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Abstract In this paper, we discuss the theoretical frame-
work and the experimental measurements of the magnetic
moment of the charmed baryons. We first review the theoret-
ical predictions of the Λ+

c magnetic moment and show that
the measurements of the magnetic moments of other charmed
baryons, such as Ξc, allow to perform detailed spectroscopy
studies. The magnetic moment of the charm quark can be
determined using radiative charmonium decay, which can
be compared to the Λ+

c magnetic moment within theoretical
models. The present results show a tension with majority of
theoretical predictions. The magnetic moment of the charmed
baryons could potentially be measured directly, using bent-
crystal experiments at LHC. The possibility to measure pre-
cisely the magnetic moments of charmed baryons needs
precise measurement of their polarisation and weak decay
parameters. In this paper, we revisit the formalism of the
angular analysis needed for these measurements and make
a detailed evaluation of initial polarisation of deflected Λc

baryons as a function of crystal orientation. We found a spe-
cial orientation of the crystal that gives the opportunity to
measure the Λc dimensionless electric dipole moment almost
with the same precision as its g-factor, which is more than
an order of magnitude more efficient than suggested before.
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1 The magnetic dipole moment of charmed baryon

The spin 1/2 particles, such as leptons, proton, quarks, have
intrinsic magnetic dipole moment (MDM), of the form:

μ = g

2

eQ

2m
, (1)

where Q is the electric charge in units of the positron charge
e, and m is the mass of a particle. 1 Factor g is called gyro-
magnetic factor, or g-factor, which is equal to 2 for a Dirac
point-like fermion, while the quantum effects modify this
value. As this deviation, anomalous MDM κ ≡ (g − 2)/2,
comes from the loop effects, it is known to be sensitive to the
contributions from new physics: a heavy particle from new
physics can propagate in the loop.

The MDM of electron and muon are one of the most
precisely measured quantities in particle physics: ge =
2.00231930436182(52) [1] and gμ = 2.00233184178(126)

[2]. The theoretical predictions for these quantities are also
computed at a very high accuracy, for example, for the muon
to the order (α/π)5 in QED [3]. Intriguingly, deviation of
the theoretical prediction from experiment at a level (3.5–
4)σ is observed in the muon anomalous MDM, which is one
of most significant hints of new physics observed today (see,
e.g., [4–7]).

The proton MDM is also measured very precisely, gp =
5.58569468924(164) [8]. This corresponds to using the pro-
ton charge and mass in Eq. (1), i.e. Q = 1 and m = mp. The
value of gp being far from 2 is an indication of the proton
substructure.

Thus, let us take into account the fact that proton is made of
three quarks. Within the quark model description, the MDM

1 We use natural units where h̄ = c = 1.
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of proton can be computed as a sum of the MDMs of the three
constituent quarks. It is important here to take into account
the spin configuration of the three quarks. As a result one
finds

μp = 1

3
(4μu − μd), (2)

where μu,d is the MDM of up and down quarks given as

μq = gq
2

eQq

2mq
, (3)

where Qq and mq are the electric charge and the mass, and
gq is the g-factor of the quark q = (u, d).

In the limit of isospin symmetry, mu = md ≡ mq and
gu = gd ≡ gq , we find

μp = gq
2

e

2mq
. (4)

One can immediately recognise that the result suffers from
the uncertainty coming from the quark mass. In the quark
model, the constituent quark mass mq = mp/3 can be used.
Using this, a comparison of Eqs. (1) and (4) leads to the value
gq = gp/3 � 1.862. This result being close to 2 indicates
that the light quarks u, d have little substructure. Note that
this argument can be reversed: by going to the case of a Dirac
point-like particle, gq = 2, one can determine the u and d
quark mass, mq = 0.336 GeV.

The difficulties for concluding whether the quark g-factor
is SM-like or not are the two-fold:

(i) the result heavily depends on the quark mass, in fact from
the experiment one can only determine the ratio gq/mq =
gp/mp � 5.95 GeV−1;

(ii) different from the lepton case, the anomalous MDM is
induced by the strong interaction and it can be very large
and also scale dependent.

Having said this, the agreement of this experimental result
does not seem to be just an accident. The computation of the
MDM of neutron in the same model leads to

μn = 1

3
(4μd − μu) = −gq

2

e

3mq
= −2

3
μp, (5)

where the relation between μn and μp is quark mass and g-
factor independent. It is very well satisfied in the experiment.

In this article, we discuss a possible new measurement
of charmed baryons MDM using bent crystal. These MDMs
have never been measured because of a very short lifetime
of charmed baryons, τ ∼ 10−13 s. From theoretical point
of view the charmed baryon MDM has similarities with the
proton MDM. Contrary to the muon, which is an elementary

particle, the charmed baryon is a bound system of strongly
interacting quarks. Therefore prediction of its MDM suffers
from uncertainties, related to the choice of masses of con-
stituent (“dressed”) quarks, and to model description of the
baryon structure. In the following, as an example, we sum-
marise the current status of the theory predictions of the Λ+

c
magnetic moment.

Let us first compute the MDM of Λ+
c in the constituent

quark model as before, i.e. Λ+
c MDM is sum of the MDMs

of up, down and charm quarks in the configuration antisym-
metric in spin of the light quarks (see Appendix A). In this
case the Λ+

c MDM is equal to the charm quark MDM:

μΛc = μc = gc
2

eQc

2mc
. (6)

For example, using the constituent quark mass

mc = mΛc − 2mq = 1.66 GeV

with mq = mp/3, we find

μΛc = 0.38
gc
2

μN , μN = e

2mp
, (7)

where μN is the nuclear magneton.
It is curious that the g-factor of Λ+

c , which is defined via

μΛc = gΛc

2

e

2mΛc

,

is actually close to the charm quark g-factor, i.e.

gΛc = Qc mΛc

mc
gc � 0.9 gc,

although Λ+
c has a substructure.

There are various models to compute the MDM beyond
the quark model. For example, the so-called Heavy Hadron
Chiral Perturbation Theory (HHCPT) is developed [9–12],
which combines the heavy quark effective theory and the chi-
ral perturbation theory of light hadrons. It allows to improve
theoretical prediction in a systematic manner.

The next to leading order Lagrangian for the MDM of
triplet and sextet baryons was given in [13,14]. At the order
O(1/mQ) (mQ is the heavy quark mass), we have two extra
contributions. First, it is the heavy quark MDM, i.e. the inter-
action of the photons and the heavy quark constituent inside
of the hadrons, which also induces M1 transition. This term
induces the contribution of the quark model. The second
contribution is the photon interaction with the light “brown
mock” inside of the heavy hadrons. However, the baryon Λ+

c ,
whose light degrees of freedom are in the spinless state, does
not receive contribution to the MDM from this interaction.
As a result, even at this order, the quark model limit results
given above hold. The lack of contributions from the light
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degrees of freedom seems to be generic and theoretical pre-
dictions using different models show that the MDM of Λc is
close to the one predicted by the constituent quark model.

MDM predictions using various theoretical models can be
summarized as [15–28]:

μΛc = (0.34 − 0.43) μN , (8)

although there are exceptions falling out of these bounds.
In particular, Ref. [29], using the QCD spectral sum rule
approach, gives μΛc = (0.15 ± 0.05) μN , while Ref. [20] in
the Dirac point-form dynamics obtains μΛc = 0.52 μN , and
Ref. [30] in the next-to-next-to-leading order in the HHCPT
gives μΛc = (0.24 ± 0.02) μN . It should be noted that each
theoretical model fits the charm quark mass with various
observables. In this sense, the charm quark mass uncertainty
is included in this value.

Recently, a magnetic dipole moment measurement of
charmed baryons using bent crystal is proposed [31,32]. In
the present paper, we investigate possible theoretical impact
of such measurement and achievable experimental precision.
In Sect. 2, we discuss the extraction of the Λ+

c magnetic
moment from the radiative charmonium decays, which pro-
vides its most precise information as of today. In Sect. 3, we
discuss the impact of the charmed baryon magnetic moment
measurements for a better understanding of the charmed
baryon spectroscopy. In Sect. 4, we introduce the charmed
baryon magnetic dipole measurement with bent crystal and
further investigate its achievable precision. We briefly discuss
the charmed baryon electric dipole moment measurement as
well. For the Λ+

c magnetic moment measurement, it turned
out that the initial polarisation and the weak decay parame-
ter have to be pre-measured. We discuss what observable can
provide such information in Sect. 5 and give conclusions in
Sect. 6.

2 The prediction of the magnetic dipole moment of Λ+
c

using the radiative charmonium decays

It turned out that the charm quark MDM is most precisely
measured by the quarkonium radiative decays as of today. In
this section, using this result, we estimate the Λc MDM.

The process used by the CLEO [33] and BESIII [34] col-
laboration is the cascade radiative decay,

ψ(2S) → γ1χc1,2 followed by χc1,2 → γ2 J/ψ(→ l+l−),

where the initial ψ(2S) is produced from the e+e− collision.
Using the non-relativistic model, this cascade radiative

decay is computed (see [35,36] for detail). We have 5 observ-
able angles: χc1,2 the angle between γ1 and γ2 in the rest
frame of χc1,2 (θγ1γ2 ) and the directions of the initial positron
(θ1, φ1) and of the final lepton (θ2, φ2), which characterise

the ψ ′ and J/ψ polarisation, respectively. The angular dis-
tribution can be expressed in terms of the Wigner-D func-

tion with associated helicity amplitudes A
Jχ
ν which char-

acterise the decay χc1,2(ν) → γ2(μ)ψ(λ) and B
Jχ
ν′ does

ψ ′(λ′) → γ1(μ)χc1,2(ν
′) where ν(′), μ(′), λ(′) are the helic-

ity of each particle.
In the following discussion, we use the so-called multi-

pole amplitudes aJ
i and bJi which are related to the helicity

amplitudes A
Jχ
ν and B

Jχ
ν′ , by Clebsch–Gordan coefficients as

A
Jχ
ν =

∑

Jγ

√
2Jγ + 1

2Jχ + 1
a
Jχ
Jγ

〈Jγ , 1; 1, ν − 1|Jχ , ν〉,

B
Jχ
ν′ =

∑

Jγ

√
2Jγ + 1

2Jχ + 1
b
Jχ
Jγ

〈Jγ , 1; 1, ν′ − 1|Jχ , ν′〉, (9)

where 0 ≤ ν(′) ≤ Jχ and 1 ≤ Jγ ≤ Jχ + 1. Jγ = 1, 2, 3
corresponds to the E1, M1 and E3 transitions.

The normalised M2 contributions, b1,2
2 and a1,2

2 from the
ψ(2S) → γ1χc1,2 and χc1,2 → γ2 J/ψ , respectively, are
related to the mass of the charm quark mc and its anoma-
lous magnetic moment κ (see [33] for detail). In the ratios
β = b1

2/b
2
2 and α = a1

2/a2
2 , the mc and κ cancel to first order

in Eγ /mc. The ratios thus receive clear numerical predic-
tions of β = 1.000 ± 0.015 and α = 0.676 ± 0.071, respec-
tively [33]. Recently, the BES III experiment reported [34]
the measurement of the M2 amplitudes and the determination
of the two ratios β = 1.35 ± 0.72 and α = 0.617 ± 0.083,
in agreement with the theory prediction.

The precision of the b1,2
2 and a1,2

2 measurements reported
by BES III is dominated by the available statistical sample,
and is expected to be improved by future experiments with
larger collected data samples. Among important systematic
uncertainties are photon detection, efficiency estimates with
the simulation assuming the phase space, kinematic fit and
fitting technique. With improved electromagnetic calorime-
ter and the efficiency determined in bins of relevant angular
variables, systematic uncertainty is also expected to be sig-
nificantly improved in the next-generation experiments. In
the BES III analysis [34], the (1 + κc) measurement, which
can be related to gc by

1 + κc = gc
2

, (10)

was performed:

gc
2

= −4mc

Eγ2

a1
2 = 1.140 ± 0.051 ± 0.053 ± 0.229, (11)

where the last systematic error is coming from the charm
quark mass ambiguity mc = 1.5 ± 0.3 GeV.
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What would be the implication of this result? Indeed, the
obtained value of gc is close to 2 but the precision is limited
by the uncertainty from the charm quark mass. In fact, the
charm quark would receive a radiative correction, from the
strong interaction, which would also induce uncertainty. As
in the case of the muon anomalous magnetic moment, there is
a chance that the charm quark anomalous magnetic moment
is non-SM like. However, the SM prediction of the gc con-
tains an ambiguity as a concept. This problem can be solved
only when we chose a theoretical model which allows to
consistently calculate the charm quark anomalous magnetic
moment effect inside of hadrons. In the following we prefer
to write the result in Eq. (11) in terms of ratio between gc
and the charm quark mass as

gc
2mc

= 0.76 ± 0.05 GeV−1. (12)

Since the magnetic moment of charm quark is proportional
to gc/2mc, the experimental results given in Eq. (11), can
provide a prediction of the Λc magnetic moment in the con-
stituent quark model without any charm quark mass uncer-
tainty

μΛc = μc = gc
2mc

2

3
mp μN = (0.48 ± 0.03) μN . (13)

If we compare this with the theoretical predictions in the
end of the previous Section, we can conclude that there is a
tension with the majority of theoretical predictions. In par-
ticular, the deviation with calculation [29] is 5.7 σ , with the
NNLO HHCPT [30] the deviation is 6.7 σ . On the other
hand, there are theoretical models which do not contradict to
Eq. (13); for example, the calculation in [19] agrees with the
value in Eq. (13) on the level of 1.4 σ .

In order to increase the significance of this discrepancy
what would be needed are: (i) to achieve a better precision of
the measurement given in (12) by further improving radiative
charmonium decay at BES III and a possible future charm
factory, (ii) to achieve a direct measurement of Λ+

c magnetic
moment at an equivalent precision. We will briefly discuss
on (i) in the following, while (ii) will be discussed in Sects. 5
and 6. In both cases we should aim to have an experimental
precision at 5% or better.

Theory calculations of b0,1,2
2 and a0,1,2

2 to the next order in
Eγ /mc are therefore of primary importance. A dependence
of the corrections on Eγ andmc is expected to be different, so
that the experimental determination of different amplitudes
will provide truly complementary information. This can be
possible by BES III and also at the future tau-charm factories.

Another path can be the measurement of the absolute val-
ues of b1,2

2 and a1,2
2 instead of the ratios. While part of the sys-

tematic uncertainties will not cancel in the absolute measure-
ments, the system can be over-constrained to verify model
assumptions. Comparison of the all four values of b1,2

2 and

a1,2
2 measured experimentally to theory predictions will pro-

vide complementary information. Taking into account cor-
relations of experimental measurements and retaining only
variables that yield identical theoretical interpretations, the
extracted values for κ or κ ⊕mc can be averaged. Involving
measurements with intermediate χc0 and ηc(2S) states would
allow a simultaneous fit to the mc and κ variables to be per-
formed using the eight quasi-independent measurements.

Higher-order multipole amplitudes can be extracted from
the angular distributions of the final-state particles. They
were first considered in Ref. [34] by the BES III experi-
ment, who performed a simultaneous unbinned maximum
likelihood fit according to the procedure from Refs. [35,36].
The relevant angular variables are the polar angle of γ1 with
respect to the beam axis, in the ψ(2S) rest frame, θ1; the
polar, θ2, and azimuthal, φ2, angles of γ1 with respect to the
direction of γ1, in the χcJ rest frame (φ2 = 0 in the electron-
beam direction); the polar, θ3, and azimuthal, φ3, angles of
l+ from the J/ψ decay with respect to the direction of γ2, in
the J/ψ rest frame (φ3 = 0 in the γ1 direction).

3 The charmed baryon spectroscopy and the magnetic
dipole moment

Recently LHCb experiment as well as e+e− machine, such
as BES III and Belle II are making a great progresses in the
charmed baryon spectroscopy. The first observation of the
doubly charmed baryon at LHCb [37] has triggered various
theoretical investigation of charmed baryon weak decays as
well. In this section, we show that the MDM which reflects
the spin configuration of the internal degree of freedom of
baryon can be a powerful tool for identification of charmed
baryons.

Let us first derive the MDM of different charmed baryons.
First of all, it turns out that the two remaining triplet (spin

1/2, anti-symmetric) charmed baryons, Ξ0
c and Ξ+

c have the
same MDM as Λ+

c in the quark model:

μ
Ξ

0,+
c

= μc = μΛ+
c
. (14)

A confirmation of this relation plays an important role to test
the quark model description.

In [17,38], higher order corrections to this relation are
discussed. The reference [17] discusses the so-called spin-
symmetry breaking effect, which typically induces the Σ∗

c −
Σc mass splitting. It comes form a loop diagram with Σ

(∗)
c

and π, K in the loop. This contribution leads to a sub-leading
effect (order 1/m2

Q) to the MDM of Ξ
+,0
c . There are two

input parameters to this computation: the mass splitting Δm
and the sextet-anti-triplet axial vector coupling g2

2 in the Chi-
ral Lagrangian. Δm can be obtained by Δm = mΣ∗

c
−mΣc ,

2 In [17], it is g3.
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which is equal to mΞ ′∗
c

− mΞ ′
c

at the SU(3) limit, while the
coupling g2 must be fixed by the charmed baryon strong
decays. In recent years, there have been a lot of progress in
determination of g2: the latest fit to the experimental data
gives 0.989+0.019

−0.042 [39] and the lattice QCD result shows
0.71 ± 0.13 [40]. Using the former result, to be conserva-
tive, we can find that the relation (14) would be modified
slightly:

μ
Ξ

+/0
c

= μΛ+
c

± (0.051 ± 0.001) μN (15)

Note that this result does not depend on the charm quark
mass. In [38], the SU(3) breaking effect was further included.
In this case, we cannot obtain all the parameters from other
experiments, which causes additional theoretical uncertainty.
However, this contribution is typically of order 1/mQΛ2

χ and
can be small.

For the sextet (spin 1/2, symmetric) charmed baryons, the
situation is very different. We find (Appendix A):

μΣ++
c

= −1

3
μc + 4

3
μu, (16)

μΣ+
c

= −1

3
μc + 2

3
μu + 2

3
μd , (17)

μΣ0
c

= −1

3
μc + 4

3
μd , (18)

which leads to the values

μΣ++
c

= 2.54 μN , μΣ+
c

= 0.54 μN , μΣ0
c

= −1.46 μN

(with mc = mΣc − 2mq = 1.8 GeV). Even though these
numerical values suffer from the quark mass uncertainty, the
sign of MDM for Σ0

c seems to be opposite to the one of Λ+
c ,

and the MDM of doubly-charged Σ++
c is much larger than

MDM of Λ+
c , which would be also interesting to be tested.

Note that the main decay channel of Σc is Λ+
c π .

Finally, let us discuss other sextet (spin 1/2, symmetric)
charmed baryons Ξ

′+,0
c . These baryons have the same quark

content as Ξ
+,0
c but their wave functions are SU(3) flavour

symmetric. Since these states have the same quark contents
and the same spin, they can mix with the triplet Ξ

+,0
c states.

In the infinite mass limit, though, this mixing is zero, i.e.
Ξ

+,0
c is the pure anti-symmetric and Ξ

′+,0
c is the pure sym-

metric state. Indeed, two states are observed, one at ∼ 2468
MeV and the other at ∼ 2578 MeV. The latter decays radia-
tively to the former. Whether these observed two states (mass
eigenstates) are the pure anti-symmetric and symmetric states
(flavour eigenstates) is not known though it can offer an
excellent test of the heavy quark limit. In the following, we
show that the MDM measurements, which are the most sen-
sitive to the flavour symmetry of the constituent quarks, can
be used to answer this question.

The MDM of Ξ
′+,0
c yields:

μΞ ′+
c

= −1

3
μc + 2

3
μu + 2

3
μs, (19)

μΞ ′0
c

= −1

3
μc + 2

3
μd + 2

3
μs, (20)

which leads to μΞ ′+
c

= μΣ+
c
, μΞ ′0

c
= μΣ0

c
in the SU(3) limit.

The theoretical uncertainty might be larger than the case of
Σ

0,+
c due to SU(3) violation, however, we would still expect

the MDM of theΞ ′0
c to have an opposite sign comparing to the

one of Ξ0
c . This result implies that the MDM measurements

are very sensitive to resolve the deviation between the flavour
and the mass eigenstate of Ξc’s. In particular, the equality of
the MDM of Ξ

+,0
c and Λ+

c in Eq. (14) does not depend on the
quark masses and the most precise test can be performed. It
should be noted that, contrary to the triplet (anti-symmetric)
baryons, the sextet (symmetric) baryons receive the next to
leading order long-distance contributions (the photon inter-
acting with light degrees of freedom), which are quite size-
able. Nevertheless, most of the theoretical predictions (see,
e.g., [22]) confirm the negative MDM for Ξ ′0

c , which can be
used to clarify the issue of the Ξc − Ξ ′

c mixing as discussed
earlier.

In summary, measurement of μΛc as well as μΞc at a high
precision will be highly appreciated to distinguish different
spin configurations of the charmed baryon states.

4 Magnetic dipole moment measurement of charmed
baryons using bent crystal

The MDMs of baryons containing u, d and s quarks have
been extensively studied and measured. The experimental
results are all obtained by using the conventional methods,
namely the measurement of the precession angle of the polar-
isation vector when particle is travelling through an intense
magnetic field by analysing the angular distribution of the
decay products.

No measurement of MDMs of charmed or beauty baryons
has been performed so far. A reason of the non-availability
of experimental information is because the lifetimes of
charmed/beauty baryons are too short to measure the MDM
by standard techniques.

One proposal to meet the challenge of measuring the
MDMs of baryons with heavy flavoured quarks is to use the
strong effective magnetic field inside the channels of a bent
crystal instead of the conventional magnetic field to precess
the polarisation vector and measure the MDM. The detailed
precession theory has been developed by [41–45].

Shortly, in a curved crystal the electrostatic field of the
atomic planes deflecting the particle transforms into a mag-
netic field in the particle’s rest frame. Thus the spin preces-
sion angle φ is

φ = ω

(
1 + γ

g − 2

2

)
for γ � 1, (21)
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where γ is the Lorentz factor, g is the g-factor or dimension-
less MDM of baryon, and ω is the deflection angle of the
channelled particle. From a measurement of γ , φ and ω of
the channeled particles, we can determine g and hence the
particle’s MDM. We expect that channeling can provide the
equivalent magnetic fields up to several hundreds of Tesla,
thus offering the potential of significant precession angles
even when the length of the bent crystal is of order of cm.

E761 Collaboration (1992) demonstrated the feasibility
of this idea by measuring the MDM of the strange Σ+
baryon [46,47] using the decay into pπ0.

Recently a few papers have appeared [31,32] propos-
ing experiments to measure the MDM of the Λc and other
charmed charged baryons at LHC top energies. In [48] the
method for measuring the electromagnetic dipole moments
of the τ lepton using double or triple crystal setups at LHC
was proposed. The clear advantages of the use of LHC are the
much larger boost and the possibility of using well-known
detectors. The unavoidable drawback is the complex integra-
tion of the crystals into the LHC vacuum pipe in the respect
of the machine protection requirements. However, the recent
success of crystal-collimation tests of the UA9 Collabora-
tion [49,50], may provide the necessary technical know-how
for such a complex task.

The experiment foresees the installation of a bent crystal
in the halo of the LHC to obtain an intense collimated pro-
ton beam. Polarised heavy baryons are produced by strong
interaction of this proton beam impinging into a few mm
(tungsten) target. A large angle bent crystal, located down-
stream of the target will induce the rotation of the polar-
isation vector of the heavy baryons. The change of the
polarisation is studied by performing an angular analysis
of the decay products of the heavy baryons using either
one of the LHC existing detectors or a dedicated new
one.

Our goal is to measure the Λc magnetic moment at a few
% level. As presented in [32], the sensitivity depends on two
factors. The first is to have an experimental setup capable
to collect enough statistic. This studies have been made in
details using the LHCb detector [53]. In [54] two possible
layouts of such a setup are reported, together with a thorough
evaluation on their expected performance and impact on LHC
operations. The second factor is to know precisely the initial
polarisation of Λc and to use the most suitable Λc decay
channels giving the greatest sensitivity to the polarisation
measurements. Let us elaborate this second point and discuss
on our strategy.

The sensitivity depends on the precision of φ in Eq. (21),
which represents the spin precession of Λc, i.e. the change of
the polarisation. The polarisation of Λc can be measured, in
general, by the angular distribution of its decay Λc → BP
(B is a baryon and P is pseudoscalar meson, namely pion or
kaon)

1

N

dN

d cos θ
= 1

2
(1 + αξ cos θ) , (22)

where the ξ is the polarisation projection of Λc, and the θ is
the angle between Λc polarisation axis and the final baryon
direction nbaryon = pbaryon/|pbaryon|. The α is called asym-
metry parameter, which represents the forward–backward
asymmetry of the final state baryon with respect to the initial
Λc polarisation direction. This asymmetry is non-zero only
when the decay is induced by a parity violating interaction.

4.1 Initial polarisation

The experimental data [52,55] together with theoretical pre-
dictions [51,56,57] show that Λc baryons produced in a
fixed target are polarised, the polarisation vector is orthog-
onal to production plane, directed opposite to pbeam × pΛc ,
and the absolute value of polarisation grows with transverse
momentum (see Fig. 1). In [32] the analysis of these data
together with Λc spectra angular distribution obtained from
Pythia [58] shows that the average absolute value of polarisa-
tion of Λc produced in the fixed target is |ξ | = 0.40(5). In the
current paper we would like to estimate initial polarisation
more accurately.

We extrapolate experimental data with the following
expression for polarisation as a function of transverse
momentum:

|ξ | = 1 − e
− p2

t
2 〈p2

t 〉 , (23)

where 〈p2
t 〉 = 1.26(20) GeV2 is the square of the typical

transverse momentum of produced Λc baryons.
The distribution over transverse momentum of Λc pro-

duced in a fixed target by 6.5 TeV protons is obtained using
Pythia v.8.240 accounting all soft QCD processes. Using
this data we obtain the root mean square of initial polar-
isation ξ rms = 0.46(6). We assume that polarisation is a
function of transverse momentum and does not depend on
Λc energy. On the other hand, the distribution over the trans-
verse momentum varies with Λc energy (see Fig. 1, right).
Thus, the average polarisation depends on the energy: ξ rms ≈
0.50(6) for Λc energy ε = 50 GeV, and ξ rms ≈ 0.34(6) for
ε = 4 TeV.

We propose to place a crystal immediately after the target,
to deflect as many Λc baryons as possible before they decay
(see Fig. 2, left and right). Note that the crystal selects by
channeling only a small fraction of produced baryons, that
have a small angle with respect to the crystallographic plane,
ϑx ∈ (ϑcrys −ϑacc, ϑcrys +ϑacc). Here ϑacc is the acceptance
angle to channeling [32,59], the axis Oz is chosen in the
direction of impinging protons, the axis Oy lies in the crystal
plane, the initial direction of crystal plane normal is shifted
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Fig. 1 Λc initial polarisation as a function of transverse momentum
(red curves) on top of its distribution over transverse momentum (his-
tograms). Red solid curve – theoretical prediction [51], red crosses
– experimental data [52], red dashed curve – experimental data fit
by Eq. (23); blue histogram (left plot) – distribution over transverse

momentum of all Λc produced in a fixed target by 6.5 TeV protons,
histograms (right plot) – same for specific energies of Λc indicated on
the right. Here the polarisation is projected on the pΛc ×pbeam direction

Fig. 2 Selection of Λc initial polarisation by the crystal, and spin pre-
cession in a bent crystal (for the caseφ = π/2). (Middle) the distribution

of the Λc polarisation in the phase space ϑxϑy , here ϑ =
√

ϑ2
x + ϑ2

y

is the angle between the proton and the Λc momenta. Red arrows
show the Λc polarisation. The distribution is symmetric with respect

to the direction of proton momentum. The blue rectangular areas close
to ϑy axis and at the bottom of the plot show the phase spaces of
initially captured and deflected Λc baryons, respectively. The layout
of the target-crystal setup (left) in the yz plane and (right) in the zx
plane

from Ox by a small angle ϑcrys around Oy axis, and the
crystal is bent around the Oy direction (see Fig. 2).

For the MDM measurement the optimal orientation is
when the crystallographic plane is aligned with the imping-
ing proton beam (ϑcrys = 0), as in this case the x-component
of polarisation, i.e. orthogonal to spin precession axis, is
maximal. Note that with this orientation Λc initial polari-

sation is almost parallel to the nx axis, with two fractions
that are positively or negatively polarised and can be sepa-
rated experimentally by reconstructing ϑy (see Fig. 3 left).
This feature was used to cancel the systematic uncertainty
connected with the acceptance of the apparatus in Fermilab
experiment E761 [47].
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Fig. 3 Same as in Fig. 2. The areas highlighted with red and green show the phase spaces of Λc baryons with spin precession in crystal caused
mainly by MDM and EDM, respectively

Table 1 Parameters of target-crystal setup and properties of deflected Λc baryons at IR3 and IR8

IR3 IR8

Target-crystal setup [54] Number of protons on target per 10 h fill (NPoT) 3 × 1010 4.3 × 1010

Target length (cm) 0.5 0.5

Crystal length (cm) 7 7.5

Crystal bending radius (m) 14 5.4

Deflection angle ω (mrad) 5 14

Deflected Λc baryons (optimised for MDM) Initial crystal orientation ϑcrys, mrad 0.1 0.1

Number of deflected Λc per 10 h fill Ndefl 180 12

Average Λc Lorentz factor γ 1140 600

Expected spin rotation angle (for g = 1.92) φ −8.5◦ −16.3◦

Average Λc polarisation (x-component) ξ rms
x 0.24 (5) 0.27 (5)

Weighted average polarisation
√〈ξ2

x γ 2〉/〈γ 2〉 0.22 (5) 0.26 (5)

Precession efficiency (per 10 h fill), Ndefl ηMDM 300 57

Deflected Λc baryons (optimised for EDM) Initial crystal orientation ϑcrys (mrad) 0.4 0.9

Number of deflected Λc per 10 h fill, Ndefl 75 5

Average Λc Lorentz factor γ 910 570

Average Λc polarisation (y-component) ξ rms
y 0.25 (5) 0.34 (5)

Weighted average polarisation
√

〈ξ2
y γ

2〉/〈γ 2〉 0.34 (5) 0.41 (5)

Precession efficiency (per 10 h fill), Ndefl ηEDM 200 37

In the current study we considered two setup configura-
tions proposed in [54], that are (IR3) at momentum clean-
ing area of LHC and (IR8) in front of interaction point at
the LHCb detector. In both cases the target and the crystal
materials are tungsten and silicon, respectively, and the tar-
get length is 5 mm. The other parameters of the setup are
presented in Table 1.

As the Λc production is a rare event, it is important to avoid
channeling of initial protons, i.e. ones that pass through the
target with negligible interaction. In the case of experiment at
the extraction line this can be done by slight (ϑcrys = 100–
200 μrad) misalignment of the crystal. As we show latter,
this misalignment would have no effect on the measurement

efficiency (see Fig. 5). For the circulating machine the risk of
accidental deflection of the initial protons to the beam pipe
is not tolerable, so the bending radius of the crystal is chosen
in order to avoid channeling at the top energy [54].

The Λc electric dipole moment (EDM) can be obtained by
measuring the spin precession caused by interaction of par-
ticle EDM with the electric field of crystal planes [60]. For
this measurement the initial polarisation should have consid-
erable component perpendicular to crystal electric field [61],
i.e. y-component. Note that to achieve this condition the crys-
tal should be rotated by a small angle ϑcrys around Oy axis,
as shown in Fig. 3, but not by 90◦ around Oz axis. Here we
present a simplified scheme just to demonstrate the main
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Fig. 4 Root mean square of initial polarisation projection of Λc
deflected by the crystal (ξx and ξy – projections on axes Ox and Oy,
respectively) and Ndefl – the integral number of deflected Λc baryons

after 10 hour LHC fill as functions of initial crystal orientation ϑcrys.
(Left) and (right) for configurations at IR3 and IR8, respectively

direction of spin precession caused by interaction of Λc

MDM and EDM with electric field of bent crystal. One can
see that by orienting the crystal with respect to the initial pro-
ton beam we can select deflected Λc baryons with a certain
(parallel or perpendicular to crystallographic plane) initial
polarisation.

Thus there are three possible initial crystal orientations
optimised for MDM, EDM and simultaneous measurement,
presented in Fig. 3 left, centre and right, respectively. The
phase space in the blue rectangles at the bottom represent the
deflected Λc baryons. To simplify the picture we suppose
that the precession angle is π/2 and the final polarisation has
only z-component. We consider this in more details in the
following section. In [32] it was shown that it should be easy
to separate experimentally deflected Λc baryons events since
the deflection angle is greater than the typical production
angle of the deflected part of Λc baryons. Note that it is
also very important to reconstruct ϑy especially for MDM
measurement.

To calculate the average initial polarisation of deflected
Λc baryons and to verify the optimal crystal orientation, we
performed computer simulations of Λc propagation though a
crystal using the approach described in [32,62]. The integral
number of Λc baryons deflected by the crystal within 10 h
LHC fill can be written as

Ndefl = NPoT Ntar+crys, (24)

where NPoT is the integral number of protons on target that
can be obtained during 10 hour LHC fill [54], and Ntar+crys is
the number of deflected Λ+

c per proton (see Eq. (3.2) in [32]).
In Fig. 4 we present Ndefl as functions of initial crystal

orientation ϑcrys (blue curve), and on top of it the root mean
square of initial polarisation of deflected Λc. Red and green
curves labeled ξx and ξy correspond to root mean squares of

polarisation projections on axes Ox and Oy, respectively:

ξ rms
x,y =

√
1

Ndefl

∫
ξ 2
x,y

∂3Ndefl

∂ε ∂ϑx ∂ϑy
dε dϑx dϑy . (25)

where ξx and ξy are the Λc initial polarisation projections.

4.2 Final polarisation

Due to the MDM, the spin precession takes place in the
xz plane. We first choose the polarisation axis to be perpen-
dicular to the production plane, i.e.

nx ≡ pbeam × pΛc

|pbeam × pΛc |
.

In this case, supposing ϑcrys = 0, we can write the polarisa-
tion of the Λc before going through the crystal by the absolute
value of the polarisation:

ξ |nx = ±|ξx | = ±|ξ |
Two signs correspond to two fractions of Λc baryons of pos-
itive and negative initial polarisations (see Fig. 3 left). After
passing through the crystal, the Λc spin precesses in the plane
perpendicular to the effective magnetic field B. As a result,
the polarisation of Λc after the crystal is modified as:

ξ |nx = ±|ξx | cos φ (26)

If we choose another polarisation axis (let us call it nz),
that is perpendicular to nx and to the effective magnetic field
B the polarisation after crystal is modified as

ξ |nz = ±|ξx | sin φ. (27)

If we rotate the crystal by a small angle ϑcrys around
Oy axis, we would capture the fraction of Λc baryons
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Fig. 5 Precession efficiency (left) of MDM and (right) of EDM measurements as a function of crystal orientation ϑcrys. The same configurations
as in Fig. 4

polarised along Oy axis (see Fig. 3 centre) and hence the
root mean square of y-component of initial polarisation ξ rms

y
will appear (see Fig. 4). This would provide a better effi-
ciency for the EDM measurement with respect to the setup
considered in [60]. Indeed, using spin precession equation
[63,64] one can show that, if the particle possesses an EDM,
its interaction with the average electric field of bent crystal
will cause the spin precession around Ox axis. Assuming
γ � 1 and g ≈ 2

ξ |ny ≈ ξy cos φ′, (28)

ξ |nz ≈ ξy sin φ′, φ′ ≈ ω γ f

2
, (29)

where ξy is the y-component of initial polarisation, φ′ is the
precession angle around Ox axis, and f is a dimensionless
EDM.

In case g �= 2, there might be a significant spin rotation
around Oy which would be important to take into account.
By taking a theoretical prediction of g-factor g = 1.92 and
other parameters from the Table 1 and pluging them into
Eq. (21), we get the values for spin rotation angle around
Oy axis: 8.5◦ and 16.3◦ for configurations at IR3 and IR8,
respectively. This can be translated to a 5–9 % correction to
the Eqs. (26)–(29) due to interaction of precessions caused
by MDM and EDM. Note that this effect can be mitigated
by comparing two fractions of Λc with positive and negative
ϑy .

4.3 MDM and EDM measurement accuracy

Analysing the angular distribution (22) and considering
(21), (26)–(29) one can obtain the expressions for the uncer-
tainty to the Λc baryon g-factor and dimensionless EDM:

Δg j =
√

12

α2
j Br j η

det
j Ndefl ηMDM

, (30)

Δ f j =
√

12

α2
j Br j η

det
j Ndefl ηEDM

, (31)

where α j , Br j and ηdet
j are the weak decay parameter, the

branching ratio and the detector efficiency for j decay chan-
nel, ηMDM and ηEDM are the efficiencies of crystal-target
setup for MDM and EDM measurement, respectively,

ηMDM = 〈 ξ2
x γ 2 〉ω2, ηEDM = 〈 ξ2

y γ 2 〉ω2. (32)

First three terms depend only on the Λc decay channel and
on the detector efficiency. Last two terms are defined mainly
by channeling efficiency and properties of the accelerator.
We call the product of these two parameters the precession
efficiency. Its maximum corresponds to the optimal crystal
configuration for the measurement.

The results of computer simulations show that for MDM
measurement the optimal initial orientation of the crystal is
|ϑcrys| ≤ 0.15 mrad and |ϑcrys| ≤ 0.3 mrad for configura-
tions at IR3 and IR8, respectively; and for EDM measure-
ment: ϑcrys ≈ 0.4 mrad and ϑcrys ≈ 0.9 mrad (see Fig. 5).
The difference between last two angles is due to a softer
spectra of deflected Λc baryons at IR8. The baryons with
the same transverse momentum pt (same polarisation ξ ) but
with smaller energy would have a greater production angle
ϑ .

The precession efficiencies of MDM and EDM measure-
ments at IR3 are ∼ 5.3 times better. This is because the setup
at IR8 is limited by the properties of LHCb detector, whereas
for IR3 the optimal parameters of the detector (acceptance
angle, energy range, etc.) were obtained in order to max-
imise the double crystal efficiency. The obvious downside
of the IR3 configuration is that it requires building a new
detector, but on the other hand, as it would be dedicated to
this measurement, the detecting efficiency of the particular
events could be much better than at LHCb. The values of pre-
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Fig. 6 Absolute error of g-factor (left) as a function of its expected
value g, and (right) as a function of error on alpha parameter Δα.
(Left) for different numbers of registered events and (right) for vari-

ous expected values of g-factor g, stated in the plot. Calculation results
for IR3 configuration, considering Λ+

c → Δ++K− decay channel,
assuming α = −0.67

cession efficiencies and properties of deflected Λc baryons
are listed in the Table 1.

Note that the Λc baryons with different directions of polar-
isation can be separated by reconstructing ϑy . E.g. at ϑy = 0
and ϑx �= 0 polarisation has only y-component (see Fig. 2,
middle), which makes it the optimal region for EDM mea-
surement. At the same time, with the same crystal orientation
ϑcrys but with ϑy ≥ ϑx the polarisation has also a consider-
able x-component which is essential for MDM measurement
(see Fig. 3, left). Thus the measurement of MDM and EDM
can be done at the same time with a small ∼ 20 % drop of
efficiency, with respect to the optimal one for each of them
(see Fig. 5). In this case the crystal should be oriented at
ϑcrys = 0.25 mrad and ϑcrys = 0.6 mrad for measurement at
IR3 and IR8, respectively.

Another very important parameter for reconstruction of
final polarisation is the weak decay parameter. Below, we
consider only the MDM measurement, but the approach can
be extended also to the EDM measurement. In Fig. 6, we
demonstrate the sensitivity of g-factor precision on the weak
decay parameter uncertainty Δα. One can see that the poor
knowledge of Δα = 0.3 essentially limits the precision of
the MDM as it adds a significant systematical uncertainty.

On the other hand, this problem can be solved by measur-
ing the α ξ rms

x factor and the MDM at the same time. If we
neglect EDM, the spin precession modifies the polarisation
projection on both axes, nz and nx , which can be measured
independently [47],

1

N

dN

d cos θx
= 1

2
(1 + α ξ rms

x cos φ cos θx ), (33)

1

N

dN

d cos θz
= 1

2
(1 + α ξ rms

x sin φ cos θz), (34)

where cos θx = nx · nbaryon and cos θz = nz · nbaryon. Thus,
we can have two observables: two angular coefficients,

bx ≡ α ξ rms
x cos φ, bz ≡ αξ rms

x sin φ

that can provide both α ξ rms
x and the φ angle via

b2
x + b2

z = α2 〈ξ2〉, bz
bx

= tan φ. (35)

The uncertainty of g-factor in this case is

Δg j = 1

α j ξ rms
x γ ω

√
12

N j

(
1 + √

2
|g − 2|

2
ωγ

)
, (36)

where N j is the number of reconstructed events,

N j = Br j η
det
j Ndefl.

The expression in parentheses represents the increase of error
on g-factor due to simultaneous measurement of α ξ rms

x . For
|g − 2|/2 = 0.05 this factor is about 1.4 and 1.6 for IR3 and
IR8 configurations, respectively.

The Fig. 7 presents the evolution of uncertainty on the
g-factor with number of reconstructed events, i.e. when Λc

baryon is deflected by a full bending angle of the crystal and
then decays by a certain channel stated in the figure. Here
we compare two cases: when g-factor is measured while the
value α ξ rms

x is taken from the another experiment (red curves
labeled with Δα values) and when g-factor and α ξ rms

x are
measured simultaneously (black curves). Each point in the
red curves is calculated using the method described in the
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Fig. 7 Absolute error of g-factor as a function of reconstructed events
number N j (left) for Λ+

c → Λ0π+ and (right) for Λ+
c → Δ++K−

decay channels. Red curves labeled with Δα value are obtained using
the pre-measured values of α ξ rms

x factor, black line corresponds to the

case when we measure αξ and g-factor simultaneously at current exper-
iment. Calculation results for IR3 configuration. Margins represents the
current uncertainly on a weak decay parameter value

Appendix B with the Gaussian distributions for the input
parameters α j , ξ and γ . For the bold solid red curve the cen-
tral values and standard deviations of the input parameters
are taken from the Table 1 and Table 2, the energy reso-
lution Δγ is taken 100 GeV/mΛc and the expected value
|g − 2|/2 = 0.05. The margins of the solid curve are cal-
culated in the same way, but the central values for α and ξ

distributions were taken α±Δα and ξ ±Δξ , respectively. In
Fig. 7 the curves labeled Δα = 0.15 and Δα = 0.30 corre-
spond to the current knowledge of weak decay parameters of
corresponding decays. To motivate the new measurements of
α parameters we plot the dashed curve labeled Δα = 0.05.
The only difference between the dashed and solid red curves
is the uncertainty of weak-decay parameter Δα. The black
curves are calculated in the analogous way but the fixed val-
ues of α and ξ were taken instead of the distributions over
these parameters.

One can see that using the external value of α ξ rms
x

improves the precision to g-factor while Δg � 0.1, or at low
statistics (103–104 events), and after collecting more data the
systematical error from Δα becomes dominant and it is more
efficient to measure two factors at the same time.

The other potential source of systematic error is expected
from Λc energy reconstruction. Our calculations show that
this impact is quite small, e.g. even for the energy error as
big as Δε = 100 GeV we start to see the effect on Δg only
after 105 events (see the bend of black curves in Fig. 7).
With respect to that, the ionisation energy losses of Λc in the
target and crystal are negligible. Indeed, according to [65],
the mean energy loss rate of relativistic charged particles in
tungsten is < 2 MeV cm2g−1 and in silicon or germanium
< 2.4 MeV cm2g−1. Thus, even for 4 cm tungsten target and
8 cm silicon or germanium crystal energy losses would be

less than 160, 50 or 100 MeV, respectively. In addition, the
energy losses of channeled particles are smaller comparing
to their losses in the amorphous matter [59].

The multiple scattering of Λc in the target leads to a small
deflection of the baryon (20–200 μrad). This angle is much
smaller than the crystal bending angle, so its contribution to
the spin precession of Λc is negligible. At the same time,
the deflection in the target affects the distribution of initial
polarisation of Λc captured and deflected by the crystal. As
a reference scale it is convenient to use the characteristic
angular width of the Λc production γ −1. In a relativistic
case, the ratio of multiple scattering angle [65] to γ −1 is

θMS

γ −1 = 13.6 MeV

mΛc

√
x

X0

(
1 + 0.038 ln

x

X0

)
(37)

where x/X0 is the thickness of the scattering medium in
radiation lengths. Thus, even for a very thick (4 cm) tungsten
target this ratio is ∼ 1 %, i.e. smaller than the uncertainty
of polarisation ∼ 15 % (see Fig. 1 left, horizontal error bars
with respect to mΛc ).

In any case it is very important to know α ξ rms
x as the

current precisions for Λc → p K̄ ∗ and Λc → Δ(1232)K
channels give almost one order of magnitude uncertainty on
data taking time needed to reach a certain Δg. The factor
α ξ rms

x could be pre-measured if we can have exactly the
same setup for the Λc production: using the fixed-target data
sample collected at the LHCb experiment with the SMOG
system [66] might be an interesting possibility. On the other
hand, to reach a higher precision, we may need to obtain
this factor from other experiments, such as LHCb which has
a much higher statistics. As the α value is the same in any
environment, this can be measured precisely by LHCb. Per
contra, the ξ rms

x value depends on pt and Λc energy ε, so
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Table 2 Properties of different
decay channels of Λc baryons

Decay channel Branching ratio Weak decay param. Detector efficiency ηdet
j Weight,

Br j , %[65] α j (see Sect. 5) IR3 IR8 [53] (Δg/Δg j )
2

Λ+
c → pK̄ ∗(892)0 1.96 (27) 0.66 (28) 0.2 0.2 ∼ 0.60

Λ+
c → Δ(1232)++K− 1.08 (25) −0.67 (30) 0.2 0.2 ∼ 0.35

Λ+
c → Λ (p π−) π+ 0.83 (5) 0.91 (15) 0.02 0.004 0.01–0.05

Λ+
c → Λ(1520) π+ 2.2 (5) −0.11 (60) 0.2 0.2 0.02

Fig. 8 Absolute statistical error of g-factor as a function of number of
fills (left) for IR3 and (right) for IR8 configurations. Black curves for
5 mm tungsten target attached to silicon crystal, red curves for 40 mm

tungsten target attached to germanium crystal. Margins represents the
current uncertainly of the weak decay parameters and the initial polar-
isation

we need a theoretical extrapolation, which leads to some
uncertainties. In any case, if we use the LHCb data, the α

parameters should be reconstructed separately.
We discuss how we can achieve that in the next section,

considering two decay processes,

Λc → pππ, Λc → pKπ.

The first decay is intermediated by the Λc → Λπ whose
α value has been measured as α = 0.91 ± 0.15.

The second decay is more complex since there are three
intermediate channels,

Λc → [pK̄ ∗(892), Δ(1232)K , Λ(1520)π ] → pKπ,

which introduce three different θ angles (c.f. θ is defined
by the direction of these intermediate baryons). Despite of
this complexity, the second decay may be able to determine
MDM more precisely since it has a larger branching ratio
compared to the first one, which occurs via successive weak
decays.

Another drawback of the first decay is the presence of
relatively long-living Λ0 baryon in the intermediate state,
that significantly reduces the detecting efficiency at LHCb
detector (by about 47 times, according to [53]). At IR3 this
problem could be partially solved by building a longer detec-

tor, but as the average energy of deflected Λc baryons is twice
greater with respect to IR8, we do not expect the gain of more
than 5 times with respect to IR8.

In Table 2 we list the properties of the most useful
Λc decay channels in terms of polarisation reconstruction
together with their detection efficiencies. Using these val-
ues in Eq. (30) we obtain the weights of these channels at
MDM reconstruction (see Table 2 last column). One can
see that about 95 % of information for MDM reconstruc-
tion comes from the first two channels: Λc → pK̄ ∗(892)

and Λc → Δ(1232)K .
Finally, in Fig. 8 we present the absolute statistical error of

the g-factor as a function of number of 10 h LHC fills. Two
vertical lines correspond to 1 and 10 years of data taking
based on LHC 2018 operation, for the consistency with [54].
Due to a poor current knowledge of weak decay parameters
and polarisation, the spread in resulting values of the data
taking time needed to reach the same Δg with a probability
of 68 % (within 1 standard deviation), is from ∼ 1 year to
∼ 10 years. The central values of Δg for this time stamps are
listed in the Table 3.

Our calculations show that in order to reach the error on g-
factor at a few percents, the target length should be enlarged
at least to 40 mm and the silicon crystal should be replaced
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Table 3 Central values of
absolute statistical error of
g-factor after 1 and 10 years of
data taking for various
configurations. Data taking time
needed to reach Δg = 0.1 and
Δg = 0.04 (last two columns)

Configuration Δg after Time (years) to reach

Target length Crystal Place 1 year 10 years Δg = 0.1 Δg = 0.04

5 mm Silicon IR8 1.10 0.35 123 –

IR3 0.43 0.14 19 120

40 mm Silicon IR8 0.49 0.16 25 160

IR3 0.17 0.06 3 19

40 mm Germanium IR8 0.31 0.10 10 62

IR3 0.12 0.04 1.5 8.5

with germanium, like it was suggested in [32]. The length and
the bending radius of germanium crystal for IR3 were cho-
sen 7 cm and 10 m to avoid channeling of impinging protons,
and for IR8 (3.3 cm and 5 m) were taken from [53]. Going
from 5 to 40 mm target and switching to germanium reduces
the data taking time by factors 6 and 2.4, respectively. Fur-
ther enlargement of the target should not essentially increase
the efficiency because of the decay of Λc and the shower
productions inside of the target.

Using a dedicated detector in IR3 would give an additional
reduction of data taking time by a factor of about 7.5 with
respect to measurement at LHCb detector.

With the optimal orientation for EDM measurement
obtained in this paper the error on dimensionless EDM Δ f
is about 22 % greater than Δg. Thus the EDM of Λc baryon
could be measured with an error ∼ 2.6 × 10−16 e cm 3 using
40 mm tungsten target and germanium crystal after 10 years
of data taking at IR8 or less than 2 years at IR3. Note that
in [53] the estimation of error on EDM is two orders of mag-
nitude lower, but there the expected number of protons on
target is 1400 greater, the estimated initial polarisation is 2.3
times greater and g-factor value is 1.4 whereas we consider
more conservative prediction g = 1.92. Considering all this,
the method proposed in [53] is ∼ 13 times less efficient by
precision or requires ∼ 170 times longer data taking time to
reach the same precision, and also depends on the value of
g-factor.

5 Improving the precision on weak asymmetry
parameters of charmed baryons at LHCb

Equation (22) shows that in the decay Λc → B P , the
Λc polarisation ξ can not be measured separately from the
parameter α. This problem can be solved if there are more
observables (than just cos θ dependence), which provides
independent information allowing to fit both α and ξ . In the
following we introduce two such examples.

3 While the indirect constraints on the charm quark EDM are |dc| <

4.4 × 10−17 e cm [67], |dc| < 1.5 × 10−21 e cm [68]

5.1 The case of Λc → Λπ followed by Λ → pπ

Let us start with computing the first decay chain,

Λc → Λπ.

The parity violating interaction is induced by a weak inter-
action in the form

MλΛc , λΛ = uΛ(pΛ, λΛ)(A − Bγ5)uΛc (pΛc , λΛc ), (38)

where pΛc (pΛ) is the 4-momentum, and the constants A and
B represent parity conserving and violating contributions,
respectively. The helicity λΛc (λΛ) is the projection of the
baryon spin in its momentum direction.

We next consider the subsequent decay,

Λ → pπ.

The transition amplitude can be written similarly to the Λc

decay:

MλΛ, λp = u p(pp, λp)(a − bγ5)uΛ(pΛ, λΛ). (39)

To describe the cascade decay Λ+
c → Λπ+ → p π− π+

of the polarised Λ+
c we choose the rest frame of Λ+

c . In this
frame the momentum of Λ is directed along the Oz axis,
and we assume that the polarisation vector ξΛc lies in the xz
plane with positive x-component (see Fig. 9). θΛ is the angle
between ξΛc and Λ momentum. The polar angle θp is defined
in the rest frame of Λ baryon, and it is the angle between the
proton momentum and the Oz axis. The azimuthal angle φp

is the angle between the decay plane Λ → pπ− and xz
plane.

The differential decay rate for Λ+
c → Λπ+ → pπ−π+

in this frame can be written as

d�
(
Λ+

c → Λπ+ → pπ−π+)

d cos θΛ d cos θp dφp
= �

(
Λ+

c → Λπ+)

× BR(Λ → pπ−)W (cos θΛ , cos θp , φp). (40)

Here

W (cos θΛ , cos θp , φp)
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Fig. 9 Definition of angles in the polarised Λ+
c decay Λ+

c → Λ π+ →
p π− π+

= 1

8 π

(
1 + αΛcαΛ cos θp + αΛcξΛc cos θΛ

+αΛξΛc

(
cos θΛ cos θp + γΛc sin θΛ sin θp cos φp

−βΛc sin θΛ sin θp sin φp

))
(41)

is the full angular distribution of this decay, ξΛc = |ξΛc |
and decay parameters for Λ+

c → Λπ+ and Λ → p π− are
defined as

αΛc = |A+|2 − |A−|2
|A+|2 + |A−|2 = 2 Re

(
A∗
S AP

)

|AS|2 + |AP |2 ,

αΛ = |a+|2 − |a−|2
|a+|2 + |a−|2 = 2 Re

(
a∗
SaP

)

|aS|2 + |aP |2 ,

βΛc = 2 Im
(
A+A∗−

)

|A+|2 + |A−|2 = 2 Im
(
A∗
S AP

)

|AS|2 + |AP |2 ,

γΛc = 2 Re
(
A+A∗−

)

|A+|2 + |A−|2 = |AS|2 − |AP |2
|AS|2 + |AP |2 . (42)

Here

A+ ≡ A 1
2 0 = A k′+ + B k′−, AS = A,

A− ≡ A− 1
2 0 = A k′+ − B k′−, AP = k′−

k′+
B,

a+ ≡ a 1
2 0 = a k+ + b k−, aS = a,

a− ≡ a− 1
2 0 = a k+ − b k−, aP = k−

k+
b,

(43)

where Aλ 0 (aλ 0) are helicity amplitudes for the decay Λ+
c →

Λπ+ (Λ → pπ−), and AS (aS) and AP (aP ) are the S- and
P-wave amplitudes. In addition

k′± ≡
√

(mΛc ± mΛ)2 − m2
π , (44)

k± ≡
√

(mΛ ± mp)2 − m2
π . (45)

The parameters αΛc , βΛc , and γΛc satisfy

α2
Λc

+ β2
Λc

+ γ 2
Λc

= 1. (46)

It is useful to introduce additional parameter �Λc

βΛc =
(

1 − α2
Λc

)1/2
sin �Λc ,

γΛc =
(

1 − α2
Λc

)1/2
cos �Λc .

(47)

Note that a formula similar to Eqs. (40), (41) for differen-
tial decay rate was written in Ref. [69], however the corre-
sponding equation (20) in [69] has inaccuracies or misprints.

Having a sufficient number of events of the decay Λ+
c →

Λπ+ → p π− π+, and knowing the parameter αΛ =
0.642±0.013 [65], one can use Eq. (41) for estimation of the
decay parameters αΛc , βΛc , γΛc and Λ+

c polarisation using,
for example, the method of maximum likelihood.

From the general three-dimensional angular distribution,
Eq. (41), one can obtain simpler distributions. For example,
by integrating Eq. (41) over the azimuthal angle, we get the
two-dimensional distribution

WΛ, p(cos θΛ , cos θp) = 1

4

(
1 + αΛcαΛ cos θp

+αΛcξΛc cos θΛ + αΛξΛc cos θΛ cos θp
)
.

(48)

This equation does not include parameters βΛc and γΛc and
its analysis allows one to extract the asymmetry αΛc and Λ+

c
polarisation ξΛc .

If the number of events of Λ+
c → Λπ+ → p π− π+ is

not sufficient, then for extraction of the unknown parameters
in Eq. (41) one can use one-dimensional angular distributions
which are obtained by integration of (41) over two angles. In
this way we obtain one-dimensional angular distributions in
cos θΛ, cos θp and φp,

WΛ(cos θΛ) = 1

2

(
1 + αΛc ξΛc cos θΛ

)
, (49)

Wp(cos θp) = 1

2

(
1 + αΛcαΛ cos θp

)
, (50)

Wφ(φp) = 1

2 π

(
1 + π2

4
αΛξΛc

(
γΛc cos φp − βΛc sin φp

))

= 1

2 π

(
1 + π2

4
αΛ

(
1 − α2

Λc

)1/2
ξΛc cos

(
φp + �Λc

))
.

(51)

The product αΛcξΛc can be found from the distribution in
Eq. (49) by measuring the forward–backward asymmetry of
Λ baryon in the rest frame of Λ+

c

A(Λ)
FB = FΛ − BΛ

FΛ + BΛ

= 1

2
αΛcξΛc , (52)

where

FΛ ≡
∫ 1

0
WΛ(cos θΛ) d cos θΛ,

BΛ ≡
∫ 0

−1
WΛ(cos θΛ) d cos θΛ. (53)
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The study of the distribution in Eq. (50) in the rest frame
of baryon Λ, with a known value of αΛ, will allow one to
measure the parameter αΛc . Indeed,

A(p)

FB = Fp − Bp

Fp + Bp
= 1

2
αΛcαΛ, (54)

where

Fp ≡
∫ 1

0
Wp(cos θp) d cos θp,

Bp ≡
∫ 0

−1
Wp(cos θp) d cos θp. (55)

As a result we can find the magnitude of Λ+
c polarisation

ξΛc = αΛ

A(Λ)
FB

A(p)

FB

. (56)

In order to find the remaining parameters βΛc and γΛc one
can apply the angular distribution Eq. (51) in the azimuthal
angle φp in the rest frame of Λ. For example, by measuring
the following asymmetries:

A1 ≡
⎛

⎜⎝
π/2∫

0

d φp −
3π/2∫

π/2

d φp +
2π∫

3π/2

d φp

⎞

⎟⎠Wφ(φp)

= π

2
αΛξΛcγΛc , (57)

A2 ≡
⎛

⎝
π∫

0

d φp −
2π∫

π

d φp

⎞

⎠Wφ(φp) = −π

2
αΛξΛcβΛc .

(58)

Then it follows from Eqs. (57) and (58) that

A2

A1
= −βΛc

γΛc

= − tan �Λc . (59)

Therefore by studying one-dimensional angular distribu-
tions, the information on the Λ+

c polarisation and parameters
of the decay Λ+

c → Λπ+ can be obtained.
Another way of measuring the Λ+

c polarisation in the
decay Λ+

c → Λπ+ is based on relation between polari-
sations of Λ+

c and Λ (see, e.g., [65]):

ξΛ =
(
(αΛc + nΛ · ξΛc )nΛ + βΛc [ξΛc × nΛ]

+ γΛc [nΛ × [ξΛc × nΛ]]
)

(1 + αΛcnΛ · ξΛc)
−1, (60)

where nΛ is a unit vector in the direction of the Λ hyperon,
ξΛc is polarisation of the Λ+

c in the Λ+
c rest frame. ξΛ is the

polarisation of the Λ hyperon in the Λ rest frame obtained
by a Lorentz transformation along nΛ from the Λ+

c baryon
rest frame.

Note that if time-reversal invariance is valid and final-state
interactions are ignored, then the parameter βΛc = 0.

The spin direction of Λ baryon could be determined by
measuring the decay asymmetry in the Λ rest frame through
the relation

1

N

d N

d Ω
= 1

4π

(
1 + αΛξΛ · p̂)

, (61)

where p̂ is a unit vector along the daughter-proton direction
and ξΛ is given by Eq.(60). If parameters αΛc , βΛc , and γΛc

are known, by projection of Eq. (60) on three orthogonal
axes, one can find the components of the polarisation vector
of ξΛc for each event. Thus, in this way all the information
about polarisation of Λ+

c can be obtained from the decay
of Λ baryon, without the need to refer to asymmetries or
distributions in the rest frame of the Λ+

c . Note that methods
based on relation between polarisation of parent baryon and
daughter baryon have been applied in studies of hyperon
decays (see, e.g., Refs. [70,71]).

Then using the very well measured value of αΛ = 0.642±
0.013 [65] we could achieve to obtain αΛc and ξΛc separately,
for example, using Eqs. (52) and (54). So far αΛc is measured
with less precision, αΛc = −0.91±0.15 [65]. Measuring αΛc

and ξΛc with much higher statistics data of LHCb will be very
interesting in the future. In particular, in view of results of Λb

polarisation measurement at LHCb [72], ξb = 0.06±0.07±
0.02, αb = 0.05 ± 0.17 ± 0.07, and at CMS [73], ξb =
0.00 ± 0.06 ± 0.06, αb = 0.14 ± 0.14 ± 0.10, which show
that Λb is little polarised, it is most important to measure
the Λc polarisation. In the case of Λc, the large value of αΛc

would help to measure both αΛc and ξΛc at a much higher
precision.

5.2 The case of Λc → p K π

The use of the Λc → p K π decays is also interesting
because it has the largest branching fraction, 6.23 ± 0.33 %.
E791 experiment [52] studied three main intermediate states:

Λc → [p K̄ ∗(892), Δ(1232) K , Λ(1520) π ] → p K π.

In this analysis, this decay is parametrised by 4 (2) complex
helicity amplitudes. Those are given as 8 (4) real parameters

(E1∼4, φE1∼4) for pK̄ ∗(892) channel,

(F1∼2, φF1∼2) for Δ(1232) K channel,

(H1∼2, φH1∼2) for Λ(1520) π channel.

Furthermore, the continuum background is modelled by the
S-wave amplitude which introduce another 8 real parameters.
Including the polarisation parameter ξΛc (denoted as P in the
paper [52]), a total of 25 parameters are fitted by using the
full angular and Dalitz variables.
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From the amplitude parameters, we can also obtain α for
each resonance

αK ∗ p = 0.66 ± 0.28,

αΔK = −0.67 ± 0.30,

αΛ(1520)π = −0.11 ± 0.60.

(62)

Note that we find a different value for αK ∗ p with respect
to [60]. The higher values of αK ∗ p and αΔK make the use
of these channels interesting for polarisation studies, though
the error is still too large to be able to conclude.

It would be interesting to repeat this analysis at LHCb,
which has much higher rate of the Λ+

c production. The crucial
point of this measurement lies on the value of the polarisation
of Λ+

c produced at LHCb.

6 Conclusions

Recently a new experiment for measuring the magnetic
moment of the Λc baryon using a bent crystal was pro-
posed [32,60]. Although the magnetic moment of charm
quark is a fundamental property, which enters to various QCD
computations, it has never been determined precisely. This
experimental proposal can provide us its very first measure-
ment.

The theoretical predictions of the magnetic moment of
charmed baryons suffer from the hadronic uncertainties.
These theoretical predictions are summarised in Sect. 1.
We have introduced relations among magnetic moments of
different charmed baryons, which could cancel the charm
quark mass ambiguity. We have also related the Λc magnetic
moment to the charm quark magnetic moment measurement
by the radiative quarkonium decays, using angular distribu-
tion of successive decays

ψ(2S) → χcJγ → J/ψγ,

which were performed by the CLEO and the BESIII col-
laborations. Interestingly, we observed a slight tension: the
obtained value is higher than most of the theoretical predic-
tions of the Λc magnetic moment. Further improvement of
quarkonium radiative decay is very important.

It was shown that when measuring the g-factor of Λc

directly, i.e. through spin precession, the knowledge of weak
decay parameter α and initial polarisation ξ could reduce
the data taking time needed to reach the error of Δg = 0.1.
The α parameter can be pre-measured in another experiment
which has the same experimental setting (i.e. pt and ξ ), e.g.

using SMOG system, though the statistics are limited. Alter-
natively, we may use the very high statistic data of LHCb to
extract separately α and ξ values and we can extrapolate the ξ

to the required pt range by using theory. The error on g-factor
at a few percent level could be reached after reconstructing

104 decays of deflected Λc baryons, and in this case it is more
efficient to measure g-factor and α ξ simultaneously.

We estimated the error on g-factor using these two
approaches and compared the measurement efficiencies at
two places: at LHCb detector and at momentum cleaning
area of LHC (IR3), proposed in [54]. The latter case requires
building a new dedicated detector but it would need about
7.5 times less data taking time in order to reach the same
precision.

We found a special orientation of the crystal that gives the
opportunity to measure the Λc dimensionless electric dipole
moment almost with the same precision as its g-factor. Our
calculations show that this method is about 170 times more
efficient in terms of data taking time with respect to the one
proposed in [53].

The estimated error on g-factor after 10 years of data tak-
ing using the setup of 40 mm tungsten target and germanium
crystal at LHCb and IR3 is Δg = 0.100 and Δg = 0.037,
respectively. With a slight adjustment of the crystal orienta-
tion (rotating the crystal by a few milliradians) the Λc EDM
could be measured with an error Δd = 2.6 × 10−16e cm at
LHCb and Δd = 1.0 × 10−16e cm at IR3.
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Appendix A: Quark model relations

In this Appendix we summarise expressions for the magnetic
dipole moments (MDM) of the single and double charmed
baryons in non-relativistic constituent quark model. Only
baryons with J P = 1

2
+

are considered here. Some prop-
erties of these baryons are shown in Table 4. For a review of
the charm baryons see Ref. [69].
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Table 4 Properties of the single and double charmed baryons. The anti-
symmetric and symmetric in flavour functions are defined as [q1 q2] ≡

1√
2
(q1q2 − q2q1) and {q1 q2} ≡ 1√

2
(q1q2 + q2q1), respectively. The

production cross section of baryon at the LHC fixed-target mode
(
√
s ≈ 110 GeV) and in collider conditions (

√
s = 13 TeV) – results of

Pythia simulation

Baryon Flavor SU (3) f I Iz Charm Mass (MeV) Cross section (μbarn) Life-length

content [65] Fixed target Collider or decay width

Λ+
c [ud]c 3̄ 0 0 1 2286.5 ± 0.1 10.13 758.1 60.0 ± 1.2 μm

Ξ+
c [us]c 3̄ 1

2 + 1
2 1 2467.9 ± 0.2 0.588 65.5 132.5 ± 7.8 μm

Ξ0
c [ds]c 3̄ 1

2 − 1
2 1 2470.9 ± 0.3 0.510 65.6 33.6 ± 3.6 μm

Σ++
c uuc 6 1 +1 1 2454.0 ± 0.1 0.863 42.0 1.9 ± 0.1 MeV

Σ+
c {ud}c 6 1 0 1 2452.9 ± 0.4 0.697 42.2 < 4.6 MeV

Σ0
c ddc 6 1 −1 1 2453.8 ± 0.1 0.461 41.6 1.8 ± 0.1 MeV

Ξ ′+
c {us}c 6 1

2 + 1
2 1 2578.4 ± 0.5 0.083 6.3 –

Ξ ′0
c {ds}c 6 1

2 − 1
2 1 2579.2 ± 0.5 0.072 6.6 –

Ω0
c ssc 6 0 0 1 2695.2 ± 1.7 0.028 3.0 80.3 ± 10 μm

Ξ++
cc ccu 3 1

2 + 1
2 2 3621.4 ± 0.8 < 10−4 ∼ 10−3 76.7 ± 10 μm

Ξ+
cc ccd 3 1

2 − 1
2 2 3518.9 ± 0.9 < 10−4 < 10−3 –

Ω+
cc ccs 3 0 0 2 – < 10−4 ∼ 10−3 –

In the 2nd column of Table 4 the flavour wave functions
of baryons are shown. To construct spin-flavour wave func-
tions of the baryons with total spin J = 1

2 and its projection
Jz = + 1

2 the flavour functions are to be combined with either
antisymmetric spin function

ψasym = 1√
2
(↑↓↑ − ↓↑↑), (63)

or symmetric one

ψsym = 1√
6
[2 ↑↑↓ −(↓↑ + ↑↓) ↑], (64)

with respect to interchange of particles 1 and 2.
The magnetic dipole moment of baryon B is calculated

from the definition

μB = 〈
B; 1

2 ,+ 1
2 | μ1σ1z + μ2σ2z + μ3σ3z |B; 1

2 ,+ 1
2

〉
,

(65)

where μi = gi
2

eQi
2mi

is the magnetic moment of the i-th quark.
Below we list wave functions of the baryons from SU (3) f

anti-triplet from Table 4:
∣∣∣∣Λ

+
c ; 1

2 ,+ 1
2

〉
= 1

2
(u↑d↓c↑ − u↓d↑c↑ − d↑u↓c↑ + d↓u↑c↑),

∣∣∣∣Ξ
+
c ; 1

2 ,+ 1
2

〉
= 1

2
(u↑s↓c↑ − u↓s↑c↑ − s↑u↓c↑ + s↓u↑c↑),

∣∣∣∣Ξ
0
c ; 1

2 ,+ 1
2

〉
= 1

2
(d↑s↓c↑ − d↓s↑c↑ − s↑d↓c↑ + s↓d↑c↑).

Wave functions for the SU (3) f sextet read
∣∣∣∣Σ

++
c ; 1

2 ,+ 1
2

〉
= 1√

6
(2u↑u↑c↓ − u↑u↓c↑ − u↓u↑c↑),

∣∣∣∣Σ
+
c ; 1

2 ,+ 1
2

〉
= 1

2
√

3
(2u↑d↑c↓ + 2d↑u↑c↓ − u↑d↓c↑

− d↑u↓c↑ − u↓d↑c↑ − d↓u↑c↑),
∣∣∣∣Σ

0
c ; 1

2 ,+ 1
2

〉
= 1√

6
(2d↑d↑c↓ − d↑d↓c↑ − d↓d↑c↑),

and

∣∣∣∣Ξ
′+
c ; 1

2 ,+ 1
2

〉
= 1

2
√

3

(
2u↑s↑c↓ + 2s↑u↑c↓ − u↑s↓c↑

−s↑u↓c↑ − u↓s↑c↑ − s↓u↑c↑
)
,

∣∣∣∣Ξ
′0
c ; 1

2 ,+ 1
2

〉
= 1

2
√

3

(
2d↑s↑c↓ + 2s↑d↑c↓ − d↑s↓c↑

−s↑d↓c↑ − d↓s↑c↑ − s↓d↑c↑
)
,

∣∣∣∣Ω
0
c ; 1

2 ,+ 1
2

〉
= 1√

6

(
2s↑s↑c↓ − s↑s↓c↑ − s↓s↑c↑

)
.

Finally, the double-charmed baryons from SU (3) f triplet
have wave functions
∣∣∣∣Ξ

++
cc ; 1

2 ,+ 1
2

〉
= 1√

6

(
2c↑c↑u↓ − c↑c↓u↑ − c↓c↑u↑

)
,

∣∣∣∣Ξ
+
cc; 1

2 ,+ 1
2

〉
= 1√

6

(
2c↑c↑d↓ − c↑c↓d↑ − c↓c↑d↑

)
,

∣∣∣∣Ω
+
cc; 1

2 ,+ 1
2

〉
= 1√

6

(
2c↑c↑s↓ − c↑c↓s↑ − c↓c↑s↑

)
.

123



Eur. Phys. J. C           (2020) 80:358 Page 19 of 20   358 

Table 5 MDM of charmed
baryons in terms of MDM of
constituent quarks. In the 3d
column θ+ is mixing angle for
Ξ+

c and Ξ ′+
c , and θ0 is mixing

angle for Ξ0
c and Ξ ′0

c , and
‘n.m.’ stands for ‘not modified’

Baryon MDM MDM with mixing

Λ+
c μc n.m.

Ξ+
c μc μc cos2 θ+ + 1

3 (2μu + 2μs − μc) sin2 θ+ + 1√
3
(μs − μu) sin 2θ+

Ξ0
c μc μc cos2 θ0 + 1

3 (2μd + 2μs − μc) sin2 θ0 + 1√
3
(μs − μd ) sin 2θ0

Σ++
c

1
3 (4μu − μc) n.m.

Σ+
c

1
3 (2μu + 2μd − μc) n.m.

Σ0
c

1
3 (4μd − μc) n.m.

Ξ ′+
c

1
3 (2μu + 2μs − μc) μc sin2 θ+ + 1

3 (2μu + 2μs − μc) cos2 θ+ − 1√
3
(μs − μu) sin 2θ+

Ξ ′0
c

1
3 (2μd + 2μs − μc) μc sin2 θ0 + 1

3 (2μd + 2μs − μc) cos2 θ0 − 1√
3
(μs − μd ) sin 2θ0

Ω0
c

1
3 (4μs − μc) n.m.

Ξ++
cc

1
3 (4μc − μu) n.m.

Ξ+
cc

1
3 (4μc − μd ) n.m.

Ω+
cc

1
3 (4μc − μs) n.m.

These wave functions are normalised to unity.
The magnetic moments of the charmed baryons are shown

in Table 5.
Important modification included in Table 5 is the effect

of mixing which was first addressed in [15] and studied
in detail in Refs. [28,74]. The mixing appears between the
states Ξ+

c and Ξ ′+
c , and between the states Ξ0

c and Ξ ′0
c .

According to [28], the mixing is of little importance for
the neutral baryons Ξ0

c and Ξ ′0
c , while it is essential for

the charged ones Ξ+
c and Ξ ′+

c . This is related to different
magnitude of the transition operators in Table 5, namely

1√
3
|μs − μu | � 1√

3
|μs − μd |. The transition magnetic

moments between Ξ+
c and Ξ ′+

c , and between Ξ0
c and Ξ ′0

c
are

μΞ ′+
c →Ξ+

c
= 1√

3
(μs − μu) cos 2θ+

+1

3
(μu + μs − 2μc) sin 2θ+, (66)

μΞ ′0
c →Ξ0

c
= 1√

3
(μs − μd) cos 2θ0

+1

3
(μd + μs − 2μc) sin 2θ0, (67)

and one also finds that |μΞ ′+
c →Ξ+

c
| � |μΞ ′0

c →Ξ0
c
|. The mix-

ing for the baryons Ξ+
c and Ξ ′+

c may complicate interpreta-
tion of Ξ+

c MDM as being entirely due to the charm quark.

Appendix B: Taking into account the uncertainties of α j ,
ξ and γ

By measuring the slopes of the angular distributions of Λc

decay products (22) and considering (21), (26) and (27) one
can obtain the following parameter (observable)

α j ξx ω

(
1 + γ

g − 2

2

)
≡ b, (68)

that has a Gaussian probability density function (PDF) with
the standard deviation

Δb =
√

3

N
, (69)

and the central value

b = α j ξ ω

(
1 + γ

g − 2

2

)
, (70)

where α j , ξ and γ are the central values of α j , ξ and γ ,
and g is the expected value of g-factor. Here we assumed
that the expected value of precession angle φ is small (see
Table 1). From Eq. (68) one can express g-factor as a function
of known parameters and the observable

g(α j , ξ, γ, b) = 2 + 2

γ

(
b

α j ξ ω
− 1

)
. (71)

The PDF of g-factor can be calculated as an integral of the
delta function with PDFs of input parameters and the observ-
able

dN

dg
=

1∫

−1

dα

1∫

−1

dξ

∫
dγ

∫
db

dN

dα

dN

dξ

dN

dγ

dN

db
×

× δ (g(α, ξ, γ, b) − g) (72)

and finally the uncertainty of g-factor can be estimated in the
following way

Δg = g2 − g1

2
, (73)
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where the values g1 and g2 correspond to the cumulative
distribution function values N (g1) = 0.159 and N (g2) =
0.841.
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