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Using on-shell methods, we present a new perturbative nonrenormalization theorem for operator mixing
in massless four-dimensional quantum field theories. By examining how unitarity cuts of form factors
encode anomalous dimensions, we show that longer operators are often restricted from renormalizing
shorter operators at the first order where Feynman diagrams exist. The theorem applies quite generally and
depends only on the field content of the operators involved. We apply our theorem to operators of
dimension five through seven in the standard model effective field theory, including examples of nontrivial
zeros in the anomalous-dimension matrix at one through four loops. The zeros at two and higher loops go
beyond those previously explained using helicity selection rules. We also include explicit sample
calculations at two loops.
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Introduction.—A key challenge in particle physics is to
identify physics beyond the standard model. Because
current experimental data at colliders are well described
by the standard model, it is unclear which theoretical
direction will ultimately prove to be the one chosen by
nature. Therefore, it is important to quantify new physics
beyond the standard model in a systematic, model-
independent manner. The theoretical framework for
doing so is via effective field theories that extend the
standard model Lagrangian by adding higher-dimension
operators [1,2]

ΔL ¼
X
i

ciOi; ð1Þ

with coefficients ci suppressed by powers of a high-energy
scale Λ dictated by the dimension of Oi. The resulting
theory, known as the standard model effective field theory
(SMEFT), is reviewed in Ref. [3].
As for all quantum field theories, renormalization

induces mixing of these operators. This can be parame-
trized by the renormalization group equation

16π2
∂ci

∂ log μ ¼ γUVij cj; ð2Þ

where γUVij is the anomalous-dimension matrix and μ
is the renormalization scale. Usually, γUVij is calculated

perturbatively in the marginal couplings of the standard
model Lagrangian, which we will denote collectively as g.
The complete one-loop anomalous-dimension matrix for
operators up to dimension six has been computed in
Refs. [4,5]. These calculations reveal a number of vanish-
ing entries related to supersymmetry [6], which seem
surprising at first because there are valid diagrams that
can be written down. These zeros have been elegantly
explained [7] using tree-level helicity selection rules [8],
which set certain classes of tree-level amplitudes to zero.
The tree-level vanishings imply, through unitarity, that
certain logarithms and their associated anomalous dimen-
sions are not present. Although these selection rules are
reminiscent of supersymmetric ones, they hold for generic
massless quantum field theories in four dimensions.
Might it be possible that beyond one loop there are new

nontrivial zeros? At first sight, this seems rather unlikely
because the helicity selection rules fail to hold at loop level.
In this Letter, we show that, contrary to expectations, there
are, in fact, additional nontrivial zeros in the higher-loop
anomalous-dimension matrix. As in Ref. [7], our only
assumption is that the theory does not contain any relevant
couplings (e.g., masses). To state the new nonrenormaliza-
tion theorem, we define the length of an operator, lðOÞ, as
the number of fundamental field insertions in O. Then the
statement of the theorem is as follows.
Theorem 1.—Consider operators Os and Ol such that

lðOlÞ > lðOsÞ. Ol can renormalize Os at L loops only
if L > lðOlÞ − lðOsÞ.
At fixed loop order, sufficiently long operators cannot

renormalize short operators because there would be too
many legs to form a diagram with the right structure.
Such zeros in the anomalous-dimension matrix are trivial.
As written above, the theorem applies nontrivially at
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½lðOlÞ − lðOsÞ� loops, i.e., the first loop order at which
there could be renormalization because diagrams exist.
However, in a general theory with multiple types of fields,
the first renormalization can be delayed even further,
depending on the precise field content of the two operators.
We encapsulate this into the more general rule:
Theorem 2.—If at any given loop order, the only

diagrams for a matrix element with the external particle
content of Os but an insertion of Ol involve scaleless
bubble integrals, there is no renormalization of Os by Ol.
What makes them nontrivial is that Feynman diagrams

exist that seem as if they should contribute to an anomalous
dimension, but fail to do so because the diagrams do not
generate the appropriate logarithms. The Feynman-diagram
language can obscure this because individual diagrams are
not gauge invariant. While not difficult to disentangle at
one loop, at higher loops, it becomes more advantageous to
work in an on-shell formalism, which only takes gauge-
invariant quantities as input. Indeed, modern unitarity
methods [9] have clarified the structure of loop amplitudes
resulting in significant computational advantages for a
variety of problems, including the computation of form
factors and associated anomalous dimensions [10].
Renormalization and form factors.—Traditionally, the

anomalous dimension corresponding to the renormalization
of an operator Oi by an operator Oj is extracted from UV
divergences. These can be found, for instance, in form
factors

Fj½p1;…; pn; q; μ� ¼ hp1;…; pnjOjðqÞj0i; ð3Þ
with an operator insertion Oj and external states
jp1;…; pni that overlap with states created by Oi. The
divergences and associated anomalous dimensions can also
be obtained from one-particle irreducible effective actions
or from scattering amplitudes,MOj

, corresponding to form
factors with the operator momentum injection q set to zero.
Here, we use the elegant on-shell approach developed by

Caron-Huot and Wilhelm that extracts anomalous dimen-
sions directly from renormalized quantities [11]. In this
approach, the intuition that the renormalization properties
of the theories are encoded in on-shell form factors through
their logarithms is made precise by the following equation:

e−iπDF� ¼ SF�; ð4Þ

where F� is the conjugate form factor with an insertion of
an Oj operator. This relates the phase of the S-matrix, S, to
the dilatation operator D which extracts anomalous dimen-
sions. We point the interested reader to Ref. [11] for its
derivation.
For simplicity, we use dimensional regularization. In this

case, the dilatation operator D is related to the single
renormalization scale μ ¼ μUV ¼ μIR, as D ≃ −μ∂μ.
Expanding Eq. (4) at one loop one obtains the following
description of the renormalization of Oi by Oj:

½γUVij − γIRij þ βðgÞ∂g�ð1Þhp1;…; pnjOij0ið0Þ

¼ −
1

π
hp1;…; pnjM ⊗ Ojj0i: ð5Þ

On the left hand side, we find the tree-level form factor of
Oi, the beta function βðgÞ of the couplings g, the anomalous
dimensions γUV, which are the objects of interest, and the
infrared anomalous dimensions γIR, which arise from soft
and/or collinear logarithms. The superscripts denote the
perturbative order. The right hand side arises from the term
MF�, where M ¼ −iðS − 1Þ is the scattering amplitude.
The notation ⊗ here refers to an integration over the phase
space of intermediate two-particle states in the product.
This simply corresponds to a one-loop unitarity cut, as
depicted in Fig. 1(a). Schematically, Eq. (5) says that, up to
terms coming from the β function, one-loop anomalous
dimensions are eigenvalues of the S-matrix, with the form
factors being the corresponding eigenvectors. More practi-
cally, this equation describes how to systematically extract
the anomalous dimensions from the coefficients of loga-
rithms by taking discontinuities of the form factor.
The fact that dependence on the renormalization scale is

related to discontinuities in kinematic variables is no
surprise since the arguments of logarithms must balance
kinematic variables against the renormalization scale to
make them dimensionless. This observation has also been
used to efficiently determine the renormalization-scale
dependence of the two-loop counterterm in pure Einstein
gravity from unitarity [12].
At higher-loop orders, other unitarity cuts, matching the

order of the anomalous dimension, need to be considered.
For instance, at two loops, the three-particle cut is required,
as well as the two-particle cut between the tree-level
amplitude and the one-loop form factor and vice versa,
as in Figs. 1(b)–1(d).
Nonrenormalization theorem.—We would like to con-

sider the renormalization of a shorter operator Os by a

(a)

(c)

(b)

(d)

FIG. 1. Unitarity cuts relevant for the extraction of anomalous
dimensions from one- (a) and two-loop (b–d) form factors.. The
darker blobs indicate a higher-dimension operator insertion. The
double-lined arrow indicates the insertion of additional off-shell
momentum from the operator. The dashed line indicates the
integral over phase space of the particles crossing the cut.
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longer operator Ol. This could be, for example, the
renormalization of ϕ2F2 by ϕ6, where ϕ is a scalar and
F is a vector field strength. For simplicity, we will take Os
and Ol to be single operators, though in general, they
represent collections of operators with the same field
content but differing Lorentz contractions or color factors.
Because our arguments rely only on the field content and
basic structure of the unitarity cuts, our conclusions will
apply just as well to the more general case.
The formalism reviewed above allows us to connect the

anomalous dimensions to unitarity cuts of form factors,
given knowledge of the β function of the leading couplings
and the infrared anomalous dimensions. Now, we show
that, for the leading contributions, there is an even more
direct connection between the ultraviolet anomalous
dimensions and unitarity cuts.
The appearance of the β function in Eq. (5) is avoided

simply by extracting the anomalous dimensions from the
minimal form factor ofOs, which is defined as the one with
the minimum number of legs needed to match the operator.
Wewill denote this by a subscript on the state, jp1;…; pnis.
Because of its defining property, the minimal tree-level
form factor is local and does not depend on the couplings,
g. Therefore, the dependence of the higher-loop analog of
Eq. (5) on the β function drops out.
Next, we would need knowledge of the infrared anoma-

lous dimension γIR. Infrared singularities are very well
understood [13–16]. Our case is special, with a rather
simple infrared structure. We are interested in the first loop
order at which the higher-dimension operator could be
renormalized. This would be the first loop order for which
it is possible to write down valid diagrams. The lack of
diagrams at lower-loop order means there cannot be any
logðμIRÞ terms or corresponding γIR at the given loop order
under consideration. In addition, infrared singularities are
diagonal for the operators with distinct fields, mixing only
via color. Therefore, at this order, γIR ¼ 0. Various exam-
ples will be given in Ref. [17].
Thus, application of Eq. (4) is particularly simple for our

case so that the relation between the first potentially
nonvanishing anomalous dimension and unitarity cuts is
direct

ðγUVsl ÞðLÞ shp1;…; pnjOsj0ið0Þ

¼ −
1

π shp1;…; pnjM ⊗ Olj0i: ð6Þ

With this relation at hand, it is now straightforward to argue
for new nonrenormalization zeros by analyzing the allowed
unitarity cuts. Equation (6) gives ðγUVsl ÞðLÞ in terms of a sum
over cuts of the form illustrated in Fig. 1. The left-hand side
of any such k-particle cut is a nM-point amplitude, with the
number of particles external to the cut equal to nM − k.
Similarly, the right-hand side is an nF-point form factor,
with nF − k particles external to the cut. Now, for the

minimal form factor, the total number of external particles
must match the length of Os, so we must have the relation

nM þ nF − 2k ¼ lðOsÞ: ð7Þ

The number of legs nM and nF are both bounded from
below. For the unitarity cut to be nonzero, the scattering
amplitude on the left must have at least two external
particles, that is, nM ≥ kþ 2. On the other side, nF is
restricted by the requirement that the form factor not
include any scaleless bubbles. Since all legs of the form
factor, including those crossing the cut, are on shell, any
such scaleless bubbles would evaluate to zero. At one loop,
for example, this implies nF ≥ lðOlÞ, which is the same as
the tree level relation. At higher loops, the particle count
can be reduced depending on the number of loops in the
form factor, which produces the relation

nF ≥ lðOlÞ − ðLF − 1Þ − δLF;0: ð8Þ

Here, LF is the number of loops contained in the form
factor. δLF;0 is unity if the form factor is at tree level and
zero, otherwise, which accounts for the fact that there is no
reduction in particle number between tree level and
one loop. By considering the possible placings of the
loops in the cut or on either side of the cut, we have
LF ≤ L − ðk − 1Þ, implying nF ≥ lðOlÞ − Lþ k − δLF;0.
Combining this with the condition on nM and plugging
in to equation (7), we obtain

lðOlÞ − Lþ 2 − δLF;0 ≤ lðOsÞ: ð9Þ

This inequality shows that the difference in length of the
operators can preclude the renormalization unless

L > lðOlÞ − lðOsÞ; ð10Þ

and, thus, completes the proof of the first form of our
theorem. In summary, we have shown that, at loop orders
less than or equal to lðOlÞ − lðOsÞ, there are no allowed
unitarity cuts that can capture the coefficient of logðμ2Þ,
which, in turn, implies that γUVsl ¼ 0. Equation (9) also
shows that the contributions to the anomalous dimension at
loop order L ¼ lðOlÞ − lðOsÞ þ 1 are captured by cuts of
the type in Figs. 1(a) and 1(b), that are given purely in terms
of tree-level matrix elements. Cuts of the type in Fig. 1(c)
are directly ruled out by Eq. (9), and cuts of the type in
Fig. 1(d) are ruled out because lðOlÞ − lðOsÞ þ 2 legs need
to be sewn across the cut to have a total of lðOsÞ external
legs, so that all lðOlÞ − lðOsÞ þ 1 loops are accounted for
in the cut. This observation should help in their compu-
tation, for instance, by allowing the use of four-dimensional
helicity methods to evaluate the cut. It also implies that
helicity selection rules can be active beyond one loop,
contrary to expectations.
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Depending on the particle contents of the two operators,
it might happen that there are no allowed unitarity cuts even
at a higher loop order than the one predicted by the first
form of the theorem. Instead of analyzing the unitarity cuts,
this can be explained in the more familiar diagrammatic
language. Clearly, if the only diagrams that can be drawn
involve scaleless bubbles, there will be no available cut
where all loops are included in the cut. Thus, diagrams with
fewer cut legs will force the form factor to include the
scaleless bubble and, thus, to evaluate to zero. Then, the
corresponding anomalous dimension must also be zero.
This explains the more general rule presented in the
introduction. As noted above, this relies on the absence
of infrared singularities whenever corresponding lower-
loop form factors vanish.
Examples of zeros in the SMEFT at one loop are the

renormalization of F3 by ϕ2F2, and of D2ϕ4, Fϕψ2, and
Dϕ2ψ2 by ϕ3ψ2, which were already explained using the
helicity selection rules [7] but also follow from the
principles described here. In contrast to the helicity

selection rules, however, our theorem can also apply at
higher loops. The full set of zeros predicted by our rules for
operators of dimensions five, six, and seven includes
examples at one through four loops and is described in
Tables I, II, and III, respectively. The tables also indicate
the overlap between our theorem and the one-loop helicity
selection rules of [7]. Note, we have combined some of the
categories of operators of [7], since our theorem does not
need to distinguish operators based on their chirality.
Two-loop examples.—Now, consider two calculations

that show explicit examples, from Table II, of the nontrivial
zeros in the anomalous-dimension matrix at two loops. The
examples will also demonstrate the vanishing of γIR. The
first example is the renormalization ofOϕ2F2 byOϕ6, which
is the entry (2,8) of Table II.
The minimal two-loop form factor for Oϕ2F2 includes

two external scalars and two external gauge bosons. The
product MF� in Eq. (4) at two loops requires either a cut
between a five-point amplitude and the tree-level form
factor or a four-point amplitude and a one-loop form factor
with an insertion ofOϕ6 . However, the cut between the five-
point amplitude and the tree-level form factor leaves five
total external legs and, thus, cannot match the minimal form
factor for Oϕ2F2. For the cut between the four-point
amplitude and the one-loop form factor to match the
minimal form factor for Oϕ2F2, the one-loop form factor
would have to involve a massless tadpole, which would
evaluate to zero.
We can also directly check that the (single) diagram—

Fig. 2(a)—for the Oϕ6 → Oϕ2F2 renormalization evaluates

TABLE I. Application of the nonrenormalization theorem to
dimension-five operators. The operators labeling the rows are
renormalized by the operators labeling the columns. ×L indicates
the theorem applies at L-loop order. (L) denotes that there are no
diagrams before L loops, but renormalization is possible at that
order, since the required cuts can exist. Light-gray shading
indicates a zero at one loop due to helicity selection rules, while
dark-gray shading indicates the entry is a new zero predicted by
our nonrenormalization theorem.

TABLE II. Application of the nonrenormalization theorem to
dimension six. The notation is explained in Table I.

TABLE III. Application of the nonrenormalization theorem to
dimension seven. The notation is explained in Table I. The
shortest and longest operators have been dropped from the list of
columns and rows, respectively, since our theorem requires a
reduction in length of the operators.
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to zero. By incorporating an IR regulator λIR, we can
evaluate the integral while keeping the UVand IR depend-
ences separate and determine the behavior of the form
factor in the limit λIR → 0. The integral for this diagram
immediately factorizes, and each of the two loop integrals
is of the form

Z
dDl1

ð2πÞD
ð2l1

v − k1vÞε1v
ðl2

1 − λIRÞ½ðl1 − k1Þ2 − λIR�
: ð11Þ

This integral vanishes by the on-shell condition k1vε1v ¼ 0
and Lorentz invariance, since k1 is the only available
momentum. Therefore, Oϕ6 cannot renormalize Oϕ2F2 at
two loops.
For a slightly more complex example, consider the

renormalization ofOF3 byOψ4 at two loops, corresponding
to entry (1,6) of Table II. Again, for this process, the three-
particle cut between the five-point amplitude and the tree-
level form factor does not produce the correct external-
particle state corresponding to the field content ofOF3 . The
two-particle cut between the four-point amplitude and the
one-loop form factor with an insertion of Oψ4 is shown in
Fig. 2(b). By again adding an IR regulator, the result can be
written as

Z
dLIPSl1

dDl2

ð2πÞD
Tr½Xðl1Þ=l2=ε3ð=l2 − =k3Þ�

ðl2
2 − λIRÞ½ðl2 − k3Þ2 − λIR�

; ð12Þ

where X receives contributions from the multiple possible
diagrams of the four-point amplitude and includes the
remaining propagators. LIPS indicates integration over the
Lorentz-invariant phase space of the particles crossing
the cuts.
One can reduce the l2 tensor integrals using standard

techniques to obtain the following result:

Z
dDl2

ð2πÞD
lμ
2l

ν
2

ðl2
2 − λIRÞ2

Z
dLIPSl1Yμνðl1Þ

¼ −
iΓð−1þ ϵÞ
2ð4πÞ2−ϵ ðλIRÞ1−ϵ

Z
dLIPSl1Y

μ
μðl1Þ; ð13Þ

where ϵ ¼ ð4 −DÞ=2, Y contains the rest of the trace in
Eq. (12), and terms linear in l2 cancel. Since the phase-
space integral can, at worst, result in a logðλIRÞ divergence,
the factor ðλIRÞ1−ϵ ensures that the expression goes
smoothly to zero as λIR approaches zero for all orders in
ϵ. Therefore, the cut vanishes, along with the UV anoma-
lous dimension.
Conclusions.—We have derived a new nonrenormaliza-

tion theorem that applies to higher-dimensional operators in
quantum field theory. Since the theorem is dependent on
only the number and type of fields in each operator, it
applies to generic massless theories with no relevant
operators.
Besides being helpful to find zeros of the anomalous-

dimension matrix, the on-shell formalism of Ref. [11] is a
good way to compute nonzero entries as well. Whenever an
entry is excluded by our theorem, it should be much simpler
to compute the entry at the next loop order compared to
computing a generic entry at that loop order, because only
tree-level quantities enter the cuts. In addition, helicity
selection rules [7] might then apply, pushing the zero one
loop further. For instance, it is straightforward to confirm
that many of the nonzero entries in the tables above vanish
in the absence of Yukawa couplings. It would also be
interesting to combine our results with those of Ref. [18],
where dimensional-analysis counting rules are used to
constrain coupling-constant dependence and, more gener-
ally, to find the full set constraints in the multiloop
anomalous-dimension matrix of the SMEFT. On-shell
methods [9] are also a good way to compute amplitudes
including higher-dimension operators. Using these, we
have computed four-point one-loop massless amplitudes
and associated anomalous dimensions of the SMEFT
dimension-six operators, which will be described else-
where [17].
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