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Abstract
We generalise our previous formulation of gauge-invariant PT -symmetric field theories to

include models with non-Abelian symmetries and discuss the extension to such models of the

Englert-Brout-Higgs-Kibble mechanism for generating masses for vector bosons. As in the

Abelian case, the non-Abelian gauge fields are coupled to non-conserved currents. We present

a consistent scheme for gauge fixing, demonstrating Becchi-Rouet-Stora-Tyutin invariance,

and show that the particle spectrum and interactions are gauge invariant. We exhibit the

masses that gauge bosons in the simplest two-doublet SU(2)×U(1) model acquire when certain

scalar fields develop vacuum expectation values: they and scalar masses depend quartically on

the non-Hermitian mass parameter µ. The bosonic mass spectrum differs substantially from

that in a Hermitian two-doublet model. This non-Hermitian extension of the Standard Model

opens a new direction for particle model building, with distinctive predictions to be explored further.
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I. INTRODUCTION

Recent years have seen increasing interest in quantum-mechanical models with non-

Hermitian, PT -symmetric Hamiltonians [1–3], which have been shown to possess real energy

spectra that are bounded below, and have extensive applications in photonics and other

fields [4–6]. This interest has extended to PT -symmetric quantum field theories with non-

Hermitian Lagrangians, such as a scalar field theory with an iφ3 interaction [7–10], which

has been shown to possess a physically meaningful effective potential, a PT -symmetric −φ4

scalar field theory [11], and a fermionic model with a non-Hermitian mass term ∝ ψγ5ψ

that is unitary and has a conserved current [12, 13]. Such non-Hermitian quantum field

theories have been applied to describe neutrino masses and oscillations [14–17] (see also a

similar lattice fermion model [18]), and have also been considered in connection with dark

matter [19] and decays of the Higgs boson [20]. We note also that effective non-Hermitian

Hamiltonians can also be used to describe unstable systems with particle mixing [21].

The formulation of PT -symmetric quantum field theories was extended in Refs. [15, 22] to

include an Abelian gauge symmetry. A particularity of this formulation is that the gauge field

is coupled to a non-conserved current. The next step was to study spontaneous symmetry

breaking and the Goldstone theorem [23–25] in a non-Hermitian, PT -symmetric quantum

field theory, which was done in Ref. [26] (cf. the alternative approach of Refs. [27, 28]),

where we exhibited a specific example with two complex scalar fields and a non-Hermitian

bilinear scalar coupling µ2, in which there is a massless boson at both the tree and one-loop

levels 1. We note that physical observables depend only on µ4 and are therefore independent

of the ambiguity in the sign of µ2 that arises from the non-Hermiticity of the model. We

subsequently explored in Ref. [29] the PT -symmetric extension of the Englert-Brout-Higgs

mechanism [30, 31] for generating a mass for the Abelian gauge boson in a manner consistent

with renormalisability of the quantum field theory. For summary of these works, see Ref. [32].

In this paper, we further develop the formulation of PT -symmetric gauge theories to

include a non-Abelian gauge symmetry and Kibble’s non-Abelian generalisation [33] of the

Englert-Brout-Higgs mechanism. We study a minimal extension of the model considered in

Refs. [26, 29] that contains two complex scalar doublets and admits the same SU(2)×U(1)
gauge symmetry as the Standard Model. We show how the gauge can be fixed in a consistent

1 The behaviours of Goldstone modes in different phases of PT symmetry have also been studied in Ref. [28].
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manner and demonstrate Becchi-Rouet-Stora-Tyutin (BRST) invariance [34]. We explore

the scalar vacuum expectation values (vev’s) and tree-level spectra of the gauge and scalar

boson masses in a simple version of the model with a single quartic coupling. They depend

quartically on the non-Hermitian coupling µ2 and differ significantly from the masses in the

conventional Hermitian two-Higgs-doublet model (2HDM, see Ref. [35]). Thus, this non-

Hermitian extension of the Standard Model offers prospects for distinctive experimental

predictions that may be explored further in a systematic programme of PT -symmetric

phenomenology.

II. SCALAR LAGRANGIAN

In this Section, we extend the non-Hermitian model of Ref. [22] to include two complex

scalar doublets, giving the non-Hermitian 2HDM on which we base the discussion of non-

Abelian gauge symmetry and its breaking in the next Section.

A. Lagrangian

We follow here similar steps to those described in Ref. [22], starting with the Lagrangian

L = ∂αΦ†1∂
αΦ1 + ∂αΦ†2∂

αΦ2 −m2
1|Φ1|2 −m2

2|Φ2|2

−µ2
(

Φ†1Φ2 − Φ†2Φ1

)
− κ

4
|Φ1|4 , (1)

where Φi are complex doublets

Φi =


φia
φib


 , i = 1, 2 (2)

and µ is a non-Hermitian mass parameter. This system is invariant under the PT -symmetry,

acting on the c-number fields as

PT : Φ1(t, x)→ Φ′1(−t,−x) = Φ∗1(t, x) ,

Φ2(t, x)→ Φ′2(−t,−x) = −Φ∗2(t, x) , (3)

under which Φ1 is a scalar doublet whereas Φ2 is a pseudoscalar doublet. The eigenvalues

of the squared mass matrix

M2
± =

m2
1 +m2

2

2
± 1

2

√
(m2

1 −m2
2)

2 − 4µ4 (4)
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are real provided the following inequality holds:

2|µ2| ≤ |m2
1 −m2

2| , (5)

which is assumed throughout the first two Sections of this work. Note that the eigenvalues

become degenerate at |µ2| = |m2
1 −m2

2|/2. This marks the exceptional point, which lies at

the boundary between the regions of unbroken and broken PT symmetry. At this point,

the squared mass matrix becomes defective and we lose an eigenvector. We discuss these

exceptional points further in Section IVD.

Because of the non-Hermitian mass term proportional to µ2, the equations of motion one

obtains by varying the action with respect to Φi or to Φ†i are not equivalent for non-trivial

solutions, i.e.

δS

δΦ†i
≡ ∂L
∂Φ†i
− ∂α

∂L
∂
(
∂αΦ†i

) = 0 <
δS

δΦi

≡ ∂L
∂Φi

− ∂α
∂L

∂
(
∂αΦi

) = 0 . (6)

These two sets of equations of motion are related by PT -symmetry though or, equivalently,

by a change in the sign of µ2. As can be seen from the eigenvalues (4), observables depend

on µ4 only, so these two sets of equations of motion are physically equivalent. This is also

valid at the quantum level, see Ref. [29], as can be derived from the reality of the partition

function, provided the sources for the scalar fields satisfy appropriate PT properties.

We choose here the equations of motion provided by the variation of the action with

respect to Φ†i :

0 = �Φ1 +m2
1Φ1 + µ2Φ2 +

κ

2
|Φ1|2Φ1 , (7a)

0 = �Φ2 +m2
2Φ2 − µ2Φ1 , (7b)

together with their Hermitian conjugates

0 = �Φ†1 +m2
1Φ
†
1 + µ2Φ†2 +

κ

2
|Φ1|2Φ†1 , (8a)

0 = �Φ†2 +m2
2Φ
†
2 − µ2Φ†1 . (8b)

We note that this formulation differs from that suggested in Ref. [27], where the author

introduces a similarity transformation that transforms the non-Hermitian Lagrangian L to

a Hermitian one L′. The difference in approach is reflected in differences in the masses of

the gauge fields, which we discuss in Section IVD.
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B. Conserved currents

The Lagrangian (1) is invariant under the U(1) transformations

Φ1 → e−i
g′
2
β0Φ1 , (9a)

Φ2 → e−i
g′
2
β0Φ2 , (9b)

which correspond to the current

Iα+ = i
g′

2

([
Φ†1

(
∂αΦ1

)
−
(
∂αΦ†1

)
Φ1

]
+
[
Φ†2

(
∂αΦ2

)
−
(
∂αΦ†2

)
Φ2

])
, (10)

and also invariant under the SU(2) transformations

Φ1 → e−i
g
2
~β·~τΦ1 , (11a)

Φ2 → e−i
g
2
~β·~τΦ2 , (11b)

which correspond to the current

~Jα+ = i
g

2

([
Φ†1~τ

(
∂αΦ1

)
−
(
∂αΦ†1

)
~τΦ1

]
+
[
Φ†2~τ

(
∂αΦ2

)
−
(
∂αΦ†2

)
~τΦ2

])
, (12)

where ~τ = (τ1, τ2, τ3) is composed of the Pauli matrices.

The equations of motion (7) show, however, that these currents are not conserved:

∂αI
α
+ = ig′µ2

(
Φ†2Φ1 − Φ†1Φ2

)
, (13a)

∂α ~J
α
+ = igµ2

(
Φ†2~τΦ1 − Φ†1~τΦ2

)
, (13b)

except at the Hermitian point µ2 = 0. The fact that symmetries of the Lagrangian do

not correspond to conserved currents for non-Hermitian theories is a direct consequence

of the fact that the two functional variations in Eq. (6) cannot vanish simultaneously for

non-trivial solutions. Instead, a careful treatment of Noether’s original derivation [36] shows

that there still exist conserved currents for non-Hermitian theories, but these correspond

to transformations that do not leave the Lagrangian invariant [22] (see also Ref. [37] for a

summary).

In the present model, we find that the conserved currents are, in fact,

Iα− = i
g′

2

([
Φ†1

(
∂αΦ1

)
−
(
∂αΦ†1

)
Φ1

]
−
[
Φ†2

(
∂αΦ2

)
−
(
∂αΦ†2

)
Φ2

])
, (14a)

~Jα− = i
g

2

([
Φ†1~τ

(
∂αΦ1

)
−
(
∂αΦ†1

)
~τΦ1

]
−
[
Φ†2~τ

(
∂αΦ2

)
−
(
∂αΦ†2

)
~τΦ2

])
, (14b)
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which correspond to the following transformations:

Φ1 → e−i
g′
2
β0Φ1 , (15a)

Φ2 → e+i
g′
2
β0Φ2 , (15b)

and

Φ1 → e−i
g
2
~β·~τΦ1 , (16a)

Φ2 → e+i
g
2
~β·~τΦ2 . (16b)

The relative sign between the charge assignments of the two fields reflects the usual inter-

pretation of viable PT -symmetric theories as systems with coupled gain and loss.

III. GAUGING THE SCALAR MODEL

Since the conserved currents do not correspond to the usual Noether currents, gauging

the model (1) is non-trivial, as we describe in this Section, generalising the approach taken

in Ref. [29] to the non-Abelian case. We refer to the non-conserved currents corresponding

to symmetries of the Lagrangian as Noether currents, but note that the conserved currents

are in fact those consistent with Noether’s original derivation (see Ref. [22]).

A. Coupling to the Noether currents

We introduce an Abelian gauge field Bα and an SU(2) gauge field ~Wα, together with the

SU(2)×U(1) gauge transformations

Φi → e−i
g′
2
β0e−i

g
2
~β·~τΦi , (17a)

~Wα → ~Wα + g
(
~β × ~Wα

)
+ ∂α~β = ~Wα +Dα~β , (17b)

Bα → Bα + ∂αβ0 , (17c)

where Dα~β = ∂α~β − g( ~Wα × ~β). In order to write a gauge-invariant theory, one should

couple the gauge fields to the Noether currents, such that the scalar kinetic terms are given

6



by

Lkin = [DαΦ1]
†DαΦ1 + [DαΦ2]

†DαΦ2

= ∂αΦ†1∂
αΦ1 + ∂αΦ†2∂

αΦ2 +
i

2
∂αΦ†1

(
g′Bα + g~τ · ~Wα

)
Φ1 ,

− i
2

Φ†1

(
g′Bα + g~τ · ~Wα

)
∂αΦ1 +

i

2
∂αΦ†2

(
g′Bα + g~τ · ~Wα

)
Φ2 ,

− i
2

Φ†2

(
g′Bα + g~τ · ~Wα

)
∂αΦ2 +

1

4
Φ†1

(
g′B + g~τ · ~W

)2
Φ1

+
1

4
Φ†2

(
g′B + g~τ · ~W

)2
Φ2 , (18)

where Dα is given by the usual minimal-coupling prescription, i.e.,

DαΦi = ∂αΦi +
ig′

2
BαΦi +

ig

2

[
~τ · ~Wα

]
Φi . (19)

As in the Standard Model, we rotate the gauge fields as

Bα = cos θWA
α − sin θWZ

α , (20a)

Wα
1 =

Wα +Wα†
√

2
, Wα

3 = sin θWA
α + cos θWZ

α , Wα
2 = i

Wα −Wα†
√

2
, (20b)

where θW is the weak mixing angle, to obtain

Lkin = ∂αΦ†1∂
αΦ1 + ∂αΦ†2∂

αΦ2 −Wα

[
Jα+,1 + iJα+,2√

2

]
−W †

α

[
Jα+,1 − iJα+,2√

2

]

−Zα
[
Jα+,3 cos θW − Iα+ sin θW

]
− Aα

[
Jα+,3 sin θW + Iα+ cos θW

]

+
g2

2
W †
αW

α
(
|Φ1|2 + |Φ2|2

)

+
1

4
ZαZ

α
∑

i

Φ†i

( [
g′2 sin2 θW + g2 cos2 θW

]
I− 2gg′ cos θW sin θWτ3

)
Φi

+
1

4
AαA

α
∑

i

Φ†i

( [
g′2 cos2 θW + g2 sin2 θW

]
I + 2gg′ cos θW sin θWτ3

)
Φi

+
1

4
ZαA

α
∑

i

Φ†i

( [
(g2 − g′2) sin 2θWI + 2gg′ cos 2θWτ3

] )
Φi

+
1

2
gg′
(

cos θWA
α − sin θWZ

α
)∑

i

Φ†i

(
Wα

[
τ1 + iτ2√

2

]
+W †

α

[
τ1 − iτ2√

2

])
Φi .

(21)

Also as in the Standard Model, the Lagrangian for the gauge fields is

Lgauge = −1

4
~W ′

αβ · ~W ′αβ − 1

4
BαβB

αβ

= −1

4
FαβF

αβ − 1

4
ZαβZ

αβ − 1

2
W †
αβW

αβ , (22)
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with

~W ′
αβ = ∂β ~Wα − ∂α ~Wβ + g

(
~Wα × ~Wβ

)
, (23a)

Bαβ = ∂βBα − ∂αBβ , (23b)

Wαβ = [∂β + ig (sin θWAβ + cos θWZβ)]Wα

− [∂α + ig (sin θWAα + cos θWZα)]Wβ , (23c)

Fαβ = ∂βAα − ∂αAβ + ig sin θW

[
W †
αWβ −W †

βWα

]
, (23d)

Zαβ = ∂βZα − ∂αZβ + ig cos θW

[
W †
αWβ −W †

βWα

]
. (23e)

B. Consistent field equations

Since the gauge fields are coupled to currents that are not conserved, additional terms

need to be added to the Lagrangian in order to have consistent field equations [29]. For this,

it is enough to consider the usual gauge-fixing terms, which must be added to the classical

equations of motion in the non-Hermitian case (not just at the quantum level in order to

define the path integral, as in the Hermitian case). The gauge-fixing terms in the Lagrangian

involve ghost fields ~η and ~̄η, taking the form

LGF = ∂α~̄η · [Dα~η]− 1

2ξ

[
(∂αB

α)2 + |∂α ~Wα|2
]

= ∂αχ̄
†
(

[∂α + ig (sin θWA
α + cos θWZ

α)]χ− igWαη3

)

+∂αχ̄
(

[∂α − ig (sin θWA
α + cos θWZ

α])χ† + igWα†η3

)

+∂αη̄3
(
∂αη3 + ig

[
Wαχ† −Wα†χ

)]

− 1

2ξ

[
(∂αA

α)2 + (∂αZ
α)2 + 2|∂αWα|2

]
, (24)

where

χ̄ ≡ η̄1 − iη̄2√
2

, χ ≡ η1 − iη2√
2

. (25)
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The equations of motion for the full Lagrangian are then given by

0 = DαD
αΦ1 +m2

1Φ1 + µ2Φ2 +
κ

2
|Φ1|2Φ1 , (26a)

0 = DαD
αΦ2 +m2

2Φ2 − µ2Φ1 , (26b)

0 = Dβ ~W ′βα + ~J α
+ −

1

ξ
∂α∂β ~Wβ − g

(
∂α~̄η × ~η

)
, (26c)

0 = ∂βB
βα + Iα+ −

1

ξ
∂α∂βBβ , (26d)

0 = ∂αDα~η , (26e)

0 = Dα∂α~̄η , (26f)

together with their Hermitian conjugates, where

Iα+ ≡ i
g′

2

([
Φ†1(D

αΦ1)− (DαΦ1)
†Φ1

]
+
[
Φ†2(D

αΦ2)− (DαΦ2)
†Φ2

])
, (27a)

~J α
+ ≡ i

g

2

([
Φ†1~τ(DαΦ1)− (DαΦ1)

† ~τΦ1

]
+
[
Φ†2~τ(DαΦ2)− (DαΦ2)

† ~τΦ2

])
. (27b)

Taking into account the current divergences (13), the derivatives of the above equations

of motion lead to the constraints

1

ξ
Dα∂α∂β ~Wβ = igµ2

(
Φ†2~τΦ1 − Φ†1~τΦ2

)
− g∂α~̄η ×Dα~η , (28a)

1

ξ
�∂βBβ = ig′µ2

(
Φ†2Φ1 − Φ†1Φ2

)
, (28b)

which must be satisfied in order for the field equations to be consistent. As explained in the

next Subsection, BRST symmetry allows one to write the latter constraints independently

of the ghost fields, as

1

ξ
Dα∂α∂β ~Wβ =

igµ2

2

(
Φ†2~τΦ1 − Φ†1~τΦ2

)
, (29a)

1

ξ
�∂βBβ = ig′µ2

(
Φ†2Φ1 − Φ†1Φ2

)
. (29b)

We can summarise our approach as follows. In order to respect gauge invariance, we

need to couple the gauge fields to the Noether currents. However, because these currents

are not conserved, we need to introduce gauge-fixing terms, which restrict gauge invariance,

but imply consistent field equations. The residual gauge invariance is enough to ensure that

gauge fields remain massless in the absence of spontaneous symmetry breaking (SSB), and

it is defined by the gauge functions β0, ~β satisfying

∂αDα~β = 0 , (30a)

�β0 = 0 . (30b)
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We therefore obtain a consistent gauge theory with a non-Hermitian scalar sector, as in the

Abelian case [29].

C. BRST Transformation

In this Subsection, we derive the gauge constraint (29) for ~Wβ using the BRST trans-

formation, which is a residual symmetry of the Lagrangian after gauge fixing. In order to

define it, one can introduce an auxiliary field ~T to write the gauge-fixing Lagrangian (24)

in the alternative form

LGF = ∂α~̄η · Dα~η +
ξ

2
|~T |2 − ~T · ∂α ~Wα −

1

2ξ
(∂αB

α)2 , (31)

and the original Lagrangian (24) can be recovered after integrating out ~T . The BRST

transformations are defined as

δφi = −ig
2
θ (~τ · ~η)φi , (32a)

δ ~Wα = θDα~η , (32b)

δBα = 0 , (32c)

δ~̄η = −θ ~T , (32d)

δ~η =
g

2
θ (~η × ~η) , (32e)

δ ~T = 0 , (32f)

where θ is an infinitesimal Grassmann parameter. The gauge-invariant terms (18) and

(22) in the Lagrangian are invariant under the BRST transformation, and the gauge-fixing

Lagrangian (31) transforms as a total derivative, so the action is invariant under this BRST

transformation. Using the auxiliary field ~T , the equation of motion (26c) for the gauge field
~Wα can be written in the form

0 = Dβ ~W ′βα + ~J α
+ − ∂α ~T − g

(
∂α~̄η × ~η

)
, (33)

and a covariant derivative leads to

Dα∂α ~T = igµ2
(

Φ†2~τΦ1 − Φ†1~τΦ2

)
− g∂α~̄η ×Dα~η . (34)

A BRST transformation of Eq. (26f) leads then to the relation

0 = δ
(
Dα∂α~̄η

)
= −θ

(
Dα∂α ~T − g∂α~̄η ×Dα~η

)
, (35)

10



so that

Dα∂α ~T = g∂α~̄η ×Dα~η , (36)

which, together with Eq. (34), leads to

Dα∂α ~T =
igµ2

2

(
Φ†2~τΦ1 − Φ†1~τΦ2

)
. (37)

Since, from the equations of motion for ~T , one finds

~T =
1

ξ
∂α ~W

α , (38)

one finally obtains the expected constraint

1

ξ
Dα∂α∂β ~Wβ =

igµ2

2

(
Φ†2~τΦ1 − Φ†1~τΦ2

)
, (39)

which, unlike Eq. (28a), is independent of the ghost fields.

For further discussions of BRST (and anti-BRST) symmetries in the context of non-

Hermitian field theories, see Ref. [38].

IV. SPONTANEOUS SYMMETRY BREAKING

Spontaneous symmetry breaking (SSB) is possible if the sign of m2
1 in the Lagrangian

(1) is changed, and we study here the corresponding scalar vacuum expectation values and

vector masses.

A. Vacuum expectation value

With this change of sign, the Lagrangian (1) has a symmetry-breaking vacuum that is

given by

κ

2
|〈Φ1〉|2 = m2

1 −
µ4

m2
2

, (40a)

〈Φ2〉 =
µ2

m2
2

〈Φ1〉 , (40b)

which is physical as long as

m2
1m

2
2 > µ4 . (41)
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The vacuum is defined up to a SU(2)×U(1) transformation, and it can be chosen so that

〈Φ1〉 =


 0

v1


 ≡ V1 , 〈Φ2〉 =


 0

v2


 ≡ V2 , (42)

with

v1 =

√
2

κ

(
m2

1 −
µ4

m2
2

)
, v2 =

µ2

m2
2

√
2

κ

(
m2

1 −
µ4

m2
2

)
. (43)

With this choice, the vacuum expectation value is unbroken by the transformation

〈Φi〉 → e−i
e
2
β0(I+τ3)〈Φi〉 =


e
−ieβ0 0

0 1


 〈Φi〉 = 〈Φi〉 , (44)

such that the Abelian subgroup of SU(2)×U(1) generated by σ = I + τ3 remains unbroken.

This subgroup corresponds to the electromagnetic interaction, with Noether current

Qα =
ie

2

[
Φ†1σ(∂αΦ1)− (∂α1 Φ†1)σΦ1

]
+
ie

2

[
Φ†2σ(∂αΦ2)− (∂α2 Φ†2)σΦ2

]

=
e

g′
Iα+ +

e

g
Jα+,3 . (45)

From Eq. (21), we see that the gauge field Aµ couples to the current Iα+ cos θW + Jα+,3 sin θW,

which can be identified with the current (45) if

e = g′ cos θW = g sin θW . (46)

The U(1)EM charge is conserved at the tree level, although the Noether current is in general

not conserved. Exploration of the possibility of charge non-conservation beyond the tree

level lies beyond the scope of this paper. Its existence and observability would in principle

depend upon the completion of the bosonic model considered here to include fermions, which

is also a topic for future work.

We can then express the scalar Lagrangian in terms of fluctuations around the vacuum

(42) as

Lscal = ∂αΦ̂†1∂
αΦ̂1 + ∂αΦ̂†2∂

αΦ̂2 +
2µ4

m2
2

(
V †1 Φ̂1

)
− 2m2

2

(
V †2 Φ̂2

)

−m2
2|Φ̂2|2 +

µ4

m2
2

|Φ̂1|2 −
κ

4

(
V †1 Φ̂1 + Φ̂†1V1

)2
− µ2

(
Φ̂†1Φ̂2 − Φ̂†2Φ̂1

)

−κ
2

(
V †1 Φ̂1 + Φ̂†1V1

)
|Φ̂1|2 −

κ

4
|Φ̂1|4 , (47)
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where

Φi = Φ̂i + Vi =


 φ+

i

vi + ρi + iψi


 , (48a)

Φ∗i = Φ̂∗i + Vi =


 φ−i

vi + ρi − iψi


 . (48b)

We note that the terms linear in fluctuations are a consequence of the non-Hermitian nature

of the system. However, they do not play a role in the equations of motion δS/δΦ̂†i ≡ 0,

since they depend on Φ̂i only. These equations of motion are

0 = �Φ̂1 −
µ4

m2
2

Φ̂1 +
κ

2

(
V †1 Φ̂1 + Φ̂†1V1

)
V1 + µ2Φ̂2

+
κ

2
|Φ̂1|2V1 +

κ

2

(
V †1 Φ̂1 + Φ̂†1V1

)
Φ̂1 +

κ

2
|Φ̂1|2Φ̂1 , (49a)

0 = �Φ̂2 +m2
2Φ̂2 − µ2Φ̂1 . (49b)

The massless Goldstone modes consist of charged and neutral fields:

G± =
1√

v21 − v22
(
v1φ

±
1 − v2φ±2

)
, (50a)

G =
1√

v21 − v22
(v1ψ1 − v2ψ2) . (50b)

The remaining fields consist of a charged field and three neutral fields. The charged fields

are given by

H± =
1√

v21 − v22
(
v2φ

±
1 − v1φ±2

)
, (51)

and one neutral field is given by

D =
1√

v21 − v22
(v2ψ1 − v1ψ2) , (52)

with degenerate squared mass

M2 =
v21 − v22
v1v2

µ2 = m2
2 −

µ4

m2
2

. (53)

Finally, we can express the last two neutral fields as

H = ρ1 coshα− ρ2 sinhα , (54a)

h = ρ1 sinhα− ρ2 coshα , (54b)
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with masses

M2
h =

1

2

(
m2

2 + 2m2
1 − 3µ4/m2

2 −
√

(2m2
1 −m2

2 − 3µ4/m2
2)

2 − 4µ4

)

=
(
v21 − v22

)
[
λ− λ̂ cosh (β − α)

sinh (β − α)

]
, (55a)

M2
H =

1

2

(
m2

2 + 2m2
1 − 3µ4/m2

2 +

√
(2m2

1 −m2
2 − 3µ4/m2

2)
2 − 4µ4

)

=
(
v21 − v22

)
[
λ− λ̂ sinh (β − α)

cosh (β − α)

]
, (55b)

where

tanhα =
−µ2

(M2
H −m2

2)
, (56a)

tanh β =
v2
v1

, (56b)

and

λ = κ cosh4 β , (57a)

λ̂ =
κ

2
sinh 2β cosh2 β . (57b)

It is not obvious that M2 is positive or that M2
H and M2

h are real, and we derive the

corresponding conditions on µ2 in the next Section.

The eigenvectors of non-Hermitian matrices are not orthogonal with respect to the Her-

mitian inner product

〈φ, ϕ〉 =

∫

x

φ†ϕ . (58)

In the case of PT -symmetric theories, however, the eigenmodes of the non-Hermitian Hamil-

tonian are orthogonal with respect to the PT inner product

〈φ, ϕ〉PT =

∫

x

(
φPT

)T
ϕ , (59)

and we have normalised the fields G±, G, H±, D, H and h accordingly. These eigenmodes

are non-trivial linear combinations of the scalar components of Φ1 and the pseudoscalar com-

ponents of Φ2 and, as such, they cannot be eigenstates of P . Instead, the P transformation

relates the left and right eigenmodes, which are distinct for a non-Hermitian Hamiltonian.

We remark that the PT norm used for the modes G, G±, D and H± in Eqs. (50), (51)

and (52) diverges when µ2 = ±m2
2 (v21 = v22). At this point — the zero exceptional point

14



described in Ref. [28] — we lose three eigendirections: D ∝ G and H± ∝ G±. On the other

hand, when µ2 = ±TH(h), where

TH(h) =
m2

2

9

(
6m2

1 −m2
2 + (−)2

√
2m2

2 (3m2
1 −m2

2)

)
, (60)

|α| → ∞ and the PT norm of h and H in Eq. (54) diverges. In this case, we lose one

eigendirection: H ∝ h. We discuss these exceptional points further in Subsection IVD.

B. Conditions on µ2

Ensuring that we are in a physical regime of spontaneous symmetry breaking leads to a

number of constraints on the parameter µ2:

I In order for the symmetry to be broken [see Eq. (40)], we require that

µ4 < m2
1m

2
2 . (61)

II In order to ensure that the squared mass M2, defined in Eq. (53), remains positive,

we require that

µ4 < m4
2 . (62)

III In order for the squared massesM2
h andM2

H , defined in Eq. (55), to be real, we require

that

4µ4 ≤
(

2m2
1 −m2

2 −
3µ4

m2
2

)2

. (63)

We remark that in the region 4µ4 ≥
(

2m2
1 −m2

2 − 3µ4

m2
2

)2
the squared mass matrix

cannot be brought to a Hermitian form by a similarity transformation [27].

These constraints on the parameter µ4 are plotted in Fig. 1. The unshaded regions

correspond to values of µ4 consistent with a physical spontaneous symmetry-breaking phase,

satisfying all of the previously mentioned conditions. The various constraints on µ4 can be

summarised as follows:

• If m2
2 <

m2
1

3
then µ4 < m4

2 (Condition II);

• If m2
1

3
< m2

2 < m2
1 then µ4 < Th (Condition III);
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• If m2
1 < m2

2 < 3m2
1 then µ4 < Th (Condition III) or TH < µ4 < m2

1m
2
2 (Conditions I

and III);

• If 3m2
1 < m2

2 then µ4 < m2
1m

2
2 (Condition I).

0 1 2 3 4

m2
2/m

2
1

0

1

2

3

µ4/m4
1

I

II

III

A

Conditions on µ4

µ4 = m4
2

µ4 = m2
1m

2
2

4µ4 =
(

2m2
1 −m2

2 − 3µ4

m2
2

)2

FIG. 1. The excluded regions for the parameter µ4, corresponding to the constraints I, II and III,

plotted as functions of m2
2/m

2
1. Region I corresponds to the symmetric phase of the SU(2)×U(1)

symmetry [see Eq. (61)]. Region II corresponds to the broken phase of PT symmetry [see Eq. (62)]

in which M2 is negative. Region III corresponds to the broken phase of PT symmetry in which M2
h

and M2
H [see Eq. (63)] are complex. The unshaded region corresponds to a physical SSB phase for

the SU(2)×U(1) symmetry. For m2
2/m

2
1 < 1/3, the allowed region is determined only by condition

II. For m2
1/3 < m2

2 < 3m2
1, the allowed region is determined by conditions I and III. Lastly, in the

region m2
2 > 3m2

1, the allowed region is determined only by condition III. At the point A, all the

conditions become equivalent.

C. Equations of motion after SSB

After expressing the full Lagrangian in terms of fluctuations around the vevs as done in

Eq. (48), we can express the equations of motion after symmetry breaking in terms of the
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gauge fields Zα, Wα and Aα. Introducing the notations

Cα
+ ≡

Jα+,1 − iJα+,2√
2

, Kα
+ ≡ Jα+,3 cos θW − Iα+ sin θW , (64)

and

σ ≡ I + τ3 , ω ≡ τ3 cos2 θW − sin2 θW
cos θW

,

τ+ ≡
τ1 − iτ2√

2
, τ− ≡

τ1 + iτ2√
2

, (65)

the equations of motion read as follows:

Scalar fields

0 = DαD
αΦ̂1 +Dα

(
ig

2
Zαω +

ig

2
Wατ−

)
V1 −

µ4

m2
2

Φ̂1

+
κ

2

(
V †1 Φ̂1 + Φ̂†1V1

)
V1 + µ2Φ̂2 +

κ

2
|Φ̂1|2V1 +

κ

2

(
V †1 Φ̂1 + Φ̂†1V1

)
Φ̂1 +

κ

2
|Φ̂1|2Φ̂1 , (66a)

0 = DαD
αΦ̂2 +Dα

(
ig

2
Zαω +

ig

2
Wατ−

)
V2 +m2

2Φ̂2 − µ2Φ̂1 ; (66b)

Zα gauge field

0 = ∂βZ
αβ + ig cos θW

(
W †
βW

βα −W †βαWβ

)
+

1

ξ
∂α∂βZβ

+
g2

2 cos2 θW

(
|V1|2 + |V2|2

)
Zα −Kα

+ + ig cos θW
(
∂αχ̄†χ− ∂αχ̄χ†

)

+
g2

2
Zα
∑

i

(
Φ̂†iω

2Φ̂i +
[
V †i Φ̂i + Φ̂†iVi

] )
+
eg

2
Aα
∑

i

Φ†i (ωσ) Φ̂i

−gg
′

2
sin θW

∑

i

([
Φ̂†iτ−Vi

]
Wα +

[
V †i τ+Φ̂i

]
Wα†

)

−gg
′

2
sin θW

∑

i

([
Φ̂†iτ−Φ̂i

]
Wα +

[
Φ̂†iτ+Φ̂i

]
Wα†

)
; (67)

Aα gauge field

0 = ∂βF
αβ + ig sin θW

(
W †
βW

βα −W †βαWβ

)
+

1

ξ
∂α∂βAβ

−Qα + ig sin θW
(
∂αχ̄†χ− ∂αχ̄χ†

)

+e2Aα
∑

i

Φ̂†iσ Φ̂i +
eg

2
Zα
∑

i

Φ̂†i (ωσ) Φ̂i

+
eg

2

∑

i

([
Φ̂†iτ−Φ̂i

]
Wα +

[
Φ̂†iτ+Φ̂i

]
Wα† +

[
Φ̂†iτ−Vi

]
Wα +

[
V †i τ+Φ̂i

]
Wα†

)
; (68)
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Wα gauge fields

0 = ∂βW
αβ + igWβ

(
sin θWF

βα + cos θWZ
βα
)

+
1

ξ
∂α∂βWβ

−ig (sin θWAβ + cos θWZβ)W βα

+
g2

2
Wα

(
|V1|2 + |V2|2

)
− Cα

+ + ig (∂αχ̄η3 − ∂αη̄3χ)

+
g2

2
Wα

∑

i

(
ViΦ̂i + Φ̂†iVi + |Φ̂i|2

)

+
g

2
(eAα − g′ sin θWZα)

∑

i

(
Φ̂iτ+Φ̂i + V †i τ+Φ̂i

)
. (69)

From these equations, we can see that the gauge field masses are

MW = g

√
v21 + v22

2
= cos θWMZ and MA = 0 , (70)

as in the Hermitian Standard Model.

D. Comments on the exceptional points

At the zero exceptional points µ2 = ±m2
2, the vevs become

v21 = v22 ≡ v2 =
2

κ
(m2

1 −m2
2) , (71)

which vanish in the degenerate limit m2
1 = m2

2. For m2
1 6= m2

2, though, the gauge boson

masses at the exceptional points are

M2
W = g2v2 = cos2 θWM

2
Z 6= 0 , (72)

remaining physical and non-zero.

In order to make sense of this, in spite of the divergence of the PT norm and the apparent

non-normalisability of the Goldstone modes (see Subsection IVA), it is helpful to reconsider

the behaviour of the non-Hermitian theory at the exceptional point. As an example, let us

consider the following 2× 2 squared mass matrix of the non-interacting theory [22]:

M2 =


 m2

1 µ2

−µ2 m2
2


 . (73)

For m2
1 > m2

2, the eigenvectors of this squared mass matrix are

e+ = N


 η
√

1− η2 − 1


 and e− = N


 1−

√
1− η2

−η


 , (74)
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where

η =
2µ2

m2
1 −m2

2

(75)

(not to be confused with the ghost field appearing earlier). The eigenvectors are not orthog-

onal with respect to the usual Hermitian inner product:

e∗+ · e− = 2N2η(1−
√

1− η2) , (76)

except in the Hermitian limit µ → 0 (η → 0). They are, however, orthogonal with respect

to the PT inner product, and orthonormality fixes

N =
(

2η2 − 2 + 2
√

1− η2
)−1/2

. (77)

The exceptional point of this mass matrix occurs when η → 1, at which point the normal-

isation of the eigenvectors diverges. This signals that the mass matrix has become defective,

having the Jordan normal form

M2
∣∣
η→1

=


 (m2

1 +m2
2)/2 1

0 (m2
1 +m2

2)/2


 , (78)

and we lose an eigenvector. In fact, we see that in the limit η → 1 the eigenvectors e+ and

e− become parallel to one another. However, the issue of the non-orthogonality of these

eigenvectors is then moot, and we can normalise them with respect to the Hermitian inner

product, fixing

N |η=1 =
1√
2
. (79)

In other words, at the exceptional point the system behaves like a Hermitian theory with

one fewer degree of freedom.

Returning to the case of spontaneously-broken gauge symmetries at the zero exceptional

point, the explanation for the non-vanishing masses of the gauge bosons is that the Goldstone

modes must be normalised with respect to Hermitian conjugation and not PT conjugation

(which has become ill-defined). The discontinuity in the behaviour of the system as we

approach exceptional points means that we must treat separately these particular points in

parameter space.

Thus, our conclusion is that it is possible to give masses to gauge bosons in a gauge-

invariant way through SSB also for non-Hermitian theories, even at the exceptional points.

19



At these points, however, the counting of eigendirections must allow for the fact that the

Hamiltonian has become defective.

We note that different results were derived in Ref. [27], which is based on an alternative

interpretation of a similar (Abelian) version of this non-Hermitian theory, and where the

gauge boson masses are zero at the zero exceptional point. The difference in our results

can be traced back to differing interpretations of the complex conjugate: we take complex

conjugation to act linearly on the fields, whereas in Ref. [27] it is taken to act antilinearly on

one of the fields (as motivated by a similarity transformation to a Hermitian theory). This

has the effect of interchanging v22 → −v22 in the expression for the gauge boson masses, such

that they then vanish at the zero exceptional point, when v21 = v22. It is then argued that

this is consistent with the fact that the Goldstone modes cannot be normalised with respect

to the PT norm, which diverges at exceptional points, and these modes therefore cannot

be “eaten” by the gauge field. This then leads Ref. [27] to conclude that it is possible to

break the gauge symmetry of a non-Hermitian model spontaneously without giving a mass

to the gauge bosons. Our conclusion is the opposite: the gauge boson remains massive in

the symmetry-broken phase, even at the zero exceptional point.

V. MASSES IN THE NON-HERMITIAN MODEL COMPARED WITH THE HER-

MITIAN MODEL

In this Section, we discuss the dependences of the scalar and vector masses in the non-

Hermitian 2HDM on the non-Hermitian mixing parameter µ2. These dependences are shown

in Figs. 2 and 3 for the scalar and vector bosons, respectively, wherein we have introduced the

notation βH(h) ≡ TH(h)/m
4
2. In addition, we make a comparison with the dependence of the

scalar and vector masses on a Hermitian mixing parameter in the corresponding Hermitian

2HDM.

We note the following features from each panel of Fig. 2:

• In the region m2
1 > 3m2

2, the mass M2 goes to zero at the exceptional point µ2 = m2
2.

If µ2 were to become larger then m2
2 then M2 would become negative and we would

enter the phase of broken PT symmetry.

• In the region m2
1/3 < m2

2 < m2
1, the masses M2

H and M2
h become equal at the point
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tanh2 β = βh. For larger values of µ2, both M2
H and M2

h would become complex.

• For m2
1 < m2

2 < 3m2
1, the masses M2

H and M2
h become equal at the point tanh2 β =

βh or tanh2 β = βH . Between these points, M2
H and M2

h become complex. When

tanh2 β > m2
1/m

2
2, the mass M2

H becomes negative. The unshaded regions correspond

to physical masses.

• For m2
2 > 3m2

1, the masses are all real and positive as long as tanh2 β < m2
1/m

2
2.

We note in the lower right panel of Fig. 3 that the gauge-boson masses vanish at the point

µ4 = m2
1m

2
2, where the symmetry is restored, as we would expect.

It is interesting to compare the masses in this PT -symmetric non-Hermitian model with

those in a similar Hermitian 2HDM with the following Lagrangian, involving a Hermitian

mass-mixing term:

L = ∂αΦ†1∂
αΦ1 + ∂αΦ†2∂

αΦ2 +m2
1|Φ1|2 −m2

2|Φ2|2

+m2
12

(
Φ†1Φ2 + Φ†2Φ1

)
− κ

4
|Φ1|4 . (80)

The vacuum expectation values for this Lagrangian are

〈Φ1〉 =


 0

vH1


 = V H

1 , 〈Φ2〉 =


 0

vH2


 = V H

2 , (81)

with

vH1 =

√
2

κ

(
m2

1 +
m4

12

m2
2

)
, vH2 =

m2
12

m2
2

√
2

κ

(
m2

1 +
m4

12

m2
2

)
. (82)

After expressing the Lagrangian in terms of the shifted field Φ̂i where

Φi = Φ̂i + V H
i =


 φ+

i

vHi + ρi + iψi


 , (83a)

Φ∗i = Φ̂∗i + V H
i =


 φ−i

vHi + ρi − iψi


 , (83b)

we can calculate the eigenvalues. As in the non-Hermitian model, the massless states consist

of massless charged scalar and pseudoscalar Goldstone fields

G± =
1√

(vH1 )2 + (vH2 )2

(
vH1 φ

±
1 + vH2 φ

±
2

)
, (84a)

G =
1√

(vH1 )2 + (vH2 )2

(
vH1 ψ1 + vH2 ψ2

)
. (84b)
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The normalisations of the eigenmodes should be compared with those in Subsection IVA.

We remark that this Hermitian model is not PT symmetric if Φ1 and Φ2 transform as a

scalar and a pseudoscalar, respectively. It is, however, PT symmetric if both Φ1 and Φ2

transform as scalars or pseudoscalars, and the Hermitian and PT norms coincide, as is

expected for a Hermitian, PT -symmetric theory.

The remaining massive fields include a charged scalar, a neutral pseudoscalar and two

neutral scalar fields. The charged scalars are

H± =
1√

(vH1 )2 + (vH2 )2

(
vH2 φ

±
1 − vH1 φ±2

)
, (85)

and the pseudoscalar is

D =
1√

(vH1 )2 + (vH2 )2

(
vH2 ψ1 − vH1 ψ2

)
, (86)

with degenerate squared mass

M2 =
(vH1 )2 + (vH2 )2

vH1 v
H
2

m2
12 . (87)

Lastly, we can express the neutral scalar boson fields as

H = −ρ1 cosα− ρ2 sinα , (88a)

h = ρ1 sinα− ρ2 cosα , (88b)

with squared masses

M2
h =

(
(vH1 )2 + (vH2 )2

)
[
λ− λ̂ cos (β − α)

sin (β − α)

]
, (89a)

M2
H =

(
(vH1 )2 + (vH2 )2

)
[
λ+

λ̂ sin (β − α)

cos (β − α)

]
, (89b)

where

tanα =
−m2

12

(M2
H −m2

2)
, (90a)

tan β =
vH2
vH1

, (90b)

and

λ = κ cos4 β , (91a)

λ̂ =
κ

2
sin 2β cos2 β . (91b)
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The squared masses for this Hermitian model are plotted in Fig. 4 in the parameter ranges

2m2
1 > m2

2 (left panel) and 2m2
1 < m2

2 (right panel). We see that the mass spectra are

completely different from the non-Hermitian, PT -symmetric case, offering distinctive phe-

nomenological possibilities.

Before concluding, we remark that, by comparing the expressions above with those in

Subsection IVA, we can see that the non-Hermitian 2HDM that we have considered in this

work is an analytic continuation of the Hermitian 2HDM, obtained by taking m4
12 → −µ4.

In other words, the Hermitian 2HDM lies in the fourth quadrant of the (m2
2/m

2
1, µ

4/m4
1)

plane, not shown in Fig. 1.

VI. CONCLUSION

In this paper, we have exhibited a consistent description of a non-Abelian two-Higgs-

doublet model with a non-Hermitian scalar mass-mixing term, which generalises the non-

Hermitian extension of the Abelian Higgs model given in Refs. [26, 29]. As in Ref. [29], the

main point that leads to a consistent model in the present article consists of restricting gauge

invariance to a sub-class of gauge field configurations. The corresponding constraint plays

the role of a conventional gauge-fixing condition, but which must be taken into account at

the classical level already, in order to find consistent field equations. Within this framework,

we have described the realisation of SSB and compared its features with the Hermitian case.

An interesting question is the significance of the exceptional points. As explained in this

article, the number of eigendirections is reduced there, so that this limit is not continuous.

It is indeed easy to see that, in the non-interacting model, one can write a unique equation

of motion for Φ1 + Φ2 only, with mass (m2
1 + m2

2)/2, when taking the exceptional limit

|µ2| → |m2
1 − m2

2|/2, cf. Eq. (78). The introduction of gauge or self-interactions does not

allow this though, and one can therefore question the stability of the exceptional points under

quantum corrections, which appear as soon as interactions are switched on. However, the

treatment of radiative corrections and further study of the exceptional points goes beyond

the scope of the present article.

We have noted that physical observables depend on µ4, and thus not on the set of equa-

tions of motion we choose. This can be checked also with the masses of scalar excitations

and gauge bosons: the transformation µ2 → −µ2 leads to changes in the signs of α and β
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[see Eq. (56)], such that the masses obtained after SSB are not modified. It was shown in

Ref. [29] that the quantum theory also depends on µ4 only, and we expect the same to be

valid here, since this feature is based on the scalar sector properties of the partition function,

which is very similar here.

Finally, we note that the scalar boson mass spectrum in the non-Abelian non-Hermitian

model differs significantly from that in the Hermitian version. This shows that the non-

Hermitian model opens up new phenomenological perspectives, which merit a subsequent

more detailed discussion.
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FIG. 2. The masses of the physical scalar bosons as functions of tanh2 β in different parameter
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