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Abstract

A binning scheme is proposed for D → K+π−π−π+ phase space that will
improve the sensitivity of a B− → DK− analysis to the angle γ of the
Cabibbo-Kobayashi-Maskawa Unitarity Triangle. The scheme makes use of
amplitude models recently reported by the LHCb collaboration. Assuming
that a four-bin scheme optimised on the models retains a similar sensitivity
when applied in data, it is estimated that the statistical uncertainty on γ
from the B-meson sample so far collected by the LHCb experiment will be
as low as 5 degrees. This will be one of the most precise results available for
any single decay mode in a B− → DK− measurement. Quantum-correlated
DD̄ data accumulated by the CLEO-c experiment are analysed to provide
first constraints on the coherence factors and average strong-phase differences
in the four bins, which are necessary inputs for the measurement. These
constraints are compared with the predictions of the model, and consequences
for the measurement of γ are discussed.
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1. Introduction

An important goal of flavour physics is to determine the angle γ =
arg(−VudV ∗ub/VcdV ∗cb) of the Cabibbo-Maskawa-Kobayashi (CKM) Unitarity
Triangle with the best possible precision. Sensitivity to this weak phase
(also denoted φ3) can be obtained by measuring CP-violating and associated
observables in the decay B− → DK−, where D indicates a neutral charm
meson reconstructed in a final state common to both D0 and D̄0. (The in-
clusion of charge-conjugate processes is implied throughout, unless otherwise
stated.) First measurements of γ using this strategy were performed at the
B-factory experiments [1, 2], but the most precise ensemble of results now
comes from the LHCb collaboration, which has exploited a wide selection
of D-decay modes1 to establish γ = (74.0+5.0

−5.8)
◦ [3]. This value is consistent

with, but significantly less precise than the prediction of (65.6+1.0
−3.4)

◦, which
comes from the knowledge of the sides and other angles of the Unitarity Tri-
angle [4], with a similar prediction in Ref. [5]. Hence more data and new
approaches are required to improve the precision of the direct measurement
and to allow for more stringent tests of the CKM paradigm.

One input to the LHCb determination of γ is the measurement of observ-
ables involving D → K+π−π−π+ decays, where this mode is reconstructed
inclusively as part of the B− → DK− decay chain. Here there are contri-
butions from both Cabibbo-favoured (CF) and doubly Cabibbo-suppressed
(DCS) amplitudes in the charm-meson decay, as well as favoured b→ c and
suppressed b → u amplitudes in the B-meson decay, the net effect of which
is to introduce interference effects sensitive to γ [6]. There are four possible
decay configurations, with rates given by

Γ(B∓ → (K±π∓π∓π±)DK
∓) ∝ (rB)2 + (rK3π

D )2 +

2rBr
K3π
D RK3π cos (δB + δK3π ∓ γ) (1)

Γ(B∓ → (K∓π±π±π∓)DK
∓) ∝ 1 + (rBr

K3π
D )2 +

2rBr
K3π
D RK3π cos (δB − δK3π ∓ γ) , (2)

where rB ∼ 0.1 is the absolute ratio of B− → D̄0K− to B− → D0K−

amplitudes. The phase difference between these two amplitudes is (δB − γ),
where δB is a CP-conserving strong phase. (These expressions neglect small

1Additional inputs to this result come from analogous strategies involving B0 decays
and from time-dependent B0

s and B0 measurements.
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corrections from D0D̄0 mixing, which can be included in a straightforward
manner [7].)

The other parameters in Eqs. 1 and 2 relate to the phase-space averaged
contribution of intermediate hadronic resonances in the charm decay, which
are in general different for the CF and DCS amplitudes. In particular the
coherence factor RK3π, which takes a value between 0 and 1, and average
strong-phase difference δK3π [8] are defined by

RK3πe
iδK3π =

∫
AD0→K+π−π−π+(x)A∗D0→K+π−π−π+(x)dx

AD0→K+π−π−π+AD0→K+π−π−π+

, (3)

whereAD0(D0)→K+π−π−π+(x) is the decay amplitude ofD0(D0)→ K+π−π−π+

at a point in multi-body phase space described by parameters x, and

A2
D0(D0)→K+π−π−π+ =

∫
|AD0(D0)→K+π−π−π+(x)|2dx. (4)

Therefore AD0→K+π−π−π+ is the CF amplitude, averaged over phase space,
and AD0→K+π−π−π+ is the corresponding DCS quantity. The mean ratio of
suppressed-to-favoured decay amplitudes is

rK3π
D =

AD0→K+π−π−π+

AD0→K+π−π−π+

. (5)

Throughout the discussion the approximation is made that CP-violation can
be neglected in the charm system [9], and expressions are given in the con-
vention CP|D0〉 = |D̄0〉.

The phase-space averaged hadronic parameters defined in Eqs. 3 and 5
may be accessed both from quantum-correlated DD̄ decays at the ψ(3770),
such as in the data set of the CLEO-c experiment and through studies of
D0D̄0 mixing [10–12]. A combination of measurements made from both
sources yields RK3π = 0.43+0.17

−0.13, δK3π = (128+28
−17)

◦ and rK3π
D = (5.49±0.06)×

10−2 [10]. Noting these values and inspecting Eq. 1, it can be seen that the
CP-violating effects in B∓ → DK∓, D → K±π∓π∓π± decays are expected
to enter at leading order, whereas Eq. 2 indicates that there will be negligible
CP violation in B∓ → DK∓, D → K∓π±π±π∓ decays. These predictions
have been confirmed by LHCb; in particular a CP asymmetry of −0.31±0.11
is measured for the former pair of modes [13].

Although D → K+π−π−π+ has a significant weight in the global LHCb
determination of γ with B− → DK− decays, the inclusive nature of the
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analysis brings limitations that prevent the full power of this mode from
being harnessed. The integration over the phase space of the D decay dilutes
the quantum interference, which is manifested in the fact that the coherence
factor is much smaller than unity. A more attractive approach is to perform
the analysis in disjoint bins of phase space. In this case the parameters of
Eqs. 3, 4 and 5 are re-defined within each bin. A given bin, if suitably chosen,
can possess greater coherence and therefore exhibit enhanced interference
effects than the integral over all phase space. In addition to improving the
intrinsic sensitivity, this strategy also has the benefit of breaking degeneracies
that exist in the inclusive analysis, thus enabling a single solution to be
obtained from the data in the physical region of the Unitarity Triangle plane.

The choice of a performant binning scheme requires good knowledge of the
variation of CF and DCS amplitudes across the phase space. Although ampli-
tude models had been constructed for the decay D0 → K−π+π+π− [14, 15],
until recently none existed for the suppressed D0 → K+π−π−π+ mode. Ear-
lier attempts [16] to define a binning scheme have been hindered by this lack
of knowledge. However, the large charm data set collected by LHCb has
allowed this omission to be rectified. A recent publication [17] reported the
world’s first amplitude model of D0 → K+π−π−π+ and a new model of the
favoured D0 → K−π+π+π− mode that benefits from a much larger sample
than available to any previous study. In principle these models can be used
directly in an unbinned B− → DK− measurement, thereby maximising the
statistical precision of the analysis. However, this strategy has the drawback
that any imperfections in the models have the potential to bias the γ deter-
mination in a manner that is difficult to assess. Instead, it is preferable to
use the models to define a set of bins with a good statistical sensitivity to
γ. The hadronic parameters of the D decay can then be measured directly
within each bin, either from threshold or D0D̄0-mixing data, or a combina-
tion of both. The impact of any shortcomings of the models will be merely to
reduce the statistical sensitivity of the analysis with respect to expectation,
leaving the measured value of γ unbiased and model independent. A similar
philosophy has been advocated and followed for self-conjugate decays such
as D → K0

Sπ
+π−, D → K0

SK
+K− [18–24] and D → K0

Sπ
+π−π0 [25, 26].

The remainder of this Letter is organised as follows. In Sec. 2 the LHCb
amplitude models of D0 → K±π∓π∓π± decays are introduced, and these
models are then employed to determine a binning scheme that is predicted
to have greatly improved sensitivity to γ in a B− → DK− analysis. In Sec. 3
measurements of the hadronic parameters of the D decay are presented for
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the binning scheme, obtained from data collected by the CLEO-c experiment.
Conclusions are drawn in Sec. 4.

2. Binning scheme

In this section, the LHCb models are reviewed, and then a binning scheme
proposed to maximise sensitivity to γ. The expected sensitivity of this
scheme is then presented.

2.1. The LHCb amplitude models

The decay modes D0 → K±π∓π∓π± have been studied by the LHCb
collaboration and discussed in Ref. [17], which reports amplitude models
for both final states. The largest contributions to each decay mode are
found to be via external W -emissions, manifesting themselves as the ax-
ial meson a1(1260)− in the favoured mode and the axial kaons K1(1270)+

and K1(1400)+ in the suppressed mode. Large contributions are also found
in both decay modes from vector-vector, e.g. K∗(892)0ρ(770)0, and scalar-
scalar amplitudes. The values of the average strong-phase differences and
coherence factors in local regions of phase space, as predicted by the model,
are found to have small variations with respect to the choice of model compo-
nents and parameters. Depending on the region of phase space considered,
the predicted strong-phase differences and coherence factors are found to
vary within a range of [1◦, 7◦] and [0.005, 0.030], respectively. This stability
gives confidence when using these models to determine model-independent
binning schemes.

2.2. Bin definitions

The phase space of the D-meson decay is divided into disjoint regions us-
ing the model predictions for the strong-phase difference between the favoured
and suppressed amplitudes. The models are only sensitive to the variation
in the strong-phase difference across phase space. Hence it is necessary to
define a normalised phase difference, δ̃K3π, which at a position in phase space
x is given by

δ̃K3π(x) = arg (AD0→K+π−π−π+(x)A∗D0→K+π−π−π+(x))

− arg

(∫
AD0→K+π−π−π+(x′)A∗D0→K+π−π−π+(x′)dx′

)
.

(6)
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Figure 1: Distribution of the normalised phase difference of simulated D → K+π−π−π+

decays. Shown in (a) are the expected distributions for the pure DCS and CF amplitudes,
where each of the histograms has been normalised to unit area. Shown in (b) is the
expected distributions for B∓ → D [K±π∓π∓π∓]K∓, normalised to 600 B-meson decays.
Dashed vertical lines indicate the boundaries of the four bins discussed in the remainder
of this paper.

Hence the normalised phase difference averaged over all phase space is equal
to zero by construction. In order to obtain the model prediction of the
absolute phase difference in each bin, it is necessary to add to δ̃K3π the
measured value of the average phase difference δK3π, as defined in Eq. 3.

Two simulations of very large samples are performed in order to visualise
how the coordinate δ̃K3π is distributed over the four-body phase space: one
assuming an amplitude that follows the CF model, and one that follows the
DCS model of LHCb. Histograms of the normalised phase difference of each
simulated decay are plotted for each scenario in Fig. 1a. Shown in Fig. 1b
are the expected distributions of normalised phase difference for B± decays,
assuming the values of γ and the hadronic parameters from Ref. [3]. The
histograms in the latter plot are normalised such that the yield summed
over the B-meson charges corresponds to about 600 candidates, which is
approximately the size of the signal sample that can be reconstructed in the
full LHCb Run 1 and Run 2 sample of 9 fb−1, estimated by scaling the yields
reported in the 3 fb−1 Run 1 analysis [13] and accounting for the change in
b-production cross-section between Runs 1 and 2.

In order to arrive at a sensitive binning scheme, the bins should be well
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separated in average strong-phase difference, which is achieved by dividing
the phase space with a one-dimensional binning in the normalised strong-
phase difference. This choice also results in bins with higher coherence than
integrating over the phase space, which further improves the sensitivity. Sim-
ilar considerations apply when choosing a binning scheme for the self conju-
gate decays D0 → K0

S,Lπ
+π− and D0 → K0

S,LK
+K− [19, 20]. In order for

each bin to have a similar weight in the analysis, and therefore benefit the
overall precision, it is also necessary to distribute approximately equally the
expected number of CP-averaged decays in each bin. Therefore, it is required
that the different bins have an equal product of the CF and DCS phase-space
averaged amplitude integrals:

I2i = Ai
D0→K+π−π−π+A

i
D0→K+π−π−π+ . (7)

This choice results in an approximate equipartition of a B dataset between
the different bins, which can be seen in Fig. 1b. A more complex phase-
space binning scheme, based on minimising the expected uncertainty on γ,
results in a negligible improvement in sensitivity, when accounting for the
uncertainties on the input parameters of the procedure. Hence the simpler
division based upon Eq. 7 is used.

The procedure to calculate the normalised phase difference as a function
of position in the phase space is provided by Ref. [27], in addition to the
definitions of the different bins, and examples of how to apply the binning
scheme.

2.3. Expected sensitivity

Simulated pseudoexperiments are performed in which B− → DK−, D →
K+π−π−π+ data sets are generated and the D mesons decayed according
to the LHCb models with a uniform acceptance. Each pseudoexperiment
comprises around 600 decays. The LHCb Run 1 analysis achieved high purity
and so no background contribution is included. Each simulated data set is
fitted to determine γ, as well as the auxiliary parameters rB and δB. The
fits are made in the context of a binned analysis, for differing numbers of
bins, and also an unbinned analysis using the amplitude models. The input
values for γ and the auxiliary parameters are taken from Ref. [3]. In the fits,
perfect knowledge is assumed of the properties of the D-meson decays, which
in the case of the binned analysis are the local hadronic parameters, and for
the unbinned case are the amplitude models.
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Figure 2: (a): Expected uncertainty contours in the γ vs. δB plane for one and four bins
from around 600 B decays. (b): One-dimensional slice of the ∆χ2 in γ at δB = 131◦,
showing the very weakly separated double minima for the one-bin case. (c): The expected
sensitivity to γ vs the number of bins in the phase space. The dashed line indicates the
expected sensitivity from a unbinned model-dependent analysis.

The expected contours in the γ vs. δB plane are shown in Fig. 2a, compar-
ing four bins in phase space against the expected contours without dividing
the phase space, i.e. a single bin. The contours are much wider in the sin-
gle bin case, which is due both to a significantly worse intrinsic sensitivity
around the true solution, and also the presence of an overlapping second
minimum in γ. These features can be seen in Fig. 2b, which shows a one-
dimensional slice of the χ2 in γ at δB at the expected value of 131◦. The
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four-bin case does not suffer from the same degeneracy and thus has a single,
narrow minimum. In fact, even a partitioning of the phase space into only
two bins is sufficient to break the aforementioned degeneracy, thus providing
a significantly improved precision compared to the single-bin case.

The uncertainty as a function of the number of bins is shown in Fig. 2c
for two bins and above. As expected, the precision of the binned analysis
gradually improves as the number of bins increases, and (within the range
explored) saturates at about twelve bins, with around a 10% degradation
compared to the unbinned model-dependent method. The size of the cur-
rently available ψ(3770) data sets restricts the number of bins for which
hadronic parameters can be determined. The CLEO-c data set, for which
results are presented in Sec. 3, does not allow a stable analysis for more than
three or four bins. The choice of four bins is made in light of the anticipated
analysis of the larger sample that has been collected by BESIII. With four
bins the statistical uncertainty on γ from the B-meson data alone is expected
to be 4.9◦.

3. Measurements of the hadronic parameters with CLEO-c data

3.1. Analysis of the ψ(3770) data set

A data set of e+e− collisions produced by Cornell Electron Storage Ring
at
√
s = 3.77 GeV, corresponding to 818 pb−1 of integrated luminosity and

collected with the CLEO-c detector, is analysed to obtain first constraints
on the hadronic parameters of D → K+π−π−π+ decays in bins of phase
space. The analysis relies on the quantum-correlated nature of the DD̄ pairs
produced in the ψ(3770) decay, and proceeds through counting the yields
of various double-tagged events, where one D meson is reconstructed in the
signal mode D → K+π−π−π+ and the other in a tag mode, for example a
CP eigenstate (e.g. D → K+K−, D → K0

Sπ
0 etc.). Full details on how the

rates of each class of double-tagged event may be related to the hadronic
parameters can be found in Ref. [10], and references therein.

The same set of tags are employed as in the phase-space integrated anal-
ysis [10]. The selection criteria and procedures used to determine the back-
ground contributions are in common with the earlier study. In addition, the
background contribution from D → K0

SK
±π∓ decays is explicitly removed

by vetoing events containing signal candidates with a π+π− invariant mass
lying within ±10 MeV of the nominal K0

S mass.
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The division of candidates between multiple phase-space bins results in
many of the individual yields being very low. For this reason the raw yields
themselves are used as observables to determine the hadronic parameters in
a log-likelihood fit. Poisson terms are included of the form

log

(
µne−µ

n!

)
= n log µ− µ− log n!, (8)

where n is the observed number of candidates in a given bin of a given tag,
and µ is the predicted number of candidates. The coherence factor in each bin
is required to be within the physical region, that is 0 ≤ RK3π ≤ 1, such that
the expected signal yield is always positive definite and hence the likelihood
well-defined. The predicted number of background candidates, as well as
normalisation factors and efficiency corrections, are therefore accounted for
with their relevant uncertainties in the expected number of candidates.

The different categories of double tags, and the number of observables
they bring to the analysis for N bins of phase space, are as follows:

CP tags Eleven CP-eigenstate tags contribute 11×N observables;

Like-signed-kaon tags The two tags, K+π− and K+π−π0, each contribute
N observables for those double tags where the charge of the kaon is the
same in the signal and tag mode. (Those double tags where the two
kaons are of opposite charge carry negligible sensitivity to the hadronic
parameters and are used for normalisation purposes.);

Self tags The self tags, where both signal and tag are K+π−π−π+ with
identical kaon charge (again, opposite charge double tags are used for
normalisation), contribute N2 yields as both sides of the decay are as-
sociated with a bin of phase-space. The number of distinct observables
is however N(N + 1)/2, as the signal side of the decay and tag side of
the event can be freely exchanged;

Self-conjugate tags The self-conjugate final state K0
Sπ

+π− is divided into
the 16 bins according to the ‘equal ∆δD’ scheme described in Ref. [20].
Hence for N bins on the signal side, there are 16×N observables.

The total number of yields included in the fit is therefore 29N + N
2

(N + 1),
which for the case of four bins is 126.

Terms involving an equivalent set of double tags involving unbinned D →
K+π−π0 decays as signal, with the yields reported in Ref. [10], are included in
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Table 1: Predicted and measured values of the coherence factors and strong-phase dif-
ferences in four bins of phase space. The predicted values are derived from the amplitude
models. The absolute phase differences are obtained by adding the global strong phase-
difference measured in Ref. [10] to the normalised phase difference predicted by the model.

Predicted Measured

Bin Limits (δ̃K3π) Ri
K3π δiK3π Ri

K3π δiK3π

1 −180◦ < δ̃K3π ≤ 39◦ 0.67 56◦ 0.61+0.28
−0.54

(
100+55

−18
)◦

2 39◦ < δ̃K3π ≤ 0◦ 0.85 108◦ 1.00+0.00
−0.40

(
131+34

−12
)◦

3 0◦ < δ̃K3π ≤ 43◦ 0.82 149◦ 0.53+0.34
−0.21

(
157+77

−36
)◦

4 43◦ < δ̃K3π ≤ 180◦ 0.63 208◦ 0.19+0.32
−0.18

(
26+67
−90
)◦

the log-likelihood function to constrain the hadronic parameters of that sys-
tem. Finally, terms involving D → K+π− decays tagged with CP eigenstates
are also added to provide normalisation, again following the same procedure
as in the earlier analysis. The branching fractions and other parameters used
in Ref. [10] are included in the likelihood as external constraints, including the
phase-space averaged ratio of branching fractions and global mixing results
from Ref. [11]. Systematic uncertainties are assigned using the procedure
followed in the earlier analysis [10].

Information on the binned double-tag results expressed in terms of the
∆ and ρ observables defined in Ref. [10] and the yields of the self-conjugate
tags can be found in appendix.

The fit converges with a χ2 of 166 for 162 degrees of freedom. Likelihood
scans are presented in Fig. 3 in the Ri

K3π vs. δiK3π plane for each bin. Also
included in the plots are the predictions from the model. The phase differ-
ences for these predictions are obtained by adding (128+28

−17)
◦, the value of the

measured strong-phase difference averaged over all phase space [10], to the
value of the normalised phase difference calculated from the model. Table 1
shows the numerical results, where the values for the measurements corre-
spond to the best fit points from the scans. The correlation matrix for these
results can be found in the appendix. From Table 1, and the contours in
Fig. 3, it can be seen that bins 1 to 3 show reasonable compatibility between
the measurements and the predictions, but the agreement is less satisfactory
in bin 4. In order to assess the probability of such a configuration of results,
under the assumption that the model correctly describes nature, an ensem-
ble of simulated data sets is generated and fitted. This exercise returns a
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Figure 3: Likelihood scans for the hadronic parameters in the four bins, where the contours
give the regions corresponding to −2 lnL = 2.30, 6.18, 11.83. Stars mark the best fit values.
Predictions are shown by the vertical error bars, the size of which indicates the uncertainty
on the absolute phase difference measured in the global analysis [10].
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p-value of 6%. If future studies reveal that the true value of the global phase
difference is somewhat higher than the central value measured in Ref. [10]
then the compatibility will improve. For example, a value of 180◦, which lies
within the two-sigma contour of the current measurement, would lead to a
p-value of 28%.

The BESIII collaboration have collected a ψ(3770) data set approximately
four times larger than that of CLEO-c. Analysis of these data will provide a
more precise test of whether the LHCb models provide a good description of
the phase variation of D → K+π−π−π+ decays. Again, it must be empha-
sised that any imperfection in the models will not bias the measurement of
the CKM angle γ with this method.

3.2. Impact on γ determination

It is of interest to understand how both the central values and the un-
certainties of the measurement of the hadronic parameters from the CLEO-c
data set affect the sensitivity to γ and auxiliary parameters, δB and rB.
Therefore the simulation studies described in Sec. 2.3 are extended to ad-
dress these questions for the four-bin scheme. Three scenarios are considered
and shown in Fig. 4: (a) assuming perfect knowledge of the hadronic parame-
ters and taking the central values from the predictions; (b) assuming perfect
knowledge of the hadronic parameters and taking the central values from
the measurements in; (c) taking both the central values and uncertainties
of the hadronic parameters from the measurements. In the latter case, the
full likelihood from the CLEO data is used when constraining the hadronic
parameters owing to the highly non-gaussian behaviour of the uncertainties.

The contours of ∆χ2 from this exercise are shown in Fig. 4 in the γ vs.
δB plane. The widths of the one-sigma contours projected onto the γ axis
are around 4.9◦, 9.2◦ and 10.2◦ for scenarios (a), (b) and (c), respectively.
Hence, it can be seen that the central values as obtained from the analy-
sis of CLEO-c data would lead to a significant degradation in sensitivity, in
particular through smaller values of some of the coherence factors and re-
duced separation between the central values of the strong-phase differences.
Nonetheless, the results from this data set would still allow for a measure-
ment that is intrinsically more precise than is provided in a global analysis
of the D → K+π−π−π+ phase space. The uncertainty on γ associated with
the finite size of the CLEO-c data set is estimated to be around 4.4◦, by
subtracting the results of scenarios (c) and (b) in quadrature. Analysis of
the existing ψ(3770) sample collected by BESIII, and complementary results

13
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Figure 4: The contours of ∆χ2 in the γ vs. δB plane, corresponding to ∆χ2 = 1, 4. Indi-
cated is: (a) perfect knowledge of the hadronic parameters taking the predicted values, (b)
perfect knowledge of the hadronic parameters, taking as central values the measurements
presented in Table 1, and (c) taking the central values of the measurements in Table 1
and allowing the hadronic parameters to vary within the measured uncertainties.
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from updated D → K+π−π−π+ mixing studies at LHCb, should allow for
this uncertainty to be halved, which would make it sub-dominant for the
LHCb Run 1 and 2 data sets, even for the case of the hadronic parameters
taking the values predicted by the model. More data taking by BESIII at the
ψ(3770) resonance or by a future super tau-charm factory [28] would lead to
further improvement.

4. Conclusions

All previous analyses of B− → DK−, D → K+π−π−π+ decays have
integrated over the phase space of the D meson, an approach which has
limited the sensitivity that the measurement provides to the angle γ of the
unitarity triangle. By making use of amplitude models of the D decays
recently reported by the LHCb collaboration [17], it is possible to define
bins in phase space that have high coherence, which will in turn allow for
significantly increased sensitivity to γ. Assuming that a four-bin scheme
optimised on the models has similar sensitivity when applied in data, and
with perfect knowledge of the hadronic parameters of the D decays, it is
estimated that an uncertainty of around 5◦ will be attainable with the B-
meson data set currently available at LHCb. This precision is similar to that
expected fromB− → DK−, D → K0

Sh
+h− [h = π,K] decays, which currently

provide the best standalone sensitivity to γ [29]. These bin definitions will
also be valuable for studies of mixing and CP violation in the D0D̄0 system.

Data collected by the CLEO-c experiment at the ψ(3770) resonance have
been analysed to obtain constraints on the hadronic parameters of the D
decay, which can be compared with the predictions derived from the mod-
els. Broad consistency is observed, albeit with some tension seen in one bin.
Analysis of the larger ψ(3770) sample obtained by the BESIII collaboration,
and complementary studies of charm mixing above threshold, will be neces-
sary to make a stronger test of the model predictions and provide sufficiently
precise inputs for the exploitation of the LHCb Run 1 and 2 data. Match-
ing the excellent statistical precision that can be expected in the coming
decade from the LHCb Upgrade I [30] and Belle II [31], and beyond with
LHCb Upgrade II [32], will require BESIII to collect more ψ(3770) data and
also provides excellent motivation for the construction of a super tau-charm
factory.
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Table 2: Central values and uncertainties, both statistical and systematic, for the ∆K3π
CP

and ρK3π
Kπ(π0),LS observables in the four bins of the D0 → K−π+π+π− phase space.

Bin 1 Bin 2 Bin 3 Bin 4

∆K3π
CP 0.06± 0.03 0.07± 0.04 0.07± 0.03 0.02± 0.03

ρK3π
Kπ,LS 0.89± 0.33 0.34± 0.20 0.47± 0.24 1.46± 0.44

ρK3π
Kππ0,LS 1.47± 0.34 0.58± 0.25 0.84± 0.26 1.00± 0.28
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Appendix A

A.1. Measured values of the double-tag observables in the CLEO-c data

The ∆K3π
CP , ρK3π

Kπ,LS and ρK3π
Kππ0,LS observables, defined in Ref. [10], are con-

venient for conveying information about the double-tag yields involving the
CP and the like-signed-kaon tags. Any deviation of ∆K3π

CP from zero, or the
ρK3π
Kπ(π0),LS observables from one, is indicative of a non-zero coherence factor.

These quantities are given here for the current analysis. In the fit presented
in this Letter, however, it is the yields for these double tags that are used
as input, due to the limitations of using the normal approximation of uncer-
tainties for such small numbers of candidates. The measured values in each
of the four bins defined in this paper are given in Table 2, and the correlation
matrix for these measurements is shown in Table 3. Similarly, the 10 ρK3π

LS

observables in the four-by-four bins for the self tags are given in Table 4.
The correlations between the results in these bins is negligible. Finally, the
background-subtracted yields of the self-conjugate tags, for the sixteen bins
of D → K0

Sπ
+π− phase space and the four bins for the D → K+π−π−π+

decay are given in Table 5. The yields are corrected for relative efficiency
variations, and the correlations between the results in these bins are negligi-
ble.
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Table 3: Correlation matrix between the ∆K3π
CP and ρK3π

Kπ(π0),LS observables in the four bins

of the D0 → K−π+π+π− phase space.

∆K3π
CP ρK3π

Kπ,LS ρK3π
Kππ0,LS

∆K3π
CP

1.000 0.296 0.280 0.309 -0.072 -0.043 -0.049 -0.101 0.000 0.000 0.000 0.000
1.000 0.281 0.310 -0.070 -0.042 -0.048 -0.098 0.000 0.000 0.000 0.000

1.000 0.309 -0.069 -0.041 -0.047 -0.097 0.000 0.000 0.000 0.000
1.000 -0.076 -0.046 -0.052 -0.107 0.000 0.000 0.000 0.000

ρK3π
Kπ,LS

1.000 0.048 0.054 0.111 0.003 0.002 0.002 0.002
1.000 0.032 0.066 0.002 0.001 0.002 0.001

1.000 0.076 0.002 0.001 0.002 0.002
1.000 0.003 0.002 0.003 0.002

ρK3π
Kππ0,LS

1.000 0.007 0.010 0.011
1.000 0.005 0.006

1.000 0.008
1.000

Table 4: Central values and uncertainties, both statistical and systematic, for the ρK3π
LS

observables. The decay is symmetric under exchange of the D mesons, and hence the
observables are ‘folded’ for the off-diagonal terms.

Bin 1 Bin 2 Bin 3 Bin 4

Bin 1 0.65± 0.65 0.70± 0.50 0.69± 0.48 1.51± 0.67
Bin 2 0.00± 0.76 0.00± 0.37 0.96± 0.56
Bin 3 0.71± 0.71 0.93± 0.53
Bin 4 1.25± 0.88
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Table 5: Background-subtracted yields in the 16 bins of the D → K0
Sπ

+π− phase space
and four bins of the D → K+π−π−π+ phase space, with the combined statistical and sys-
tematic uncertainties. The yields are corrected for relative bin-to-bin efficiency variations.

Bin 1 Bin 2 Bin 3 Bin 4

1 78.8± 9.5 72.0± 8.7 90.3± 9.9 105.1± 11.0
2 56.3± 7.8 40.9± 6.7 47.4± 7.3 48.6± 7.3
3 42.6± 6.5 33.2± 6.0 33.9± 6.0 50.7± 7.3
4 16.8± 4.4 12.0± 3.5 10.5± 3.4 12.4± 3.7
5 46.8± 7.1 32.1± 5.8 31.5± 6.1 51.7± 7.8
6 31.8± 5.8 28.9± 5.5 19.2± 4.9 28.0± 5.4
7 78.9± 9.1 50.6± 7.3 69.6± 8.6 86.8± 9.7
8 78.6± 9.1 57.0± 8.0 48.3± 7.2 96.5± 10.1

-1 45.1± 7.4 36.3± 6.5 53.2± 7.8 44.8± 7.1
-2 16.4± 4.4 13.7± 3.7 12.0± 3.7 11.3± 4.0
-3 5.2± 2.5 11.6± 3.5 13.9± 3.7 17.7± 4.2
-4 12.1± 3.5 5.5± 2.6 6.4± 2.8 12.1± 3.5
-5 25.9± 5.3 19.3± 4.7 23.4± 5.1 25.8± 5.9
-6 7.2± 3.3 7.2± 2.6 7.2± 3.3 11.8± 4.1
-7 7.2± 2.7 8.9± 3.4 1.3± 1.7 16.1± 4.1
-8 24.4± 5.1 22.3± 5.1 17.2± 4.5 16.2± 4.4
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A.2. Correlation matrix for the hadronic parameters

The correlation matrix for the measurement of the D → K+π−π−π+

coherence factors and relative strong-phase differences found in Table. 1 is
presented in Table. 6.

Table 6: Correlation matrix for the D → K+π−π−π+ coherence factors and relative
strong-phase differences

R1
K3π δ1K3π R2

K3π δ2K3π R3
K3π δ3K3π R4

K3π δ4K3π

R1
K3π 1.000 -0.082 0.223 -0.058 0.130 -0.180 0.098 -0.026

δ1K3π 1.000 -0.046 0.016 0.130 -0.036 0.257 0.149
R2
K3π 1.000 0.072 0.104 -0.097 -0.128 -0.123

δ2K3π 1.000 0.011 0.095 0.095 0.029
R3
K3π 1.000 -0.814 0.388 0.530

δ3K3π 1.000 -0.398 -0.530
R4
K3π 1.000 0.307

δ4K3π 1.000
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