Kaons at LHCb

Francesco Dettori on behalf of the LHCb Collaboration

Università degli Studi di Cagliari and INFN Cagliari

International Conference on Kaon Physics 2019 10-13 September 2019 University of Perugia (Italy)

F. Dettori

LHCb experiment

i.

i angli

CINEN HICK

LHCb experiment

- 1250 members, from 79 institutes in 18 countries
- Dedicated experiment for precision measurements of CP violation and rare decays
- Beautiful, charming, strange physics program

- pp collisions at $\sqrt{s} = 7, 8(13)$ TeV in Run 1 (Run 2)
- $b\bar{b}$ quark pairs produced correlated in the forward region

li Cagliari

• Luminosity leveled at $4 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$

LHCb detector

[Int. J. Mod. Phys. A 30, 1530022 (2015)]

F. Dettori

Introduction: production

- Huge strange hadrons production cross-section at LHCb
- Production of particles in a minimum bias event within the geometric acceptance (400 mrad)
- About 1 strange hadron per event (compared to $\sim 10^{-3} B_s^0$ mesons)
- Reconstruction and trigger however bring this number down

Ur

F. Dettori

Introduction: setting the (long) stage Reconstruction

- Large lifetimes for LHCb... but the peak of an exponential is at zero!
- Different reconstruction methods for the daughter tracks

THEP

LHCb Run 1 data-taking

- LHCb trigger designed for heavy flavours
- Muon (hadron) L0 trigger require $p_{\rm T} > [1 - 5] {\rm GeV}$
- Too hard for primary strange hadrons
- Hlt1 and Hlt2 are software and customizable
- No dedicated triggers in 2011, added a $K_S^0 \to \mu^+ \mu^-$ dedicated trigger in 2012
- Several generic (topological) triggers allowed good efficiencies
- Typical events contain more than one strange hadron
- \Rightarrow Strange physics Run 1 analyses mostly based on data triggered by the rest of the event (TIS)

Strange physics at LHCb with Run 1

Despite trigger and detector not designed for it

- World best limit on $K_S^0 \rightarrow \mu^+ \mu^-$ EPJ.C, 77 10(2017)678 (See Miguel's talk in "hot topics" session for the Run 2 update)
- Evidence for the Σ⁺ → pμ⁺μ⁻ decay and measurement of the branching fraction, challenging to the HyperCP anomaly PRL 120, 221803 (See my other talk for details)

LHCb Run 2 data-taking

LHCb Upgrade data-taking

F. Dettori

Kaons at LHCb

- Upgraded detector for 40 MHz full readout
- $\mathcal{L} = 2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$ $\Rightarrow \text{ about 5 fb}^{-1} \text{ per year}$
- L0 hardware trigger is removed from Run 3
- Hlt1 run directly on collision data

Fundamental step forward for strange physics!

Future Upgrades

KAON2019 11/22

LHCP

Sensitivity to $K_S^0 \to \pi^0 \mu^+ \mu^-$

- $K_{\rm L}^0 \to \pi^0 \mu^+ \mu^-$ very sensitive to physics beyond the SM, e.g. extra-dimensions [M. Bauer et al. JHEP 09(2010)017]
- SM prediction with large uncertainty $\mathcal{B}_{SM}(K^0_{\rm L} \to \pi^0 \mu^+ \mu^-) = \{1.4 \pm 0.3, 0.9 \pm 0.2\} \times 10^{-11}$
- Limited by knowledge of ChPT parameter $|a_S|$ extracted from $K^0_S\to\pi^0\mu^+\mu^-$ branching fraction
- $\mathcal{B}(K_S^0 \to \pi^0 \mu^+ \mu^-) = (2.9^{+1.5}_{-1.2} \pm 0.2) \times 10^{-9}$ measured by NA48 Collaboration [J.R. Batley et al. PLB599 (2011) 197]

Sensitivity to $K_S^0 \to \pi^0 \mu^+ \mu^-$

- Studied sensitivity of LHCb to this channel in Run 2 and Upgrade scenarios
- Difficult reconstruction due to soft π^0
- π^0 reconstruction non essential as constrained by very low q-value
- Double strategy: without π^0 (Partial) and with π^0 reconstructed from γ pairs
- Combinatorial background estimated with real data TIS events
- Peaking backgrounds studied with MC: none found to contribute in LHCb
- Statistical uncertainty on $\mathcal{B}(K_S^0 \to \pi^0 \mu^+ \mu^-)$ as a function of luminosity times trigger efficiency
- LHCb will be competitive with NA48 for trigger efficiencies of $\sim 50\%$ or larger

$K^0 \to \ell^+ \ell^- \ell^+ \ell^-$

- $K^0\to\ell^+\ell^-\ell^+\ell^-$ short distance sensitive to NP , dominated by the long distance contribution uncertainty
- Interference of $\mathcal{A}(K_S^0 \to \ell^+ \ell^- \ell^+ \ell^-)$ and $\mathcal{A}(K_L^0 \to \ell^+ \ell^- \ell^+ \ell^-)$ would give a measurement of the sign of $\mathcal{A}(K_L^0 \to \gamma\gamma)$ which is a stringent test of CKM [D'Ambrosio et al EPJC73(2013)2678] [Isidori, Unterdorfer JHEP 0401 (2004) 009]
- $K^0_L \to \ell^+ \ell^- \ell^+ \ell^-$ studied by different experiments but no experimental constraints on K^0_S modes

$$\begin{split} \mathcal{B}(K^0_S \to e^+ e^- e^+ e^-) &\sim 10^{-10} \\ \mathcal{B}(K^0_S \to \mu^+ \mu^- e^+ e^-) &\sim 10^{-11} \\ \mathcal{B}(K^0_S \to \mu^+ \mu^- \mu^+ \mu^-) &\sim 10^{-14} \end{split}$$

• Sensitive to NP at same order of SM

F. Dettori

Sensitivity to $K_S^0 \to \pi^+ \pi^- e^+ e^-$

- $K_S^0 \to \pi^+ \pi^- e^+ e^-$ is a proxy channel for $K_S^0 \to \ell^+ \ell^- \ell^+ \ell^-$
- Sensitivity study at LHCb with MC
- $\varepsilon \sim 0.2\%$, limited by L0 trigger
- $\mathcal{B}(K_S^0 \to \pi^+ \pi^- e^+ e^-) = (4.79 \pm 0.15) \times 10^{-5}$

With Run 1 conditions expected $N = 120^{+280}_{-100}$ events per fb⁻¹ of 8 TeV data on top of about $3 \cdot 10^3$ background events. No multivariate selection applied.

- Dedicated Hlt2 trigger line deployed in Run 2, still limited by Hlt1 and L0
- Upgrade trigger will improve the efficiency on this and related channels sensibly
- In the ideal scenario of $\sim 100\%$ w.r.t. offline selection

$$N_{exp} = 5 \cdot 10^4 \text{ per fb}^{-1}$$

- Similar efficiencies are expected for the $K_S^0 \to \ell^+ \ell^- \ell^+ \ell^-$ rare channels
- Single event sensitivities of order $9.6 \cdot 10^{-10}$ per each fb⁻¹ in Upgrade conditions

😡 Università degli Studi di Cagliari 🛛 🕅

A glimpse into LHCb possibilities

- Dedicated paper with some of us + theorists to explore future possibilities
- Approximate simulations (validated on published ones) to get sensitivities
- Countless channels to be probed

Channel	\mathcal{R}	ϵ_L	ϵ_D	$\sigma_L ({\rm MeV}/c^2)$	$\sigma_D (\text{MeV}/c^2)$	$\mathbf{R} = \operatorname{ratio} \operatorname{of}$
$K_S^0 \rightarrow \mu^+ \mu^-$	1	1.0(1.0)	1.8(1.8)	~ 3.0	~ 8.0	1
$K_S^0 \rightarrow \pi^+ \pi^-$	1	1.1(0.30)	1.9(0.91)	~ 2.5	~ 7.0	production
$K_S^0 \rightarrow \pi^0 \mu^+ \mu^-$	1	0.93(0.93)	1.5(1.5)	~ 35	~ 45	$\epsilon = ratio of$
$K_S^0 \rightarrow \gamma \mu^+ \mu^-$	1	0.85(0.85)	1.4(1.4)	~ 60	~ 60	$\epsilon = 1atio or$
$K_s^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$	1	0.37(0.37)	1.1(1.1)	~ 1.0	~ 6.0	efficiencies
$K_L^0 \rightarrow \mu^+ \mu^-$	~ 1	$2.7 (2.7) \times 10^{-3}$	0.014(0.014)	~ 3.0	~ 7.0	
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	~ 2	$9.0 (0.75) \times 10^{-3}$	$41 (8.6) \times 10^{-3}$	~ 1.0	~ 4.0	
$K^+ \rightarrow \pi^+ \mu^+ \mu^-$	~ 2	6.3 (2.3) $\times 10^{-3}$	0.030(0.014)	~ 1.5	~ 4.5	
$\Sigma^+ \rightarrow p \mu^+ \mu^-$	~ 0.13	0.28(0.28)	0.64(0.64)	~ 1.0	~ 3.0	
$\Lambda \rightarrow p\pi^-$	~ 0.45	0.41(0.075)	1.3(0.39)	~ 1.5	~ 5.0	
$\Lambda \rightarrow p \mu^- \bar{\nu_{\mu}}$	~ 0.45	0.32(0.31)	0.88(0.86)	-	-	
$\Xi^- \rightarrow \Lambda \mu^- \bar{\nu_{\mu}}$	~ 0.04	$39(5.7) \times 10^{-3}$	0.27(0.09)	-	-	
$\Xi^- \rightarrow \Sigma^0 \mu^- \bar{\nu_{\mu}}$	~ 0.03	$24 (4.9) \times 10^{-3}$	0.21(0.068)	-	-	
$\Xi^- \rightarrow p\pi^-\pi^-$	~ 0.03	0.41(0.05)	0.94(0.20)	~ 3.0	~ 9.0	
$\Xi^0 \rightarrow p\pi^-$	~ 0.03	1.0(0.48)	2.0(1.3)	~ 5.0	~ 10	
$\Omega^- \rightarrow \Lambda \pi^-$	~ 0.001	95 (6.7) $\times 10^{-3}$	0.32(0.10)	~ 7.0	~ 20	
Channel	\mathcal{R}	ϵ_L	ϵ_D	$\sigma_L(\text{MeV}/c^2)$	$\sigma_D({\rm MeV}/c^2)$	
$K_S^0 \rightarrow \pi^+\pi^- e^+ e^-$	1	1.0(0.18)	2.83(1.1)	~ 2.0	~ 10	-
$K_s^0 \rightarrow \mu^+ \mu^- e^+ e^-$	1	1.18(0.48)	2.93(1.4)	~ 2.0	~ 11	
$K^+ \rightarrow \pi^+ e^- e^+$	~ 2	0.04(0.01)	0.17(0.06)	~ 3.0	~ 13	
$\Sigma^+ \rightarrow p e^+ e^-$	~ 0.13	1.76(0.56)	3.2(1.3)	~ 3.5	~ 11	
$\Lambda \rightarrow p\pi^- e^+ e^-$	~ 0.45	$< 2.2 \times 10^{-4} \sim 1$	$7 (< 2.2) \times 10^{-4}$	-	-	
Channel	\mathcal{R}	ϵ_L	$\epsilon_D = \sigma_L$ (Me	V/c^2) σ_D (Me	V/c^2)	
$K_S^0 \rightarrow \mu^+ e^-$	1 1	.0 (0.84) 1.5	$i(1.3) \sim 3$	$3.0 \sim 8$	3.0	
$K_L^0 \rightarrow \mu^+ e^-$	1 3.1 ($(2.6) \times 10^{-3}$ 13 (11)	1) $\times 10^{-3}$ ~ 3	$3.0 \qquad {60} \sim 7$.0	
$K^+ \to \pi^+ \mu^+ e^-$	~ 2 3.1 ($1.1) \times 10^{-3}$ 16 (8.	$(5) \times 10^{-3} \sim 2$	2.0 🥨 Un	iversità deg	li Studi di Cagliari

F. Dettori

Prospects for charged kaons

- Enormous K^+ production but small acceptance
- Run 1 has 1 M $K^+ \rightarrow \pi^+ \pi^- \pi^+$ fully TIS
- Measurement of the charged kaon mass is under way to solve long standing disagreement
- With full software trigger $O(10^{-10})$ single event sensitivity per fb⁻¹ obtainable

Prospects for LFV modes

• Tests of lepton flavour violation are always important SM null tests

• Limits on kaon LFV are stringent but decades old

$$\mathcal{B}(K_L \to e^{\pm}\mu^{\mp}) < 4.7 \times 10^{-12} \qquad \mathcal{B}(K_L \to \pi^0 e^{\pm}\mu^{\mp}) < 7.6 \times 10^{-11}$$
[E871 PRL81,5734]

$$\mathcal{B}(K^+ \to \pi^+ e^{-}\mu^+) < 1.3 \times 10^{-11} \qquad \mathcal{B}(K^+ \to \pi^+ e^{+}\mu^{-}) < 5.2 \times 10^{-10} ,$$
[Sher et al. PRD 72, 012005]
[Appel et al. PRL85, 2877]

• Using B-physics LFU constraints, branching fractions of order 10^{-13} can be predicted for K_S LFV decays [Borsato et al. PRD 99, 055017 (2019)]

F. Dettori

Prospects for LFV modes

- Electron reconstruction in LHCb is more difficult than muon due to bremsstrahlung and lower trigger efficiency
- Preliminary estimates of prospects [Borsato et al. PRD 99, 055017 (2019)] [Alves et al. JHEP05(2019)048]
- LHCb could improve limits and maybe touch the 10⁻¹³ region with full Upgrade (2030s)
- Detailed full simulation studies are however not there yet

Università degli Studi di Cagliari

LHCD

A quick word on hyperons

LHCb can probe different hyperons and decays

- Σ^+ : Besides the $\Sigma^+ \to p\mu^+\mu^-$, LHCb could improve the $\Sigma^+ \to p\gamma$ and try to access the $\Sigma^+ \to pe^+e^-$ decay
- Λ
 - * LHCb could improve the $\Lambda\to p\pi\gamma$ branching fraction and try to access $\Lambda\to p\pi e^+e^-$
 - * Large number of BNV / LFV decays constrained by the CLAS collaboration [CLAS PRD.92.072002] could be also tested and improved
- For higher S number baryons LHCb could test $\Delta S = 2$ processes, such as $\Xi^0 \to p\pi$ and $\Omega \to \Lambda \pi$ improving limits by orders of magnitude

See also Alexandre's talk in the "hyperon" session.

F. Dettori

KAON2019 20/22

Summary and conclusions

- LHCb expanding its physics reach towards strange physics complementary to the core program
- Encouraging Run 1 results on $K_S^0 \to \mu^+ \mu^-$ and $\Sigma^+ \to p \mu^+ \mu^-$
- Large samples available already on tape fully exploiting existing data
- LHCb major player for K_S^0 and hyperons rare decays
- Complementary to $K_{\rm L}^0$ and K^+ dedicated experiments
- Run 2 giving new results with improved trigger
- Upgrade trigger will allow unprecedented sensitivities on many channels

Bibliography

LHCb Collaboration

Papers

- Evidence for the rare decay $\Sigma^+ \rightarrow p \mu^+ \mu^-$ [Phys. Rev. Lett. 120, 221803 (2018)] [LHCb-PAPER-2017-049] [hep-ex/1712.08606]
- Improved limit on the branching fraction of the rare decay $K_S^0 \rightarrow \mu^+\mu^-$ [LHCb-PAPER-2017-009] [hep-ex/1706.00758] [Eur. Phys. J. C, 77 10 (2017) 678]
- Search for the CP-violating strong decays $\eta \rightarrow \pi^+\pi^-$ and $\eta' \rightarrow \pi^+\pi^-$ [LHCb-PAPER-2016-046] [hep-ex/1610.03666] [Physics Letters B 764 (2017) 233-240]
- Search for the rare decay $K^0_S \to \mu^+\mu^-$ [LHCb-paper-2012-023] [hep-ex/1209.4029] [JHEP 01 (2013) 090] Public notes
- Physics case for an LHCb Upgrade II [LHCB-PUB-2018-009][arXiv/1808.08865]
- Low p_T dimuon triggers at LHCb in Run 2 [LHCb-PUB-2017-023]
- Sensitivity of LHCb and its upgrade in the measurement of $\mathcal{B}(K_S^0 \to \pi^0 \mu^+ \mu^-)$ [LHCb-PUB-2016-017]
- Feasibility study of $K^0_S \to \pi^+\pi^- e^+ e^-$ at LHCb [LHCb-PUB-2016-016]

Others

- Alves A. A. et al. "Prospects for Measurements with Strange Hadrons at LHCb" [JHEP05(2019)048]
- Borsato et al. "The strange side of LHCb" [Phys. Rev. D 99, 055017 (2019)]

F. Dettori

Backup

F. Dettori

Kaons at LHCb

KAON2019 23/22

Search for CP violating strong decays $\eta^{(\prime)} \to \pi^+ \pi^-$

- QCD should violate CP symmetry (with a term $\mathcal{L}_{\theta} = -\frac{\theta}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu}F_{\rho\sigma}$) but none is observed experimentally
- $\theta < 10^{-10}$ from neutron electric dipole moment (strong CP problem)
- $\eta^{(\prime)} \to \pi^+ \pi^-$ would be strong CP violating decays
- nEDM limit constraints SM branching fractions to $<3\cdot10^{-17}$ any evidence higher than this would be NP
- Best limits at 90% CL $\mathcal{B}(\eta \to \pi^+\pi^-) < 1.3 \cdot 10^{-5} (\text{KLOE } \phi \to \eta \gamma \text{ [PLB606 (2005) 276]})$ $\mathcal{B}(\eta' \to \pi^+\pi^-) < 5.5 \cdot 10^{-5} (\text{BESIII } J/\psi \to \gamma \pi^+\pi^- \text{ [PRD84(2011)032006]})$

🔢 Università degli Studi di Cagliari 🛛 🕼

Search for CP violating strong decays $\eta' \to \pi^+ \pi^-$

- LHCb strategy: look for peaks in $\pi\pi$ mass from $D^+_{(s)} \to \pi^+\pi^-\pi^+$ decays (i.e. $D^+_{(s)} \to \pi^+\eta^{(\prime)}$)
- MVA operator to reduce background
- Normalisation: $\mathcal{B}(\eta^{(\prime)} \to \pi^+\pi^-) = \frac{N_{\eta^{(\prime)}}}{N_{D_{(s)}^+ \to \pi^+\pi^-\pi^+}} \frac{1}{\varepsilon_{\eta^{(\prime)}}} \frac{\mathcal{B}(D_{(s)}^+ \to \pi^+\pi^{-}\pi^+)}{\mathcal{B}(D_{(s)}^+ \to \pi^+\eta^{(\prime)})}$
- Constrained D masses and origin vertex improves resolution significantly
- $\varepsilon_{n^{(\prime)}}$ small correction to efficiency versus $m_{\pi\pi}$
- 3 fb^{-1} of Run 1 and 0.3 fb^{-1} of Run 2 data from Turbo stream
- Run 2 contribution enhanced by larger cross-section and trigger efficiency

Search for CP violating strong decays $\eta' \to \pi^+ \pi^-$

- No excess on top of the background (signal phase space plus combinatorial)
- Upper limit on branching fractions with CLs method at 90% CL:

$$\mathcal{B}(\eta \to \pi^+ \pi^-) < 1.6 \cdot 10^{-5}$$

 $\mathcal{B}(\eta' \to \pi^+ \pi^-) < 1.8 \cdot 10^{-5}$

• η limit compatible with previous results, η' limit improved by factor three

Kaon physics from ϕ decays

- Huge ϕ production at LHC
- Exploit $\phi \to K^+K^-$ decays in which one of the kaons is fully reconstructed
- Study final state of second kaon, also partially reconstructed thanks to the ϕ constraint
- $O(10^{10})$ tagged $\phi \to KK$ decays per year in the upgrade *
- For example study $K^+ \to e\nu$ (tag also initial Kaon leg with RICH1)

*See talk by Vava Gligorov, Rare'n'Strange workshop-https://indico.cern.ch/event/590880/

F. Dettori