

Development of the Compact Processing Module for the ATLAS Tile Calorimeter Phase-II Upgrade

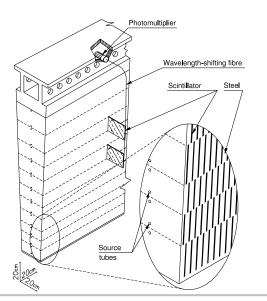
Fernando Carrió Argos Instituto de Física Corpuscular (CSIC-UV) on behalf of the ATLAS Tile Calorimeter System

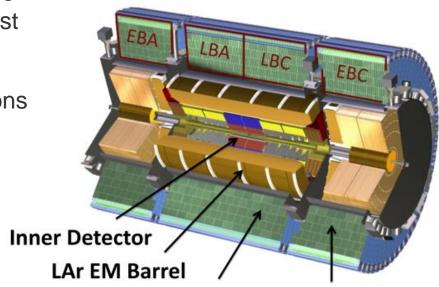
September 5th 2019

Work supported by the Spanish Ministry of Science and the European Regional Development Funds - FPA2015-65652-C4-2-R

OUTLINE

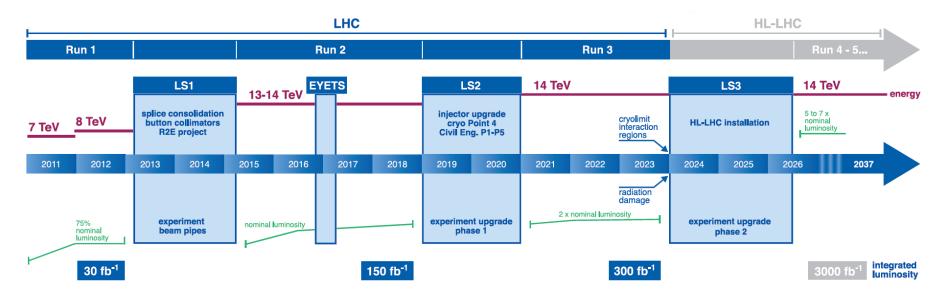
- INTRODUCTION
 - TILE CALORIMETER
 - PHASE II UPGRADE
- TILE PPR DEMONSTRATOR
 - HARDWARE AND FIRMWARE
 - TEST BEAM CAMPAIGNS
- COMPACT PROCESSING MODULE
 - HARDWARE AND PCB LAYOUT
 - ATCA CARRIER BOARD
 - FUTURE PLANS
- SUMMARY




INTRODUCTION

ATLAS Tile Calorimeter

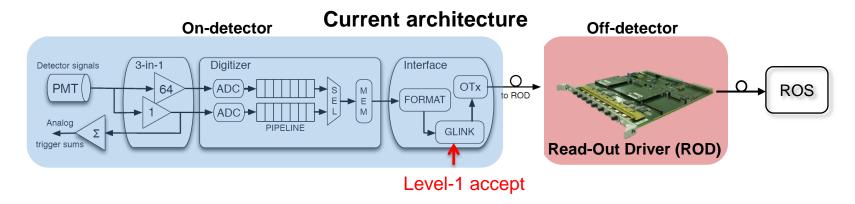
- Segmented calorimeter made of steel plates and plastic scintillator tiles covering the most central region of the ATLAS experiment
- Measures energies of hadrons, jets, τ -leptons and E_T^{miss}
- 4 partitions: EBA, LBA, LBC, EBC
- Each partition has 64 modules
 - One drawer hosts up to 48 PMTs

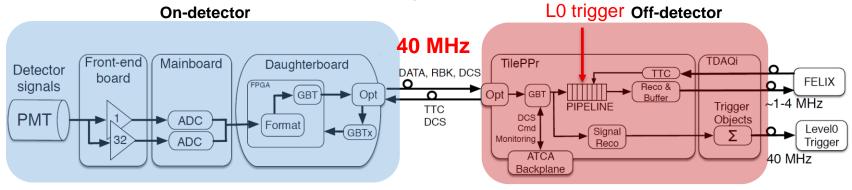


Tile Barrel Tile Extended Barrel

- Light produced by a charged particle passing through a plastic scintillating tile is transmitted to the PMTs
- Scintillator tiles are read out using wavelength shifting fibers coupled to PMTs
- Around 10,000 readout channels

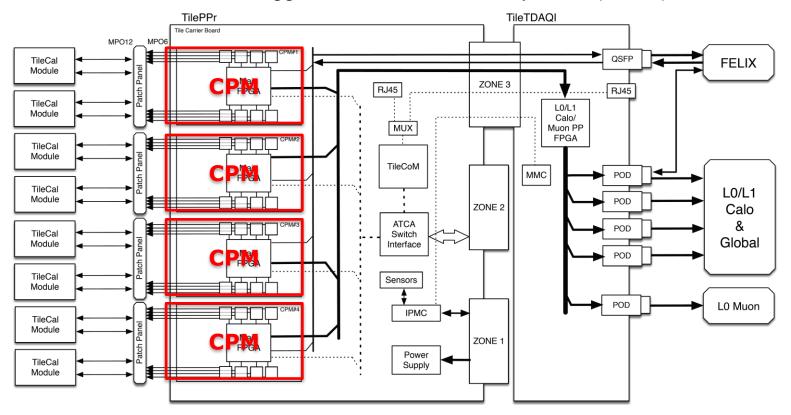
High Luminosity-LHC




- LHC plans to increase the instantaneous luminosity by a factor 5-7 around 2026→ High Luminosity-LHC
 - Expected number of collision per bunch crossing will increase up to 200
 - New Trigger and Data AcQuisition architecture with full granularity and digital inputs
- TileCal: Major replacement of on-detector and off-detector readout electronics
 - Aging of electronics due to time and radiation
 - Current readout system will not be compatible with the upgraded TDAQ architecture
 - Other detector elements as scintillators or PMTs will be kept

TileCal Phase II Upgrade

Phase II Upgrade architecture

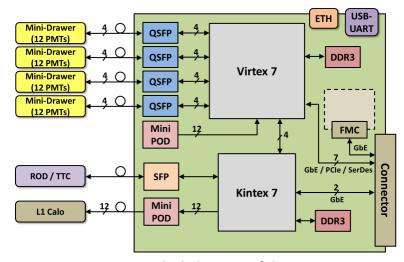

New readout strategy for HL-LHC

- On-detector electronics will transmit full digital data to the off-electronics at the LHC frequency → 40 Tbps to read out the entire detector and ~6,000 optical fibres
- Buffer pipelines are moved to off-detector electronics
- Redundancy in data links and power distribution → improve system reliability

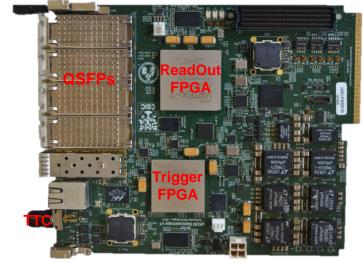
Phase II off-detector electronics - PreProcessor

- Tile PreProcessor is the core element of the off-detector electronics
 - Data processing and handling from on-detector electronics
 - Clock and DCS distribution towards the TileCal modules
 - Interface with the ATLAS trigger and ATLAS readout systems (FELIX)

- 32 TilePPr boards in ATCA format: ATCA carrier + 4 Compact Processing Modules
- 32 TileTDAQ-I: Interfaces with L0Calo, Global, L0Muon and FELIX system

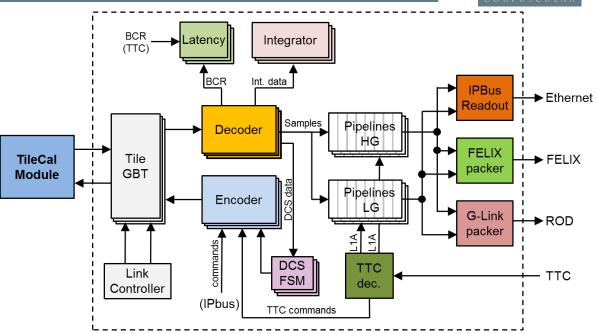


TILE PPR DEMONSTRATOR


Tile PreProcessor Demonstrator

- Fully functional prototype Demonstrator
 - Double mid-size AMC (µTCA / ATCA carrier)
 - Xilinx Virtex 7 (48 GTX), Kintex 7 (28 GTX)
 - 4 QSFPs, TX+RX Avago MiniPODs
 - TI CDCE62005 jitter cleaner + ADN2814
- 1/2 of the Compact Processing Module
 - Operates 1 TileCal module → 160 Gbps
 - Half number of optical channels
- Interfaces with legacy and Phase II ATLAS readout systems (ROD, FELIX)
- CPM hw & fw design largely based on this system

Block diagram of the PPr Demo

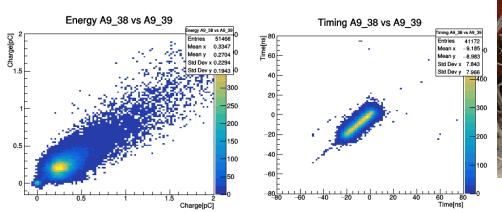


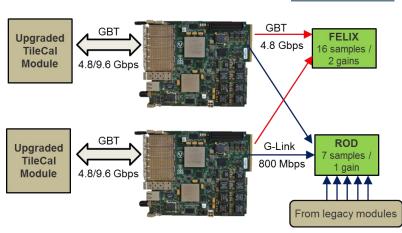
PPr Demonstrator

Firmware

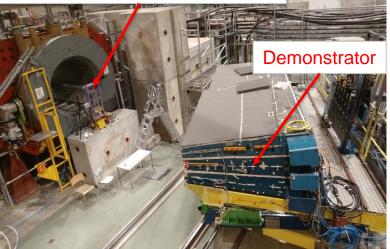
IFIC

- 16 GBT links with on-detector electronics
 - 9.6 Gbps for uplinks, 4.8 Gbps for downlinks
- Different blocks for data handling, DCS configuration and monitoring
- 96 pipelines memories with 12.8 µs depth (48 PMT channels x 2 gains)
- TTC decodification
 - Level-1 Accept signal and commands
 - LHC clock recovery
- Three different readout paths:
 - FELIX (GBT)
 - ROD (G-Link)
 - Ethernet port (IPBus)
- Controlled through Ethernet IPBus




	Virtex 7 485T				
Slice Logic Utilization	Used	Available	Utilization		
Slice Registers	152,696	607,200	25%		
Slice LUTs	154,811	303,600	50%		
RAMB36E1	107	1,030	10%		
RAMB18E1	741	2,060	35%		
MMCMs	4	14	28%		
PLLs	2	14	14%		
Transceivers	19 + 4	56	41%		
DSP slices	1152	2,800	41%		

Test Beam setup

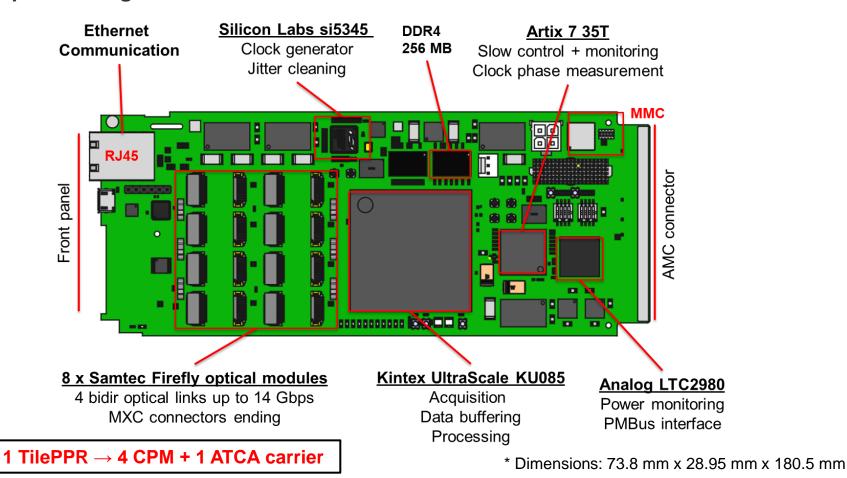

IFIC
INSTITUT DE FÍSICA
CORPUS CULLAR

- Located at the Super Proton Synchrotron (SPS)
 North Area on the H8 beam line
 - 7 test beam campaigns between 2015 and 2018
- Detector modules equipped with upgraded and legacy electronics for performance comparison
- Fully integrated with the ATLAS TDAQ software and DCS system
 - Front-end electronics configuration
 - Physics, calibration and laser runs
 - HV and LV control/monitoring
 - Data taking through FELIX / legacy system

Beams of Hadrons, Electrons and Muons were used to study the calorimeter response

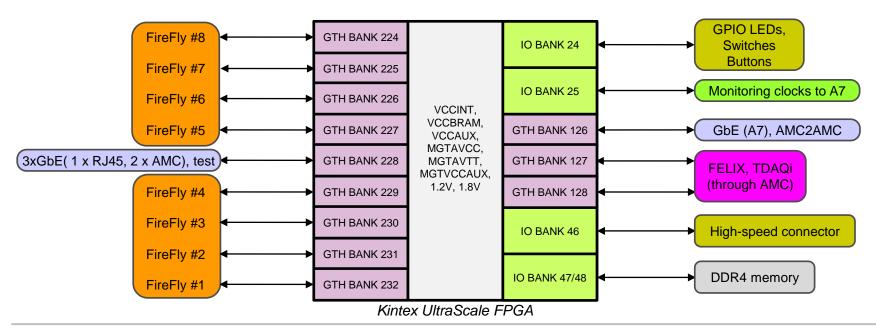
Test beam setup at H8 line

Demonstrator module inserted into ATLAS experiment last July!!

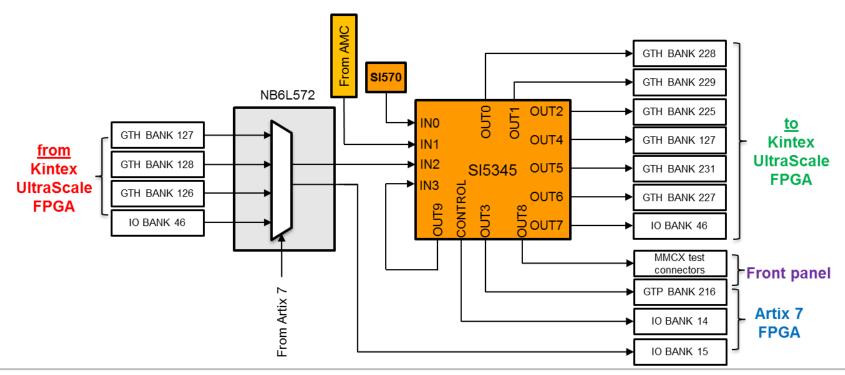


COMPACT PROCESSING MODULE

Compact Processing Module - overview

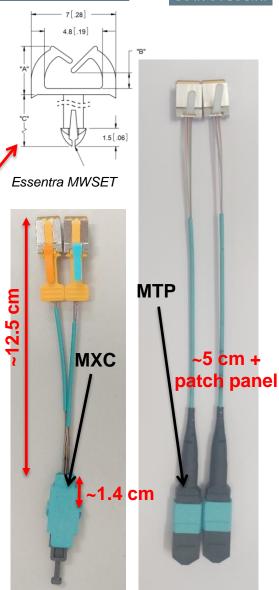

- Single AMC board with full-size form factor (6HP*) High bandwidth readout system
 - 32 channels through 8 Samtec Firefly modules → Up to 400 Gbps via optics
 - **14 channels** through AMC connector ———— Up to **175 Gbps** via electrical backplane
 - 60W power budget

Kintex UltraScale FPGA


- High-speed interface with on-detector electronics → 32 links@4.8/9.6 Gbps
 - Operation and readout of 2 TileCal modules: 96 PMT channels with 2 gains
 - Real-time energy reconstruction @40 MHz per channel and gain
 - Data buffering of 10 µs per channel and gain
- High-speed interface with ATLAS trigger system and FELIX
 - Reconstructed energy per cell to TDAQi @40 MHz → 4 links@9.6 Gbps
 - Level-0 trigger selected events to FELIX @1 MHz → 1 link@9.6 Gbps
- Using KU115 as baseline and KU085 for prototyping

Artix 7 FPGA & Peripherals

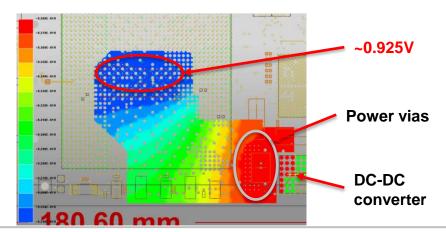
- Artix 7 FPGA provides slow control and monitoring for all the peripherals
 - Configuration/monitoring of the Ethernet PHY, optical modules and sensors
 - Power management and monitoring through a LTC2980 chip
 - Implementation of a clock phase monitoring system based on the DDMTD circuit
- High-performance jitter cleaner to distribute the clock to the KU transceivers → Silicon Labs SI5345
 - LHC clock recovered from FELIX interface and distributed back to the Kintex UltraScale

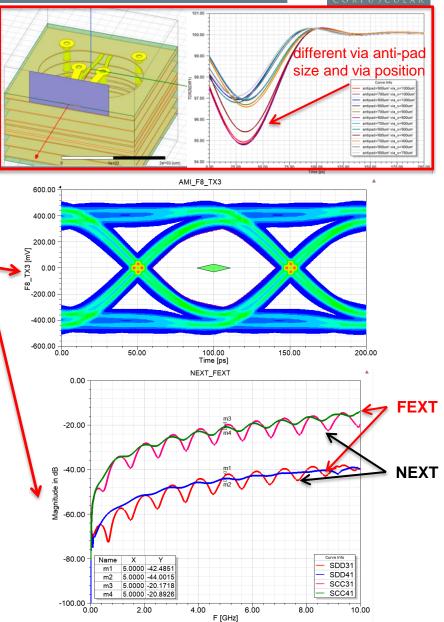

Optical modules and mechanics

IFIC
INSTITUT DE FÍSICA
CORPUS CULLAR

- 8 FireFly modules connected to the KU FPGA
 - Limited area on the PCB and front panel
 - 4 RX/TX channels up to 14 Gbps
 - 2 Firefly modules connected to a single MXC connector
- Fibre routing on the CPM PCB is challenging
 - Maximum bend radius of fibres is 7.5mm
 - Minimum fibre length+FireFly is 11 cm (Samtec)
 - Plastic clip wires to route the fibers Essentra MWSET

Mechanical mockup of the Compact Processing Module

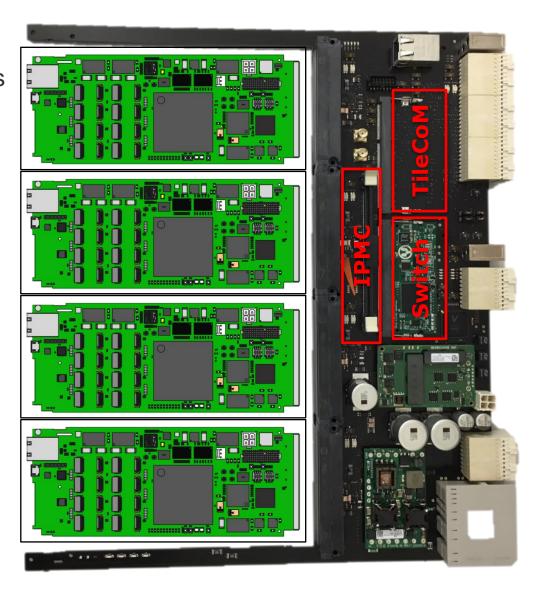



2 FF-MXC connector FF-MTP connector

PCB layout design

IFIC

- Total of <u>14 layers</u> → 1.6 mm thickness
 - 8 layers for PWR/GND, 6 layers for signals
 - ISOLA FR408HR ($\varepsilon_r = 3.68$, $\tan \delta = 0.0092$)
- **High-speed** layout design and **optimization**
 - Supression of impedance discontinuities: Differential vias, DC-blocking caps
 - Intra-pair skew compensation to reduce differential to common mode conversion
 - Post-layout simulations using IBIS-AMI models
 - Mixed-mode S-parameters computation for crosstalk studies: FEXT and NEXT
- **IR drops** on the more demanding power planes
 - VCCINT (0.95V) drains up to 15A



ATCA Carrier Base Board

- ATCA cutaway carrier
- Zone 1: Power distribution to CPMs and TDAQ-I - Max power of 400 W
- Zone 2: GbE + XAUI 10G
 - Base & Fabric: Communication with rest of the ecosystem
- Zone 3: Communication between CPMs and TDAQ-I / FELIX
- Three on-board mezzanines
 - CERN IPMC board
 - Power and sensor management
 - TileCoM Zynq-based board
 - FPGA remote programming
 - Interface with DCS system
 - 16 GbE port switch SODIMM
 - CPMs GbE communication

Plans for upcoming years

Preliminary ew Design Review

Production Readiness Review

Preproduction

2019

2020

2021

2022

2023

2024

- First prototypes
 Full-size PPr
- Electrical tests
- Optical tests
- Firmware
- Validation

- Integration tests with on-detector
- Documentation
- Firmware opt
- Preproduction

- Test bench design
- Integration tests at CERN
- Validation at test-benches

- Tendering process
- Final production
- Validation and shipping
- Final integration tests

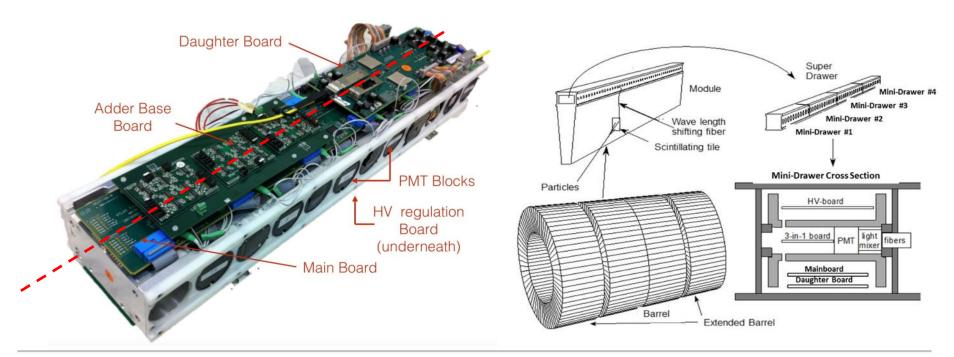
- Installation of ATCA crates
- Tests in ATLAS with on-detector and Trigger electronics

- First CPM prototypes being manufactured now
- Preproduction (25%) from Q3 2020 to Q1 2022
 - 8 ATCA carriers, 32 CPMs
- Final production (75%) from Q2 2022 to Q3 2023
 - 24 ATCA carriers, 96 CPMs

128 CPMs in total

Summary

- New conditions imposed by HL-LHC requires the complete redesign of the TileCal on-detector and off-detector electronics
- Tile PreProcessor boards for the Phase II Upgrade under development
 - 32 x (ATCA carrier + 4 Compact Processing Modules) to read out TileCal
 - Total bandwidth of 40 Tbps between on-detector and off-detector
- Fully operational PreProcessor Demonstrator has been qualified
 - Capable of operate one TileCal module $\rightarrow \frac{1}{2}$ number of channels w.r.t. one CPM
 - Extensively tested in several test beam campaigns between 2015 and 2018
- First CPM prototypes are under production now
 - Largely based on PPr Demonstrator
 - 8 Firefly optical modules, Kintex UltraScale, Artix 7 → single AMC form factor
 - Many signal and power integrity studies done during layout design
 - Mechanical boards to plan the fiber routing critical step
 - Preproduction in 2020, final production in 2022 and installation in 2024



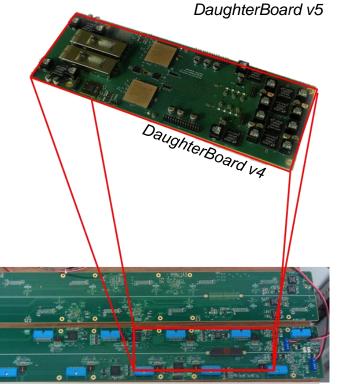
BACKUP

Phase II on-detector electronics

- The Phase II module is composed of 4 mini-drawers (48 PMTs). Each mini-drawer have 2 independent read out sections for redundant cell readout
 - 12 PMTs + 12 front-end boards reading out 6 TileCal cells
 - 1 × MainBoard: operation and signal digitization of the front-end boards
 - 1 × DaughterBoard: data high-speed link with the off-detector electronics
 - 1 × High Voltage regulation board
 - 1 × Low Voltage Power Supply (LVPS): low voltage power distribution

DaughterBoard

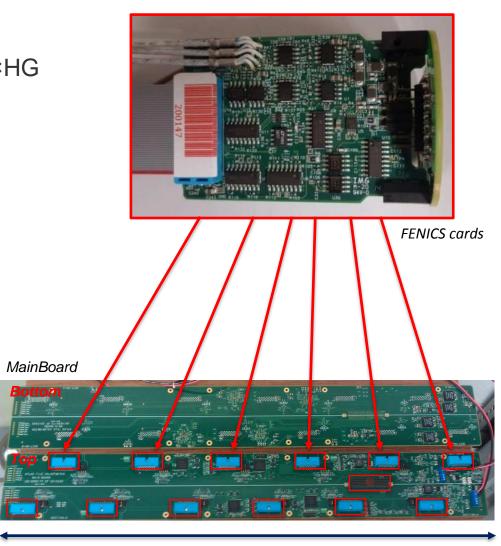
High-speed link with the back-end electronics


- Data collection and transmission
- Clock and command distribution
- Data link redundancy
- Daughterboard version 5
 - 2 × GigaBit Transceiver (GBT) chips
 - 2 × Xilinx UltraScale+ FPGAs
 - 4 × SFP modules → ~40 Gbps

TID tests with ~ 9 MeV electron beam

 SEE and SEL tests done with 58 MeV and 226 MeV proton beam

- Soft error rate is low → Triple redundancy
- No destructive effects observed


Front-End Boards and MainBoard

- Front-end boards: FENICS cards
 - PMT pulse shaping
 - Shaper with bi-gain output: 1×LG + 1×HG
 - High precision slow integrator
 - Design based on current 3in1 cards
 - Improved noise and linearity
 - Improved calibration circuitry

MainBoard

- Digitize analog signals coming from 12 FEBs
- Routes the digitized data from the ADCs to the DaughterBoards
- Digital control of the FEBs
- HG and LG, 12-bit samples@40 Msps
- TID, NIEL, SEE tests performed

TilePPr Demonstrator - overview

IFIC

INSTITUT DE FISICA
EN R PU SE ULA R

- First prototypes delivered at the end of 2014
- Extensively used in test beams and labs
- Power consumption below 60 W

PCB stack-up: 16 layers

Dielectric Nelco N4000-13SI

4 QSFP modules: 160 Gbps

Avago MiniPOD: 120 Gbps

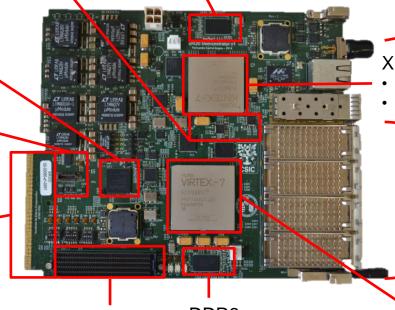
Backplane: 40 Gbps

320 Gbps

2 x CDR IC

- ADN2814
- Clock/data from TTC

Xilinx Spartan 6


Slow control capabilities

Module Management Controller (MMC)

 Power connection management

AMC connector

- 12 V power connection
- High-speed communication path

DDR3

512MB

TTC input
Xilinx Kintex 7 FPGA

- XC7K420T
- 28 transceiver@10 Gbps

4 QSFP modules (16 links) Up to 160 Gbps

FMC connector

 Expansion functionalities DDR3 512MB

Xilinx Virtex 7 FPGA

- XC7VX485T
- 48 transceiver@10 Gbps

FPGA resource usage estimation

- Based on the occcupied resources of the PPr Demonstrator
 - ½ channels of a Compact Processing Module

	PPr Demonstrator Virtex 7 485T				M – proto KU085	CPM – Baseline KU115
Slice Logic Utilization	Used	Available	Utilization	A	vailable	Available
Number of Slice Registers	152,696	607,200	25%		995,040	1,326,720
Number of Slice LUTs	154,811	303,600	50%	,	497,520	663,360
Number of RAMB36E1	107	1,030	10%		1,620	2,160
Number of RAMB18E1	741	2,060	35%		3,240	4,320
Number of MMCMs	4	14	28%		22	24
Number of PLLs	2	14	14%		22	24
Number of Transceivers	19 + 4	56	41%		48	48
DSP slices	1152	2,800	41%		4,100	5,520

General logic:

state machines, de/multiplexer, encoder/decoders, etc

RAM memory:

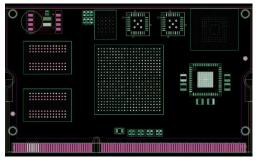
Pipeline buffers and monitoring Current fw is 12.8 us

Clocking circuitry

Transceivers:

DaughterBoard, TDAQ-I, FELIX, Ethernet

Energy and time reconstruction:


Logic resources < 1% Mainly DSP resources

Mezzanine boards

Compact, replaceable and upgradeable solution

- TileCoM Computer on Module
 - Embedded Linux PetaLinux distribution
 - Remote programming, DCS monitoring, clock generation for standalone tests
 - Xilinx Zynq UltraScale+ XCZU2CG + 512 MB DDR4
 - 10 layers DDR3 form factor (67.6 mm x 40.00 mm)

Prelayout of the TileCoM

- Ethernet switch module
 - Unmanaged Ethernet Switch chip Broadcom BCM5396
 - 16 GbE connection between CPMs and TDAQ-I
 - 6 layers DDR3 form factor (67.6 mm x 30.00 mm)

GbE switch

- IPMC mezzanine board (CERN)
 - Microsemi A2F200, DIMM-DDR3 VLP form factor
 - Hot swap, sensor monitoring, power management

IPMC mezzanine board