Evidence for the $\Sigma^+ \to p \mu^+ \mu^-$ decay at LHCb

Francesco Dettori On behalf of the LHCb Collaboration

Università degli Studi di Cagliari and INFN Cagliari

International Conference on Kaon Physics 2019 10-13 September 2019 University of Perugia (Italy)

Introduction $\Sigma^+ \to p \mu^+ \mu^- \text{ in the Standard Model}$

- $\Sigma^+ \to p \mu^+ \mu^-$ is a very rare FCNC
- Short distance SM branching fraction is $O(10^{-12})$
- Dominated by long distance contributions: $1.2 \cdot 10^{-8} < \mathcal{B}(\Sigma^+ \rightarrow p\mu^+\mu^-) < 10.2 \cdot 10^{-8}$

[Xiao-Gang He et al. - Phys.Rev. D72 (2005) 074003] [Xiao-Gang He et al. - JHEP 1810 (2018) 040]

The HyperCP anomaly

- Evidence found by the HyperCP experiment with 3 events in absence of background
- Measured branching fraction: $\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (8.6^{+6.6}_{-5.4} \pm 5.5) \cdot 10^{-8}$ [Phys.Rev.Lett. 94 (2005) 021801]
- All the **3** observed signal events have the same dimuon invariant mass: pointing towards a $\Sigma^+ \rightarrow pX^0(\rightarrow \mu\mu)$ decay with $m_{X^0} = 214.3 \pm 0.5 \text{ MeV}$ $\mathcal{B}(\Sigma^+ \rightarrow pX^0(\rightarrow \mu\mu)) = (3.1^{+2.4}_{-1.9} \pm 5.5) \cdot 10^{-8}$

KAON2019 3/21

Evidence for the $\Sigma^+ \to p\mu^+\mu^-$ decay at LHCb

F. Dettori

Theoretical interpretations and experimental tests before LHCb

- Several interpretations were proposed
 - * Light Higgs boson [He, Tandean Valencia, PRL.98.081802 (2007)]
 - * Sgoldstino [Gorbunov, Rubakov PRD 73 035002]
 - * Many others
 - * In general pseudoscalar favoured over scalar and lifetime of order 10^{-14} s
- Many experimental searches for low mass resonances in dimuons:
 - * CLEO, E391a, D0, BaBar, Belle, KTeV, BESIII
 - * Searched also at LHCb in $B^0 \to \mu^+ \mu^- \mu^+ \mu^-$ and $B^0 \to K^{*0} \mu^+ \mu^-$
 - * X^0 particle not confirmed
- No other search for $\Sigma^+ \to p \mu^+ \mu^-$ decays

Search for $\Sigma^+ \to p \mu^+ \mu^-$ at LHCb

- Based on full Run 1 data: 3 fb^{-1}
- Presented preliminary results at KAON2016 (LHCb-CONF-2016-013)
- Since then: added branching fraction measurement
- Slightly different working point: tighter PID and Λ veto, and looser BDT cut, following PRL review requests
- Detailed scan of the $m_{\mu^+\mu^-}$ invariant mass and limit on "HyperCP-like" signal

LHCb experiment

[Int. J. Mod. Phys. A 30, 1530022 (2015)]

F. Dettori

Evidence for the $\Sigma^+ \rightarrow p \mu^+ \mu^-$ decay at LHCb

Introduction: production at the LHC

- Huge production of Σ^+ hyperons
- About 1 in 10 min bias events has one in acceptance (compared to $\sim 10^{-3} B_s^0$ mesons)
- Reconstruction and trigger however bring this number down

F. Dettori

Introduction: setting the (long) stage Reconstruction

- Large lifetimes for LHCb... but the peak of an exponential is at zero!
- Different reconstruction methods for the daughter tracks

THEP

General analysis strategy

Sample and selection:

- Search with 3 fb⁻¹ (full Run 1)
- Prompt decays (no displacement of the dimuon pair)
- Soft pre-selection to reduce dataset
- Cut on BDT and PID to remove most of the background
- Explicit veto of $\Lambda \to p\pi$ background, no other peaking background contributes

Università degli Studi di Cagliari

9/21KAON2019

Search for an Hyper-CP like signal

- Hyper-CP signal is consistent with $\Sigma^+ \to pX^0(\to \mu\mu)$, with $m_{X^0} = 214.3 \pm 0.5$ MeV
- Mass resolution in LHCb:
 - * Raises with $m_{\mu^+\mu^-}$ departing from threshold
- Study efficiency versus $m_{\mu^+\mu^-}$: higher efficiency at small mass due to higher minimum p_T

THEP

10/21

Normalisation

- No fully charged final state available in the Σ^+ to normalize
- Use high branching fraction $\Sigma^+ \to p \pi^0 \ (\mathcal{B} = (51.57 \pm 0.30)\%)$
- Trigger strategy: use all the events for signal and TIS-only for normalisation channel

$$\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = \frac{\varepsilon_{\Sigma^+ \to p\pi^0}}{\varepsilon_{\Sigma^+ \to p\mu^+\mu^-}} \frac{\mathcal{B}(\Sigma^+ \to p\pi^0)}{N_{\Sigma^+ \to p\pi^0}} N_{\Sigma^+ \to p\mu^+\mu^-}$$
$$= \alpha N_{\Sigma^+ \to p\mu^+\mu^-}$$

Estimate of the $\Sigma^+ \to p\pi^0$ yield

- Selection for $\Sigma^+ \to p\pi^0$ with $\pi^0 \to \gamma\gamma$ (resolved clusters) from calorimeter
- $\Sigma^+ \to p \pi^0$ described as Crystal Ball function
- Background as modified Argus function
- Observed $(1171 \pm 9) \times 10^3$ candidates

Corrected mass:

$$m_{\Sigma}^{\rm corr} = m_{p\gamma\gamma} - m_{\gamma\gamma} + m_{\pi^0}$$

Università degli Studi di Cagliari

THEP

Normalisation: trigger efficiency ratio calibration

- Signal trigger efficiency measured on simulation
- Data / simulation differences calibrated with control channel using TISTOS method*
- Triggered events can be
 - * Triggered On the Signal (TOS): signal is sufficient to trigger
 - * Triggered Independently of the Signal (TIS): signal is not necessary to trigger
 - \star Triggered on both (!TIS&!TOS): measure efficiencies from this overlap
- Large fraction of TIS events: common efficiency between signal and calibration
- Calibration versus multiplicity
- Large systematic uncertainty

All events

Normalisation: calibration and systematics

- Reconstruction of the π^0 calibrated with ratio of ratio of $B^+ \to J/\psi K^{*+}$ and $B^+ \to J/\psi K^+$ decays reconstructed in data.
- Muon and proton PID calibrated with control channels in data ($\Lambda \rightarrow p\pi^{-}$ and J/ψ : large uncertainty for soft momenta
- BDT operator calibrated with $K^+ \to \pi^+ \pi^- \pi^+$ channel in data
- Signal invariant mass distribution: calibrated with $K^+ \to \pi^+ \pi^- \pi^+$ in data

Normalisation

• For full Run 1 dataset, single event sensitivity $\alpha = (2.2 \pm 1.2) \times 10^{-9}$

- Correspondent to 23 ± 20 expected events with a typical SM BR $((5\pm4)\times10^{-8}$

Source	Uncertainty
Selection efficiency	1%
BDT efficiency	6%
PID efficiency ratio	28%
π^0 efficiency	10%
Trigger efficiency ratio	40%
Total	50%

Results

- Excess of events w.r.t. background with a significance of $4.1\,\sigma$
- Fitted signal yield: 10.2 + 3.9 3.5
- Measured branching fraction $(2.2 + 0.9 + 1.5)_{-0.8 1.1} \times 10^{-8}$

PRL 120, 221803

arXiv:1712.08606

Results

Crosschecks:

- Fit repeated with tighter or looser BDT and PID cuts: signal vary consistently with signal efficiency
- Fit repeated assuming a linear function for the background, yield and significance are stable
- Candidate in final sample are about 52%/48% $\Sigma/\bar{\Sigma}$

F. Dettori

THEP

🕼 Università degli Studi di Cagliari 🛛 🕼

Search for an HyperCP-like signal

- Fit to $m_{p\mu^+\mu^-}$ repeated restricting the sample to events within 1.5 times the resolution from the putative particle $(m_{\mu^+\mu^-} \in [214.3 \pm 0.75] \text{MeV}/c^2)$.
- No significant signal is found and a yield of $3.0^{+1.7}_{-1.4}$ is measured
- An upper limit on the branching fraction of the resonant channel is thus set with the CLS method $\mathcal{B}(\Sigma^+ \to pX^0(\to \mu^+\mu^-)) < 1.4 \times 10^{-8} \text{ at } 90\%$ CL excluding the HyperCP result (3.1×10^{-8})
- S-weighted background subtracted $m_{\mu^+\mu^-}$ distribution:

Scan of the invariant mass distribution

- Consider events within $2\sigma_{p\mu\mu}$, search for peaks in $m_{\mu^+\mu^-}$
- Scan in steps of half the resolution on $\sigma(m_{\mu^+\mu^-})^{\dagger}$
- Putative signal is estimated in a window of $\pm 1.5 \times \sigma(m_{\mu^+\mu^-})$
- Background from the sidebands
- Local p-values does not show any significant signal

Prospects with Run 2

- Dedicated HLT1 and HLT2 triggers implemented in Run 2: factor 10 improvement in efficiency
- Additional factor 10 in statistics (lumi and cross-section)
- LHCb can observe and measure with good precision the $\Sigma^+\to p\mu^+\mu^-$ branching fraction with Run 2
- Additional observables might become available [Xiao-Gang He et al. JHEP 1810 (2018)
 040]
 - * Forward backward asymmetry
 - * Differential branching fraction
 - * Direct CP violation: first time in Σ baryons!
- Upgrade data will move this to a precision observable rather than a search

Conclusions

- LHCb first in testing HyperCP-anomaly on $\Sigma^+ \to p \mu^+ \mu^-$
- Improved results with respect to preliminary:
 - * Strong evidence for the $\Sigma^+ \to p\mu^+\mu^-$ decay
 - * Measurement of branching fraction
 - * No peak in the dimuon mass distribution
 - * Upper limit excluding HyperCP result
- Prospect for Run 2 include possible observation and new observables

Exciting times are ahead!

Backup

F. Dettori

LHCb