limits of Type T 4 and Type IIB theory on D-manifolds

For the remaining type of infinite distance limits, as classified in section 2.2, the shrinking
fiber is an Abelian surface, i.e. an algebraic torus of complex dimension 2. Topologically
this is the same as a real 4-torus, T 4 ' S1 × S1 × S1 × S1. Any product of two elliptic
curves is an obvious example. However, a generic Abelian surface is not of this simple kind
and indeed Calabi-Yau three-folds can admit more general Abelian surface fibrations than
direct products of elliptic curves.

Infinite distance limits of Type T 4 in M-Theory are again equi-dimensional and form
in some sense the middle ground between limits of Type T 2 and Type K3, by sharing
properties with each of them. In particular they follow the pattern of the limits of Type
K3 studied in the previous section. That is, they exhibit asymptotically massless BPS
towers whose structure and mass scales exactly parallel the three types of states and mass
scaling behaviour listed in (3.15), (3.16) and (3.17). The main difference is in the nature of
the string described by the wrapped, asymptotically tensionless M5-brane, and the theory
to which the M-Theory is dual in this limit. In fact, an M5-brane wrapping a shrinking
Abelian surface fiber gives rise to a weakly coupled, asymptotically tensionless Type II
string, rather than to a heterotic string as in (3.16). A first hint comes from the duality

Heterotic on T 4 ←→ Type IIA on K3 ,

by which the heterotic NS5-brane wrapped on T 4 leads to a solitonic IIA string. In the
Horava-Witten picture of the heterotic string, the heterotic NS5-brane turns into an M5-
brane, which leads to our claim.

In the limit of vanishing fiber volume, M-Theory on an Abelian surface fibration Y

therefore reduces to Type II string theory compactified on some dual background. This
raises the question as to what the nature of this background is. In order to preserve the same
amount of 8 real supercharges, the dual fundamental string cannot probe a completely flat
geometry, rather than a geometry equipped with suitable extra defects. As we will argue,
the duality is of the form

M-Theory on
Abelian surface fibration Y

←→ Type IIB theory
Z × S1

A ,

where Z is a D-manifold in the sense of [33]. The Type IIB background is in general a non-
geometric background as will be explained at the end of this section. The scalings (2.29)
and (2.30) in the infinite distance limit of M-Theory translate into

VZ ∼ λ2 , gIIB ∼ λ , RA ∼ 1 (3.63)

of the dual, five-dimensional Type IIB theory.
As a consequence of this duality, we can understand the origin of the BPS tower arising

from wrapped M2 branes as the analogue of the tower for K3 as characterized in (3.15):
now this tower is due to wrapped Type IIB strings with some extra KK momenta along
S1
A. To describe this tower more quantitatively, we must determine the lattice

Λ = [ι∗H2(Y,Z)]∨ , (3.64)

– 30 –



J
H
E
P
0
2
(
2
0
2
2
)
1
9
0

where ι : S → Y denotes the embedding of the Abelian surface fiber into Y , and again
identify curves of non-negative self-intersection within Λ.

In the sequel we will first assume that the Abelian surface is a product of two elliptic
curves. In this case, the lattice Λ is the hyperbolic lattice Λ = H, and hence there exists
a 2-dimensional lattice of BPS states giving rise to a tower of light particles from wrapped
M2 branes. This is very similar in spirit to a elliptically fibered K3-surface, as discussed in
the previous section. For more generic Abelian surface fibrations, the lattice of BPS states
is only one-dimensional, and we will briefly discuss these at the end of the next section.

3.3.1 T 4 = E1 × E2: Schoen manifold

As laid out above, let us assume for now that the Abelian surface fiber is a product of two
elliptic curves, i.e. there exists a fibration of the form

π : S ' E1 × E2 → Y

↓ (3.65)
P1
b

In order for the three-fold Y to exhibit genuine SU(3) holonomy, both elliptic curves must
be non-trivially fibered over P1

b . Here, as in the rest of this article, we are only interested
in smooth such three-folds.

Note that these can also be viewed as a fiber product,

Ỹ = B1 ×P1
b
B2 , (3.66)

of two smooth “relatively minimal” rational elliptic surfaces B1 and B2, or, in the presence of
singularities, as a suitable blowup thereof. These go by the name of Schoen manifolds [61].
Recall that a “relatively minimal” rational elliptic surface can be obtained from P2 by
blowing up nine points in suitably non-generic positions, and that it is called “relatively
minimal” because the elliptic fiber contains no (−1) curves. We will refer to such surfaces
informally as dP9 (“del Pezzo-nine”) surfaces.

One can equivalently view the fibration Y , as defined in (3.65), as an elliptic fibration
over the rational elliptic surfaces Bi in two different ways,

πi : Ei → Y

↓
ρi : Ej → Bi (3.67)

↓
P1
b

for (i, j) = (1, 2) or (2, 1). For example, the discriminant locus of the elliptic fibration π1
is then in the class

∆1 = 12 K̄B1 = 12 E2 , (3.68)

where we used that the anti-canonical divisor of a dP9 surface equals its elliptic fiber, and
similarly for the fibration π2. As is manifest in the representation given in (3.67), each Bi,
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i = 1, 2, is an elliptic fibration over P1
b , with generic fibers Ej , j = 2, 1, respectively. The

generic fibers of Bi degenerate into Kodaira fibers over a set of points S(i) = ∪i p(i)
α on P1

b .
For Kodaira fibers different from a nodal (Kodaira type I1) or cuspidal (Kodaira type II)
curve, this means that the fiber splits into a chain of intersecting (−2) curves.

As described in detail in [61], if ∆1 is a union of non-degenerate fibers of B1, the total
Euler characteristic vanishes, χ(Y ) = 0. In this case

∆1 =
12∑
a=1

ρ−1
1 (Qa) , Qa /∈ S(1) , (3.69)

with the understanding that some points Qa can be the same. If ∆1 contains also some of
the degenerate fibers of B1, then χ(Y ) 6= 0.

After this preparation, we now turn to our goal of analyzing the infinite distance limit
of Type T 4 for the direct product fibration Y given by (3.65). The limit corresponds
to taking

VP1
b
∼ λ , VS ∼

1
λ

λ→∞ , (3.70)

and we impose in addition that both elliptic curves E1 and E2 scale in the same way as

VE1 ∼ λ−1/2 , VE2 ∼ λ−1/2 . (3.71)

The latter condition is required from the classification (2.30), and ensures that the limit is
genuinely different from the limit of Type T 2.

Our idea is to understand the physics of this limit by first considering the more generic,
asymmetric limit (3.70) in such a way that

VE1 ∼ λ−
1
2−x , VE2 ∼ λ−

1
2 +x , x > 0 , (3.72)

rather than as in (3.71), and then taking x → 0 in a second step. Due to the temporary
asymmetric scaling, (3.72) then realizes a limit of Type T 2, which takes us to F-Theory on
an elliptic fibration with projection π1 and base B1 as in (3.67). As discussed around (3.12),
to compute the volumes in the 6d F-Theory frame, we rescale the Kähler form on B1 by
scaling out the factor of V−1/2

E1
= λ1/4+x/2 from the M-Theory frame volumes. The volume

of the base curve C in the F-Theory frame then becomes

VC,F = λ−
1
4−

x
2 VC , (3.73)

i.e.
VE2,F = 1

µ
→ 0 , VP1

b
,F = µ→∞ , µ = λ

3
4−

x
2 . (3.74)

For sufficiently small x > 0, we thus have arrived at a six-dimensional compactification
of F-Theory on a base B1, which by itself is elliptically fibered; the volume of the generic
fiber E2, as measured in the six-dimensional frame, vanishes as VE2,F = 1

µ → 0, such that
the total volume of B1 stays finite. As µ→∞ a tensionless string emerges from a D3-brane
wrapping a generic elliptic fiber E2. This situation is very similar to the kind of infinite
distance limits studied for six-dimensional F-Theory in [10], the difference being that here
an elliptic fiber rather than a rational fiber of the F-Theory base asymptotes to zero size
at finite base volume (as measured in the F-Theory frame).14

14See appendix A.4 for a summary of infinite distance limits for six-dimensional F-Theory.
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As we will argue, the asymptotically tensionless string is a Type II string prob-
ing a rather non-trivial background. We first carefully analyze the consequences of the
limit (3.74) in the six-dimensional F-Theory regime. In particular, we will discuss how
certain BPS invariants on Y reflect the elliptic genus of a Type II string on a highly non-
perturbative and in general non-geometric background. We then consider the implications
for the symmetric limit of the form (3.71), which is of our actual main interest.

Limits of Type T 2. For the six-dimensional F-Theory, it is well-known (see e.g. [45]
for a review) that the discriminant locus on B1 is wrapped by 7-branes. For χ(Y ) = 0,
we have characterized the discriminant in (3.69). This means that the 7-branes wrap 12
copies of the generic elliptic fiber E2 of B1. For χ(Y ) 6= 0, on the other hand, there are now
7-branes also wrapping some of the degenerate fibers of B1, i.e. that there are 7-branes on
curves which either self-intersect (as in the case of Kodaira fibers of Type II or Type I1),
or on chains of mutually intersecting (-2) curves.

We focus now on the solitonic string that arises from wrapping a D3-brane on E2. By
the same arguments as in [19], this string is a Type IIB string which in the limit (3.74)
becomes tensionless and weakly coupled. Asymptotically it takes the role of a fundamental
Type IIB string probing a highly non-perturbative, dual six-dimensional background, which
we now describe.

The non-perturbative nature of this dual background can be inferred already from the
fact that the gauge theory on the 7-branes becomes strongly coupled in the limit (3.74)
because the inverse gauge coupling is proportional to VE2,F. Its physics is studied easiest
by performing two T-dualities along the elliptic fiber E2 such as to enter the large volume
regime. Taking into account the effect of T-duality on the Type IIB dilaton, we arrive at
Type IIB string theory, on a background where there are certain defects localised on the
base B1. This applies to the regime

V̂E2,F = µ→∞ , VP1
b
,F = µ→∞ , gIIB = µ g

(0)
IIB , (3.75)

where g(0)
IIB is a reference value for the string coupling prior to T-duality.15 Note that

the six-dimensional Planck scale stays invariant under T-duality, as a consequence of the
co-scaling of gIIB. T-duality furthermore maps

D3 on E2

(p,q) 7-brane on ρ−1
1 (Qa) (Qa /∈ S(1))

−→
unwrapped D1 string
(p,q) 5-branes on ∑12

a=1Qa

The requirement that Qa /∈ S(1) in the second line indicates that this straightforward
T-duality rule can a priori only be applied to the 7-branes along copies of the generic,
non-degenerate fiber, while the fate of 7-branes wrapping degenerate fibers is less obvious.
We will argue that the degenerate fibers map to certain defects on Z after (3.87). We hence
end up with a 6d N = (1, 0) supersymmetric compactification of Type IIB string theory on
a D-manifold, in the sense of [33], obtained by taking into account the backreaction of 5-
branes (or more general defects) at 12 points on B1. For clarity we refer to this D-manifold

15Due to the variation of the axio-dilaton along B1 in F-Theory this can be thought of as an asymptotic
value away from the 7-brane positions, which can be taken to be small.
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as Z, to distinguish it from the dP9 surface B1. The tensionless solitonic string from the
D3-brane along E2 has turned into the D1-string probing this dual background.

There are two types of asymptotically massless BPS towers in the limit (3.75): as the
D1-string becomes light, it takes over the role of the fundamental string of tension

TD1
M2
s

= 2π
gIIB

∼ 1
µ
, (3.76)

and hence gives rise to a tower of light particle excitations of mass M2/M2
s ∼ 1/µ. Alter-

natively we can perform an S-duality transformation, taking us to weakly coupled string
theory with an asymptotically tensionless, fundamental F1-string. This F1-string probes
the D-manifold obtained from Z by dualising the (p, q)-5-branes into (q, p)-5-branes. Either
way, the string excitation scale coincides with the mass scale of the Kaluza-Klein tower,

M2

M2
s

∼ 1
VP1

b
,F
∼ 1
µ
. (3.77)

Therefore the theory remains effectively six-dimensional, in the sense that the tower of KK
states is locked to the tower of string excitations and so cannot become dense independently.
This is precisely like for the limits considered in [10] and [19].

Before turning to the five-dimensional limit (3.71) of genuine Type T 4 we are actually
interested in, we like to point out that non-trivial information about the nature of the
light D1-string probing the D-manifold Z is encoded in its elliptic genus. More precisely,
we can relate the elliptic genus of the solitonic string from a D3-brane on E2 to suitable
BPS invariants on the Schoen three-fold Y . This works analogously as in the discussion of
the heterotic string in section 3.2: according to the general logic of [44], the modes of the
solitonic string with KK momentum k and winding number l along the M-Theory circle
map to M2-branes in M-Theory wrapped CM2 on Y given by

CM2 = l Cb + (k − l E0)T 2 = lE2 + kE1 . (3.78)

Recall also the discussion around (3.35). Indeed, Cb = E2 is the curve on the base of
the elliptic fibration Y wrapped by the D3-brane that produces the string, and the role
of the elliptic fiber T 2 of Y is played by E1. Note that the elliptic curves E1 and E2 have
intersection numbers

E1 ·S E1 = 0 , E2 ·S E2 = 0 , E1 ·S E2 = 1 , (3.79)

and hence generate a 2-dimensional hyperbolic lattice H, in analogy with what we found
for the elliptic K3-fibration. Furthermore, the vacuum energy of the string is

E0 = 1
2Cb · K̄B1 = 1

2E2 · E2 = 0 . (3.80)

This is as expected for a Type II string. Applying the same reasoning as in [10, 37, 62–68]
to the single-wrapped Type II string, the genus-zero Gopakumar-Vafa invariants of CM2
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are to be identified with the Fourier coefficients of the elliptic genus of the solitonic string,
ie., of

Zell(τ) = TrRR(−1)FF 2qHL q̄HR =
∞∑
n=0

ck q
k . (3.81)

Here q ≡ e2πiτ , where τ corresponds to the modular parameter of the torus which is now
interpreted as the world-sheet of the string.

It is well-known that for the perturbative heterotic string, Zell transforms as a modular
form of weight -2 [57], while for the Type II string its weight vanishes. Its precise relation
to the genus-zero Gopkumar-Vafa invariants of Y is

ck = NE1+kE2 . (3.82)

This is rooted [10] in the more general correspondence between the full topological string
partition function on Y and the elliptic genus of solitonic strings in F-Theory, as studied
extensively in the literature [37, 62–68]. On the other hand, it is clear that in absence of
further refinements, the elliptic genus of the Type II string can only be a constant as this
is the only modular form of weight zero, i.e.

Zell(τ) = c0 = NE2 . (3.83)

Consistency with (3.82) then requires that

NE2+kE1 = 0 , ∀ k 6= 0 . (3.84)

By symmetry, we must have that also NE1+kE2 = 0 for k 6= 0. Since E2 can be viewed as
the elliptic fiber of the elliptic fibration π2 : Y → B2 in (3.67), we conclude that

Zell(τ) = χ(Y ) . (3.85)

Here we used the fact, invoked already in (3.2), that the BPS invariants of a generic elliptic
fiber equal the Euler characteristic of the Calabi-Yau 3-fold. More precisely

NnE1 = NnE2 = χ(Y ) . (3.86)

For χ(Y ) = 0, these assertions are in agreement with the result of [69] that the BPS
invariants for the curves in the lattice H spanned by E1 and E2 vanish. It would be
interesting to verify the validity of eq. (3.84) also for explicit examples of Schoen three-
folds with χ(Y ) 6= 0.

The vanishing of the elliptic genus for χ(Y ) = 0 traces back to the absence of field
theoretic chiral anomalies [57] of the six-dimensional N = (1, 0) supergravity theory. From
the space-time perspective, the vanishing of all BPS invariants in H signals that the pre-
potential of Type IIA string theory on a Schoen threefold, with χ(Y ) = 0, only receives
instanton corrections from sectional curves or curves related to these by a flop, which lie in
an E8 lattice [69]. This in turn reflects the underlying structure of spontaneously broken
N = 4 spacetime supersymmetry for compactifications on 3-folds with χ(Y ) = 0 [70].
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The degeneration of the fiber E2 into chains of intersecting (-2) curves (whenever B1
contains singular Kodaira fibers other than type I1 or II) invites an intriguing observation:
a D3-brane wrapping a (-2) curve is known to lead to a non-critical string, often referred
to as an M-string [62]. Thus, as a consequence of the splitting in geometry, the funda-
mental Type II string, when approaching such a degenerate fiber, must split into a pair of
interacting M-strings; schematically

M + M→ Type II . (3.87)

If the degenerate fiber is not wrapped by 7-branes (as can happen already if χ(Y ) =
0), the non-critical string is literally an M-string, while more generally it couples to the
enhanced gauge theory on the 7-branes. Evidently, these considerations parallel the known
relation [71] between the non-critical E-string and the heterotic string: geometrically, an
analogous splitting of the form E + E → H occurs when the generic fiber of a blowup of
a Hirzebruch surface (giving rise to a heterotic string) degenerates into two (-1) curves,
each associated with an E-string, in F-Theory. From the perspective of the heterotic dual,
the degeneration of the Hirzebruch fiber is equivalent to the presence of NS5-branes on the
dual K3-surface probed by the heterotic string. This reflects the appearance of E-strings
spanned between M5-branes and the E8-walls in Horava-Witten theory.

It is tempting to speculate that a similar mechanism is at work for the Type II strings
probing the background Z. In particular, the reducible degenerate fibers of B1 should be
dual to pointlike defects on Z, at which the Type II string splits into non-critical M-strings
(or their generalisation in presence of 7-branes along the degenerate fibers). It would be
interesting to make this more concrete in future work.

Limits of Type T 4. So far we have focused on M-Theory on an T 2×T 2-fibered threefold,
Y , in the limit (3.72) of Type T 2. If we insist instead on the restricted, symmetric scaling
as defined in (3.71), which exibits a more genuine limit of a shrinking Abelian surface,
the Kaluza-Klein tower from the circle reduction of F- to M-Theory is no longer dominant
over the tower of string excitations from the M5-brane. Rather it sits exactly at the same
mass scale

M

M11
∼ 1√

λ
, (3.88)

as measured with respect to the fundamental scale of M-Theory. Indeed, recall that the
KK excitations associated with the F-Theory limit arise from M2-branes wrapping the
elliptic fiber E1. This means that in this degenerate limit, the theory stays effectively
five-dimensional, similarly to what happens in limits of K3-fibered type. M-Theory on Y

in the limit (3.70), (3.71) is therefore dually described by an effectively five-dimensional
compactification of Type IIB string theory on the D-manifold Z × S1

A, where

RA ∼ 1 , VE2 ∼ λ , VP1
b
∼ λ→∞ , gIIB = λ g

(0)
IIB . (3.89)

Here all volumes are measured with respect to `11, but since the Planck scale is finite,

M3
Pl

M3
11
∼ VZ
g2

IIB
∼ 1 , (3.90)
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this is parametrically the same as measuring all volumes with respect to the five-dimensional
Planck length. This leads to our claim (3.63).

In the five-dimensional theory there now appear three towers of BPS states at the
same scale 1/

√
λ (with respect to the Planck mass): in addition to the tensionless string

excitations and the Kaluza-Klein states, these include the wrapping modes of the light
Type IIB D1-string around S1

A. These are precisely the modes associated with M2-branes
on the family of curves (3.78).

For χ(Y ) 6= 0, the BPS index for M2-branes along multiples of E1 and of E2 is manifestly
non-vanishing, while for χ(Y ) = 0 it is zero. Note, however, that in general the vanishing
of a BPS index for a curve class need not mean that there are no BPS states from wrapped
M2-branes, but rather that only the 5d index computed by the Gopakumar-Vafa invariants
vanishes. After all, from the dual Type IIB picture it is clear that a tower of 5d BPS states
arises from wrapped Type IIB strings, with increasing quanta of KK momenta along S1

A.
What (3.86) shows is merely that the 5d BPS index as such is too coarse to resolve their
degeneracy due to the bose-fermi cancellation alluded to above.

3.3.2 General Abelian surface fibration

We conclude this section with some more tentative remarks concerning the Type II string
theory duals of general Abelian surface fibrations, whose generic fiber is not of the product
form E1×E2. To unravel the physics of such configurations, we will follow the same heuristic
reasoning as in section 3.2, where we interpolated between K3-fibrations with a compatible
elliptic fibration and more general K3-fibrations: now we will interpolate between fibers of
direct product type and more generic Abelian surface fibers.

Starting from an E1 × E2-fibration with χ(Y ) = 0, as investigated in the previous
section, we approach the point in moduli space where

VE1 = VE2 . (3.91)

In analogy with the discussion in section 3.2, where we considered K3-fbrations and their
dual heterotic geometries, this corresponds in the dual Type IIB theory on Z × S1

A to a
circle at self-dual radius

RA = 1 . (3.92)

Recall that for the heterotic string on K̂3 × S1
A, this point exhibits a non-abelian gauge

enhancement U(1)L → SU(2)L, for one of the two abelian gauge symmetries associated
with the heterotic string on S1

A. On the M-Theory side this enhancement is reflected by
the shrinking of a rational curve P1

f inside the K3-fiber of Y .
In the present situation, no such gauge enhancement occurs: on the M-Theory side,

the Abelian surface fiber does not contain a rational curve that shrinks at the self-dual
point (3.92). Correspondingly, for a Type II fundamental string on Z × S1

A, there cannot
occur any non-abelian gauge group enhancement at RA = 1. Instead, the symmetry of
the theory enhances by a Z2-valued involution, I2, which exchanges the KK and winding
modes of the Type IIB string along S1

A, or more precisely the left and right-moving sectors
of the string world-sheet. We can therefore mod out the theory by this stringy symmetry,
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which leads to Type IIB theory on a non-geometric background of the form Z × S1
A/I2.

The effect is to break the abelian gauge symmetries realized in the left- and right-moving
sectors to U(1)L × U(1)R → U(1)+ = 1

2(U(1)L + U(1)R), and hence to reduce the number
of vector multiplets by one.

In the M-Theory frame, the Z2 symmetry corresponds to an exchange symmetry be-
tween E1 and E2. We can therefore envisage a monodromy fibration where the two algebraic
curves E1 and E2 are exchanged along a closed path on the base P1

b . The expected effect of
such a monodromy would be to pass from a E1×E2-fibration to a more genuine T 4-fibration.

Even without specifying the precise nature of the most general, dual D-manifold back-
ground on the Type IIB side, it is clear that there still exists a tower of BPS particles arising
from the wrapped Type II string. The fact that the M-Theory geometry contains only a
single fibral curve class of non-negative self-intersection, reflects the correlation between
the wrapping and winding numbers of the string along S1

A after modding out by I2.
We leave a more detailed study of such Type IIB non-geometric backgrounds for future

investigations.

3.4 Infinite distance limits at infinite volume

In the previous sections we have described the behaviour of M-Theory in various infinite
distance limits in which the total Calabi-Yau volume stays finite. Let us now drop this
extra requirement. While the general expectation is that such limits correspond to decom-
pactification, one might nevertheless wonder whether tensionless strings can arise at a scale
comparable with the KK scale. As we will now show, this is not the case.

As explained already in section 2.1, we parametrise the limit by writing VY = µV ′Y
and define a rescaled Kähler form

J ′Y = µ−1/3 JY =
∑
i

T ′
i
Ji , as µ→∞ . (3.93)

If all rescaled Kähler parameters T ′ are finite, there cannot appear any towers of states at
a scale comparable with the KK scale

MKK
M11

∼ V−1/6
Y ∼ µ−1/6 . (3.94)

As explained in section 2.1, this is because all curves shrinking in the metric J ′Y are con-
tractible. The physics is thus a straightforward decompactification limit with KK scale
given in (3.94).

If some T ′i become large, the rescaled Kähler form J ′Y undergoes a nested finite volume
infinite distance limit. Every such limit must correspond to one of the limits described in
Theorem 1. The remaining question is now how the mass scales associated with these
limits compare to the scale (3.94).

Assume first that J ′Y undergoes a limit of Type T 2, with scaling parameter λ as in
Theorem 1. This means that, taking into account the overall scaling (3.93),

VT 2 ∼
µ1/3

λ2 , VB2 ∼ µ2/3λ2 . (3.95)
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Due to the anisotropy of the metric, the overall scale (3.94) is always higher than the KK
scale set by the volume of the large base B2,

MKK,B2

M11
∼ V−1/4

B2
∼ µ−1/6λ−1/2 . (3.96)

This scale competes with the mass scale associated with the tower of M2-branes wrapping
the fiber,

MM2
M11

∼ VT 2 ∼ µ1/3λ−2 . (3.97)

Since the two scaling parameters µ and λ are independent, we must distinguish the following
three regimes:

1) µ−1/6λ−1/2 ≺ µ1/3

λ2 . The theory undergoes decompactification before the tower of
wrapped M2-branes along T 2 becomes relevant.

2) µ−1/6λ−1/2 � µ1/3

λ2 . The theory first probes the mass scale associated with the tower
of M2-branes along T 2. At this mass scale, the theory partially decompactifies from five to
six dimensions, corresponding to taking an F-Theory limit. We now match the (diverging)
Planck scale of the five-dimensional theory and the (diverging) Planck scale in the F-Theory
frame by equating

µV ′Y ∼
M3

Pl,5d
M3

11
=
M4

Pl,6d
M4
s

∼ VB2,F . (3.98)

This is accomplished by measuring all volumes within B2 in the F-Theory frame via the
Kähler form

JB2,F = µ1/6

λ
JB2 . (3.99)

The KK scale of the six-dimensional theory is now set by the largest curve volume on
B2 as measured by JB2,F. If all curves on B2 scale as VC,F - µ1/2, this implies that the
decompactification scale sits at

MKK
Ms

∼ µ−1/4 . (3.100)

If there exists a curve C on B2 with VC,F � µ1/2, we know from Lemma 1 in appendix A.4
that B2 must be fibered with generic fiber T 2

f or P1
f , and C must be the base of this

fibration, P1
b . In particular this means that

VT 2
f
/P1
f
,F ∼ µ1/2ρ−1 , VP1

b
,F ∼ µ1/2ρ , (3.101)

for some parameter ρ→∞. A D3-brane wrapping a curve, T 2
f or P1

f , gives rise to a Type
II or heterotic string that becomes asymptotically tensionless. However, since ρ → ∞,
the KK scale associated with the large curve P1

b is always lower than the mass scale set
by the tower of string excitations. This means that the string tower does not lead to an
equi-dimensional limit, unlike for pure limits of Type T 2 followed by a finite volume limit
on the base; rather, the six-dimensional theory decompactifies further with KK scale

MKK
Ms

∼ V−1/2
P1
b
,F ∼ µ

−1/4 ρ−1/2 . (3.102)
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3) µ−1/6 ∼ µ1/3

λ2 . We have a decompactification to six-dimensional F-Theory, whose scale
coincides with the scale associated with the supergravity modes on B2. The appearance of
two towers of KK states at the same scale clearly signals decompactification.

Finally, consider the situation where the rescaled metric J ′Y undergoes a limit of Type
K3 or Type T 4 as defined in Theorem 1. This means that with respect to JY the fiber and
base volumes scale as

VK3/T 4 ∼
µ2/3

λ
, VP1

b
∼ µ1/3 λ . (3.103)

An M5-brane along the K3/T 4 fiber gives rise to a heterotic/Type II string, respectively,
whose associated mass scale compares to the KK scale from the large base curve as follows:

Mstring
M11

∼ µ1/3

λ1/2 ,
MKK,P1

b

M11
∼ µ−1/6λ−1/2 . (3.104)

Again, this signals decompactification, rather than an equi-dimensional limit, with KK
scale µ−1/6λ−1/2.

4 Large distance limits in quantum Kähler geometry

4.1 General considerations on quantum volumes and mirror symmetry

So far our discussion has been restricted to limits at infinite distance in the classical Kähler
geometry of Y , as probed by M-Theory. Such limits are distinguished by whether or not
the classical volume of Y remains finite. In compactified Type IIA string theory, on the
other hand, we must differentiate between the behaviour of the total Calabi-Yau volume
VY and the behaviour of the Planck scale

M2
Pl

M2
s

= 4π
g2

IIA
VY . (4.1)

The first question we need to address is whether there exist infinite distance limits in
quantum Kähler moduli space in which VY remains finite. From the discussion in section 2
we know that these are necessarily limits in which a classically non-contractible cycle
becomes small, and the only candidates are limits in which a T 2, a K3 or a T 4 fiber shrinks
while the base expands. However, for Type IIA compactifications it is well-known (see
eg. [72–74]) that in the regime of small volumes stringy quantum geometry takes over and
the classical notion of volume can be drastically modified. We therefore need to properly
define what we mean by volumes, and carefully re-evaluate the physics of the limits. The
outcome of this analysis will be that in all three cases the quantum volume of Y tends to
infinity as the non-contractible fiber becomes small and the base expands. Hence no finite
volume infinite distance limits exist in the quantum Kähler moduli space.

Next, to answer the question of whether or not there exists an equi-dimensional limit
at infinite distance, we must consider two different situations:

1. Limits without co-scaling
If we keep the ten-dimensional dilaton gIIA fixed when taking the limit, the divergence
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of the total volume VY implies that the four-dimensional Planck scale, in units of Ms,
always tends to infinity.

2. Limits with co-scaling
Alternatively, we can co-scale gIIA in such a way that the four-dimensional Planck
scale stays finite in units of Ms. If the volume diverges as VY = µ V ′Y , we must scale

gIIA = µ1/2 g
(0)
IIA (4.2)

with g
(0)
IIA finite. For a discussion of such co-scaling limits in Type II theory see

also [17, 18]. The significance of co-scaling limits in light of mirror symmetry will be
explained around (4.11) below.

In both types of limits, there is a universal candidate for a KK tower signalling de-
compactification. In limits without co-scaling, this is the supergravity tower at mass scale

MKK
Ms

∼ V−1/6
Y ∼ µ−1/6 . (4.3)

In limits with co-scaling, the candidate tower is given by the tower of D0 branes at
mass scale

MD0
Ms

= 2π
gIIA

∼ µ−1/2 , (4.4)

which is clearly leading compared to (4.3). Unless there exists a tower of stringy modes at a
comparable scale, the first tower would indicate conventional decompactification, while the
second tower indicates decompactification to five-dimensional M-Theory on Y . In the five-
dimensional M-Theory frame, all volumes (in units of the 11-dimensional Planck scale M11)
are measured by the rescaled Kähler form [28]

JM = JY
gIIA2/3 . (4.5)

Hence M-Theory now probes the geometry of Y at finite volume VY,M = V ′Y . This justifies
our claim, made at the beginning of section 3, that finite volume infinite distance limits
of M-Theory capture also the physics of certain infinite distance limits in Type IIA string
theory at finite Planck scale.

However, to establish decompactification we must exclude that there can exist a com-
peting tower of stringy states, associated with a shrinking non-contractible divisor, at the
same scale as (4.3) or (4.4). Such strings, if any at all, can occur only in the quantum
versions of the three types of limits we are analyzing. Hence, it suffices to scrutinize these
limits in turn, with and without co-scaling gIIA. All other infinite distance limits are
automatically decompactification limits.

Let us now explain in more detail the strategy for investigating the quantum geom-
etry of the three types of infinite distance limits. As is well-known and briefly reviewed
in appendix C, a suitable definition of quantum volumes can be given in terms of glob-
ally defined period integrals that are associated with the complex structure moduli space,
MCS(X), of the mirror manifold, X [72–74]. In terms of the periods, one can define flat
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coordinates by taking ratios. A priori there is no canonical way of doing this, and in order
to make contact with classical geometry, one needs to fix an integral symplectic frame in the
large complex structure limit which is canonically mirror dual to the classical large volume
limit. Specifically, at such a point of “unipotent monodromy” there is a unique symplectic
3-cycle, γ0, whose period integral yields a pure power series in a suitable coordinate patch
and which can be normalized as follows:

X0(z) =
∫
γ0

Ω(z) = 1 +O(z) , z → 0 .

Here z stands for the collection of coordinates ofMCS(X). This serves as a reference with
respect to which the flat coordinates of MCS near the large complex structure limit can
be defined as

ta(z) = Xa(z)
X0(z) ≡

∫
γa Ω(z)∫
γ0 Ω(z) .

Here a runs over a basis of symplectic A-cycles in a suitable polarization of H3(X,Z). Near
z = 0 these coordinates match, via mirror symmetry, the (complexified) classical Kähler
parameters of Y (see eq. (C.11)). Correspondingly, the integral i

∫
X Ω ∧ Ω̄ coincides with

the Kähler volume of Y in the large volume limit,

1
8
i
∫
X Ω ∧ Ω̄(z)
|X0(z)|2

z(t)'0= 1
3!

∫
Y
J3 ≡ VY (t) . (4.6)

Away from z ' 0, the left-hand side of (4.6) defines the quantum corrected, globally defined
analytical continuation of VY (t) over all of the quantum Kähler moduli space of Y . Note
that the requirement to fix a geometrical basis near a given large complex structure point
is not just a minor point of fixing some normalization or gauge. Since periods, including
X0, can undergo non-trivial monodromy when transported globally over MCS , this is
necessarily a local choice; in particular there is no intrinsic choice for X0 deep inside the
bulk of the moduli space, where generically all periods are power series. In this sense there
is no a piori defined quantum volume, and, in turn, Planck scale (4.1),

M2
Pl

M2
s

(z) = iπ

2g2
IIA

∫
X Ω ∧ Ω̄
|X0|2

(z) , (4.7)

which would be independent of a choice of initial frame at infinity.
Before we continue, let us comment on the relation between the string couplings, gIIA

and gIIB, on both sides of mirror symmetry. Near the large complex structure limit, the
distinguished 3-cycle γ0 that defines the period X0 is a special Lagrangian 3-torus, and
the three-fold X is locally a fibration of this 3-torus over the dual 3-cycle [75]. Mirror
symmetry amounts to performing three T-dualities along this 3-cycle in an adiabatic way,
which basically maps the 3-cycle of X into a 0-cycle on Y . This relates the string couplings
of both theories as

gIIA = gIIB
Vγ0

= gIIB
(i
∫
X ΩX ∧ Ω̄X)1/2

|X0| (8VX)1/2 , (4.8)

where we used the calibration condition (C.8). Clearly this relationship is sensitive to the
specific analytic continuation along a given path in the complex structure moduli space.
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For illustration, let us consider the monodromy along a path in MCS(X) that starts and
ends at the same large complex structure point. This monodromy acts as a symplectic
duality transformation on the period vector which leaves

∫
X ΩX ∧ Ω̄X invariant, while X0

may change as
X0 → X̂0 . (4.9)

Thus, in order for the physics to remain invariant, the Type IIA coupling must co-
transform16 as

gIIA → ĝIIA = gIIA
|X0|
|X̂0|

, (4.10)

while on the IIB side the coupling stays invariant (since there the volume does not change).
Depending on whether X̂0 diverges or not, such a rescaling can be very significant.

Importantly, we note here that the limits with co-scaling (as introduced around (4.2))
represent the mirror duals of infinite distance limits in Type IIB complex structure moduli
space, at fixed Type IIB dilaton gIIB.17 Limits of this type have been analyzed in [8, 12].
Indeed, in Type IIB theory compactified on a Calabi-Yau three-fold X, the four-dimensional
Planck scale is given by

M2
Pl

M2
s

= 4π
g2

IIB
VX , (4.11)

where the volume of X depends only on the Kähler moduli of X. Limits in the complex
structure moduli space of X, at fixed g2

IIB, leave both VX and the ratio (4.11) invariant,
but change the periods as computed from ΩX . The direct mirror dual of such limits is
Type IIA string theory on the mirror three-fold Y , with VY computed as in (4.6), and with
gIIA as given in (4.8). By construction, the four-dimensional Planck scale is the same on
both sides. From (4.6) and (4.8) it is evident that if on the Type IIA side VY diverges, gIIA
automatically compensates for this. We will comment more on the interpretation of large
distance limits inMCS(X) in section 5.

In the main part of the present section 4, we will re-consider the three types of lim-
its we have discussed for M-Theory, but now in the context of Type IIA string theory,
where the quantum geometry of volumes and monodromies become relevant. That is, we
consider limits where the local geometry of Y at large volume is given by a fibration of
either an elliptic curve, a K3 surface, or an abelian surface, respectively. In each of these
cases, the (relevant part of the) moduli space of the mirror, MCS(X), is schematically of
the form shown in figure 3. For illustration we depict both fiber and base directions as
one-dimensional.

More concretely, the z2-axis is related to the size of the base such that the locus z2 = 0
corresponds, via mirror symmetry, to the locus of infinite base volume, and analogously for
z1. Thus the point of large complex structure is located at the origin L1 : (z1, z2) = (0, 0).
The horizontal axis corresponds to the moduli space of the fiber F in question, with
z1 = 1 denoting the singular locus of the fiber where its mirror, naively, has zero volume.
Furthermore C denotes the conifold locus of Y , whose point of tangency with the divisor

16This reflects Buscher’s rules for T-duality [76, 77] in the present setting.
17We thank Eran Palti for discussions on this point.
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Figure 3. Schematic representation of (part of) the complex structure moduli space of the three-
fold X, where the coordinates z1 and z2 govern the quantum volumes of fiber and base, respectively,
of the mirror fibration, Y . The locus z2 = 0 corresponds to a partial long distance limit where the
base volume is large, and the z1-axis coincides with the moduli space of the fiber. The large complex
structure point, L1, corresponds to large total volume VY , and L2 to the limit where, in classical
geometry, the fiber would have zero volume. For more details see the text.

z2 = 0 has been resolved by a blowup divisor denoted by B. We will be mostly interested
in the region near L2 : (z1, z2) = (1, 0), as well as in the path P12 = L1L2 connecting both
points. This is because, classically, we have at L2 a coincidence of large base and vanishing
fiber. This means that, at least classically, the total volume VY could remain finite, so
gravity need not decouple.

However, in contrast to the classical picture, we will find that the total volume in units
of `s always tends to infinity, due to quantum corrections. Essentially, our results can be
summarized as follows:

• For the elliptic fibration, L2 turns out to be a large distance limit with vanishing
elliptic fiber volume. As is typical for a large distance limit, the vanishing is rel-
ative and arises via dividing out a diverging X0; this just reflects that the cycle is
non-contractible. The point L2 corresponds to a T -dual copy of L1 subject to a trans-
formation of gIIA, as indicated in (4.10). In particular, the theory at L2 with gIIA in
the perturbative regime is equivalent to strongly coupled Type IIA theory at L1, and
thus is best described in terms of M-Theory. For limits without co-scaling, the inter-
mediate five-dimensional M-Theory undergoes additional decompactification, while
in the co-scaled situation the physics depends on possible further, nested infinite
distance scalings.

• For the K3 fibration, the fiber volume remains non-zero at L2 due to quantum effects,
while X0 stays finite. That is, the classically infinite distance limit turns into a finite
distance limit as a consequence of quantum effects. For limits without co-scaling, the
Planck scale diverges and gravity decouples in the sense that the theory undergoes
decompactification. This is in agreement with the fact that L2 describes the weak
coupling limit of SU(2) Seiberg-Witten theory [38] (whose moduli space coincides
with the blowup divisor B). What we will add to this here is to disentangle in detail
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the relative mass scales of the various excitations. In particular, as a consequence of
the non-vanishing quantum volume of the 4-cycle of the K3 fiber, the heterotic string
(arising from the wrapped NS5 brane) does not become tensionless in terms of the
gauge theory scale, even though its tension does vanish in units of the (diverging)
Planck scale.

As before, the Planck scale can be kept finite by suitably co-scaling gIIA. Interestingly,
for the K3 fibration such a limit is found to be equi-dimensional, in the sense that
a tower of KK states sits parametrically at the same scale as the excitations of
the heterotic string. Thus this limit is the four-dimensional version of the equi-
dimensional limit of Type K3 in M-Theory that we discussed previously.

• For limits of Type T 4, T-duality maps the small fiber regime at L2 to the large
fiber point L1 at strong coupling, similarly as for limits of Type T 2. The difference
is, however, that after decompactification to M-Theory the theory probes a finite
volume three-fold Y , as measured in the five-dimensional M-Theory frame. In other
words, there arises no need for co-scaling gIIA. In this sense the decompactification
is less severe as compared to limits of Type T 2.

4.2 Quantum large distance limit for elliptic fibrations

We begin by analyzing Type IIA string theory probing an infinite distance limit of fibration
Type T 2. Here the three-fold Y is a T 2-fibration over some base space, B2. Let us
parametrise its classical Kähler volume as

VY,cl. = 1
6

∫
Y
J3
Y = a T 3 + T 2S + c T VB2,cl. + ∆ , (4.12)

with
T :=

∫
T 2
JY , S :=

∫
CS

JY , VB2,cl. = 1
2

∫
B2
J2
Y . (4.13)

The numerical coefficients a and c depend on the intersection numbers of Y , and CS is a
distinguished curve class on the base, B2. For a smooth Weierstrass model, this coincides
with the anti-canonical divisor class of B2.18 Possible extra non-negative terms subsumed
in ∆ can occur if the fibration contains curves different from the generic fiber T 2, or fibral
surfaces. To remain inside the Kähler cone, their contributions must vanish in the limit
where the classical fiber volume T 2 is taken to zero.

Our question is whether it is still possible to take an infinite distance limit in such a
way that the total volume stays finite, while the base volume tends to infinity. There are
two potential obstructions to taking this limit in quantum geometry:

1. It is a priori not guaranteed that the fiber volume can be taken to be arbitrarily
small, i.e. that the corresponding point is contained in the quantum Kähler moduli
space of Y .

18In this case, the Kähler cone is generated by the pullback of the Kähler cone generators of B2 together
with S0 + π∗K̄, where K̄ is the anti-canonical divisor on B2. If we expand the Kähler form as JY =
T (S0 + π∗K̄) + π∗JB2 we identify a = 1

6 K̄ ·B2 K̄, c = 1, S = K̄ ·B2 JB2 .
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2. The expression for the quantum volume of Y differs in general from its classical
analogue. Taking the fiber volume to zero, if at all possible, need not guarantee that
the total quantum volume of Y remains constant, even if we allow for a co-scaling of
the base volume.

Both problems can be addressed by starting near large Kähler volume of Y , switching
to the mirror three-fold X, and analytically continuing the periods (C.14) and total vol-
ume (C.15) over the complex structure moduli space to the point where the volume of T 2

would vanish. That is, referring to figure 3, we consider an analytic continuation from L1
to L2.

For the presently discussed elliptic fiber, the analysis is very simple: the only singu-
larities in its moduli space are cusps, which are T -dual to the large volume/large complex
structure limit. This means that L2 must be equivalent to L1 up to T -duality. An equivalent
description of the analytic continuation is thus to mod out the complex structure moduli
space by identifying the cusp points, and to consider a closed loop starting and ending at
L1. Then, essentially, the effect of analytical continuation turns into monodromy, which is
generated by encircling the singularity that arises as the fixed locus under this modding.19

The above arguments characterize the situation in full generality. For further illustra-
tion, we consider a three-fold for which the elliptic fiber is given by the curve in P2

(1,2,3)[6]
defined by the vanishing of

W (x, z) = 1
6x1

6 + 1
3x2

3 + 1
2x3

2 − z−1/6x1x2x3 . (4.14)

A concrete example is the well-studied fibration over P2 in P4
1,1,1,6,9[18] [60, 78]. In a

context closely related to ours, this and other elliptically fibered three-folds have recently
been discussed in refs. [9, 12, 14]; further related works include [35–37, 79]. Concretely, in
terms of its periods, the mirror map of the fibral curve is given by

t(z) = X1(z)
X0(z) , where

X0(z) = 2F1(1/6, 5/6, 1; z) , (4.15)
X1(z) = i2F1(1/6, 5/6, 1; 1− z) .

This is equivalent to writing the mirror map in terms of the modular J-function as [80]

J(q) = 432
z(1− z) , q ≡ e2πit(z) , (4.16)

which makes it manifest that the singularities at z = {0, 1} map to the two cusp points at
t = {i∞, 0}. This reflects the fact that W (x, 1− z) = z

z−1W (x′, z) and thus describes the
same world-sheet CFT as W (x, z). Obviously the involution I : z ↔ 1 − z exchanges the
periods (modulo the factor i in (4.15)) and acts as modular transformation

I : t(1− z) = − 1
t(z) .

19Note however, that this monodromy need not act nicely as a symplectic transformation on the periods,
rather what generically happens is that it acts as a symplectic transformation up to an overall rescaling of
the periods, which is physically irrelevant as only their ratios matter. We will come back to this later.

– 46 –



J
H
E
P
0
2
(
2
0
2
2
)
1
9
0

As remarked above, this transformation can also be interpreted as monodromy upon mod-
ding out I and encircling the singularity at z = 1/2. It is easy to see that the volume
of the elliptic fiber scales like VT 2(z ' 1) ∼ 1/T and thus vanishes at L2, if it is initially
defined in the frame where VT 2(z ' 0) ∼ T is large (T = Im t).

An analogous structure persists for the three-fold fibration Y of the curve [37, 60, 78],
and in fact also for general elliptic three-fold fibrations [36]. Thus the point L2 : (z1, z2) =
(1, 0) of arbitrarily small fiber volume is indeed part of the quantum Kähler moduli space.
The associated analytic continuation acts as a symplectic transformation on the period
vector (C.14) (up to an overall prefactor), in particular by exchanging a D2-brane along
T 2 with a D0-brane at a point on Y . A more formal statement concerning the full period
vector of Y can be made in terms of a Fourier-Mukai transform acting as a symplectic
automorphism in the derived category of coherent sheaves, as explained in [34, 36, 79, 81,
82]. In particular, [79] shows that T-duality along the fiber is well-defined, in this sense,
in the presence of degenerate fibers. What is important for us is that this transformation
does not change the inner product implicit in

∫
X Ω ∧ Ω̄. Therefore the quantum volume

near L2,

VY |L2 = 1
8
i
∫
X Ω ∧ Ω̄|L2

|X0|2|L2
, (4.17)

is closely related to the one near L1. The difference is that T is replaced by T̂ = 1/T , while
the periods in (4.15) exchange. The relevant feature is that the reference period, X0, as
canonically defined at L1, blows up at L2:

X0|L2 ∼ T̂ , as T̂ →∞ . (4.18)

Thus, as compared to (4.12), the total quantum volume at L2 takes the asymptotic form

VY |L2 = a T̂ + S + c T̂−1 VB2,cl. + T̂−2 ∆ + . . . (4.19)

and diverges for20 a 6= 0, even though the elliptic fiber shrinks to zero size.
Nevertheless the theory at L2 must equivalent to L1 because it is T -dual to it and is

described by the same world-sheet CFT. To see this explicitly, recall that the path L2 → L1
is equivalent to a closed monodromy loop and hence the discussion around (4.10) applies.
Thus by re-adjusting gIIA, in accordance with Buscher’s rules, we recover equivalent physics
at L1 and L2. Indeed it is evident that the tower of D2-branes wrapped around the shrinking
elliptic fiber at L2 is equivalent to the tower of D0-branes at L1, which becomes dense at
strong coupling. What is slightly more subtle is the way in which the Kaluza-Klein spectra
at L1 and L2 map to one another.

To understand this in more detail, let the fiber and base volumes scale as follows

at L2 : VT 2 = 1
λ2 , VB2 = V ′B2λ

2 , gIIA = g
(0)
IIA , λ→∞ . (4.20)

By T-duality this is equivalent to the large volume limit at L1, for which

at L1 : VT 2 = λ2 , VB2 = V ′B2λ
2 , gIIA = g

(0)
IIAλ

2 , λ→∞ . (4.21)
20The case a 6= 0 covers the generic situation; for a = 0 see below.
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As required by T-duality, the Planck scale manifestly behaves in the same way at L1 and L2,

M2
Pl

M2
s

= 4π
gIIA2VY ∼

1
g

(0)
IIA

2

(
a λ2 + S + cV ′B2,cl. + . . .

)
, (4.22)

as is readily checked by computing the left-hand side either at L1 using (4.12) and (4.21)
or at L2 using (4.19) and (4.20).

4.2.1 Limit without co-scaling

Consider first the theory at L1 and choose, for definiteness, g(0)
IIA being small and fixed.

This is a limit without co-scaling in the language of section 4.1. From (4.21) we see that
we enter the strong coupling regime when approaching L1. There are two types of light
BPS towers, the D0-brane tower and the supergravity Kaluza-Klein tower, as measured in
the Type IIA frame. Their respective mass scales are as follows:

D0 at L1 : M

Ms
∼ 1
gIIA

∼ 1
g

(0)
IIAλ

2

Type IIA KK at L1 : MKK
Ms

∼ 1
V1/6
Y

∼ 1
λ
.

(4.23)

The second line, however, does not correspond to a meaningful Kaluza-Klein scale in the
effective field theory, for the following reason. Before the naive Kaluza-Klein tower be-
comes relevant, the parametrically lower scale of the D0-brane tower will be dominant.
This signals decompactification to five-dimensional M-Theory before we enter the geomet-
rical decompactification regime. Thus, once in M-Theory, the supergravity Kaluza-Klein
spectrum must be re-evaluated in the M-Theory frame. This is done via the relation [28]

JM = JY
gIIA2/3 . (4.24)

Here the Kähler form JM measures volumes in the M-Theory frame in units of `11, and the
Kähler form JY refers to the Type IIA string frame. Together with (4.21) this gives

VT 2,M = λ2/3 , VB2,M = λ−2/3 V ′B2,M , VY,M = a λ2 + S + cV ′B2,M + . . . (4.25)

with V ′B2,M finite as λ → ∞. For a 6= 0, the diverging Calabi-Yau volume then implies
that the five-dimensional M-Theory undergoes further decompactification.21 Indeed the
five-dimensional Kaluza-Klein scale for this second decompactification can be estimated as

MKK
M11

≤ 1
V1/6
Y,M
- λ−1/3 , (4.26)

rather than the naive value given in (4.23). The precise value depends on the scaling of
S = VC2 .

21The special case a = 0 will be treated below.

– 48 –



J
H
E
P
0
2
(
2
0
2
2
)
1
9
0

The same conclusions are reached by studying the system at the physically equivalent
point L2. In the Type IIA frame, we find the following relevant mass scales:

D2 at L2 : M

Ms
∼ VT 2

gIIA
∼ 1
g

(0)
IIAλ

2

Type IIA KK at L2 : MKK
Ms

∼ 1
V1/6
Y

∼ 1
λ1/3 .

(4.27)

The D2 and D0-spectra at L2 and L1 obviously agree in (4.27) and (4.23). At L2, it is the
parametrically leading spectrum of D2-branes on T 2 which acts as the dominant tower of
Kaluza-Klein states, and thus signals decompactification to five dimensions. The Kaluza-
Klein spectrum in the five-dimensional M-Theory is then computed via (4.24), but using the
value of gIIA = g

(0)
IIA which is appropriate at L2. This leads to the same expression (4.26). In

this sense the Kaluza-Klein spectra as computed at L1 and L2 agree, despite the apparent
mismatch of the scales computed in the second lines of (4.27) and (4.23).

To conclude this discussion, consider now the special case a = 0 in (4.12) and (4.25).
We will show that the M-Theory decompactifies further, even if the limit is taken such that
the total M-Theory volume, VY,M, remains finite. To understand this, note first from (4.25)
that VY,M can remain finite only if

S ≡ VCS = λ4/3 VCS ,M (4.28)

stays finite in the limit as well. For instance, for a smooth Weierstrass model over B2,
footnote 18 implies that a = 0 is possible for K̄ ·B2 K̄ = 10 − h1,1(B2) = 0, where we
recall that the curve CS = K̄ for a smooth Weierstrass model. Following the discussion in
section 3.3, the base B2 is a dP9 surface, and CS = K̄ is its elliptic fiber. Now, in order
for (4.28) to stay finite, VCS ,M must scale as λ−4/3. At the same time, VB2,M must scale
as λ−2/3 if we insist on finite VY,M. This means that the base P1

b of the elliptically fibered
dP9 surface must scale as λ2/3 and hence altogether

VP1
b
,M ∼ λ2/3 , VT 2,M ∼ λ2/3 , VCS ,M ∼ λ

−4/3 . (4.29)

As discussed in section 3.3, the elliptic fibration over dP9 is a double elliptic fibration over
P1
b , with fiber E1 × E2 = T 2 × CS , see (3.67). The fact that E2 = CS shrinks suggests

that we should view it as elliptic fiber of Y , whose base B2 is a rational elliptic surface
with fiber E1 = T 2. Indeed, the scaling of E2 = CS is exactly as for an M-Theory infinite
distance limit of Type T 2. The theory therefore decompactifies further to a six-dimensional
F-Theory compactification on the dP9 base B2. Thus, for a = 0 we obtain altogether the
following chain of decompactification limits:

4d Type IIA on Y D0/D2 on T 2
−→ 5d M-Theory on Y M2 on CS−→ 6d F-Theory with base dP9

(4.30)
where we indicate the tower of BPS states responsible for each decompactification step.

In summary, we see that Type IIA strings probe the elliptic fibration geometries and
their infinite distance limits in a very different manner as compared to M-Theory: it
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is not possible to perform an infinite distance limit where the elliptic fiber shrinks in
such a way that the total volume would stay finite, without effectively running into a
decompactification to a higher dimensional theory, in one way or another.

4.2.2 Limit with co-scaling

Let us go back to (4.21) at the point L1, which is the T-dual to the point L2 of vanishing
fiber volume. According to the general discussion in section 4.1, we can co-scale g(0)

IIA in such
a way as to keep the volume finite in units ofMs. For a 6= 0 and S - λ2 this requires taking

g
(0)
IIA ∼ λ . (4.31)

The mass scale of the D0-branes becomes

M

Ms
∼ 1
gIIA

∼ 1
λ3 . (4.32)

As a result, the theory decompactifies once more to M-Theory on Y , with all volumes in
the five-dimensional frame scaling as

VT 2,M ∼ 1 , VB2,M = λ−2 V ′B2,M , VY,M = a + λ−2 S + c λ−2 V ′B2,M + . . . . (4.33)

By construction, VY,M is finite and any residual, subsequent limit must be one of the three
infinite distance limits at finite volume of five-dimensional M-Theory, for which we refer to
section 3. The same conclusion is reached if S � λ2, in which case the rescaling (4.31) of
g

(0)
IIA to keep the total volume finite has to change correspondingly. For a = 0 and S finite,
on the other hand, no additional rescaling of g(0)

IIA is necessary as the volume is already
finite. As discussed above, this leads to the decompactification chain (4.30).

4.3 Quantum small fiber limit for K3 fibrations

As discussed in section 3.2, M-Theory on a K3-fibered Calabi-Yau three-fold Y admits an
equi-dimensional infinite distance limit, for which the classical volume of the K3-fiber goes
to zero such that the total volume of Y stays finite. In this section we will analyze analogous
limits in Type IIA string theory, where we will find that they are obstructed by quantum
effects. As we will argue, any such limit implies decompactification and a diverging Planck
scale if we keep the string coupling, gIIA, finite. A finite Planck scale can only be obtained
by performing a simultaneous rescaling of the string coupling: gIIA → ∞. Interestingly,
such a co-scaled limit is an equi-dimensional limit because a tensionless heterotic string
sits at the same scale as the D0 tower which normally would take us to five-dimensional
M-Theory.

We will first give a physical argument why a quantum obstruction against taking a
finite volume K3-fibered limit in Type IIA string theory must occur. This discussion is
completely general without reference to a specific realisation of the fibration. This will be
then exemplified for a particular K3-fibration, by studying the regime of small fiber volume
via mirror symmetry.
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4.3.1 Implications for quantum geometry from M-Theory

Our first task is to determine if the limit of vanishing K3-fiber volume is part of the quantum
Kähler moduli space of Y . Since the stringy quantum volume of a cycle is determined
by the BPS tension of a D-brane wrapping it, an equivalent question is whether a D4-
brane wrapping the K3 fiber can become massless. Typically obstructions would be due
to worldsheet instantons in the stringy Kähler geometry of Y , which can also be dually
interpreted as perturbative 1-loop corrections to the classical M-Theory effective action
compactified on a circle [42, 43, 83]. This motivates us to carefully investigate the circle
reduction linking M-Theory and Type IIA string theory.

In flat space, the D4- and NS5-branes in the Type IIA theory originate from M5-branes
wrapping or not wrapping the M-Theory circle, S1, which we take to be of some radius R.
Equating the respective expressions for the tension identifies [28]

1
`s
≡Ms = gIIA

R
, gIIA = (M11R)3/2 . (4.34)

If we consider M-Theory on the Calabi-Yau Y , an M5-brane along the K3-fiber gives
rise to a solitonic heterotic string in five dimensions of tension

Thet
M2

11
= 4πVK3,M = 2π

∫
K3
J2
M . (4.35)

The subscript of JM and VK3,M reminds us that these quantities refer to the M-Theory
frame. Essentially, the heterotic string wrapped on the additional S1 corresponds in Type
IIA theory to a D4-brane wrapped on the K3 fiber, but we have to be careful what exactly
we mean by a D4-brane in this context due to curvature effects. Recall that the Chern-
Simons action of a D(p+1)-brane along a p-cycle Γ is

SCS = 2π
∫
R×Γ

∑
k

Ck ∧
√
Â(Γ) ∧ eF , (4.36)

where Â(Γ) is the A-roof genus and where we set `s ≡ 1. In addition to its C5 charge, a
D4-brane wrapping the whole K3 therefore carries one unit of induced C1 charge, because
the A-roof genus contributes the coupling SCS ⊃ 2π

∫
R C1× 1

24
∫

K3 c2(K3) = 2π
∫
R C1. If we

are interested in the object carrying only C5 charge and no lower-form Ramond-Ramond
charge, we must rather consider a bound state of one D4-brane on K3 with (-1) D0-brane
(interpreted as an anti-D0-brane). We will call this object for brevity a D4−1 brane.

In the limit of small VK3,M, we identify the BPS particle that is obtained by wrapping
a D4−1-brane along the K3 fiber with the dual solitonic heterotic string wrapped once
around the extra S1. The important observation is that this wrapped string has some non-
vanishing Casimir energy, E0, which produces an offset for the BPS mass of the particle
for any finite value of the circle radius R (and thus also for any finite value of gIIA). In
the present context we have E0 = −1, as computed from the left-moving sector of the
heterotic string. More generally, E0 relates to the 1-loop gravitational anomaly on the
stringy world-sheet and is given by

E0 = − χ

24 , (4.37)
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where χ is the Euler number of the shrinking fiber (χ = 24 for K3 under present consider-
ation).

The total mass of the wrapped heterotic string obtained in this way is thus

M

M11
=
∣∣∣∣w R

M11
Thet + E0

RM11

∣∣∣∣ , (4.38)

with winding number w = 1 and Casimir energy E0 = −1. The limit of vanishing classical
K3-volume corresponds to Thet → 0, and using (4.34) this yields

M

Ms
= 1
gIIA

. (4.39)

This is the minimal mass of a single D4−1-brane wrapping the K3-fiber in Type IIA string
theory. Our reasoning therefore predicts that the quantum volume of the K3 cannot become
smaller than `4s anywhere in moduli space. Indeed, since the object D4−1 carries only C5
charge, its entire mass is due to the (quantum) volume of K3, and if this mass cannot
reach zero, this means that the quantum volume of the K3 cannot vanish anywhere in
moduli space.

Moreover, the heterotic string with winding number w = 1, vacuum energy E0 = −1
plus nKK extra quanta of Kaluza-Klein momentum, gives rise to a BPS state of mass

M

M11
=
∣∣∣∣ RM11

Thet + E0 + nKK
RM11

∣∣∣∣ . (4.40)

We interpret this as a bound state of one D4−1-brane with (−nKK) extra D0-branes (or
rather nKK anti-D0-branes). In the limit where Thet → 0, we obtain for its mass:

M

Ms
= 1
gIIA
|nKK − 1| . (4.41)

Hence the bound state of one D4−1-brane on K3 with (−nKK) = −1 additional D0-brane —
i.e. altogether a D4−2 brane — can become massless exactly at the point in the quantum
moduli space that is the analogue of the vanishing fiber volume in M-Theory. We will
confirm this general prediction later by a non-trivial computation in mirror symmetry for
an example.

What about the tension of the NS5-brane wrapped on K3 at the same point in moduli
space where the D4−2 state becomes massless? This could potentially give rise to a ten-
sionless heterotic string, which would be against all expectations (e.g. from experience with
realisation of Seiberg-Witten theory in Type IIA theory [38]). However we can argue that
the NS5-brane on K3 probes the same quantum volume as the D4−1 brane. This is because
both objects carry vanishing D0-brane charge and hence qualify as the objects obtained
from the M5-brane on K3 — depending on whether or not they wrap the M-Theory circle.
Combined with our above findings, this means that an asymptotically tensionless heterotic
string from the K3-fiber will not appear, as measured in units of Ms, as long as gIIA is kept
small and finite.

More subtle is the fate of a D2-brane wrapped on some curve inside the K3-fiber. As
explained in section 3.2, the M2-brane along the same curve is dual to the fundamental

– 52 –



J
H
E
P
0
2
(
2
0
2
2
)
1
9
0

heterotic string wrapped on the circle of K̂3×S1
A. The question is whether these particles

acquire quantum corrections to their mass in going from M-Theory to Type IIA theory.
The naive expectation is that this should be generically the case, and we will verify this
explicitly for an example discussed below.

There is another important conclusion we can draw from this analysis: there exists no
infinite tower of (single-particle) BPS bound states of the form

n× (D4−2 on K3) . (4.42)

As just explained, the bound state of a D4-brane on K3 with (-2) D0-branes is dual to
the heterotic string wrapped once on the S1 with a net number of E0 + nKK = −1 + 1 =
0 Kaluza-Klein quanta. An immediate question might be whether the heterotic string
winding n times around S1 can form non-trivial BPS bound states, but this is known not
to be the case [84]. Hence at the point in moduli space where the classical volume of K3
vanishes, only one BPS state becomes massless (with respect to the string scale) from a
single D4−2 bound state; as we will discuss later, this state is nothing but the W -boson of
N = 2 supersymmetric Seiberg-Witten gauge theory.

To summarize, we predict a quantum obstruction against the vanishing of the K3-fiber
in the Type IIA moduli space. Combined with the fact that the volume of the base scales
to infinity in the given limit, we expect that the total Calabi-Yau volume should become
infinite as well. We will demonstrate this further below for the example. We therefore
posit that in weakly coupled 4d N=2 compactifications of Type IIA string theory, it is not
possible to take a long distance limit in which the Planck scale stays finite in terms of
the 10d string scale. As we will see, such a limit is possible only by suitably co-scaling
gIIA →∞, which will turn out to be an equi-dimensional limit.

In the remainder of this section we will verify these predictions by explicitly analyzing
the quantum geometry of a prototypical K3-fibration. In view of the preceding discussion,
we expect the properties encountered in this example to apply very generally.

4.3.2 Quantum geometry of the small K3 fiber limit

For the purposes of this section the details of the embedding of the K3-fiber into the
full Calabi-Yau Y are inessential. It suffices to consider a simple K3 fibration for which
the image (3.22) of the K3-lattice embedded into Y is one-dimensional. This captures
the quantum geometric properties we are interested in, namely those which affect the
classical zero-volume limit of the K3 fiber. As a prototype we choose the Calabi-Yau three-
fold Y = P1,1,2,2,6[12], which has been well studied starting from refs. [59, 60] and whose
Mori cone and intersection numbers we have introduced at the end of section 3.2. From
the point of view of the swampland distance conjecture it has recently been discussed
in ref. [9]. The classical limit in question can be parametrized as in (3.56) and (3.58).
The real curve volumes S and T appearing in (3.56) are now the imaginary parts of the
complexified volumes

t1 =
∫
P1
f

JY , t2 =
∫
P1
b

JY , (4.43)
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as defined in (C.11). In terms of the variables

za = e2πita , (4.44)

the classical limit (3.58) corresponds to the regime where

z1 = e−a/
√
λ → 1 , z2 = e−λ → 0 . (4.45)

To analyze whether a corresponding limit can be taken in the quantum corrected Kähler
moduli space of Y , we interpret z1 and z2 as the usual coordinates of the complex structure
moduli space, MCS(X), of the mirror manifold X as studied in detail in [59, 60]. Their
dependence on ta will be strongly modified away from za ' 0. As recalled in appendix D,
the moduli space becomes singular along the discriminant locus, which contains as a factor
the conifold locus

∆c ≡ (1728z1 − 1)2 − 4(1728z1)2z2 = 0 . (4.46)

The relevant part of the moduli space is hence precisely as described at the end of sec-
tion 4.1: the double intersection point {z2 = 0}∩∆c is resolved by introducing a resolution
divisor B and the regime (4.45) corresponds to the region near the intersection point

L2 = B ∩ {z2 = 0} . (4.47)

Of course a classical interpretation of the Kähler geometry of Y is a priori possible only
near the large volume point L1, where t1, t2 →∞. Its mirror inMCS corresponds to zi → 0
for i = 1, 2, which is denoted by L1 in figure 3. Near L1 we fix an integral symplectic basis
of H2p(Y,Z) as

C0 , C1
2 = P1

f , C2
2 = P1

b , C4,2 = JS , C4,1 = JT , C6 , (4.48)

where C0 and C6 represent the unique classes in H0(Y,Z) and H6(Y,Z), respectively, and
we recall that JS denotes the K3-fiber. On the mirror three-fold X, these cycles map to
an integral symplectic basis {γA, γB} of H3(X,Z) according to the following scheme:

C0 ←→ γ0 , C6 ←→ γ0 ,

Ca2 ←→ γa , C4,a ←→ γa .
(4.49)

To study the quantum geometry in the regime of vanishing fiber volume, we need
to analytically continue the periods from L1 to the regime near L2. For this, one first
computes a vector of solutions, Π̂, to the Picard-Fuchs equations valid at L2, see eq. (D.5).
These solutions can be interpreted as the periods with respect to some ad hoc basis of
3-cycles {γ̂A, γ̂B} on X. The cumbersome step then consists of finding how this generally
non-integral basis relates to the integral symplectic basis {γA, γB}, which is mirror, at large
complex structures, to the 2p-cycle basis (4.48) on Y . The analytic continuation of the
periods from L1 to L2 has been performed in [85] (see also [86]), and we present the result
in appendix D. The upshot is that the analytic continuation relating those two bases acts
as a matrix, N , via

γ = N−1 · γ̂ , (4.50)
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which is given in equation (D.6). This then yields the following expressions for the peri-
ods (C.3) with respect to the integral basis {γA, γB}, near the regime L2:

X0 :=
∫
γ0

ΩX = 1
2πX + . . . F0 :=

∫
γ0

ΩX = 2i
π2

√
ẑ1log(ẑ2)+ . . .

X1 :=
∫
γ1

ΩX = i

2πX + . . . F1 :=
∫
γ1

ΩX =− 1
2π2X

log(ẑ2ẑ
2
1)+ . . .

X2 :=
∫
γ2

ΩX =− i

4π2X
log(ẑ2ẑ

2
1)+ . . . F2 :=

∫
γ2

ΩX = 1
πX

+ . . . .

(4.51)

Here we have omitted all subleading terms, and X = Γ
(

3
4

)4
/
√

3π2. The local blowup
coordinates vanish by design near the point L2 : ẑi → 0 and are given by

ẑ1 = 1− 1728z1 , ẑ2 = 4z21728z1
2

(1− 1728z1)2 . (4.52)

The periods (4.51) then determine the exact BPS masses (C.18) of D-branes wrapping
the mirror dual cycles (4.48) on Y , in the regime near L2. For the D2-branes along 2-cycles,
the tension is directly proportional to the quantum volume of the wrapped curve, because
such a brane carries no lower-dimensional brane charge. In stark contrast to the classical
limit (3.59), we see that the quantum volume of P1

f does not vanish at ẑi → 0, but rather
tends to a constant value of order one in string units because of:

M

Ms
= 1
gs

∣∣∣∣∣X2

X0

∣∣∣∣∣ = 1
gs

=
VP1

f

gs
for a D2-brane on P1

f . (4.53)

For D4-branes wrapped on 4-cycles, we must subtract the contribution from the induced
D0-charge to isolate the quantum volume. As explained below eq. (4.36), a D4-brane
along the K3-fiber carries one unit of induced D0-charge, and the object whose tension is
proportional to the quantum volume of K3 is the bound state we had denoted by D4−1.
Its BPS mass is

M

Ms
= 1
gs

∣∣∣∣∣F2 −X0

X0

∣∣∣∣∣ = 1
gs

= VK3
gs

. (4.54)

As advertised before, this non-zero value for the minimal quantum volume perfectly agrees
with the Casimir energy of the heterotic string when wrapped on the M-Theory circle, S1.

Since the quantum volume of the K3 does not vanish near L2, the volume of the
total Calabi-Yau Y should diverge because the base becomes large. We can confirm this
expectation by recalling that the total volume of Y in general differs from the period F0
associated with the quantum 6-cycle, but rather is given by

VY = i
∫
X ΩX ∧ Ω̄X

8|X0|2
= i(X̄iFi −XiF̄i)

8|X0|2
= − 1

2π log(ẑ2ẑ
2
1) + . . . , (4.55)

and so indeed diverges for ẑ2 → 0 , ẑ1 → 0.
On the other hand, from our M-Theory considerations, where we argued for the ex-

istence of a single massless BPS particle, D4−2, we expect that there should exist some
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integral linear combination of cycles whose quantum volume does vanish at L2. By inspec-
tion of the matrix N displayed in (D.6), the only integral linear combination for which this
is the case is

γW = γ2 − 2γ0 . (4.56)

By definition the quantum volume of this cycle is given by the tension of the bound state
of a D4-brane wrapped on K3 with (-2) D0-branes, and it scales near L2 as∫

γW

ΩX = F2 − 2X0 = 1
π

√
ẑ1 + . . .→ 0 at L2 . (4.57)

This matches the expected behaviour for the D4−2 bound state on K3, which we anticipated
from arguing via M-Theory and which reflects the cancellation of the Casimir energy on
S1 against one unit of D0-brane charge.

To wrap up this section, let us recapitulate and list the asymptotic BPS masses of the
bound states denoted by D4−n, in the regime of large base where t2 →∞. For the pure D4
brane, the central charge is defined by F2 = ∂2F (t1, t2), where F (t1, t2) is given in (D.2)
and whose relevant part reads

F (t1, t2) = −t12t2 + b2t2 + . . . , where b2 = 1
24

∫
c2 ∧ J2 = 1

24χ(K3) = 1 .

Thus we have in this limit22

M(D4) ∼ |F2| = |t12 − 1| ,
M(D4−1) ∼ |F2 −X0| = |t12| ,
M(D4−2) ∼ |F2 − 2X0| = |t12 + 1| ,

(4.58)

which exhibits the interplay of curvature-induced D0 charge, Casimir energy E0 = −b2 as
discussed in (4.37), and mass shifts. From the mirror map of the sextic K3 surface [80] we
know that

J(q1) = 1728
z1

, q1 ≡ e2πit1 ,

so that at the conifold point L2 : z1 = 1 we have t1 = i. Thus the quantum volume of
the K3 fiber, M(D4−1), which also gives the tension of the heterotic string arising from a
wrapped NS5 brane, is of order one. On the other hand, the mass of the single BPS state
D4−2 vanishes, and this is entirely consistent with the expectation that at the conifold
point, which corresonds to a finite distance limit in the moduli space, only a finite number
of states become massless.

We also see a crucial difference as compared to the elliptic fibration discussed above,
and to the abelian fibration to be discussed later: for the K3 fiber the quantum shift traces
back to a non-zero b2 = 1

24χ(K3). For toroidal fibers, χ vanishes, and there is no such shift.
Correspondingly, the quantum volumes of the elliptic or abelian fibers do vanish at L2.

22Note that for t2 →∞ there are no instanton corrections to these volumes.
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4.3.3 Weak coupling as gravity decoupling limit

To summarize our findings so far, we have shown that the quantum version of the
limit (3.59) corresponds to a decompactification limit in which the Calabi-Yau vol-
ume (4.55) in string units diverges. This traces back to a non-vanishing K3 fiber volume
at the quantum level, which perfectly ties in with our previous arguments in M-Theory.

Let us first analyze the physical consequences for limits where we keep gIIA fixed. In
view of the highly anisotropic scaling of Y , we identify the Kaluza-Klein scale, MKK, as
the scale dominated by the volume of the base 2-cycle P1

b . This leads to

M2
KK
M2
s

∼ 1
VP1

b

=
∣∣∣∣∣X0

X2

∣∣∣∣∣ = 2π
| − log(ẑ2ẑ2

1)| + . . .→ 0 . (4.59)

An asymptotically low Kaluza-Klein scale is indeed a hallmark of decompactification. Cor-
respondingly, for finite string coupling gIIA, the Planck mass diverges in terms of the string
scale as follows:

M2
Pl

M2
s

= 4π
g2

IIA
VY = 2

g2
IIA

∣∣∣−log(ẑ2ẑ
2
1)
∣∣∣→∞ , for finite gIIA . (4.60)

The decompactification and the divergence of the Planck scale can be avoided only by
simultaneously rescaling gIIA, hence taking us back to the classical M-Theory description.
This will be discussed below in the next section.

For now we would like to study the mass scales of the degrees of freedom associated
with branes wrapping the various relevant cycles, in the regime near L2. It is instructive
to list the parametric behavior of the BPS masses, as determined by the general mass
formulae (C.18) and (C.19) in conjunction with the quantum periods (4.51):

KK scale : M

Ms
∼ (−log(ẑ2ẑ

2
1))−1/2 M

MPl
∼ gIIA
−log(ẑ2ẑ2

1)
D0 /D2 on P1

f /

NS5 on K3 /D4 on K3 : M

Ms
∼ 1
gIIA

M

MPl
∼ 1√

−log(ẑ2ẑ2
1)

−2D0 + D4 on CW : M

Ms
∼
√
ẑ1

gIIA

M

MPl
∼

√
ẑ1√

−log(ẑ2ẑ2
1)

D6 on C6 : M

Ms
∼ −log(ẑ2)

√
ẑ1

gIIA

M

MPl
∼ −log(ẑ2)

√
ẑ1√

−log(ẑ2ẑ2
1)

(4.61)

where CW denotes the holomorphic cycle mirror to γW in (4.56). Note that the fate of the
D6-brane that wraps the six-cycle depends on the precise but unspecified ratio of ẑ2 and
ẑ1 in the limit ẑi → 0.
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With regard to relevance for weak gravity conjectures, there are the following sources
of potential23 infinite towers of BPS particles:

1. The towers of BPS particles present in M-Theory compactified on Y continue to
exist as light states: these are bound states of n D2-branes along the fibral curve P1

f

on the one hand, and particle excitations of the effective heterotic string associated
with a (single wrapped) NS5-brane along the K3-fiber on the other. Also for the
Type IIA string, both these towers are naturally associated with the dual heterotic
string that emerges in the infinite distance limit. The difference to the M-Theory
compactification is that the mass scale in string units of both BPS towers does not
vanish in the limit. This is a consequence of the quantum corrections discussed above.
Nonetheless they become arbitrarily light as measured in Planck units, because the
Planck scale diverges itself.

2. BPS bound states of n D0-branes on Y are well-known to realize the conventional 5d
Kaluza-Klein states associated with the circle reduction from M-Theory to Type IIA
string theory. They sit at the same parametric mass scale as the BPS towers that
are present already in M-Theory.

3. For finite string coupling, gIIA, the Kaluza-Klein tower (associated with the large
base volume) is parametrically lighter than all other BPS towers. In this sense we
reach the decompactification scale before the infinite towers of states associated with
the wrapped D0, D2 or NS5-brane excitations become relevant.

Apart from particles and strings, wrapped branes can also give rise BPS objects in
four dimensions, i.e. 2+1 dimensional domain walls. Their mass scales have been studied
in various large volume limits in [18] (prior to possible quantum corrections). Unlike for
light weakly coupled strings, their quantization is not expected to give rise to a tower
of particles which would compete with a Kaluza-Klein tower such as to avert effective
decompactification. Apart from this general fact, for dimensional reasons their associated
energy scales lie above the mass scale of the solitonic heterotic string in the type of limit
considered here. In this sense, they are subleading.

In addition to the light BPS towers, there exist in the Type IIA theory also individual
light BPS states which do not have direct analogues in M-Theory: for example, the BPS
particle that arises from a single D4-brane wrapping the K3 fiber, and furthermore the
bound state D4−2 associated with γW that we have discussed before. Moreover, a single
D6-brane along the six-cycle mirror-dual to γ5 can be interpreted as Kaluza-Klein monopole
from the M-Theory perspective, but to what extent this state becomes light near L2 depends
on the ratio of ẑ2 and ẑ1 in the limit ẑi → 0.

In fact, the last two types of states have an interpretation in the well-known realisation
of Seiberg-Witten theory for SU(2) via Type IIA string theory on the K3-fibration Y [38]:
the bound state D4−2 represents the W-boson of charge (qm, qe) = (0, 2) and the wrapped

23Focusing on scaling properties only, we do not consider issues of stability here. For related recent
discussions, see ref. [8].
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D6-brane the monopole of charges (qm, qe) = (1, 0) (which becomes massless on the conifold
locus, which however does not intersect L2 after the blowup). From the perspective of
Seiberg-Witten theory, approaching L2 corresponds to taking the weak coupling limit. It
is known that in this regime the stable BPS states besides the W -boson are given by dyons
of charges (1, 2n) with n ∈ Z. In the present situation these are realized as bound states
of one D6-brane on C6 and n D4−2 bound states on the mirror-dual, CW , of γW . This fits
nicely to our argumentation around (4.42), in that for n 6= ±1 no bound states of n D4−2
branes with zero “magnetic” D6-charge exist; there the reasoning was based on the fact
that multiple wrappings of heterotic strings do not form new bound states.

It is interesting to compare our findings with the BPS mass spectrum of Seiberg-Witten
theory in the weak coupling limit. From the perspective of quantum field theory, rather
than of quantum gravity, the relevant scale is not the Planck mass but the gauge theory
scale, Λ. The latter is defined via the running of the gauge coupling from a reference scale
in the ultra-violet to the strongly coupled infra-red regime. In string compactifications,
the reference scale at which the gauge coupling is defined, can be identified with the scale,
MKK, of Kaluza-Klein excitations. As is well known, the complexified gauge coupling in
Seiberg-Witten theory can be written as

∂aD
∂a

= θ

π
+ 8πi
g2

YM
. (4.62)

Here a and aD control the central charges and hence the masses of states with electric-
magnetic charges (qm, qe) as

Z = qmaD + qea . (4.63)

From the specific form of the quantum periods and the above identification of the states
with charges (0, 2) and (1, 0) we deduce, for the specific example,

8π2

g2
YM

= −4 log(ẑ2). (4.64)

Identifying this with the value of the gauge coupling at the KK scale gives

Λ
Ms

= MKK
Ms

exp

− 8π2

β0

1
g2

YM

∣∣∣∣∣
MKK

 = MKK
Ms

ẑα2 . (4.65)

Here the power α is determined in terms of the beta-function coefficient, β0, of the gauge
theory as follows:

α = 4
β0
, (4.66)

which for pure SU(2) Seiberg-Witten theory is given by β0 = 4.
Together with (4.60) this implies that

Λ
MPl

∼ gIIAẑ
α
2

− log(ẑ2ẑ2
1) → 0 . (4.67)
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The difference between analyzing the theory ‘in the presence of gravity’ versus ‘in the
field theory limit’ corresponds to whether we measure the masses with respect to MPl or Λ.
In terms of the latter, the relevant BPS masses scale as follows:

KK : M

Λ ∼ ẑ
−α
2 →∞

D0/D2 on P1
f /NS5 on K3/D4 on K3 : M

Λ ∼ g
−1
IIA

√
− log(ẑ2ẑ2

1) ẑ−α2 →∞

−2D0+D4 on CW : M

Λ ∼ g
−1
IIA

√
− log(ẑ2ẑ2

1)ẑ−α2 ẑ
1/2
1

D6 on C6 : M

Λ ∼ g
−1
IIA

√
− log(ẑ2ẑ2

1) (−log(ẑ2)) ẑ−α2 ẑ
1/2
1 .

Note that the behavior of the W and the D6-brane mass with respect to Λ depends on the
relative rate at which ẑ1 and ẑ2 vanish in the limit. For instance, if the limit is taken in
such a way that the mass of the monopole, i.e. of the D6-brane, goes to infinity in terms
of Ms, both the W -boson and the monopole mass scale to infinity with respect to Λ.

Importantly, the first two lines include towers of particles which become light with
respect to MPl. These towers decouple from the gauge theory by becoming infinitely heavy
with respect to Λ. This explains why in Seiberg-Witten theory no towers of asymptotically
light states are observed in the weak coupling limit; massless towers arise only with respect
toMPl. This is in agreement with the general intuition underlying the Swampland Distance
conjecture, namely that infinite distance limits for moduli in quantum field theory do not
necessarily lead to towers of massless states, while infinite distance limits in the presence
of gravity do.

4.3.4 Equi-dimensional limit via co-scaling of gIIA

In view of (4.60) it is clear that we can keep the Planck scale finite at the point L2 if we
choose to co-scale the coupling, gIIA, as

gIIA = g
(0)
IIA µ

1/2 , µ ∼ −log(ẑ2ẑ
2
1)→∞ . (4.68)

As a result, all towers of states now appear at the same mass scale, as follows from (4.61):

KK scale : M

Ms
∼ (−log(ẑ2ẑ

2
1))−1/2 ∼ µ−1/2

D0 /D2 on P1
f /NS5 on K3 /D4 on K3 : M

Ms
∼ 1
gIIA

∼ µ−1/2
(4.69)

We are therefore in the situation where a tower of string excitations — given by the
excitations of the NS5-brane along the fiber — sits at the same parametric scale as the
various particle towers, namely those associated with the supergravity KK modes arising
from the large base P1

b , plus the towers of D0 and D2-branes, respectively. According to the
logic applied many times in this work, the appearance of a dense tower of stringy excitations
at the same parametric mass scale as of the particle excitations, implies that the system
does not undergo decompactification, i.e. the limit effectively stays equi-dimensional.

Note that obviously the statements we made here rest upon the assumption that the
heterotic string and its particle excitations remain stable in the limit gIIA →∞.
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4.4 Abelian variety fibration: Schoen manifold in Type IIA string theory

We briefly discuss the last of the three fibration types, namely Abelian fibrations, now
for Type IIA strings where quantum phenomena can come into play. As for the classical
case, these geometries form in some sense the middle ground between genus-one and K3
fibrations, by sharing properties of both of them.

Indeed, even without resorting to any specific realisation of an Abelian surface fibra-
tion, the general behaviour can be deduced using a combination of arguments that we
invoked also for the quantum geometry of the T 2- and K3-fibrations. Recall first the dis-
cussion at the beginning of section 4.3. Analogously, the quantum volume of the T 4 fiber
is proportional to the mass of a D4-brane wrapping the fiber T 4, which is the same as an
M-Theory M5-brane on T 4×S1. The M5-brane on T 4 gives rise to a Type II string, whose
vacuum energy vanishes because

E0 = −χ(T 4)
24 = 0 . (4.70)

From the reasoning after (4.37) one infers that there cannot be any non-vanishing offset
for the quantum volume, and hence, unlike for K3-fibers, the point of vanishing T 4 volume
is part of the quantum moduli space. This is the regime

L2 : VT 4 ∼
1
λ
, VP1

b
∼ λ , gIIA = g

(0)
IIA , λ→∞ . (4.71)

The mass scales of states becoming light at this point are then as follows:

KK scale : M

Ms
∼ 1√

λ
,

D2 ⊂ T4/NS5 on T4 : M

Ms
∼ 1
gIIA
√
λ
,

D4 on T4 : M

Ms
∼ 1
gIIAλ

.

(4.72)

Note that, contrary to a K3-fiber, D4-branes on a T 4 fiber generate a tower of particles
because a T 4 admits arbitrary smooth multiple covers, i.e. a D4-brane along nT 4 gives rise
to BPS particles for every value of n. The masses of these particle states are parametrically
smaller than those of the towers of string excitations from the NS5-brane on T 4, or of any
other towers. They indicate decompactification along a circle to five-dimensional M-Theory.

This claim is readily understood by noting that, as for T 2-fibers, the limit of a vanishing
T 4-fiber is T-dual to the large volume regime near

L1 : VT 4 ∼ λ , VP1
b
∼ λ , gIIA = g

(0)
IIAλ , λ→∞ . (4.73)

At the large volume point L1, the classical volume of the T 4-fibration is reliably computed as

VY,cl. ∼ VT 4 VP1
b
, (4.74)

up to subleading terms independent of VP1
b
. The Planck mass scales as

M2
Pl

M2
s

= 4π
g2

IIA
VY ∼ 1 (4.75)
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if we take g(0)
IIA finite. The tower of D4-branes wrapping T 4 at L2 maps to a tower of

D0-branes at L1. As is familiar by now, this tower indicates decompactification to five-
dimensional M-Theory before any of the other towers at subleading mass scales become
relevant. Similarly to the discussion around (4.24), invoking

JM = JY

g
2/3
IIA

= JY

(g(0)
IIA)2/3 λ2/3

, (4.76)

the M-Theory volumes scale as

VT 4,M ∼ λ−1/3 , VP1
b
,M ∼ λ1/3 , VY,M ∼ 1 . (4.77)

Hence, we end up precisely with a limit of Type T 4 for M-Theory on Y , with no further
decompactification beyond five dimensions, and the asymptotic physics is as discussed in
section 3.3. In particular, for limits of Type T 4, there is no need for a co-scaling of g(0)

IIA in
order to keep the Planck scale finite. This is a significant difference as compared to limits
of Type T 2. Note that this conclusion is fully consistent with the analysis at the end of
section 4.2.

As for a concrete example, let us re-visit for a case study the Schoen manifold, whose
abelian fiber is given by a product of two cubic elliptic curves. The mirror, X, of this
Schoen manifold can be represented as the following complete intersection in P1×P2×P2:

W1(x, p, z) =
(1

3
∑

xi
3 − 1

z1
x1x2x3

)
p0 −

(
z0
z1z2

)1/2
x1x2x3 p1 = 0 , (4.78)

W2(y, p, z) =
(1

3
∑

yi
3 − 1

z2
y1y2y3

)
p1 −

(
z0
z1z2

)1/2
y1y2y3 p0 = 0 .

It exhibits a 3-dimensional sub-space of the 19 dimensional complex structure moduli space,
in a certain patch, where the coordinates z0 and z1,2 correspond, via mirror symmetry, to
the volumes of the base P1

b and to the two elliptic fibers, respectively.
The quantum mirror geometry of this three-fold has been discussed in [69], to which

we refer for details. Suffice it here to mention that in the large base limit, the prepotential
is given by

F (t0, t1, t2) = −9t0t1t2 −
3
2 t

2
1t2 −

3
2 t1t

2
2 + 3

2 t1 + 3
2 t2 +O(e−t) , (4.79)

where t0 is the Kähler parameter of the base, and t1, t2 those of the two fibral tori. As in
section 3.3.1, in order to capture a limit that is genuinely different from a limit of type T 2,
we consider the situation where we scale the two curves in the same way, ie., set t1 = t2 = t

and analogously for the complex structure moduli. In the large base limit, the periods of
the fiber become the products of the periods of the cubic curve, i.e.,

X0
E×E · {1, t, t2}, (4.80)
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where X0
E×E = (X0)2 and moreover

t(z) = X1(z)
X0(z) , where

X0(z) = 2F1(1/3, 2/3, 1; z3) , (4.81)

X1(z) = i√
32F1(1/3, 2/3, 1; 1− z3) .

From (4.80) it is evident that in the large base limit, the quantum volumes of 0-, 2-
and 4-cycles, as determined by the periods, are given by their classical versions without any
instanton corrections, quite as expected. The point L2 hence corresponds to the regime

t0 ∼ λ , t ∼ λ−1/2 , λ→∞ . (4.82)

At L2 the fundamental period of the fiber diverges as X0
E×E ∼ T̂ 2, where T̂ = 1/|t|. The

transformation (4.10), applied to the value of gIIA at L1 and L2, is precisely as dictated by
T-duality, see (4.73) versus (4.71). Furthermore, while the fiber volume tends to zero at L2,
the Calabi-Yau volume (4.6) remains finite at L2. Technically this is due to the fact that∫
X Ω∧ Ω̄ does not change between L1 and L2 except for the replacement |t| → |T̂ | = 1/|t|,
while X0

E×E ∼ T̂ 2 at L2 but X0
E×E ∼ 1 at L1, i.e.

VY = 1
8
i
∫
X Ω ∧ Ω̄(z)
|X0(z)|2 ∼ |t0T̂

2 +O(T̂ 3)|
|T̂ 4|

= |t0|
|T̂ 2|

∼ 1 . (4.83)

Compared to the situation for K3-fibrations, there is an important difference. While
the mass of a wrapped D4-brane is again just given by the classical expression

M(D4) ∼ |∂t0F | = |t2| , (4.84)

there is no constant shift as compared to eq. (4.58), which applies to a K3 fiber. This is
due to the absence of a term 1

24 t0χ(T 4) = t0
1
24
∫
c2 ∧ J0 in the prepotential (4.79) since

χ(T 4) = 0. As mentioned at the beginning of this section, this reflects the absence of
a vaccum energy, E0, for the Type II string. As a consequence, and in contrast to a
K3 fibration, the regime of vanishing fiber volume does lie in the moduli space, and the
asymptotically massless, multiply wrapped D4-branes at L2 play the T-dual role of the
D0-branes at L1. This signals decompactification to M-Theory.

5 Summary and discussion

The present work has studied the physics and geometry of infinite distance limits in the
vector multiplet moduli space of M-Theory and Type IIA string theory compactified on
Calabi-Yau three-folds. Our findings lend support to a conjecture with a more general
scope formulated in the introduction, according to which any equi-dimensional infinite
distance limit of a gravitational theory should give rise to an asymptotically weakly cou-
pled and tensionless string theory. The appearance of a unique asymptotically tensionless
fundamental string could be avoided if the theory undergoes (generally partial) decom-
pactification, or alternatively, if quantum corrections obstruct an equi-dimensional limit
at infinite distance in the first place (for example by turning a classically infinite distance
into a finite distance limit).
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The framework of our explicit analysis is sufficiently rich in order to address a variety
of these and other related phenomena. First, in the realm of M-Theory compactified on a
Calabi-Yau three-fold, we have classified the possible infinite distance limits in the Kähler
moduli space, which is classically exact. Due to the absence of quantum corrections, the
only way to avoid the appearance of a light weakly coupled string and its excitation spec-
trum would be by partial decompactification, according to the conjecture. This perfectly
matches the results of our analysis: as we have shown, infinite distance limits with finite
classical volume in the Kähler moduli space admit a complete classification, where either a
T 2 fiber, a K3 fiber or a T 4 fiber of the Calabi-Yau three-fold shrinks in a unique way, while
the base expands such as to keep the volume finite. Limits of Type T 2 realize the phe-
nomenon of partial decompactification in that a tower of M2-branes wrapped on the torus
fiber signals decompactification to six dimensions, which leads to the standard F-Theory
limit (see also [14, 19]). For limits in which a K3 or T 4 fiber shrinks, by contrast, we have
observed the appearance of a unique asymptotically tensionless heterotic or Type II string,
respectively. The resulting string excitation spectrum sits parametrically at roughly the
same mass scale as the KK spectrum. Since the string spectrum is much denser than the
KK spectrum, the appearance of the light string modes prevents the physics from running
into a purely field theoretic decompactification limit.

The emergence of a unique asymptotically light heterotic or Type II string rests on a
beautiful interplay of various aspects of Kähler geometry and is a highly non-trivial con-
sistency check of the compactifications under scrutiny. The existence of towers of 2-brane
particle states corresponding to wrapping modes of this string in a dual compactification
is guaranteed by the connection between BPS invariants and modular forms in the rele-
vant geometries. Our analysis also points to what we believe is a new realisation of string
dualities in five dimensions, namely a duality between M-Theory on an Abelian surface
fibration, and a non-geometric D-manifold background for Type II string theory. These
backgrounds deserve further investigation in the future.

Once we pass on to compactifications of Type IIA string theory on the same kinds of
fibered three-folds, we need to watch out for potential obstructions against taking equi-
dimensional limits. Indeed it is well known that quantum geometry can drastically modify
naive classical geometry. In limits of Type T 2 and T 4, the shrinking of the fiber is not
prohibited by quantum geometric effects; nonetheless the theory undergoes a partial decom-
pactification because T-duality relates the regime of small toroidal fiber to the large fiber
regime, however at large value of the ten-dimensional string coupling gIIA. As a result,
the theory decompactifies to M-Theory. In limits of Type T 2, whether or not the five-
dimensional theory decompactifies further (possibly in a nested series of limits), depends
on whfether or not gIIA is co-scaled such as to keep the Planck scale finite, while for limits
of Type T 4 no such co-scaling is necessary and there occurs no further decompactification
beyond five dimensions.

For limits where classically a K3-fiber would shrink, on the other hand, quantum
corrections obstruct a vanishing fiber volume. This phenomenon can also be understood in
terms of the vacuum energy of a wrapped M5-brane on K3× S1, where S1 is the familiar
M-Theory circle. As a consequence of the non-vanishing quantum volume of the K3 fiber,
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the total Calabi-Yau volume necessarily diverges. If gIIA remains fixed and finite, this
leads to straightforward decompactification (or decoupling of gravity in four dimensions).
Indeed this limit corresponds to the regime where Seiberg-Witten gauge theory decoupled
from gravity emerges [38], and it occurs at finite distance from the perspective of the K3-
surface. Hence in a sense quantum corrections have turned the infinite distance into a
finite distance limit, where only a finite number of states become massless. This is similar
in spirit to the observations of [17] where a classical strong coupling/large distance limit
is drastically modified by quantum corrections.24 The most interesting limit is obtained
when the string coupling is co-scaled such as to keep the four-dimensional Planck scale
finite. The tower of D0-branes at strong coupling now sits parametrically at the same scale
as the tower of heterotic string excitations (from the M5-brane along the K3-fiber). Hence,
the limit remains equi-dimensional. This represents, in fact, the only possible realisation of
an equi-dimensional infinite distance limit in the vector moduli space of Type IIA theory
on Calabi-Yau three-folds.

Our findings and the logic of our “Emergent String Conjecture” also shed interesting
light on other frameworks of compactifications. Mirror symmetry relates Type IIA string
theory on Y to Type IIB string theory on its mirror three-fold X. The corresponding
infinite distance limits in the complex structure moduli space of X correspond to certain
degeneration limits of 3-cycles. Wrapped D3-branes on such vanishing 3-cycles give rise
to mirror towers of asymptotically massless particle states, and this has been studied in
the context of infinite distance limits in [8, 12]. This analysis makes use of the theory of
limiting mixed Hodge structures and results in a classification of possible boundaries of
complex structure moduli space.

As stressed in section 4.1, infinite distance limits in complex structure moduli space
on X map to limits with co-scaled gIIA (and thus finite Planck scale) on the Type IIA side.
In such limits, a tower of D0 branes appears which is parametrically leading and signals
decompactification to five dimensions. The exception is for limits of Type K3, where the
D0 tower sits at the same mass scale as the excitations of an emerging heterotic string. The
question arises how this spectrum manifests itself in the Type IIB mirror picture. Evidently
a natural interpretation would be in terms of a tower of D3-branes wrapping some special
Lagrangian 3-torus fiber on X [88–90]. Indeed it is well known from the SYZ picture of
mirror symmetry [75, 91], that at the large complex structure point, which corresponds
to maximal unipotent monodromy, a special Lagrangian 3-torus shrinks to zero volume.
Since we are observing a tower of D0-branes in every infinite distance limit on the Type
IIA side, the interesting question arises which precise cycles degenerate on the mirror X in
more general limits than those of maximal unipotent monodromy. Furthermore, for limits
of Type K3, the appearance of a heterotic string at the same scale as the D0-brane tower
implies that an emerging heterotic string should play an analogous role on the Type IIB
mirror side.

Another important open question is to what extent our conjecture applies to infinite
distance limits in the hypermultiplet moduli space, which is much more challenging than

24Such quantum effects become even more drastic in 4d N = 1 supersymmetric compactifications, as
exemplified for K3-fibrations in [87].
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the vector multiplet moduli space we have considered in this paper. While there exist well-
known candidates for emergent strings, quantum corrections that are difficult to control
complicate the analysis. For the sake of argument, let us first ignore quantum effects for a
moment. The candidates for light strings are, in Type IIA language, D4-branes wrapping
shrinking 3-torus fibers (near complex structure degenerations), or in Type IIB language,
D3/D5-branes wrapping 2- or 4-torus fibers (near Kähler degenerations). For the latter,
the strings correspond to light Type IIB strings in the vanishing fiber limit. This parallels
the emergence of tensionless Type IIB strings in six dimensions, which arise [19] for Type
IIB string theory on K3 at infinite distance of the moduli space.

The emergence of light strings is also implied by T-duality: after an even number of
T-duality transformations, we can translate the small fiber regime to the large fiber regime,
however at large value of the 10d coupling, gIIB. In this description, the D1-string becomes
asymptotically light. For Type IIA theory, it would take an odd number of T-dualities to
arrive at large fiber volume, which maps the theory to Type IIB on the mirror dual three-
fold. Still, mirror symmetry suggests that also the D4-brane on a T 3-fiber would become
a fundamental string in the limit of vanishing fiber volume. However, as mentioned above,
what impedes a straightforward analysis of the infinite distance limits in hypermutliplet
space, is the appearance of potentially drastic quantum corrections. This phenomenon has
already been addressed in a combined large volume — strong coupling limit in Type IIB
theory in [17]. At any rate, it seems plausible that this corner of string compactifications is
in agreement with our conjecture, either directly or due to quantum obstructions against
taking the limit.

As a particularly interesting testing ground of our conjecture, we finally turn to infinite
distance limits in the complex structure moduli space of a Calabi-Yau three-fold, as probed
by M-Theory. Unlike for Type IIA theory, there is no natural candidate for a tensionless
string from wrapping some 4-brane around a degenerating 3-cycle. The only source of
light particles is the supergravity KK tower associated with large 3-cycles in the limit (at
finite total volume). However at the same time, M2-brane instantons become unsuppressed
(and membranes from wrapped M5-branes become parametrically light), and these could
potentially obstruct an infinite distance limit. As far as the membranes are concerned,
their energy scale sits indeed at the same scale as the KK tower arising from large 3-cycles.

Hence, from a parametric scaling perspective, one might view this as a potential
counter-example to the conjecture that every denser but parametrically competing tower of
particles, if any, should come from the excitations of a string. Note that for the Type IIA
theory in the same limit, no such potential counter-example arises, because the membrane
(domain wall) from an NS5-brane along a three-cycle is always accompanied by a string
from a D4-brane along the same cycle [18]. However, even in M-Theory it is generally not
expected that tensionless higher-dimensional objects give rise to a tower of particle-like
excitations, in the same way as a critical string does. If this line of reasoning is correct, the
lack of an emergent tensionless string would conform with our expectations, as the theory
either undergoes partial decompactification or the limit is prohibited by quantum effects
in the first place. It would be interesting to support this picture by a quantitative analysis.
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A Classification of large distance Kähler limits

In this appendix we will deduce Theorem 1 as stated in section 2.2, starting from the
classification of finite volume limits in terms of what we call J-class A and B limits,
see (2.19) and (2.22), respectively. See also figure 1 for an overview. More precisely we will
show the following:

1. Every J-class A limit as specified in (2.19) gives rise to an infinite distance limit of
Type T 2 as defined in Theorem 1. If the genus-one fibered three-fold Y admits a
K3-fibration, the respective fibers scale as

VT 2 ∼ λ−2 , VK3/T 4 ∼ λ−1 or λ2 . (A.1)

This will be shown in appendix A.1.

2. Every J-class B limit as specified in (2.22) implies that the three-fold Y admits a K3
or T 4-fibration over base P1

b . Focusing for definiteness on a K3-fibration, we will prove
in appendix A.2 the following structure: either the limit is of Type K3 as specified in
Theorem 1, or the K3-fibration admits a compatible T 2-fibration with base B2 and
the limit is of Type T 2 with scaling behaviour

VT 2 ∼ µ−2 , VK3 ∼ µ−
4

1+2x , VP1
b
∼ µ

4
1+2x . (A.2)

Here the scaling parameter µ is related to the scaling parameter λ appearing in (2.22)
as

λ = µ
4

1+2x , (A.3)

and the range of possible values of x depends on the topology of the base B2 of the
genus-one fibration:

0 < x if B2 = P1
f × P1

b

0 < x ≤ 3
2 otherwise .

(A.4)

A.1 Type T 2-limits from J-class A

In the infinite distance limits where the Kähler class is of the form (2.19), the nef effective
divisor J0 of Y obeys

J2
0 6= 0 , J3

0 = 0 . (A.5)
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As shown in [40] and [92], a Calabi-Yau three-fold Y which has a nef divisor satisfying (A.5)
must be genus-one fibered:25

J-class A: π : T 2 → Y

↓
B2 .

(A.6)

The homology class of (in general a multiple of) the generic genus-one fiber is given by

nT 2 = J2
0 (n ≥ 1) . (A.7)

In other words, J0 is a vertical divisor on Y , i.e., the pullback of a divisor on B2 to Y .
Note furthermore that the fibration has either a k-section or a rational section σ, which

defines the embedding of the base B2 (or a multi-cover of B2) into Y with the property that

σ(B2) · T 2 = k , k ≥ 1 . (A.8)

In the special case of an elliptic fibration there exists a rational section, for which k = 1.
The fiber and the base volumes scale with λ→∞ as follows:

VT 2 = 1
n

∫
Y
J2

0 ∧ J =
∑
α∈I1

âαnα
n

1
λ2 → 0 , (A.9)

VB2 = 1
2k

∫
Y
σ(B2) ∧ J2 = 1

2nλ
2 + · · · → ∞ , (A.10)

where we have used eqs. (2.19) and (2.20), and nα :=
∫
Y J

2
0 ∧ Jα are positive integers.

Here, the ellipsis contains terms that scale as λ2 or slower. Note that terms of the former
type may in principle be included here in case there exist some Jr with γr = 1 as defined
in (2.20); this is because the four-forms J0 · Jr and Jr · Js are proportional to J2

0 (see
Proposition 2 in appendix D.1 of [15]). Note also that there exist divisors whose volumes
scale to zero as well. For instance, as far as the divisors associated with the Kähler cone
generators are concerned, we have

VJr = 1
2

∫
Y
J2 ∧ Jr =

J0 · Jr ·
∑
α∈I1

Jα âα

 1
λ
∼ 1
λ
. (A.11)

The last assertion follows because J0 · Jr = nrJ0 · J0 for nr > 0 (see again appendix D.1
of [15]), and furthermore we must have at least one âα ∼ 1 in order for the total volume
to satisfy VY ∼ 1.

In particular, this shows that J-class A limits can never give rise to limits of Type K3
or T 4, even if the three-fold Y admits in addition a compatible K3 or T 4-fibration. This
follows from the scaling behaviour

VK3/T 4 %
1
λ

(A.12)

for the volume of the respective fiber, if present. By contrast, a limit of Type K3 or T 4

would require a scaling behaviour like VT 2 ∼ λ−2 and VK3/T 4 ∼ λ−4, according to (2.28)
25There is a technical assumption that either J0 is effective or J0 · c2(Y ) > 0.
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and (2.27) (after suitably rescaling λ such as to compare (2.28) to the behaviour VT 2 ∼ λ−2

considered in this section). To show (A.12), first note that the class of such a surface fiber
has to be proportional to one of the Kähler cone generators different from J0. If the class
is a generator Jr for r ∈ I3, then (A.11) shows the claimed behaviour. If its class is Jα
with α ∈ I1, its volume scales as VJα ∼ λ2J2

0 · Jα + . . . ∼ λ2. This completes the proof
of (A.1).

A.2 Type K3/T 4 or Type T 2 limits from J-class B

In the infinite distance limits with the Kähler class of the form (2.22), the nef effective
divisor J0 of Y obeys

J0 6= 0 , J2
0 = 0 . (A.13)

Furthermore, one can easily show that∫
Y
J0 ∧ c2(Y ) ≥ 0 . (A.14)

In order to see this, let us first recall the adjuction formula,

0→ TS0 → TY |S0 → OY (S0)|S0 → 0 , (A.15)

where S0 is the surface of class [S0] = J0. Note that the normal bundle OY (S0)|S0 in (A.15)
is a trivial bundle, OY (S0)|S0 ' OS0 since J2

0 = 0. Then, it immediately follows that

c1(S0) = c1(TY |S0)− c1(OY (S0)|S0) = 0 , (A.16)

and hence that S0 is either a K3 surface or an Abelian surface. We thus have

c2(Y ) · J0 = c2(Y )|S0 = c2(S0) =

24 if S0 is a K3 surface ,
0 if S0 is an Abelian surface .

(A.17)

In the second case, S0 is topologically a four-torus T 4. According to the classification [40]
of fibration structures of Calabi-Yau three-folds, (A.13) and (A.14) guarantee that the
Calabi-Yau Y is a fibration with the class of the generic fiber given by J0. This leads to
the two following possibilities for J-class B limits, depending on whether we have K3 or
T 4 as fiber:

J-class B (K3-/T 4-fibered): π : K3/T 4 → Y

↓
P1
b

(A.18)

In the remainder of this subsection we focus on the case of a K3-fibration. We will
need to understand the scaling behaviors of the volumes of base P1

b , K3 fiber and of curves
embedded in the fiber, in terms of the large parameter λ defined in (2.22). First, note that
P1
b is the curve dual to the fiber, whose class is J0. Hence it is clear that

VP1
b

=
∫
P1
b

J → λ as λ→∞ . (A.19)

– 69 –



J
H
E
P
0
2
(
2
0
2
2
)
1
9
0

The volume of the K3-fiber in the limit λ→∞ can be computed by noting that

VY = 1
6

∫
Y
J3 = 1

2λJ0J
2 + . . . = λVK3 + . . . , (A.20)

with the ellipsis denoting only parametrically subleading terms in λ. This will be proven
in appendix B.2. In the parametric limit this implies

VK3 →
VY
λ
, (A.21)

with VY finite. To be precise, this is only true when Y admits a single K3 fibration. As
we will make clear in appendix B.2, there may exist other order-one contributions in case
the three-fold Y is K3 fibered in multiple different ways. Even for such (more generic)
situations, however, we can prove that there must exist at least one K3 fibration with the
parametric behavior VK3 ∼ 1

λ , which is all we need in the rest of this section.
Of special importance will be curves C inside the K3 fiber of self-intersection

C ·K3 C ≥ 0 which also exist as curves inside the full Calabi-Yau three-fold Y . The reason
is that, as we will show in section 3.2, it is precisely these curves which support an infinite
tower of BPS states (from wrapped 2-branes) that become massless in the limit λ → ∞.
Our claim is that there can occur only the following two possibilities:

1. Type K3
The first possibility is that the volume of the curves C ⊂ K3 embedding into Y scales
as

VC ∼
1√
λ

∀ C ⊂ K3 with C ·K3 C ≥ 0 . (A.22)

K3-fibrations with this property admit a finite volume limit of Type K3, as in Theo-
rem 1.

2. Type T 2 (with a compatible K3 fibration)
In every other case, the K3 surface is necessarily genus-one fibered

r : T 2 → K3
↓
P1
f

(A.23)

and
VT 2 ∼ λ−1/2−x , VP1

f
∼ λ−1/2+x , x > 0 . (A.24)

The only curves with non-negative self-intersection in the K3-fiber are given by

Ck,l := kT 2 + l(T 2 + P1
f ) , (A.25)

for k l ≥ 0. Such limits fall into Type T 2 as defined in Theorem 1: indeed, the scaling
laws (A.24) and (2.26), (A.19) are the same upon a redefinition of the parameter λ.

– 70 –



J
H
E
P
0
2
(
2
0
2
2
)
1
9
0

To show this, suppose that there exists a curve C ⊂ K3 with C ·K3 C ≥ 0 and whose
volume vanishes at a rate

VC,trial ∼ λ−1/2−α with α 6= 0 . (A.26)

In view of (A.21), it is convenient to uniformly scale out a factor of 1/
√
λ from the volumes

of all curves Ci ⊂ K3, and define

VK3 = 1
λ
V ′K3 , VCi = 1√

λ
V ′Ci . (A.27)

Our assumption therefore is that on the K3 with finite volume V ′K3, we have

V ′C,trial ∼ λ−α . (A.28)

Assume first that α < 0. This means that a curve of non-negative self-intersection on
a finite volume Kähler surface K3 scales to infinity. As recalled in appendix A.4, in this
situation there must exist a unique curve C0 with

C0 ·K3 C0 = 0 (A.29)

whose volume vanishes at the inverse rate V ′C0
∼ λα (with α < 0 by assumption). This

curve is the fiber of a genus-one fibration on K3.26 The base of the fibration is a rational
curve P1

f with V ′P1
f
∼ λ−α. On the other hand, if α > 0, this means that on the Kähler

surface a curve of non-negative self-intersection shrinks. By Lemma 3 in appendix A.4,
this curve is the fiber of a genus-one fibration on K3.

Scaling the factor of 1/
√
λ back, we have established, for α 6= 0, the existence of

a genus-one fibration structure for the K3, as indicated in (A.23) together with (A.24).
On such a genus-one fibered surface, all other elements of the Picard group are negative
intersection curves Cex with Cex · T 2 = 0 = Cex · P1

f . This explains why the only curves of
non-negative self-intersection are given by the combinations (A.25) for kl ≥ 0.

Note that (A.23) implies that Y is itself genus-one fibered,

p : T 2 → Y

↓
B2

(A.30)

where the base is a Hirzebruch surface (or its blowup) of the form,

s : P1
f → B2

↓
P1
b

(A.31)

We conclude that the J-class B limit, for the case in which J0 corresponds to a K3-
fibration, leads to one of the two possibilities (A.22) or (A.24), as stated in Theorem 1. An
analogous analysis applies if J0 defines a T 4-fibration.

26See section 3.2 of [19] for a relevant discussion in the context of weak-coupling limits for two-form fields,
in Type IIB compactification on K3.
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Finally, let us comment on the range of the parameter x appearing in (A.24). The
scaling (A.24) of the T 2-fiber volume of Y implies that

VB2 ∼ λ
1
2 +x , (A.32)

because in the small fiber limit the leading contribution to VY is of the form VT 2VB2 , and
VY is finite. On the other hand, the volume of a surface B2 which is fibered as in (A.31)
is of the form

VB2 = aVP1
f
VP1

b
+ bV2

P1
f

+ . . . ∼ a λ
1
2 +x + b λ−1+2x + . . . , (A.33)

where the omitted non-negative terms involve the blowup divisors (if present). The topo-
logical intersection numbers a and b depend on the details of the fibration. In particular,
b = 0 only if the fibration is trivial, i.e. if B2 = P1

f × P1
b . If b 6= 0, the second term must

not dominate over the first term as otherwise the scaling (A.32) would be compromised.
This leads to the constraint

x ≤ 3
2 if b 6= 0 . (A.34)

Altogether we have hence reproduced the claim (A.2) together with the bound (A.4).

A.3 Example: elliptic K3-fibration

Let us now exemplify the limits of J-classes A and B, as well as the fibration structures they
imply more concretely. Consider the Calabi-Yau three-fold Y = P5

1,1,2,8,12[24] as studied
for instance in [93]. This Calabi-Yau three-fold admits both a K3 and a compatible genus-
one fibration, and hence lends itself to illustrating the different finite volume limits that
can be taken.

The Kähler cone is generated by three divisors, JA, JB, JC , with non-vanishing inter-
section numbers given by

J3
B = 8 , J2

BJA = 2 , J2
BJC = 4 , JBJ

2
C = 2 , JAJBJC = 1 . (A.35)

First of all, the Calabi-Yau admits a K3-fibration with

K3-fiber class JA (A.36)

over a base P1
b . The latter is the curve dual to the divisor JA. In addition, Y admits a

compatible genus-one fibration with

T 2-fiber class 1
2J

2
C . (A.37)

Compatibility means that the genus-one fiber T 2 of Y coincides with the genus-one fiber of
the K3 surface. Together with the base P1

f of the K3-surface, viewed as a genus-one fibra-
tion, there are two independent curve classes in K3 which embed as linearly independent
classes into Y :

T 2 = JA ∩ JC , P1
f = JA ∩ (JB − 2JC) . (A.38)

– 72 –



J
H
E
P
0
2
(
2
0
2
2
)
1
9
0

Their intersection numbers inside the K3 fiber are

T 2 ·K3 T
2 = 0 , P1

f ·K3 P1
f = −2 , T 2 ·K3 P1

f = 1 . (A.39)

If we parametrise the Kähler form generically as

J = TAJA + TBJB + TCJC , T i ≥ 0 , (A.40)

we find the following volumes:

VY = TA(TBTC + (TB)2) + TB(TC)2 + 2(TB)2TC + 4
3(TB)3 (A.41)

VK3 = (TB)2 + TBTC (A.42)
VP1

b
= TA (A.43)

VCk,l = l(TB + TC) + kTB , (A.44)

where in the last line we have defined the curve class

Ck,l = kT 2 + l(P1
f + T 2) , with Ck,l ·K3 Ck,l = 2k l . (A.45)

We are now in a position to investigate the possible finite volume limits at infinite
distance in moduli space. Since the only Kähler cone generators with J3

i = 0 are JA and
JC , the following infinite distance limits can be taken:

J-class A : TC ∼ λ , TA - λ , (A.46)
J-class B : TA ∼ λ , TC ≺ λ . (A.47)

J-class A. Let us first consider the J-class A in more detail and illustrate that it indeed
corresponds to a limit of Type T 2. In agreement with the general definitions, we set
J0 = JC , and more precisely identify the index sets appearing in (2.19) as

I0 = {C} , I1 = {B} , I3 = {A} . (A.48)

Taking the Kähler parameter TC = λ, finiteness of VY requires that TB ∼ λ−2. By defini-
tion of J-class A, TA - λ. This reproduces precisely the general scaling behaviour (2.20).
The resulting curve volumes

VT 2 ∼ λ−2 , VP1
f
∼ λ , VP1

b
∼ λ (A.49)

and the fiber volume
VK3 ∼ λ−1 (A.50)

fall into the pattern (2.26) defining the Type T 2 limit.
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J-class B. We next turn to J-class B, for which

I0 = {A} , I2 = {B,C} . (A.51)

Let us make a corresponding ansatz

J = λJA + cBJB + cCJC . (A.52)

If we parametrise

cB = c′B λ
−aB , cC = c′C λ

−aC , c′r finite for λ→∞ , (A.53)

then finiteness of VY requires that

2aB ≥ 1 , aB + aC ≥ 1 , aB + 2aC ≥ 0 , (A.54)

where at least one of the inequalities must be saturated so that VY does not vanish.
First, note that the last inequality cannot by saturated because this would be in conflict

with −aC < 1. However this is required so that TC ≺ λ as in (A.47). The remaining two
different ways to keep VY finite but non-zero, in compliance with (A.47), are

i) aB = 1
2 aC = 1

2 + x x ≥ 0 or (A.55)

ii) aB = 1
2 + x aC = 1

2 − x 3/2 > x > 0 . (A.56)

The upper bound on x in the last line ensures again that −ac < 1. In both cases

VK3 ∼ λ−1 , VP1
b
∼ λ (A.57)

while the fibral curves scale as follows:

i) VCk,l = λ−1/2(kc′B + l(c′B + c′Cλ
−x)) (A.58)

ii) VCk,l = λ−1/2(kc′Bλ−x + l(c′Bλ−x + c′Cλ
x)) . (A.59)

Case i) realizes a Type K3 limit: indeed, every fibral curve Ckl with kl ≥ 0 scales as

VCk,l ∼ λ
−1/2 (A.60)

for λ → ∞ as in the definition (2.28). The only fibral curve that may shrink at a faster
rate is the (contractible) rational base curve P1

f of self-intersection −2 in K3.
Case ii), on the other hand, exemplifies how a Type T 2 limit can arise from in J-class B:

in particular, the volume of the T 2 scales as

VT 2 ∼ λ−
1
2−x (A.61)

for non-zero x. To compare this to (2.26), we introduce the parameter µ via µ−2 = λ−1/2−x

and find
VT 2 ∼ µ−2 , VK3 ∼ µ−

4
1+2x , VP1

b
∼ µ

4
1+2x . (A.62)

From the allowed range of x we conclude that this means

VT 2 ∼ µ−2 , µ−4 ≺ VK3 ≺ µ−1 , VP1
b

= 1
VK3

, (A.63)

in agreement with the characteristic property (2.26) of a limit of Type T 2.
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A.4 Large distance limits on Kähler surfaces

We recall and extend some results from [10] which are needed at various places in this ar-
ticle.

Lemma 1 Consider a Kähler surface B with positive anti-canonical class K̄ > 0 and a
limit in its Kähler moduli space such that VC0 → 0 for some curve C0 with C0 ·C0 ≥ 0, while
simultaneously the total volume of B stays finite. Then B is (the blowup of) a fibration

s : F → B

↓
P1
b

(A.64)

where the generic fiber F is a rational curve P1
f or a genus-one curve T 2

f . The curve C0
that shrinks in the limit is the fiber of this fibration. In particular, C0 ·C0 = 0. If C0 = T 2

f ,
B is a rational elliptic surface dP9.

To see this, note first that a curve with C0 · C0 ≥ 0 is not contractible on B. Hence
any limit in Kähler moduli space where VC0 → 0, with VB remaining finite, is at infinite
distance, and there must exist a curve C for which VC ∼ λ→∞ in the limit. As shown in
appendix B of [10], this means that the Kähler form of B can be expanded as

J = λJ0 +
∑
ν

sνJν (A.65)

with J0 · J0 = 0 and sν(J0 · Jν) - 1
λ such that J0 · C 6= 0 and VC ∼ λ. In the limit, the

volume of the curve Ĉ = J0 with Ĉ · Ĉ = 0 vanishes as VĈ = J0 · J ∼ 1
λ . Furthermore,

any other curve Ĉ ′ which shrinks in the limit satisfies C ′ · C ′ ≤ 0 and C ′ · C ′ = 0 if and
only if C ′ = α Ĉ for some α. This applies in particular to the curve C0, which is therefore
to be identified with Ĉ, i.e. C0 is in the class of the Kähler cone generator J0 and in
particular C0 · C0 = 0.

As further discussed in appendix B.2 of [10], there are now two possibilities: either
C0 · K̄ = 2 or C0 · K̄ = 0, where K̄ is the anti-canonical divisor of B.

1) C0 · K̄ = 2. If C0 · K̄ = 2, C0 is a rational curve and, in fact, the generic rational
fiber of a Hirzebruch surface (or a blowup of a Hirzebruch surface). Given a Calabi-Yau
three-fold Y which is genus-one fibered over B, this fibration has the structure of a K3-
fibration over P1

b , and the generic K3 fiber is genus-one fibered over P1
f . In fact this case

was already studied in [10], as it is indeed the situation that arises for infinite distance
limits in F-Theory where the gauge coupling of a U(1) gauge group asymptotes to zero.
A D3-brane wrapping P1

f gives rise to a weakly coupled tensionless heterotic string in the
limit λ→∞.

2) C0 · K̄ = 0. If C0 · K̄ = 0, C0 is a genus-one curve and B is a genus-one fibration
with generic fiber C0 = T 2

f . The surface B is a rational elliptic surface, i.e. a dP9 surface.
A Calabi-Yau three-fold Y which is genus-one fibered over B has the structure of a T 4-
fibration over P1

b , and the generic T 4 fiber is in fact a product T 2 × T 2
f , where T 2 is the
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generic genus-one fiber of Y . This is the Schoen Calabi-Yau manifold. The possibility
that C0 · K̄ = 0 was not studied further in [10], because it does not correspond to a weak
coupling limit of an abelian gauge symmetry, but rather to a weak coupling limit for a
2-form field in the F-Theory effective action. As we discuss in more detail in section 3.3,
a D3-brane wrapping T 2

f gives rise to a weakly coupled tensionless Type II string in the
limit λ→∞. In this sense, the present situation is the N = (1, 0) supersymmetric version
of the infinite distance limits of Type IIB string theory on K3, which correspond to weak
coupling for the Ramond-Ramond 2-form fields [19].

As an immediate application we can state

Lemma 2 On a Calabi-Yau three-fold Y in a limit of Type T 2 as defined in section 2.2,
the volume of any vertical divisor

DCb := π∗Cb with Cb ⊂ B2 such that Cb ·B2 ·Cb ≥ 0 (A.66)

scales as
λ−4 ≺ VDCb

, (A.67)

where π : T 2 → B2 denotes the genus-one fibration that underlies the Type T 2 limit.

To see this, note that a vertical divisor is by itself genus-one fibered, and hence its
volume is computed as

VDCb
= aV2

T 2 + bVT 2VCb = a′

λ4 + bVT 2VCb ∼ λ
−4+∆ for ∆ ≥ 0 . (A.68)

Here a and b are positive and depend on the intersection numbers on the divisor, and a′ is
obtained via (A.9) as

a′ = a
∑
α∈I1

âαnα
n

, (A.69)

which is again a finite positive number. The only question we need to address is whether
the value ∆ = 0 can be achieved. This is the case if and only if there exists a curve on B2
as in (A.66) with the property that

VDCb
∼ λ−2−y for y ≥ 0 . (A.70)

It is convenient to scale out a factor of λ from the Kähler form of the base B2, i.e., to
define

VB2 = λ2 V ′B2 , VCb = λV ′Cb . (A.71)

The rescaled volume V ′B2
is parametrically finite as λ → ∞, and the question is if we can

achieve that
V ′Cb = λ−3−y . (A.72)

By Lemma 1, since Cb ·B2 Cb ≥ 0, such a curve can shrink on the finite volume base B2 if
and only if the three-fold Y admits a K3 or T 4-fibration whose generic fiber is in fact given
by π∗Cb. By definition, in a limit of Type T 2, we have the scaling λ−4 ≺ VK3/T 4 , while
the scaling λ−4 ∼ VK3/T 4 would correspond to a limit of Type K3/T 4. This concludes
the proof.
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Lemma 1 generalizes to K3-surfaces embedded into a Calabi-Yau three-fold:

Lemma 3 Consider a K3 surface with embedding ι : K3→ Y into a Calabi-Yau three-fold,
and a limit in the Kähler moduli space of Y such that VC0 → 0 for a curve C0 ∈ (ι∗Pic(Y ))∨
inside the K3 surface with C0 ·K3 C0 ≥ 0, while the total volume of the K3 remains finite.
Then the K3 surface is a genus-one fibration

p : T2 → K3
↓
P1
b

(A.73)

and the curve C0 which shrinks in the limit is the fiber of this fibration. In particular,
C0 · C0 = 0.

This follows by applying the same steps as in appendix B of [10] to the K3 sur-
face. Uniqueness of the shrinking curve with non-negative self-intersection follows because
(ι∗Pic(Y ))∨ has signature (1, r), so that the same Cauchy-Schwarz inequality can be readily
applied as in appendix B.3 of [10]. See also [19].

B Existence and uniqueness of the relevant fibrations

In this appendix, we will rigorously prove the existence and uniqueness of the relevant types
of fibrations that necessarily appear in the infinite distance limits as claimed in Theorem 1.
Such existence and uniqueness results are crucial for various duality arguments given in
the main text, as they guarantee the emergent critical strings to be of a definite type,
be it Type II or Heterotic. For the precise statements see Propositions 1, 2 and 3 in the
subsequent sections.

Before delving into the detailed discussion of the fibrations, let us recall the following
property of two non-trivial classes D1, D2 ∈ H1,1(S) on a Kähler surface S:

D1 ·D2 = 0 and Da ·Da ≥ 0 for a = 1, 2 ⇒ D2 = κD1 for some κ > 0 .
(B.1)

Then, it is an immediate consequence of (B.1) that any pair of non-proportional divisors
D1 and D2 sitting in the Kähler cone closure of S do intersect non-trivially in S. See
appendix D of ref. [15] for the proof of these two properties of a Kähler surface.27 Building
upon them, we now claim and prove two Lemmas in turn, which will be used repeatedly
throughout this appendix:

Lemma 4 On a Kähler three-fold Y , any pair of non-proportional nef divisors (D1, D2)
intersect non-trivially, i.e.,

D1 ·D2 6= 0 . (B.2)
27Note that the first property (B.1) is an obvious variation of Lemma 1 in ref. [15] and the second property

is precisely Lemma 2 therein.
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Proof. Consider the very ample divisor S with class

[S] = m
∑
k∈I

Jk , for a large enough m ∈ Z , (B.3)

where the sum is taken over the entire set of the Kähler cone generators. Then, the surface
S is irreducible and connected due to Bertini’s theorem (see e.g. [94]). Now, because
the volumes

D1 · [S]2 , D2 · [S]2 (B.4)

of the divisors Ji and Jj , measured with respect to the positive class [S], have to be positive,
the restrictions

C1 := D1|S , C2 := D2|S (B.5)

are non-trivial curves in S. Note that the two classes [C1] and [C2] sit in the Kähler cone
closure of S, as D1 and D2 sit in that of Y . Furthermore, it is guaranteed by Lefschetz’s
hyperplane theorem that [C1] and [C2] are not proportional. We thus have

D1 ·D2 · [S] = C1 ·S C2 6= 0 , (B.6)

where the non-vanishing is a consequence of the property (B.1) (as discussed a line be-
low (B.1)). Therefore we must necessarily have

D1 ·D2 6= 0 , (B.7)

as desired. �

Lemma 5 On a Kähler three-fold Y , suppose that a given triple of nef divisors (D1, D2, D3)
with the properties

D1 ·D2 6= 0 , D2 ·D3 6= 0 , D3 ·D1 6= 0 (B.8)

have a vanishing triple intersection

D1 ·D2 ·D3 = 0 . (B.9)

Then, all the three non-trivial four-forms (B.8) are proportional. That is, there exists a
positive number κ such that

D1 ·D2 = κD2 ·D3 , with κ > 0 , (B.10)

and analogous relations hold for any permutations of the indices.

Proof. Consider the divisor S1 with class

[S1] = D1 , (B.11)

and the (non-trivial) restrictions

C2,1 := D2|S1 , C3,1 := D3|S1 . (B.12)
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Then, their intersection vanishes because

C2,1 ·S1 C3,1 = D2 ·D3 ·D1 = 0 (B.13)

by assumption (B.9). Since the self-intersections of C2,1 and C3,1 are non-negative as

C2,1 ·S1 C2,1 = D2
2 ·D1 ≥ 0 , (B.14)

C3,1 ·S1 C3,1 = D2
3 ·D1 ≥ 0 , (B.15)

we have
C2,1 = κC3,1 , for some κ > 0 , (B.16)

by the property (B.1) of Kähler surfaces. Therefore, the two non-trivial classes D2 · D1
and D3 ·D1 are proportional to each other. Similarly, considering the divisor S2 with class
[S2] = D2 and applying the same logic, we learn also that the two non-trivial classes D1 ·D2
and D3 ·D2 are proportional. This proves that relations of the form (B.10) must hold. �

We are now ready to start analyzing various fibrations. In the following we will discuss
them in each of the three types of the infinite distance limits, which necessarily arise from
Kähler forms of J-class A or B.

B.1 Type T 2 limits with a Kähler form of J-class A

A given Calabi-Yau three-fold may have multiple distinct genus-one fibrations (see e.g. [95,
96]), each of which can be associated, in the shrinking fiber limit, to the axio-dilaton profile
of an F-Theory background. Here, we prove

Proposition 1 Every infinite distance limit with a Kähler form of J-class A gives rise to
a limit of Type T 2. It is associated with a unique genus-one fibration, namely the unique
T 2-fibration one whose fiber shrinks in the limit.

Recall that a Kähler form of J-class A takes the form (2.19),

J = λJ0 +
∑
α∈I1

aαJα +
∑
r∈I3

crJr , with J2
0 6= 0 , (B.17)

and necessarily leads to a Type T 2 limit, as discussed in appendix A.1.28

Now, according to Oguiso’s criterion, the (co)homology class of any elliptic fiber in
a Calabi-Yau three-fold has to be proportional to the square of a nef divisor D with a
vanishing cubic self-intersection. We will thus analyze all possible nef divisors, i.e. all
possible non-negative linear combinations of the Kähler cone generators J0, Jα and Jr,
with α ∈ I1 and r ∈ I3.

Consider first a nef divisor of the form

D = p0J0 +
∑
r∈I3

prJr , p0, pr ≥ 0 , (B.18)

28Type T 2 limits which arise from Kähler forms of J-class B are studied in appendix B.3.
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where Jα are not involved. As proven in appendix D.1 of [15] (see Proposition 2 therein),
the classes of J0 · Jr and Jr · Js are proportional to J0 · J0 as

J0 · Jr = nrJ0 · J0 , nr > 0 , (B.19)
Jr · Js = nrsJ0 · J0 , nrs ≥ 0 , (B.20)

and furthermore,
Jr · Js · Jt = 0 , ∀r, s, t ∈ I3 . (B.21)

This leads to the vanishing of the cubic self-intersection of D, and also implies that the
class of D2 is proportional to J0 · J0. Therefore, any genus-one fibration associated to D
has the same fiber class as J0 ·J0 and hence there exist no new fibrations from the divisors
of the form (B.18).29

Let us now consider a nef divisor of the most general complementary form

D = p0J0 +
∑
α∈I1

pαJα +
∑
r∈I3

prJr , p0, pα, pr ≥ 0 , (B.22)

with at least one pα strictly positive, that is,

pα0 > 0 , (B.23)

for some α0 ∈ I1. We must then have p0 = 0 in order for D to correspond to a genus-one
fibration, since, otherwise, D3 > 0; indeed, if p0 > 0, then the expansion of D3 has a
strictly positive contribution

p2
0 pα0(J0 · J0 · Jα0) , (B.24)

where positivity of the intersection J0 · J0 · Jα0 follows from (2.16), while every other
expansion term in D3 contributes non-negatively. Now, suppose further that pr0 > 0 for
some r0 ∈ I3. Then, the volume of the T 2 fiber associated to D has the same scaling
behavior as that of D2, where the latter is computed as

J ·D2 =

λJ0 +
∑
α∈I1

aαJα +
∑
r∈I3

crJr

 ·
∑
α∈I1

pαJα +
∑
r∈I3

prJr

2

(B.25)

≥ λpr0pα0 (J0 · Jr0 · Jα0) % λ . (B.26)

Here, we have made use of the fact that the expansion of (B.25) only contains non-negative
terms, one of which is (B.26), and also that the triple intersection therein is positive because

J0 · Jr0 · Jα0 = nr0J0 · J0 · Jα0 > 0 , (B.27)

by the proportionality (B.19). Therefore, the fiber volume diverges in the limit and such a
genus-one fibration is not of our interest.

29The fact that D2 is proportional to J2
0 does not necessarily mean that the two associated genus-one

fibrations are the same with isomorphic bases. Even when the bases are not isomorphic, however, they are
still birational; see section 1.1 of ref. [96] for relevant discussions. Since our main concern is in fact the
uniqueness of a generic fiber class, throughout this paper, we will nevertheless view such fibrations over
birational bases the same.
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We may thus restrict to the nef divisor of the form,

D =
∑
α∈I1

pαJα , pα ≥ 0 , (B.28)

with all the pr as well as p0 in (B.22) turned off. In order for D to correspond to a non-
trivial genus-one fibration, we must have D2 6= 0 and hence, there must exist a pair (α0, β0)
for which

Jα0 · Jβ0 6= 0 , with pα0 , pβ0 > 0 , (B.29)

where β0 may in principle coincide with α0. Once again, the volume J · D2 is bounded
from below by each of the terms in the expansion and hence, we have

J ·D2 =

λJ0 +
∑
α∈I1

aαJα +
∑
r∈I3

crJr

 ·
∑
α∈I1

pαJα

2

≥ λpα0pβ0 (J0 · Jα0 · Jβ0) , (B.30)

which diverges unless
J0 · Jα0 · Jβ0 = 0 . (B.31)

However, since any pair of the Kähler cone generators (J0, Jα0 , Jβ0) intersect by Lemma 4
and (B.29), the vanishing (B.31) of the triple intersection leads, via Lemma 5, to the
proportionality

J0 · Jα0 = κJα0 · Jβ0 for some κ > 0 , (B.32)

and hence we have
J0 · J0 · Jβ0 = κJ0 · Jα0 · Jβ0 = 0 , (B.33)

which contradicts (2.16). Therefore, the nef divisor of the form (B.28) cannot lead to a
shrinking T 2 fiber either, which completes our uniqueness proof of the shrinking T 2 fiber.

B.2 Type K3/T 4 limits with a Kähler form of J-class B

Just as for the genus-one fibrations, a given Calabi-Yau three-fold may in general admit
multiple distinct K3 fibrations (see e.g. [95, 96]), and similarly, by the same algebro-
geometric reasoning, multiple Abelian surface fibrations can occur. Here, we prove

Proposition 2 An infinite distance limit of Type K3 or T 4 can be constructed only from
a Kähler form of J-class B with |Iλ| = 1, where Iλ is defined in (2.7). Every limit of Type
K3 or T 4 is associated with a unique K3 or, respectively, T 4-fibration structure with the
property that its generic surface fiber shrinks in the limit at a rate parametrically faster
than the shrinking rate of the fiber of any other K3- or T 4-fibration which may be admitted
by the Calabi-Yau three-fold.

Note that by definition, for every infinite distance limit of Type K3 or T 4, the shrinking
rate of the surface fiber dominates over the shrinking rate of any T 2-fiber, if present. Hence
it indeed must only be guaranteed that there is no competing K3 or T 4-fiber.

For simplicity of presentation, throughout this section, we will proceed with Type K3
limits and will also refer to any surface fibers arising from Oguiso’s criterion as a K3 fiber,
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while some of such surface fibers could as well be a T 4 fiber. It is nevertheless evident
that precisely the same logic applies to Type T 4 limits and/or T 4 fibers, since the fibers of
the topological types K3 and T 4 are both characterized in the same intersection-structural
manner by Oguiso’s criterion, which is all that matters for our proof.

Recall that the limits of TypeK3 necessarily have a Kähler form of J-class B, expanded
as in (2.22) as

J = λJ0 +
∑
µ∈I2

bµJµ . (B.34)

It turns out that the constraints on bµ can be more concretely phrased in case the Kähler
form (B.34) of J-class B has more than one large coefficients of order λ. For this purpose,
we further decompose the index set I = I0 ∪ I2 (= {0} ∪ I2) as the disjoint union of
three subsets,

I = Iλ ∪ I ′2 ∪ I ′′2 , (B.35)

in such a way that

• A ∈ Iλ label all the generators with the coefficients of order λ;

• µ′ ∈ I ′2, those with Jµ′ · JA · JB = 0 for all A,B ∈ Iλ;

• µ′′ ∈ I ′′2 , those with Jµ′′ · JA · JB > 0 for all A 6= B ∈ Iλ.

Note that the r.h.s. of the decomposition (B.35) does not miss any generators, that is, the
index subsets Iλ, I ′2 and I ′′2 , as defined above satisfy the following relation,

Icλ = I ′2 ∪ I ′′2 . (B.36)

In order to see this, we will have to show that, for Ji with i ∈ Icλ,

∃A0, B0 ∈ Iλ with A0 6= B0 and Ji · JA0 · JB0 = 0 ⇒ Ji · JA · JB = 0 ∀A,B ∈ Iλ .
(B.37)

The assumed vanishing of Ji · JA0 · JB0 leads, via Lemma 5, to

Ji · JA0 = κJA0 · JB0 , for some κ > 0 , (B.38)

and hence,
Ji · JA0 · JB = κJA0 · JB0 · JB = 0 , ∀B ∈ Iλ , (B.39)

where the last step has used the finiteness of VY in the limit. Similarly, via Lemma 5, the
vanishing (B.39) of Ji · JA0 · JB implies, for all B 6= A0, that

Ji · JB = κBA0JA0 · JB , for some κBA0 > 0 , (B.40)

and hence we have

Ji · JA · JB = κBA0JA0 · JB · JA = 0 , ∀A,B ∈ Iλ with B 6= A0 , (B.41)

and this vanishing (B.41) obviously extends to the case B = A0 by (B.39).
Note also that J2

A = 0 for all A ∈ Iλ as the limit would be of J-class A otherwise. Since
J0 is of course labeled by Iλ, we have either of the two possibilities, |Iλ| = 1 or |Iλ| > 1,
which we will analyze in turn.
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B.2.1 |Iλ| = 1

With |Iλ| = 1, the decomposition (B.35) is rather trivial in that

Iλ = {0} , I ′2 = I2 , I ′′2 = ∅ . (B.42)

We will thus keep using the original notation of (B.34). The first statement we will prove
is that there exists at least one K3 fibration whose fiber volume shrinks as

VK3 ∼ λ−1 for λ→∞ . (B.43)

As discussed in section A.2, the volume of the obvious K3-fiber with class J0 is

VK3,0 = 1
2J0 · J2 = 1

2
∑

µ,ν∈I2

bµbνJ0 · Jµ · Jν , (B.44)

in terms of which the volume of Y can be expressed as

VY = 1
6J

3 = λVK3,0 + 1
6

∑
µ,ν,ρ∈I2

bµbνbρJµ · Jν · Jρ . (B.45)

To show the required behavior (B.43) for this K3 fiber, it suffices to prove that the second
term in the r.h.s. of (B.45) tends to 0 for λ→∞ as we keep VY ∼ 1 in the limit.

In order to prove this, suppose instead that there exist a triple (µ, ν, ρ) with

bµbνbρ ∼ 1 and Jµ · Jν · Jρ > 0 . (B.46)

Note first that for such a triple not all of the three intersection numbers, (J0 · Jµ · Jν),
(J0 · Jν · Jρ) and (J0 · Jρ · Jµ), can be non-zero: if they were all non-zero, we would have

bµbν - λ
−1 bνbρ - λ

−1 , bρbµ - λ
−1 , (B.47)

as, otherwise, the K3 volume (B.44) would behave as VK3,0 � λ−1 and hence the three-fold
volume (B.45) as VY � 1, which is a contradiction. The parametric behavior (B.47) would
then lead to

bµbνbρ - λ
−3/2 , (B.48)

which is in contradiction with (B.46). Therefore, without loss of generality, we may assume
that J0 · Jµ · Jν = 0. Then, by Lemma 5, we have

J0 · Jν = κJµ · Jν , for some κ > 0 , (B.49)

and hence it follows that
J0 · Jν · Jρ = κJµ · Jν · Jρ 6= 0 , (B.50)

where we used (B.46). Thus, comparing again the two volumes (B.44) and (B.45), we
learn that

bνbρ - λ
−1 . (B.51)
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Combining the asymptotic behaviors (B.46) and (B.51), we then have

bµ % λ , (B.52)

which contradicts the fact that Iλ = {0}. We have thus proven that any order 1 contribu-
tion to VY in (B.45) comes from λVK3,0 and hence that

VK3,0 ∼ λ−1 . (B.53)

We will now prove that if Y admits any additional K3 fibration, the volume of its
generic fiber is parametrically bigger than λ−1 or the limit is of Type T 2 rather than of
Type K3. The scaling behaviour of the genus-one fiber of such limits will be discussed in
appendix B.3. This will establish the uniqueness of the most rapidly shrinking K3 fiber in
a limit of Type K3 in the parametric sense.

Let us first recall that the class of a K3 fiber is proportional to a Kähler cone generator.
This is because a nef divisor is a linear combination of the Kähler cone generators; if it
involved more than one such generators, its square would necessarily be non-zero since any
cross term in the square between distinct generators is, by Lemma 4, a non-trivial class,
which cannot be cancelled by any other terms.

Let us now suppose that there exists another K3 fiber with the property that it shrinks
at a faster rate than or equal to (B.53). That is, suppose that there exists some µ0 ∈ I2
for which

J2
µ0 = 0 , (B.54)

and with a corresponding K3 fiber volume

VK3,µ0 - λ
−1 . (B.55)

Under this assumption we will show in the following that the asymptotic behavior (B.55)
has to saturate λ−1, that is,

VK3,µ0 ∼ λ−1 , (B.56)

and also that the limit in scrutiny is necessarily of Type T 2.
We start by assuming that the parametric comparison (B.55) holds strictly, that is,

VK3,µ0 ≺ λ−1 . (B.57)

Since the volume is written as

VK3,µ0 = λ
∑
ν∈I2

bνJ0 · Jµ0 · Jν + 1
2
∑
ν,ρ∈I2

bνbρJµ0 · Jν · Jρ , (B.58)

this implies that
bν ≺ λ−2 , ∀ν with J0 · Jµ0 · Jν > 0 . (B.59)

Now, since VK3,0 in (B.44) has to be of order λ−1, there must exist at least one pair (ν0, ρ0)
for which

bν0bρ0 ∼ λ−1 , and J0 · Jν0 · Jρ0 > 0 . (B.60)
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The constraint (B.60) cannot be fulfilled, however, if J0 · Jµ0 · Jν0 > 0 (because in this case
bν0 ≺ λ−2 by (B.59), which would require bρ0 � λ for (B.60)). Therefore, we have

J0 · Jµ0 · Jν0 = 0 , (B.61)

and similarly, J0 · Jµ0 · Jρ0 also vanishes. Let us now observe that µ0 is different at least
from one of ν0 and ρ0. This is obvious if ν0 6= ρ0, and furthermore, if ν0 = ρ0, it also
follows that µ0 6= ν0 because Jν0 · Jν0 6= 0 by (B.60), while Jµ0 · Jµ0 = 0 by (B.54) (for the
divisor Jµ0 to define a K3 fiber). Therefore, we may assume without loss of generality that
µ0 6= ν0. We can thus apply Lemma 5 to the triple (0, µ0, ν0) and learn that

Jµ0 · Jν0 = κJ0 · Jν0 , for some κ > 0 . (B.62)

Therefore, the second sum in (B.58) contains the positive contribution

bν0bρ0Jµ0 · Jν0 · Jρ0 = κbν0bρ0J0 · Jν0 · Jρ0 , (B.63)

which is of order λ−1 by (B.60) and hence, a contradiction to the assumption (B.57).
Having proven (B.56), we have learnt that the limit in scrutiny has at least two leading

shrinking K3 fibers with classes J0 and Jµ0 whose volumes both behave as λ−1. This may
at first look like it contradicts uniqueness of leading shrinking K3 fibers. However, in this
situation, we can easily find a T 2 fiber whose volume is suppressed by λ−2, which will
show that the limit is actually of Type T 2, not of Type K3. For this purpose, consider the
nef divisor

Dµ0 = J0 + Jµ0 , (B.64)

and observe that its square is non-trivial while its cube is trivial:

D2
µ0 = 2J0 · Jµ0 6= 0 , (B.65)

D3
µ0 = J2

0 (J0 + 3Jµ0) + J2
µ0(Jµ0 + 3J0) = 0 , (B.66)

where J2
0 = 0 = J2

µ0 has been used. Therefore, there exists a genus-one fibration with its
fiber class proportional to J0 · Jµ0 , and hence, the volume of this T 2 fiber scales as

J0 · Jµ0 · J =
∑
ν∈I2

bνJ0 · Jµ0 · Jν - λ−2 , (B.67)

where the last step follows from the expression (B.58) for the K3 volume and its scaling
behavior (B.56). Thus, the limit is indeed of Type T 2. Uniqueness of this T 2 fiber, in the
sense that it is the fiber shrinking at the fastest rate, will be proven in appendix B.3.

B.2.2 |Iλ| > 1

We will now show that every Kähler form of J-class B with |Iλ| > 1 leads to a limit of
Type T 2, and hence this case is not relevant for studying uniqueness of the surface fibers
which shrink at the fastest rate.

Provided that |Iλ| > 1, we will start by showing that the Kähler class takes the form

J =
∑
A∈Iλ

lAJA +
∑
µ′∈I′2

bµ′Jµ′ +
∑

µ′′∈I′′2

bµ′′Jµ′′ , (B.68)
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where
lA ∼ λ , bµ′ ≺ λ , bµ′′ - λ

−2 , for λ→∞ . (B.69)

Furthermore, all the intersection numbers amongst the generators labelled by I ′2 turn out
to vanish, i.e.,

Jµ′ · Jν′ · Jρ′ = 0 , ∀µ′, ν ′, ρ′ ∈ I ′2 . (B.70)

Note first that the parametric behavior of lA and bµ′ in (B.69) is obvious by definition.
The scaling of bµ′′ in (B.69) also follows easily by imposing the finiteness of VY since, for
each µ′′ ∈ I ′′2 , there exist, by definition, A 6= B ∈ Iλ such that JA · JB · Jµ′′ > 0.

Next, the vanishing (B.70) can be seen as follows. Let us consider a pair of distinct
indices A 6= B ∈ Iλ and an arbitrary triple (µ′, ν ′, ρ′) in I ′2. By definition, we have

JA · JB · Jµ′ = 0 , (B.71)

and hence, by Lemma 5,

Jµ′ · JA = κJA · JB , for some κ > 0 , (B.72)

from which it follows that

JA · Jµ′ · Jν′ = κJA · JB · Jµ′ = 0 . (B.73)

Lemma 5 can then be applied again, leading to

Jµ′ · Jν′ = κ′JA · Jµ′ , for some κ′ ≥ 0 , (B.74)

where κ′ is potentially zero for µ′ = ν ′. Therefore,

Jµ′ · Jν′ · Jρ′ = κ′JA · Jµ′ · Jρ′ = 0 ∀µ′, ν ′, ρ′ ∈ I ′2 . (B.75)

We are now ready to prove existence and uniqueness of the leading shrinking K3 fiber.
We start with the existence of a shrinking K3. As already explained in subsection B.2.1,
according to Oguiso’s criterion, the (co)homology class of any K3 fiber in a Calabi-Yau
three-fold has to be proportional to a nef divisor D with a vanishing double self-intersection,
and hence, it has to be one of the Kähler cone generators. Obvious such K3 fibers are
associated with JA for A ∈ Iλ, with the respective volumes,

VK3,A = 1
2JA · J

2 = 1
2JA

∑
B∈Iλ

∑
µ′′∈I′′2

lBbµ′′ JB · Jµ′′ + 1
2JA · (

∑
µ′∈I′2

bµ′Jµ′ +
∑

µ′′∈I′′2

bµ′′Jµ′′)2 .

(B.76)
We can then estimate the volume VY of Y in terms of VK3,A as follows,

VY = 1
6J

3 ∼ λ
∑
A

VK3,A + 1
6

∑
µ,ν,ρ∈Ic

λ

bµbνbρJµ · Jν · Jρ , (B.77)
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where the symbol ∼ has been used to indicate equality of the parametric behaviors.30 In
showing the existence of a K3 fiber with the volume of order λ−1, it suffices to prove that
the second sum in the r.h.s. of (B.77) tends to 0 for λ→∞ as we keep VY ∼ 1 in the limit.
Note that this second sum expands as∑

µ,ν,ρ∈Ic
λ

bµbνbρJµ · Jν · Jρ =
∑

µ′,ν′,ρ′∈I′2

bµ′bν′bρ′Jµ′ · Jν′ · Jρ′ + · · · (B.78)

where the ellipsis denote only terms of order strictly less than 1, since bµ′ ≺ λ for all µ′ ∈ I ′2
and bµ′′ - λ−2 for all µ′′ ∈ I ′′2 . It is thus enough to show that

Jµ′ · Jν′ · Jρ′ = 0 , ∀µ′, ν ′, ρ′ ∈ I ′2 , (B.79)

but this is precisely the relation (B.70) which we have derived above. This completes the
proof that at least one K3 fiber has volume of order λ−1.

As a byproduct, it immediately follows that the volume of every K3 fiber associated
with JA is suppressed as

VK3,A - λ
−1 ∀A ∈ Iλ . (B.80)

In fact, we can make a stronger statement that the relation (B.80) has to saturate for all
A, that is,

VK3,A ∼ λ−1 ∀A ∈ Iλ . (B.81)

This is because the first sum in the expression (B.76) for VK3,A contains the following
terms,

1
2 lBbµ

′′JA · JB · Jµ′′ , (B.82)

where the triple intersection JA ·JB ·Jµ′′ is strictly positive for all B ∈ Iλ with B 6= A and
for all µ′′ ∈ I ′′2 . Note that there exists at least one B 6= A since |Iλ| > 1 and also that

bµ′′ ∼ λ−2 , for some µ′′ ∈ I ′′2 , (B.83)

as order 1 contributions to VY only arise from the cross terms of the form,

lAlBbµ′′JA · JB · Jµ′′ , (B.84)

in the expansion of J3. The volume suppression (B.80) must thus be saturated as in (B.81).
Now, there may in principle exist K3 fibers associated with Jµ′ or Jµ′′ , but it turns

out that no such fibers can shrink at a faster rate than λ−1: the volume Vµ′′ of the latter
type fibers diverges since

Vµ′′ = 1
2Jµ

′′ · J2 = 1
2

∑
A,B∈Iλ

lAlBJµ′′ · JA · JB + · · · , (B.85)

30As per a few lines of algebra, one can verify the following inequality,

1
2λ
∑
A∈Iλ

VK3,A < VY −
1
6
∑

µ,ν,ρ∈Ic
λ

bµbνbρJµ · Jν · Jρ < λ
∑
A∈Iλ

VK3,A ,

which justifies the asymptotic comparison (B.77).
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where the sum is of order λ2 due to (B.69), as well as due to the non-vanishing of the triple
intersections involved, and the ellipsis only contains non-negative terms. The volume Vµ′
of the former type fibers on the other hand tends to zero precisely as λ−1. This follows
from the expansion of Vµ′ ,

Vµ′ = 1
2Jµ

′ · J2

=
∑
A∈Iλ

∑
ρ′′∈I′′2

lAbρ′′Jµ′ · JA · Jρ′′ +
∑
ν′∈I′2

∑
ρ′′∈I′′2

bν′bρ′′Jµ′ · Jν′ · Jρ′′ (B.86)

+ 1
2

∑
ν′′,ρ′′∈I′′2

bν′′bρ′′Jµ′ · Jν′′ · Jρ′′ ,

where we have used vanishing of any triple intersections only involving the generators Ji
with i ∈ Iλ ∪ I ′2. Note that every term in the first sum of (B.86) is of order λ−1 or less
by (B.69); in fact, the sum must contain non-trivial terms of order precisely λ−1 because
bρ′′ ∼ λ−2 for some ρ′′ by (B.83) and also because

Jµ′ · JA · Jρ′′ = κJA · JB · Jρ′′ > 0 , (B.87)

where the proportionality (B.72) of the four-forms have been used. Since, by (B.69), the
second and the third sums of (B.86) are subleading compared to the first, we have

Vµ′ ∼ λ−1 , ∀µ′ ∈ I ′2 , (B.88)

whether or not the divisor Jµ′ corresponds to a K3 fiber.
By now we have established that the limit in scrutiny contains multiple shrinking K3

fibers with classes JA for A ∈ Iλ, whose volumes VK3,A all scale as λ−1 as in (B.81).
Furthermore, we have also seen that additional shrinking K3 fibers with class Jµ′ for some
µ′ ∈ I ′2 may potentially be present, whose volumes Vµ′ scale at the same rate as VK3,A
as in (B.88). No further shrinking K3 fibers can be admitted by the three-fold Y , and
therefore, these form a complete set of leading shrinking K3 fibers.

This statement, however, does not contradict our claim of uniqueness of the shrinking
K3 fiber in a Type K3 limit. Just as in section B.2.1, the limit under consideration is
actually of Class T 2, since there exists a genus-one fibration where the fiber volume is of
order λ−2, while the leading shrinking K3 fibers all have volumes of order λ−1. In order
to see this, let us consider a nef divisor D,

D =
∑
A∈Iλ

JA , (B.89)

which satisfies
D3 = 0 , (B.90)

as JAJBJC = 0 for all A,B,C ∈ Iλ in order for VY to remain finite. Furthermore, D2 is
expanded as

D2 =
∑

A 6=B∈Iλ

JA · JB , (B.91)
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and hence is non-zero since every pair of distinct indices A,B ∈ Iλ leads to a non-trivial
intersection JA · JB by Lemma 4. Therefore, D2 corresponds to the class of a (multiple
of a) T 2 fiber, the volume of which scales as

D2 · J =
∑

A,B∈Iλ

∑
µ′′∈I′′2

bµ′′JA · JB · Jµ′′ ∼ λ−2 , (B.92)

where, in the last step, we have used (B.83). Therefore, the volume of this T 2 fiber is
parametrically much smaller than the square root of the K3 volume and hence, the limit
is of Class T 2.

B.3 Type T 2 limits with a Kähler form of J-class B

As emphasized several times, while Kähler forms of J-class A only lead to Type T 2 limits,
those of J-class B could lead either to Type K3/T 4 limits or to Type T 2 limits as well.
The aim of this section is to prove

Proposition 3 For limits of Type T 2 realized by Kähler forms of J-class B, the three-fold
Y admits a unique genus-one fibration with the property that its generic fiber shrinks at a
rate parametrically faster than the fiber of any other genus-one fibration on Y .

We first show that if a Kähler form of J-class B,

J = λJ0 +
∑
µ∈I2

bµJµ , (B.93)

gives rise to a limit of Type T 2, at least one Kähler coefficient is parametrically strictly
bigger than λ−1/2, i.e.,

∃ µ̂ ∈ I2 such that bµ̂ � λ−1/2 . (B.94)

In order to see (B.94), note first that by assumption there must a exist a shrinking genus-
one fiber, which we will call T̂ 2, with a parametric volume suppression

VT̂ 2 ≺ λ−1/2 . (B.95)

This is because otherwise, as discussed in section B.2, the limit in scrutiny would be of
Type K3 (or T 4) due to the guaranteed existence of a shrinking K3 (or T 4) fiber whose
volume is suppressed as λ−1. Thus, there must exist a nef divisor D̂ associated to the
T̂ 2-fibration which satisfies Oguiso’s criteria,

D̂2 6= 0 , D̂3 = 0 , (B.96)

and which leads to a shrinking T̂ 2 fiber whose volume is parametrically smaller than λ−1/2.
We can expand this divisor as

D̂ = p0J0 +
∑
µ̂∈Î2

p+
µ̂ Jµ̂ , p0 ≥ 0 , p+

µ̂ > 0 , (B.97)
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where the index subset Î2 ⊂ I2 is non-empty because, otherwise, the criteria (B.96) cannot
be met.

Then, since the volume of T̂ 2,

VT̂ 2 ∼ D̂2 · J = (p0J0 +
∑
µ̂∈Î2

p+
µ̂ Jµ̂)2 · (λJ0 +

∑
µ∈I2

bµJµ) , (B.98)

must tend to zero in the limit, we know that

J0 · Jµ̂ · Jν̂ = 0 , ∀µ̂, ν̂ ∈ Î2 . (B.99)

By Lemma 5, this implies that the classes J0 · Jµ̂ and Jµ̂ · Jν̂ are all proportional for any
µ̂, ν̂ ∈ Î2. Hence,

Jν̂ · Jρ̂ = κµ̂ν̂ρ̂J0 · Jµ̂ , ∀µ̂, ν̂, ρ̂ ∈ Î2 , (B.100)

for some non-negative constants κµ̂ν̂ρ̂. Note that κ
µ̂
ν̂ρ̂ = 0 is possible for ν = ρ, but this does

not affect our argument. With this we can express D̂2 in terms of any product J0 · Jµ̂ as

D̂2 = κµ̂J0 · Jµ̂ , ∀µ̂ ∈ Î2 , (B.101)

with κµ̂ > 0.
Let us now group the Kähler cone generators as the disjoint union

I2 = Î2 ∪ Ī2 ∪ Ǐ2 , (B.102)

such that

D̂2 · Jµ̄ = 0 , ∀µ̄ ∈ Ī2 , (B.103)
D̂2 · Jµ̌ > 0 , ∀µ̌ ∈ Ǐ2 . (B.104)

We now show that without loss of generality we can assume that Ī2 = ∅ by proving that
any two Ooguiso divisors satisfying (B.96) which differ only by elements in Ī2 = ∅ define
the same T 2-fibration. To see this, note first that the vanishing (B.103), when combined
with (B.101), implies, by Lemma 5, that

D̂2 = κµ̄J0 · Jµ̄ = κµ̄ν̂Jµ̄ · Jν̂ , ∀µ̄ ∈ Ī2 , ∀ν̂ ∈ Î2 , (B.105)

with κµ̄, κµ̄ρ̂ > 0. Similarly, (B.103) and the first part of (B.105) imply that

J0 · Jµ̄ · Jν̄ = 0 . (B.106)

Again by Lemma 5 we deduce from this that

Jν̄ · Jρ̄ = κµ̄ν̄ρ̄J0 · Jµ̄ , ∀µ̄, ν̄, ρ̄ ∈ Ī2 , (B.107)

with κµ̄ν̄ρ̄ ≥ 0. Here, κµ̄ν̄ρ̄ is potentially zero for ν̄ = ρ̄. The relations (B.103), (B.105)
and (B.107) then lead to the vanishing

Jµ̄ · Jν̄ · Jρ̄ = 0 , ∀µ̄, ν̄, ρ̄ ∈ Ī2 . (B.108)
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Combining all of this, we can now deduce that

D̂new = D̂ +
∑
µ̄∈Ī2

p+
µ̄ Jµ̄ , p+

µ̄ > 0 , (B.109)

defines the same genus-one fibration as D̂. In order to see this, let us first note that D̂ · Jµ̄
is proportional to D̂2 due to the vanishing (B.103) and Lemma 5, that is,

D̂ · Jµ̄ = κD̂µD̂
2 , κD̂µ > 0 . (B.110)

Now, the cubic self-intersection of the divisor D̂new has the following expansion,

D̂3
new = D̂3 +3

∑
µ̄∈Ī2

p+
µ̄ D̂

2 ·Jµ̄+3
∑

µ̄,ν̄∈Ī2

p+
µ̄ p

+
ν̄ D̂ ·Jµ̄ ·Jν̄+

∑
µ̄,ν̄,ρ̄∈Ī2

p+
µ̄ p

+
ν̄ p

+
ρ̄ Jµ̄ ·Jν̄ ·Jρ̄ , (B.111)

and it vanishes as each of the four parts in the r.h.s. of (B.111) does; the first vanishes
by (B.96), the second by (B.103), the third by the proportionality (B.110) combined
with (B.103), and the last by (B.108). It still remains to see that D̂2

new and D̂2 are
proportional as four-forms, which easily follows from the expansion of the former,

D̂2
new = D̂2 + 2

∑
µ̄∈Ī2

p+
µ̄ D̂ · Jµ̄ +

∑
µ̄,ν̄∈Ī2

p+
µ̄ p

+
ν̄ Jµ̄ · Jν̄ . (B.112)

In this expansion, we immediately observe that the second part is proportional to D̂2

by (B.110) and the third also to D̂2 by (B.107) and (B.105). This completes the proof that
D̂new and D̂ define the same genus-one fibration and we may therefore assume, without
loss of generality, that

Ī2 = ∅ . (B.113)

We are now ready to constrain the Kähler parameters bµ̂ and bµ̌. For this purpose, let
us first compute the scaling behavior of the T̂ 2 volume,

VT̂ 2 ∼ D̂2 · J ∼ J0 · Jµ̂ · (λJ0 +
∑
ν̂∈Î2

bν̂Jν̂ +
∑
ν̌∈Ǐ2

bν̌Jν̌) , (B.114)

where µ̂ has been chosen arbitrarily from Î2 using the proportionality (B.101). By the
vanishing (B.99), we thus have

VT̂ 2 ∼
∑
ν̌∈Ǐ2

bν̌J0 · Jµ̂ · Jν̌ ∼
∑
ν̌∈Ǐ2

bν̌D̂
2 · Jν̌ , (B.115)

and hence,
bν̌ ≺ λ−1/2 , ∀ν̌ ∈ Ǐ2 , (B.116)

where the non-vanishing (B.104), as well as the volume suppression (B.95), has been used.
In the meantime, the volume of the K3 fiber with class J0 can be expanded, upon using
the vanishing (B.99), as

VK3,0 = 1
2J0 · J2 = 1

2
∑
µ̂∈Î2

∑
ν̌∈Ǐ2

bµ̂bν̌J0 · Jµ̂ · Jν̌ +
∑

µ̌,ν̌∈Ǐ2

bµ̌bν̌J0 · Jµ̌ · Jν̌ , (B.117)
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which must scale precisely as λ−1 as proven in section B.2. With the suppression of
the bν̌ (B.116), we thus conclude, as claimed in (B.94), that at least one bµ̂ must be
parametrically bigger than λ−1/2.

Finally we are ready to prove the uniqueness of the parametrically leading shrinking
T 2 fiber. Specifically, we will show that there exists a unique T 2 fibration whose fiber
shrinks at a rate faster than λ−1/2. Given one such fiber T̂ 2 associated with the nef divisor
D̂ as in (B.97), let us suppose that there is another nef divisor D, not proportional to D̂,
with the property

D2 6= 0 , D3 = 0 , (B.118)

whose associated T 2 fiber also shrinks as

VT 2 ≺ λ−1/2 . (B.119)

Then, we have the following relations for the triple intersections,

D · D̂ · J0 =
∑
µ̂∈Î2

p+
µ̂

κµ̂0

κµ̂
D · J0 · Jµ̂0 = κ+

µ̂0
D2 · Jµ̂0 , for some κ̂+

µ̂0
> 0 , (B.120)

where µ̂0 ∈ I2 is an arbitrary index that we may choose to be one of those that obey (B.94).
That is,

bµ̂0 � λ−1/2 . (B.121)

Note that in obtaining the relations (B.120), the expression (B.97) for D̂ and the propor-
tionality (B.101) have been used in the first step, and in the second step, the fact that
D · J0 and D2 are proportional to each other,

D · J0 = κDD
2 , κD > 0 . (B.122)

Hence,
κ+
µ̂0

= κD
∑
µ̂∈Î2

p+
µ̂

κµ̂0

κµ̂
. (B.123)

The proportionality (B.122) follows from Lemma 5 with the vanishing intersection

D2 · J0 = 0 , (B.124)

which is an obvious consequence of the assumption that the T 2 fiber associated with D also
shrinks in the limit as (B.119). As another consequence of the volume suppression (B.119),
we also know that

D2 · Jµ̂0 = 0 , (B.125)

which then leads, by (B.120), to
D · D̂ · J0 = 0 . (B.126)

Here, the two nef divisors D and D̂ do intersect non-trivially by Lemma 4 and they are
not proportional to J0 either, since their squares are non-trivial. Therefore, by Lemma 5,
we have

D · J0 = κDD̂D̂ · J0 , for some κDD̂ > 0 , (B.127)
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and hence,
D ·D = 1

κD
D · J0 =

κDD̂
κD

D̂ · J0 =
κDD̂
κD

κD̂D̂ · D̂ , (B.128)

where in the first step we used (B.122) and the last step, the similar relation

D̂ · J0 = κD̂D̂
2 , κD̂ > 0 . (B.129)

This follows, for the same reason as for (B.122), from the vanishing of D̂2 · J0, which is
necessary for the shrinking of T̂ 2.

From the proportionality of D · D and D̂ · D̂, as established in (B.128), we finally
conclude that the fiber T̂ 2 associated with D̂ is indeed the unique T 2 fiber that shrinks
at a rate faster than λ−1/2, and hence, in particular that the leading shrinking T 2 fiber
is unique.

C Mirror symmetry

We recall some well-known facts with emphasis on quantum volumes and BPS masses.
One basic tenet of mirror symmetry [97, 98] is that the quantum corrected Kähler moduli
space, QMK(Y ), pertaining to some Calabi-Yau three-fold, Y , is equivalent to the classical
moduli space,MCS(X), of complex structures of the mirror Calabi-Yau three-fold, X. This
implies a map between even-dimensional and middle-dimensional cohomologies on Y and
X, H2p(Y ) ↔ H3(X), p = 0, .., 3, and an analogous map between integral, symplectic
bases of the even-dimensional and the middle-dimensional cycles of Y and X, respectively:

C ∈ H2p(Y ) mirror←−−−→
map

γ ∈ H3(X) . (C.1)

This allows to compute the exact BPS masses of D2p-branes that wrap holomorphic cy-
cles C2p in Type IIA string theory on Y even deep in the regime of quantum geometry,
by mapping these to D3-branes wrapping special Lagrangian 3-cycles in Type IIB string
theory on X.

Specifically, consider first the mirror three-fold X, equipped with Kähler form JX and
holomorphic 3-form ΩX . In terms of an integral symplectic basis Γ = (γA, γB)T ofH3(X,Z)
with polarization

γA ∩ γB = δAB , (C.2)

one defines the periods Π = (XA, FB)T via

XA :=
∫
γA

ΩX , FB :=
∫
γB

ΩX . (C.3)

In terms of the Poincaré dual basis of H3(X) defined by∫
γA
αB = δAB ,

∫
γB

βA = −δAB (C.4)

the 3-form hence enjoys the expansion

ΩX = XAαA − FBβB . (C.5)
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The periods determine the BPS masses of D3-branes wrapping special Lagrangian 3-cycles
Γ = nAγA + nBγ

B as follows:

MΓ
MPl

=
√

2
π

|ZΓ|
(i
∫
X ΩX ∧ Ω̄X)1/2 , (C.6)

where the central charge is given by

ZΓ =
∫

Γ
Ω = nAX

A + nBFB . (C.7)

This formula originates from the calibration condition

VΓ =
∫

Γ

√
det(g) = (8VX)1/2

(i
∫
X ΩX ∧ Ω̄X)1/2 Im

∫
γ
e−iθΩX (C.8)

for the volume of a special Lagrangian 3-cycle Γ, together with the relation M2
Pl

M2
s

= 4π
g2

IIB
VX

with VX = 1
6
∫
X JX

3.31

Now we switch to the Kähler picture via mirror symmetry. A priori the mirror map
is defined near a large complex structure point (LCS) of X, which we put at the origin of
MCS(X) by suitable choice of coordinates. Near such a point of unipotent monodromy,
the periods XA split into a unique power series plus single logs, ie., XA = (X0, Xa),
a = h2,1(X), which we can take as

X0(z) = 1 +O(za) , Xa(z) = 1
2πi log(za) +O(za) , near z = 0 . (C.9)

Then one can define inhomogenous, flat coordinates onMCS as follows:

ta(z) = Xa

X0 = 1
2πi log(za) +O(za) . (C.10)

The statement of mirror symmetry is that these flat coordinates near z = 0 coincide with
the classical, complexified Kähler parameters,

ta(z → 0) =
∫
Ca2

JY :=
∫
Ca2

(B + iJY ) , Ca2 ∈ H2(Y ) , (C.11)

= iT a +
∫
Ca2

B ,

near the large volume limit of the mirror manifold, Y . Away from z = 0, the ta(z) then
define, via analytic continuation, the (multi-valued) coordinates over the full quantum
Kähler moduli space, QMK(Y ).

In the regime of large ta = ta(z), where classical geometry applies, the prepotential of
N = 2 special geometry can be written as

F = (X0)2 F (ta) ,

F (ta) = −1
6dabct

atbtc + dabt
atb + cat

a + c+O(e2πita) (C.12)

31Here we are assuming that we are working at large Kähler volume of X so that the classical expression
for VX is valid. The angle θ depends on the precise calibration of the special Lagrangian.
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where in terms of a dual basis {Da} of H2(Y,Z)

dabc = Da ·Db ·Dc , ca = 1
24c2(Y ) ·Da , c = iζ(3)

(2π)3χ(Y ) . (C.13)

The dab are in general not specified geometrically but can be determined (up to monodromy)
by requiring good symplectic transformation properties of the period vector

Π(t) =


X0

Xa

∂aF
∂0F

 = X0


1
ta

∂aF

2F − ta∂aF

 . (C.14)

Via the correspondence (C.1), the components of Π can be interpreted as the complexified
quantum volumes of the 0-cycle C0, the 2-cycles Ca2 , the dual divisors Da ≡ C4,a and the
6-cycle C6, respectively, as probed by respective D2p-branes that can wrap them. At large
Kähler volume, the leading terms in each entry indeed matches the classical Kähler volume
with respect to JY , while the subleading terms reflect the lower-brane charges induced on
D-branes that wrap curved cycles on Y . Importantly, away from the large Kähler regime,
the analytic continuation of the period vector then defines the quantum volumes of the
respective cycles over the full moduli space.

Note that at an arbitrary point in moduli space, the quantum volume of the 6-cycle
as defined in this way is not identical to the volume of the Calabi-Yau Y .32 The latter is
globally defined via mirror symmetry as

VY (z) = 1
8
i
∫
X ΩX ∧ Ω̄X

|X0|2
(z) , (C.15)

in terms of the coordinates onMCS(X). Only in the regime of large Kähler volume of Y ,
which corresponds to z ' 0, does this coincide with the volume of the 6-cycle. This can be
easily checked with the help of

i

∫
X

ΩX ∧ Ω̄X = i|X0|2
(
2(F − F̄ )− (ta − t̄a)(∂aF + ∂aF̄ )

)
(C.16)

Indeed it is (C.15) which globally defines the Planck mass in terms of the 10d string
scale as

M2
Pl

M2
s

(z) = 4π
g2

IIA
VY (z) = 4πi

g2
IIA

∫
X ΩX ∧ Ω̄X

8|X0|2
(z) . (C.17)

Correspondingly, we have two notions of masses of BPS states, depending on whether we
normalize them with respect to the 10d string scale, Ms, or the four-dimensional Planck
scale. Explicitly, the BPS masses for a bound state n0 D0-branes, n2,a D2-branes along

32For example, the quantum volume of the 6-cycle may stay finite while a formally lower-dimensional
cycle blows up, so it is not a good measure for volume. The expression (C.15) treats all quantum cycle
volumes on equal footing, apart from singling out a frame at large volume via the choice of X0. See also
the main text.
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the curves Ca2 , na4 D4-branes along C4,a and n6 D6-branes wrapping the entire Calabi-Yau
are respectively given as

Mn2p

Ms
= 1
gIIA
|n0 + n2,at

a + na4∂aF + n6(2F − ta∂aF )| , (C.18)

Mn2p

MPl
=
√

2
π

|X0|
(i
∫
X Ω̄ ∧ Ω)1/2 |n0 + n2,at

a + na4∂aF + n6(2F − ta∂aF )| . (C.19)

D Analytic continuation for the K3 fibration P5
1,2,2,2,6[12]

In section 4.3 we consider as example the K3-fibered Calabi-Yau three-fold in P5
1,2,2,2,6[12],

which has been extensively studied over the years, starting from ref. [59] to which we refer
for details. Here we present some further aspects of the analytic continuation of the periods
from the large complex structure limit (L1 in figure 3)), to the point of classically vanishing
fiber volume, L2. This specific analytic continuation had been discussed in the context of
deriving the Seiberg-Witten model for gauge group SU(2) [38], and was worked out in
refs. [85, 86].

For a convenient patch near L1 in complex structure moduli space, parametrized by
z1,2, the three-fold under consideration is defined by the vanishing of

WY = x1
12 + x2

12 + x3
6 + x4

6 + x5
2 + z1

−1/6z2
−1/12x1x2x3x4x5 + z2

−1/2x1
6x2

6 .

In this patch the Picard-Fuchs system comprises the following differential operators:

L1 = θ1
2(θ1 − 2θ2)− 8z1(6θ1 + 5)(6θ1 + 3)(6θ1 + 1) , (D.1)

L2 = θ2
2 − z2(2θ2 − θ1 + 1)(2θ2 − θ1) , θi ≡ zi∂i .

The solutions are well-known [59, 60] and consist of the unique power series solution,
X0 ∼ 1 + 120z1 + O(z), plus further linear, quadratic and cubic logarithmic solutions.
Expressing these in terms of the flat coordinates (C.10), one can asymptotoically match
appropriate linear combinations against the integral symplectic basis of periods defined
by (C.14), where

F = −2
3 t1

3 − t12t2 + b1t1 + b2t2 + ξ +O(e−t) , (D.2)

with bi = 1
24
∫
c2 ∧ Ji so b1 = 13

6 , b2 = 1, and ξ = i
2(2π)3χζ(3) for χ = −252.

The conifold locus is given by the vanishing of ∆c = (1728z1− 1)2− 4(1728z1)2z2, and
we will be interested in the intersection of it with the locus z2 = 0 of large base P1

b . In
order to have well-defined normal crossings of divisors at L2 : z1 = 1/1728, z2 = 0, one
needs to blow up the point of quadratic tangency by introducing suitable coordinates [38]

ẑ1 = 1− 1728z1 , (D.3)

ẑ2 = 4z21728z1
2

(1− 1728z1)2 .
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In terms of these, the Picard-Fuchs system reads

L̂1 = 5ẑ1
2 + 2 (113ẑ1 − 77) ẑ1

2∂̂1 + 108 (ẑ1 − 1) (3ẑ1 − 1) ẑ1
2∂̂1

2 + 72 (ẑ1 − 1) 2ẑ1
3∂̂1

3

+ 4ẑ2 (5ẑ1 − 54) ∂̂2 + 288ẑ2ẑ1 (1 + ẑ1) ∂̂2∂̂1 + 288ẑ2 (ẑ1 − 1) ẑ1
2∂̂2∂̂1

2 − 144ẑ2
2∂̂2

2

+ 288ẑ1ẑ2
2∂̂1∂̂2

2 , (D.4)
L̂2 = ẑ1

2∂̂1
2 + 2 (3ẑ2 − 2) ∂̂2 − 4ẑ2ẑ1∂̂2∂̂1 + 4 (ẑ2 − 1) ẑ2∂̂2

2 ,

where ∂̂i ≡ ∂ẑi . With hindsight we pick the following basis of solutions:

Π̂1 = 1
π

(
1 + 5ẑ1

36 + 295 (2 + ẑ2) ẑ1
2

7776

)
+O(ẑ3),

Π̂2 = 1
π

(
ẑ1 + 77

216 (2 + ẑ2) ẑ1
2
)

+O(ẑ3),

Π̂3 = −
√
ẑ1
π

(
1− ẑ2

16 + 23
864 (16 + 3ẑ2) ẑ1 −

15ẑ2
2

1024

)
+O(ẑ3), (D.5)

Π̂4 = 1
iπ

(
Π̂3(log(ẑ2)− 6 log 2 + 3)−

√
ẑ1
π

(
4− ẑ2

8 −
47ẑ2

2

1024

))
+O(ẑ3),

Π̂5 = i

2π

(
Π̂1 log(ẑ1

2ẑ2) + 1
π

(
5 + 25ẑ1

36 + 2597ẑ1
2

11664 + 827ẑ2ẑ1
2

23328

))
+O(ẑ3),

Π̂6 = i

2π

(
Π̂2 log(ẑ1

2ẑ2) + 1
π

(
ẑ1 + 787ẑ1

2

324 + 325
648 ẑ2ẑ1

2
))

+O(ẑ3).

The analytic continuation of the basis of integral symplectic periods from L1 to L2 can
then be determined [85] by matching expansions along the fixed locus of the involution
L1 ↔ L2:

Π̂
∣∣
ẑ1=1/2
ẑ2=4z2

= N ·Π(z2)
∣∣
z1=1/2(1728)−1 ,

and we find as a result

N =



0 −iX 0 X
2 0 0

0 i
X 0 1

2X 0 0
2 0 0 −1 0 0
0 0 0 0 0 1

2
0 ξ2 −X iξ1 − iX

2
X
2

0 ξ3 − 1
X iξ4

i
2X

1
2X


. (D.6)

Here,

X =
Γ
(

3
4

)4

√
3π2 , ξ1 =

(
ξ4 −

ξ3
2

)
X2 − ξ2

2 ,

and ξ2 ≈ 2.251234070, ξ3 ≈ −23.36100861, ξ4 ≈ 3.346738000 are numerical constants that
are not important for us. The important feature is the third row of N , which specifies
the particular linear combination of integral periods that vanishes at L2. Note that the
integers arise from a non-trivial resummation in the process of analytical continuation.
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The map N preserves the symplectic inner product. As quick consistency check, note
that the monodromies induced from encircling ẑi = 0 are:

M1 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
−2 0 0 0 1 0
0 −2 0 0 0 1


, M2 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 2 1 0 0
−1 0 0 0 1 0
0 −1 0 0 0 1


.

Indeed one finds thatMSW
∞ = M1·M2

−2 correctly reproduces the semi-classical monodromy
of the Seiberg-Witten model [39]. Note that in contrast to M1, M2 is unipotent, which
signals [8, 12, 14] the long distance limit for the degeneration ẑ2 → 0.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl.
Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].

[2] D. Klaewer and E. Palti, Super-Planckian Spatial Field Variations and Quantum Gravity,
JHEP 01 (2017) 088 [arXiv:1610.00010] [INSPIRE].

[3] B. Heidenreich, M. Reece and T. Rudelius, Evidence for a sublattice weak gravity conjecture,
JHEP 08 (2017) 025 [arXiv:1606.08437] [INSPIRE].

[4] E. Palti, The Weak Gravity Conjecture and Scalar Fields, JHEP 08 (2017) 034
[arXiv:1705.04328] [INSPIRE].

[5] B. Heidenreich, M. Reece and T. Rudelius, The Weak Gravity Conjecture and Emergence
from an Ultraviolet Cutoff, Eur. Phys. J. C 78 (2018) 337 [arXiv:1712.01868] [INSPIRE].

[6] B. Heidenreich, M. Reece and T. Rudelius, Emergence of Weak Coupling at Large Distance
in Quantum Gravity, Phys. Rev. Lett. 121 (2018) 051601 [arXiv:1802.08698] [INSPIRE].

[7] S. Andriolo, D. Junghans, T. Noumi and G. Shiu, A Tower Weak Gravity Conjecture from
Infrared Consistency, Fortsch. Phys. 66 (2018) 1800020 [arXiv:1802.04287] [INSPIRE].

[8] T.W. Grimm, E. Palti and I. Valenzuela, Infinite Distances in Field Space and Massless
Towers of States, JHEP 08 (2018) 143 [arXiv:1802.08264] [INSPIRE].

[9] R. Blumenhagen, D. Kläwer, L. Schlechter and F. Wolf, The Refined Swampland Distance
Conjecture in Calabi-Yau Moduli Spaces, JHEP 06 (2018) 052 [arXiv:1803.04989]
[INSPIRE].

[10] S.-J. Lee, W. Lerche and T. Weigand, Tensionless Strings and the Weak Gravity Conjecture,
JHEP 10 (2018) 164 [arXiv:1808.05958] [INSPIRE].

[11] S.-J. Lee, W. Lerche and T. Weigand, A Stringy Test of the Scalar Weak Gravity Conjecture,
Nucl. Phys. B 938 (2019) 321 [arXiv:1810.05169] [INSPIRE].

– 98 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.nuclphysb.2006.10.033
https://doi.org/10.1016/j.nuclphysb.2006.10.033
https://arxiv.org/abs/hep-th/0605264
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0605264
https://doi.org/10.1007/JHEP01(2017)088
https://arxiv.org/abs/1610.00010
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.00010
https://doi.org/10.1007/JHEP08(2017)025
https://arxiv.org/abs/1606.08437
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.08437
https://doi.org/10.1007/JHEP08(2017)034
https://arxiv.org/abs/1705.04328
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.04328
https://doi.org/10.1140/epjc/s10052-018-5811-3
https://arxiv.org/abs/1712.01868
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.01868
https://doi.org/10.1103/PhysRevLett.121.051601
https://arxiv.org/abs/1802.08698
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.08698
https://doi.org/10.1002/prop.201800020
https://arxiv.org/abs/1802.04287
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.04287
https://doi.org/10.1007/JHEP08(2018)143
https://arxiv.org/abs/1802.08264
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.08264
https://doi.org/10.1007/JHEP06(2018)052
https://arxiv.org/abs/1803.04989
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.04989
https://doi.org/10.1007/JHEP10(2018)164
https://arxiv.org/abs/1808.05958
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.05958
https://doi.org/10.1016/j.nuclphysb.2018.11.001
https://arxiv.org/abs/1810.05169
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.05169


J
H
E
P
0
2
(
2
0
2
2
)
1
9
0

[12] T.W. Grimm, C. Li and E. Palti, Infinite Distance Networks in Field Space and Charge
Orbits, JHEP 03 (2019) 016 [arXiv:1811.02571] [INSPIRE].

[13] E. Gonzalo, L.E. Ibáñez and A.M. Uranga, Modular symmetries and the swampland
conjectures, JHEP 05 (2019) 105 [arXiv:1812.06520] [INSPIRE].

[14] P. Corvilain, T.W. Grimm and I. Valenzuela, The Swampland Distance Conjecture for
Kähler moduli, JHEP 08 (2019) 075 [arXiv:1812.07548] [INSPIRE].

[15] S.-J. Lee, W. Lerche and T. Weigand, Modular Fluxes, Elliptic Genera, and Weak Gravity
Conjectures in Four Dimensions, JHEP 08 (2019) 104 [arXiv:1901.08065] [INSPIRE].

[16] A. Joshi and A. Klemm, Swampland Distance Conjecture for One-Parameter Calabi-Yau
Threefolds, JHEP 08 (2019) 086 [arXiv:1903.00596] [INSPIRE].

[17] F. Marchesano and M. Wiesner, Instantons and infinite distances, JHEP 08 (2019) 088
[arXiv:1904.04848] [INSPIRE].

[18] A. Font, A. Herráez and L.E. Ibáñez, The Swampland Distance Conjecture and Towers of
Tensionless Branes, JHEP 08 (2019) 044 [arXiv:1904.05379] [INSPIRE].

[19] S.-J. Lee, W. Lerche and T. Weigand, Emergent strings, duality and weak coupling limits for
two-form fields, JHEP 02 (2022) 096 [arXiv:1904.06344] [INSPIRE].

[20] D. Erkinger and J. Knapp, Refined swampland distance conjecture and exotic hybrid
Calabi-Yaus, JHEP 07 (2019) 029 [arXiv:1905.05225] [INSPIRE].

[21] T.W. Grimm and D. Van De Heisteeg, Infinite Distances and the Axion Weak Gravity
Conjecture, JHEP 03 (2020) 020 [arXiv:1905.00901] [INSPIRE].

[22] H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the
Swampland, Phys. Lett. B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].

[23] D. Klaewer, D. Lüst and E. Palti, A Spin-2 Conjecture on the Swampland, Fortsch. Phys. 67
(2019) 1800102 [arXiv:1811.07908] [INSPIRE].

[24] D. Lüst, E. Palti and C. Vafa, AdS and the Swampland, Phys. Lett. B 797 (2019) 134867
[arXiv:1906.05225] [INSPIRE].

[25] A. Kehagias, D. Lüst and S. Lüst, Swampland, Gradient Flow and Infinite Distance, JHEP
04 (2020) 170 [arXiv:1910.00453] [INSPIRE].

[26] T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland, and the Missing
Corner, PoS TASI2017 (2017) 015 [arXiv:1711.00864] [INSPIRE].

[27] E. Palti, The Swampland: Introduction and Review, Fortsch. Phys. 67 (2019) 1900037
[arXiv:1903.06239] [INSPIRE].

[28] E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85
[hep-th/9503124] [INSPIRE].

[29] C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].

[30] J.A. Harvey and G.W. Moore, Algebras, BPS states, and strings, Nucl. Phys. B 463 (1996)
315 [hep-th/9510182] [INSPIRE].

[31] M. Henningson and G.W. Moore, Counting curves with modular forms, Nucl. Phys. B 472
(1996) 518 [hep-th/9602154] [INSPIRE].

– 99 –

https://doi.org/10.1007/JHEP03(2019)016
https://arxiv.org/abs/1811.02571
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.02571
https://doi.org/10.1007/JHEP05(2019)105
https://arxiv.org/abs/1812.06520
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.06520
https://doi.org/10.1007/JHEP08(2019)075
https://arxiv.org/abs/1812.07548
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.07548
https://doi.org/10.1007/JHEP08(2019)104
https://arxiv.org/abs/1901.08065
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.08065
https://doi.org/10.1007/JHEP08(2019)086
https://arxiv.org/abs/1903.00596
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.00596
https://doi.org/10.1007/JHEP08(2019)088
https://arxiv.org/abs/1904.04848
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.04848
https://doi.org/10.1007/JHEP08(2019)044
https://arxiv.org/abs/1904.05379
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.05379
https://doi.org/10.1007/JHEP02(2022)096
https://arxiv.org/abs/1904.06344
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.06344
https://doi.org/10.1007/JHEP07(2019)029
https://arxiv.org/abs/1905.05225
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.05225
https://doi.org/10.1007/JHEP03(2020)020
https://arxiv.org/abs/1905.00901
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.00901
https://doi.org/10.1016/j.physletb.2018.11.018
https://arxiv.org/abs/1810.05506
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.05506
https://doi.org/10.1002/prop.201800102
https://doi.org/10.1002/prop.201800102
https://arxiv.org/abs/1811.07908
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.07908
https://doi.org/10.1016/j.physletb.2019.134867
https://arxiv.org/abs/1906.05225
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.05225
https://doi.org/10.1007/JHEP04(2020)170
https://doi.org/10.1007/JHEP04(2020)170
https://arxiv.org/abs/1910.00453
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.00453
https://doi.org/10.22323/1.305.0015
https://arxiv.org/abs/1711.00864
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.00864
https://doi.org/10.1002/prop.201900037
https://arxiv.org/abs/1903.06239
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.06239
https://doi.org/10.1016/0550-3213(95)00158-O
https://arxiv.org/abs/hep-th/9503124
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9503124
https://doi.org/10.1016/0550-3213(96)00172-1
https://arxiv.org/abs/hep-th/9602022
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9602022
https://doi.org/10.1016/0550-3213(95)00605-2
https://doi.org/10.1016/0550-3213(95)00605-2
https://arxiv.org/abs/hep-th/9510182
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9510182
https://doi.org/10.1016/0550-3213(96)00245-3
https://doi.org/10.1016/0550-3213(96)00245-3
https://arxiv.org/abs/hep-th/9602154
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9602154


J
H
E
P
0
2
(
2
0
2
2
)
1
9
0

[32] R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric
products and second quantized strings, Commun. Math. Phys. 185 (1997) 197
[hep-th/9608096] [INSPIRE].

[33] M. Bershadsky, C. Vafa and V. Sadov, D strings on D manifolds, Nucl. Phys. B 463 (1996)
398 [hep-th/9510225] [INSPIRE].

[34] P.S. Aspinwall, R.L. Karp and R.P. Horja, Massless D-branes on Calabi-Yau threefolds and
monodromy, Commun. Math. Phys. 259 (2005) 45 [hep-th/0209161] [INSPIRE].

[35] M. Alim and E. Scheidegger, Topological Strings on Elliptic Fibrations, Commun. Num.
Theor. Phys. 08 (2014) 729 [arXiv:1205.1784] [INSPIRE].

[36] A. Klemm, J. Manschot and T. Wotschke, Quantum geometry of elliptic Calabi-Yau
manifolds, arXiv:1205.1795 [INSPIRE].

[37] M.-x. Huang, S. Katz and A. Klemm, Topological String on elliptic CY 3-folds and the ring
of Jacobi forms, JHEP 10 (2015) 125 [arXiv:1501.04891] [INSPIRE].

[38] S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, Nonperturbative results on the point
particle limit of N = 2 heterotic string compactifications, Nucl. Phys. B 459 (1996) 537
[hep-th/9508155] [INSPIRE].

[39] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and
confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19
[Erratum ibid. 430 (1994) 485] [hep-th/9407087] [INSPIRE].

[40] K. Oguiso, On algebraic fiber space structures on a Calabi-Yau 3-fold, Int. J. Math. 4 (1993)
439.

[41] J.A. Harvey and A. Strominger, The heterotic string is a soliton, Nucl. Phys. B 449 (1995)
535 [Erratum ibid. 458 (1996) 456] [hep-th/9504047] [INSPIRE].

[42] R. Gopakumar and C. Vafa, M theory and topological strings. 1, hep-th/9809187 [INSPIRE].

[43] R. Gopakumar and C. Vafa, M theory and topological strings. 2, hep-th/9812127 [INSPIRE].

[44] A. Klemm, P. Mayr and C. Vafa, BPS states of exceptional noncritical strings, Nucl. Phys. B
Proc. Suppl. 58 (1997) 177 [hep-th/9607139] [INSPIRE].

[45] T. Weigand, F-theory, PoS TASI2017 (2018) 016 [arXiv:1806.01854] [INSPIRE].

[46] E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195
[hep-th/9603150] [INSPIRE].

[47] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl.
Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].

[48] D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric
field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].

[49] F. Apruzzi, C. Lawrie, L. Lin, S. Schäfer-Nameki and Y.-N. Wang, Fibers add Flavor, Part I:
Classification of 5d SCFTs, Flavor Symmetries and BPS States, JHEP 11 (2019) 068
[arXiv:1907.05404] [INSPIRE].

[50] M. Alim, B. Heidenreich and T. Rudelius, to appear.

[51] A. Klemm, W. Lerche and P. Mayr, K3 Fibrations and heterotic type-II string duality, Phys.
Lett. B 357 (1995) 313 [hep-th/9506112] [INSPIRE].

– 100 –

https://doi.org/10.1007/s002200050087
https://arxiv.org/abs/hep-th/9608096
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9608096
https://doi.org/10.1016/0550-3213(96)00024-7
https://doi.org/10.1016/0550-3213(96)00024-7
https://arxiv.org/abs/hep-th/9510225
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9510225
https://doi.org/10.1007/s00220-005-1378-6
https://arxiv.org/abs/hep-th/0209161
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0209161
https://doi.org/10.4310/CNTP.2014.v8.n4.a4
https://doi.org/10.4310/CNTP.2014.v8.n4.a4
https://arxiv.org/abs/1205.1784
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.1784
https://arxiv.org/abs/1205.1795
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.1795
https://doi.org/10.1007/JHEP10(2015)125
https://arxiv.org/abs/1501.04891
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.04891
https://doi.org/10.1016/0550-3213(95)00574-9
https://arxiv.org/abs/hep-th/9508155
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9508155
https://doi.org/10.1016/0550-3213(94)90124-4
https://arxiv.org/abs/hep-th/9407087
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9407087
https://doi.org/10.1142/S0129167X93000248
https://doi.org/10.1142/S0129167X93000248
https://doi.org/10.1016/0550-3213(95)00310-O
https://doi.org/10.1016/0550-3213(95)00310-O
https://arxiv.org/abs/hep-th/9504047
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9504047
https://arxiv.org/abs/hep-th/9809187
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9809187
https://arxiv.org/abs/hep-th/9812127
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9812127
https://doi.org/10.1016/S0920-5632(97)00422-2
https://doi.org/10.1016/S0920-5632(97)00422-2
https://arxiv.org/abs/hep-th/9607139
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9607139
https://arxiv.org/abs/1806.01854
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.01854
https://doi.org/10.1016/0550-3213(96)00212-X
https://arxiv.org/abs/hep-th/9603150
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9603150
https://doi.org/10.1016/0550-3213(96)00369-0
https://doi.org/10.1016/0550-3213(96)00369-0
https://arxiv.org/abs/hep-th/9603161
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9603161
https://doi.org/10.1016/S0550-3213(96)00592-5
https://arxiv.org/abs/hep-th/9609070
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9609070
https://doi.org/10.1007/JHEP11(2019)068
https://arxiv.org/abs/1907.05404
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.05404
https://doi.org/10.1016/0370-2693(95)00937-G
https://doi.org/10.1016/0370-2693(95)00937-G
https://arxiv.org/abs/hep-th/9506112
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9506112


J
H
E
P
0
2
(
2
0
2
2
)
1
9
0

[52] C. Vafa and E. Witten, Dual string pairs with N = 1 and N = 2 supersymmetry in
four-dimensions, Nucl. Phys. B Proc. Suppl. 46 (1996) 225 [hep-th/9507050] [INSPIRE].

[53] P.S. Aspinwall and J. Louis, On the ubiquity of K3 fibrations in string duality, Phys. Lett. B
369 (1996) 233 [hep-th/9510234] [INSPIRE].

[54] P.S. Aspinwall, K3 surfaces and string duality, in Theoretical Advanced Study Institute in
Elementary Particle Physics (TASI 96): Fields, Strings, and Duality, (1996), pp. 421–540
[hep-th/9611137] [INSPIRE].

[55] S. Kachru and C. Vafa, Exact results for N = 2 compactifications of heterotic strings, Nucl.
Phys. B 450 (1995) 69 [hep-th/9505105] [INSPIRE].

[56] T. Kawai, String duality and modular forms, Phys. Lett. B 397 (1997) 51 [hep-th/9607078]
[INSPIRE].

[57] A.N. Schellekens and N.P. Warner, Anomalies, Characters and Strings, Nucl. Phys. B 287
(1987) 317 [INSPIRE].

[58] A. Klemm, M. Kreuzer, E. Riegler and E. Scheidegger, Topological string amplitudes,
complete intersection Calabi-Yau spaces and threshold corrections, JHEP 05 (2005) 023
[hep-th/0410018] [INSPIRE].

[59] P. Candelas, X. De La Ossa, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for
two parameter models. 1, Nucl. Phys. B 416 (1994) 481 [hep-th/9308083] [AMS/IP Stud.
Adv. Math. 1 (1996) 483] [INSPIRE].

[60] S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and
applications to Calabi-Yau hypersurfaces, Commun. Math. Phys. 167 (1995) 301
[hep-th/9308122] [INSPIRE].

[61] C. Schoen, On fiber products of rational elliptic surfaces with section, Math. Z 197 (1988)
177.

[62] B. Haghighat, A. Iqbal, C. Kozçaz, G. Lockhart and C. Vafa, M-Strings, Commun. Math.
Phys. 334 (2015) 779 [arXiv:1305.6322] [INSPIRE].

[63] M.-X. Huang, A. Klemm and M. Poretschkin, Refined stable pair invariants for E-, M- and
[p, q]-strings, JHEP 11 (2013) 112 [arXiv:1308.0619] [INSPIRE].

[64] B. Haghighat, A. Klemm, G. Lockhart and C. Vafa, Strings of Minimal 6d SCFTs, Fortsch.
Phys. 63 (2015) 294 [arXiv:1412.3152] [INSPIRE].

[65] B. Haghighat, S. Murthy, C. Vafa and S. Vandoren, F-Theory, Spinning Black Holes and
Multi-string Branches, JHEP 01 (2016) 009 [arXiv:1509.00455] [INSPIRE].

[66] J. Gu, M.-x. Huang, A.-K. Kashani-Poor and A. Klemm, Refined BPS invariants of 6d
SCFTs from anomalies and modularity, JHEP 05 (2017) 130 [arXiv:1701.00764] [INSPIRE].

[67] M. Del Zotto, J. Gu, M.-X. Huang, A.-K. Kashani-Poor, A. Klemm and G. Lockhart,
Topological Strings on Singular Elliptic Calabi-Yau 3-folds and Minimal 6d SCFTs, JHEP
03 (2018) 156 [arXiv:1712.07017] [INSPIRE].

[68] Z. Duan, J. Gu and A.-K. Kashani-Poor, Computing the elliptic genus of higher rank
E-strings from genus 0 GW invariants, JHEP 03 (2019) 078 [arXiv:1810.01280] [INSPIRE].

[69] S. Hosono, M.-H. Saito and J. Stienstra, On Mirror Symmetry Conjecture for Schoen’s
Calabi-Yau 3 folds, alg-geom/9709027.

– 101 –

https://doi.org/10.1016/0920-5632(96)00025-4
https://arxiv.org/abs/hep-th/9507050
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9507050
https://doi.org/10.1016/0370-2693(95)01541-8
https://doi.org/10.1016/0370-2693(95)01541-8
https://arxiv.org/abs/hep-th/9510234
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9510234
https://arxiv.org/abs/hep-th/9611137
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9611137
https://doi.org/10.1016/0550-3213(95)00307-E
https://doi.org/10.1016/0550-3213(95)00307-E
https://arxiv.org/abs/hep-th/9505105
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9505105
https://doi.org/10.1016/S0370-2693(97)00146-9
https://arxiv.org/abs/hep-th/9607078
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9607078
https://doi.org/10.1016/0550-3213(87)90108-8
https://doi.org/10.1016/0550-3213(87)90108-8
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB287%2C317%22
https://doi.org/10.1088/1126-6708/2005/05/023
https://arxiv.org/abs/hep-th/0410018
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0410018
https://doi.org/10.1016/0550-3213(94)90322-0
https://arxiv.org/abs/hep-th/9308083
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9308083
https://doi.org/10.1007/BF02100589
https://arxiv.org/abs/hep-th/9308122
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9308122
https://doi.org/10.1007/s00220-014-2139-1
https://doi.org/10.1007/s00220-014-2139-1
https://arxiv.org/abs/1305.6322
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.6322
https://doi.org/10.1007/JHEP11(2013)112
https://arxiv.org/abs/1308.0619
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.0619
https://doi.org/10.1002/prop.201500014
https://doi.org/10.1002/prop.201500014
https://arxiv.org/abs/1412.3152
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.3152
https://doi.org/10.1007/JHEP01(2016)009
https://arxiv.org/abs/1509.00455
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.00455
https://doi.org/10.1007/JHEP05(2017)130
https://arxiv.org/abs/1701.00764
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.00764
https://doi.org/10.1007/JHEP03(2018)156
https://doi.org/10.1007/JHEP03(2018)156
https://arxiv.org/abs/1712.07017
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.07017
https://doi.org/10.1007/JHEP03(2019)078
https://arxiv.org/abs/1810.01280
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.01280
https://arxiv.org/abs/alg-geom/9709027


J
H
E
P
0
2
(
2
0
2
2
)
1
9
0

[70] A.-K. Kashani-Poor, R. Minasian and H. Triendl, Enhanced supersymmetry from vanishing
Euler number, JHEP 04 (2013) 058 [arXiv:1301.5031] [INSPIRE].

[71] B. Haghighat, G. Lockhart and C. Vafa, Fusing E-strings to heterotic strings: E+E → H,
Phys. Rev. D 90 (2014) 126012 [arXiv:1406.0850] [INSPIRE].

[72] P.S. Aspinwall, B.R. Greene and D.R. Morrison, Measuring small distances in N = 2 sigma
models, Nucl. Phys. B 420 (1994) 184 [hep-th/9311042] [INSPIRE].

[73] B.R. Greene and Y. Kanter, Small volumes in compactified string theory, Nucl. Phys. B 497
(1997) 127 [hep-th/9612181] [INSPIRE].

[74] B.R. Greene and C.I. Lazaroiu, Collapsing D-branes in Calabi-Yau moduli space. 1, Nucl.
Phys. B 604 (2001) 181 [hep-th/0001025] [INSPIRE].

[75] A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T duality, Nucl. Phys. B 479
(1996) 243 [hep-th/9606040] [INSPIRE].

[76] T.H. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. B 194
(1987) 59 [INSPIRE].

[77] T.H. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear Sigma Models,
Phys. Lett. B 201 (1988) 466 [INSPIRE].

[78] P. Candelas, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter
models. 2, Nucl. Phys. B 429 (1994) 626 [hep-th/9403187] [INSPIRE].

[79] T. Schimannek, Modularity from Monodromy, JHEP 05 (2019) 024 [arXiv:1902.08215]
[INSPIRE].

[80] B.H. Lian and S.-T. Yau, Arithmetic properties of mirror map and quantum coupling,
Commun. Math. Phys. 176 (1996) 163 [hep-th/9411234] [INSPIRE].

[81] B. Andreas, G. Curio, D.H. Ruiperez and S.-T. Yau, Fourier-Mukai transform and mirror
symmetry for D-branes on elliptic Calabi-Yau, math/0012196 [INSPIRE].

[82] B. Andreas, G. Curio, D. Hernandez Ruiperez and S.-T. Yau, Fiber wise T duality for
D-branes on elliptic Calabi-Yau, JHEP 03 (2001) 020 [hep-th/0101129] [INSPIRE].

[83] A.E. Lawrence and N. Nekrasov, Instanton sums and five-dimensional gauge theories, Nucl.
Phys. B 513 (1998) 239 [hep-th/9706025] [INSPIRE].

[84] J.A. Minahan, D. Nemeschansky, C. Vafa and N.P. Warner, E strings and N = 4 topological
Yang-Mills theories, Nucl. Phys. B 527 (1998) 581 [hep-th/9802168] [INSPIRE].

[85] W. Lerche and P. Mayr, Unpublished notes, (1997).

[86] G. Curio, A. Klemm, D. Lüst and S. Theisen, On the vacuum structure of type-II string
compactifications on Calabi-Yau spaces with H fluxes, Nucl. Phys. B 609 (2001) 3
[hep-th/0012213] [INSPIRE].

[87] M. Cicoli, D. Ciupke, C. Mayrhofer and P. Shukla, A Geometrical Upper Bound on the
Inflaton Range, JHEP 05 (2018) 001 [arXiv:1801.05434] [INSPIRE].

[88] M. Gross and P.M.H. Wilson, Large Complex Structure Limits of K3 Surfaces,
math/0008018.

[89] M. Gross, Mirror Symmetry and the Strominger-Yau-Zaslow conjecture, arXiv:1212.4220.

[90] D.R. Morrison, On the structure of supersymmetric T 3 fibrations, arXiv:1002.4921
[INSPIRE].

– 102 –

https://doi.org/10.1007/JHEP04(2013)058
https://arxiv.org/abs/1301.5031
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1301.5031
https://doi.org/10.1103/PhysRevD.90.126012
https://arxiv.org/abs/1406.0850
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.0850
https://doi.org/10.1016/0550-3213(94)90379-4
https://arxiv.org/abs/hep-th/9311042
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9311042
https://doi.org/10.1016/S0550-3213(97)00244-7
https://doi.org/10.1016/S0550-3213(97)00244-7
https://arxiv.org/abs/hep-th/9612181
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9612181
https://doi.org/10.1016/S0550-3213(01)00154-7
https://doi.org/10.1016/S0550-3213(01)00154-7
https://arxiv.org/abs/hep-th/0001025
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0001025
https://doi.org/10.1016/0550-3213(96)00434-8
https://doi.org/10.1016/0550-3213(96)00434-8
https://arxiv.org/abs/hep-th/9606040
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9606040
https://doi.org/10.1016/0370-2693(87)90769-6
https://doi.org/10.1016/0370-2693(87)90769-6
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB194%2C59%22
https://doi.org/10.1016/0370-2693(88)90602-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB201%2C466%22
https://doi.org/10.1016/0550-3213(94)90155-4
https://arxiv.org/abs/hep-th/9403187
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9403187
https://doi.org/10.1007/JHEP05(2019)024
https://arxiv.org/abs/1902.08215
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.08215
https://doi.org/10.1007/BF02099367
https://arxiv.org/abs/hep-th/9411234
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9411234
https://arxiv.org/abs/math/0012196
https://inspirehep.net/search?p=find+EPRINT%2Bmath%2F0012196
https://doi.org/10.1088/1126-6708/2001/03/020
https://arxiv.org/abs/hep-th/0101129
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0101129
https://doi.org/10.1016/S0550-3213(97)00694-9
https://doi.org/10.1016/S0550-3213(97)00694-9
https://arxiv.org/abs/hep-th/9706025
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9706025
https://doi.org/10.1016/S0550-3213(98)00426-X
https://arxiv.org/abs/hep-th/9802168
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9802168
https://doi.org/10.1016/S0550-3213(01)00285-1
https://arxiv.org/abs/hep-th/0012213
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0012213
https://doi.org/10.1007/JHEP05(2018)001
https://arxiv.org/abs/1801.05434
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.05434
https://arxiv.org/abs/math/0008018
https://arxiv.org/abs/1212.4220
https://arxiv.org/abs/1002.4921
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1002.4921


J
H
E
P
0
2
(
2
0
2
2
)
1
9
0

[91] M. Gross, Topological mirror symmetry, math/9909015 [INSPIRE].

[92] P. Wilson, The existence of elliptic fibre space structures on Calabi-Yau threefolds II, Math.
Proc. Cambridge Phil. Soc. 123 (1998) 259.

[93] E. Scheidegger, D-Branes on Calabi-Yau Spaces, Ph.D. Thesis, Munich University, Germany
(2001).

[94] R.K. Lazarsfeld, Positivity in Algebraic Geometry I, Springer (2004).

[95] L.B. Anderson, X. Gao, J. Gray and S.-J. Lee, Multiple Fibrations in Calabi-Yau Geometry
and String Dualities, JHEP 10 (2016) 105 [arXiv:1608.07555] [INSPIRE].

[96] L.B. Anderson, X. Gao, J. Gray and S.-J. Lee, Fibrations in CICY Threefolds, JHEP 10
(2017) 077 [arXiv:1708.07907] [INSPIRE].

[97] D.A. Cox and S. Katz, Mirror symmetry and algebraic geometry, AMS (2000).

[98] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil and E. Zaslow,
Mirror symmetry, vol. 1 of Clay mathematics monographs, AMS, Providence, U.S.A. (2003).

– 103 –

https://arxiv.org/abs/math/9909015
https://inspirehep.net/search?p=find+EPRINT%2Bmath%2F9909015
https://doi.org/10.1007/JHEP10(2016)105
https://arxiv.org/abs/1608.07555
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.07555
https://doi.org/10.1007/JHEP10(2017)077
https://doi.org/10.1007/JHEP10(2017)077
https://arxiv.org/abs/1708.07907
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.07907

	Introduction and summary
	Emergent strings
	Summary of results

	Large distance limits in the classical Kähler moduli space of Calabi-Yau three-folds
	Kähler form structure of infinite distance limits
	Finite volume limits at infinite distance as vanishing fiber limits
	Infinite distance limits as weak coupling limits

	M-Theory on Calabi-Yau 3-folds in finite volume infinite distance limits
	The Type T**(2) limit as an F-Theory limit
	The Type K3 limit and an emergent heterotic string
	Genus-one fibered K3
	One-parameter K3

	Limits of Type T**(4) and Type IIB theory on D-manifolds
	T**(4) = E(1) x E(2): Schoen manifold
	General Abelian surface fibration

	Infinite distance limits at infinite volume

	Large distance limits in quantum Kähler geometry
	General considerations on quantum volumes and mirror symmetry 
	Quantum large distance limit for elliptic fibrations
	Limit without co-scaling
	Limit with co-scaling

	Quantum small fiber limit for K3 fibrations
	Implications for quantum geometry from M-Theory
	Quantum geometry of the small K3 fiber limit
	Weak coupling as gravity decoupling limit
	Equi-dimensional limit via co-scaling of g(IIA)

	Abelian variety fibration: Schoen manifold in Type IIA string theory

	Summary and discussion
	Classification of large distance Kähler limits
	Type T**(2)-limits from J-class A
	Type K3/T**(4) or Type T**(2) limits from J-class B
	Example: elliptic K3-fibration
	Large distance limits on Kähler surfaces

	Existence and uniqueness of the relevant fibrations
	Type T**(2) limits with a Kähler form of J-class A
	Type K3/T**(4) limits with a Kähler form of J-class B
	|I(lambda)| = 1
	|I(lambda)| > 1

	Type T**(2) limits with a Kähler form of J-class B

	Mirror symmetry
	Analytic continuation for the K3 fibration P**(5) (1,2,2,2,6)[12]

