CERN Accelerating science

002688857 001__ 2688857
002688857 003__ SzGeCERN
002688857 005__ 20190910222350.0
002688857 0247_ $$2DOI$$9IEEE$$a10.1109/TASC.2019.2896954
002688857 0248_ $$aoai:inspirehep.net:1746820$$pcerncds:CERN$$qINSPIRE:HEP$$qForCDS
002688857 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:1746820$$d2019-09-09T12:43:37Z$$h2019-09-10T04:00:13Z$$mmarcxml
002688857 035__ $$9Inspire$$a1746820
002688857 041__ $$aeng
002688857 100__ $$aSarasola, Xabier$$jORCID:[email protected]$$uEcole Polytechnique, Lausanne
002688857 245__ $$9IEEE$$aMagnetic and mechanical design of a 15-T large aperture dipole magnet for cable testing
002688857 260__ $$c2019
002688857 300__ $$a5 p
002688857 520__ $$9IEEE$$aA large aperture Nb$_3$Sn dipole is proposed to replace the magnet assembly of EDIPO, which was irreversibly damaged in 2016. The goal is to generate a background field of 15 T at 4.2 K in a clear aperture of approximately 100×150 mm$^2$ and over a uniform length of 1000 mm in order to test superconducting cables for both fusion and high-energy physics applications. The magnet features a block-type coil design wound with wide Rutherford cable (two alternative coil cross sections are considered) and supported by a mechanical structure based on keys-and-bladders technology. In the end regions, the coils tilt up (flare) through a hard-way bend of the cables to provide room for the test well, following a layout already adopted in the LBNL HD2 and CERN-CEA FRESCA2 magnets. The two considered coil design alternatives aim at minimizing the mechanical stress in the coil windings. One coil pack design makes the use of two double pancake coils per pole, whereas the other alternative features three double pancakes per pole. Both design options are presented focusing on the results of numerical computations carried out with finite-element models to investigate peak stresses in the coils during room-temperature pre-loading, cool down, and powering.
002688857 542__ $$3Publication$$dIEEE$$g2019
002688857 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002688857 6531_ $$9author$$aStress
002688857 6531_ $$9author$$aPower cables
002688857 6531_ $$9author$$aPower cable insulation
002688857 6531_ $$9author$$aMagnetomechanical effects
002688857 6531_ $$9author$$aFilms
002688857 6531_ $$9author$$aStress measurement
002688857 6531_ $$9author$$aaccelerator magnets
002688857 6531_ $$9author$$acryogenics
002688857 6531_ $$9author$$afinite element analysis
002688857 6531_ $$9author$$aniobium alloys
002688857 6531_ $$9author$$asuperconducting cables
002688857 6531_ $$9author$$asuperconducting coils
002688857 6531_ $$9author$$asuperconducting magnets
002688857 6531_ $$9author$$atin alloys
002688857 6531_ $$9author$$adouble pancake coils
002688857 6531_ $$9author$$adesign options
002688857 6531_ $$9author$$aaperture dipole magnet
002688857 6531_ $$9author$$acable testing
002688857 6531_ $$9author$$aaperture Nb3Sn dipole
002688857 6531_ $$9author$$abackground field
002688857 6531_ $$9author$$atest superconducting cables
002688857 6531_ $$9author$$ahigh-energy physics applications
002688857 6531_ $$9author$$amagnet features
002688857 6531_ $$9author$$ablock-type coil design wound
002688857 6531_ $$9author$$awide Rutherford cable
002688857 6531_ $$9author$$aalternative coil cross sections
002688857 6531_ $$9author$$amechanical structure
002688857 6531_ $$9author$$a-bladders technology
002688857 6531_ $$9author$$aend regions
002688857 6531_ $$9author$$ahard-way bend
002688857 6531_ $$9author$$aLBNL HD2
002688857 6531_ $$9author$$aCERN-CEA FRESCA2 magnets
002688857 6531_ $$9author$$amechanical stress
002688857 6531_ $$9author$$acoil windings
002688857 6531_ $$9author$$acoil pack design
002688857 6531_ $$9author$$atemperature 4.2 K
002688857 6531_ $$9author$$aNiobium-tin
002688857 6531_ $$9author$$atest facilities
002688857 690C_ $$aCERN
002688857 700__ $$aBruzzone, Pierluigi$$uEcole Polytechnique, Lausanne
002688857 700__ $$aBottura, Luca$$uCERN
002688857 700__ $$aFerracin, Paolo$$jORCID:0000-0003-0415-8895$$uCERN
002688857 700__ $$aAraujo, Douglas Martins$$uCERN
002688857 700__ $$ade Rijk, Gijs$$jORCID:0000-0002-8655-6995$$uCERN
002688857 700__ $$aCau, Francesca$$jORCID:0000-0003-3895-9682$$uFusion for Energy, Barcelona
002688857 700__ $$aPortone, Alfredo$$jORCID:0000-0002-3804-1436$$uFusion for Energy, Barcelona
002688857 700__ $$aTestoni, Pietro$$uFusion for Energy, Barcelona
002688857 700__ $$aPrestemon, Soren$$jORCID:0000-0002-1937-4040$$uLBNL, Berkeley
002688857 700__ $$aSabbi, GianLuca$$jORCID:0000-0001-6954-3482$$uLBNL, Berkeley
002688857 700__ $$aMinervini, Joseph$$jORCID:0000-0003-0594-3350$$uMIT
002688857 773__ $$c4001405$$n5$$pIEEE Trans. Appl. Supercond.$$v29$$y2019
002688857 960__ $$a13
002688857 980__ $$aARTICLE
002688857 999C5 $$9CURATOR$$9refextract$$hP. Bruzzone et al.$$o1$$sIEEE Trans.Appl.Supercond.,24,9500205$$tCommissioning of the main coil of the EDIPO test facility$$x[1] P. Bruzzone et al., "Commissioning of the main coil of the EDIPO test facility", IEEE Trans. Appl. Supercond., vol. 24, no. 3, Jun. 2014. Show Context View Article Full Text: PDF (1119KB)$$y2014
002688857 999C5 $$9CURATOR$$9refextract$$hP. Bruzzone et al.$$o2$$sIEEE Trans.Appl.Supercond.,28,4005505$$tConceptual design of a large aperture dipole for testing of cables and insert coils at high field$$x[2] P. Bruzzone et al., "Conceptual design of a large aperture dipole for testing of cables and insert coils at high field", IEEE Trans. Appl. Supercond., vol. 28, no. 3, Apr. 2018. Show Context View Article Full Text: PDF (479KB)$$y2018
002688857 999C5 $$9CURATOR$$9refextract$$hP. Ferracin et al.$$o3$$sIEEE Trans.Appl.Supercond.,20,292$$tRecent test results of the high field Nb 3 Sn dipole magnet HD2$$x[3] P. Ferracin et al., " Recent test results of the high field Nb 3 Sn dipole magnet HD2 ", IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 292—295, Jun. 2010. Show Context View Article Full Text: PDF (884KB)$$y2010
002688857 999C5 $$9CURATOR$$9refextract$$hP. Ferracin et al.$$o4$$sIEEE Trans.Appl.Supercond.,23,4002005$$tDevelopment of the EuCARD Nb 3 Sn dipole magnet FRESCA 2$$x[4] P. Ferracin et al., " Development of the EuCARD Nb 3 Sn dipole magnet FRESCA 2 ", IEEE Trans. Appl. Supercond., vol. 23, no. 3, Jun. 2013. Show Context View Article Full Text: PDF (1110KB)$$y2013
002688857 999C5 $$9CURATOR$$9refextract$$hC. Lorin, M. Durante, M. Segreti$$o5$$sIEEE Trans.Appl.Supercond.,27,4001405$$t16 T block-coils dipole option for the future circular collider$$x[5] C. Lorin, M. Durante, M. Segreti, "16 T block-coils dipole option for the future circular collider", IEEE Trans. Appl. Supercond., vol. 27, no. 4, Jun. 2017. Show Context View Article Full Text: PDF (1104KB)$$y2017
002688857 999C5 $$9CURATOR$$9refextract$$hJ. Duvauchelle, B. Bordini, J. Fleiter, A. Ballarino$$o6$$sIEEE Trans.Appl.Supercond.,28,4802305$$tCritical current measurements under transverse pressure of a Nb 3 Sn Rutherford cable based on 1 mm RRP wires$$x[6] J. Duvauchelle, B. Bordini, J. Fleiter, A. Ballarino, " Critical current measurements under transverse pressure of a Nb 3 Sn Rutherford cable based on 1 mm RRP wires ", IEEE Trans. Appl. Supercond., vol. 28, no. 4, Jun. 2018. Show Context View Article Full Text: PDF (614KB)$$y2018
002688857 999C5 $$9CURATOR$$9refextract$$hD. Tommasini$$o7$$sIEEE Trans.Appl.Supercond.,27,4000405$$tThe 16 T dipole development program for FCC$$x[7] D. Tommasini, "The 16 T dipole development program for FCC", IEEE Trans. Appl. Supercond., vol. 27, no. 4, Jun. 2017. Show Context View Article Full Text: PDF (282KB)$$y2017
002688857 999C5 $$9CURATOR$$9refextract$$m[online] Available:$$o8$$tANSYS Academic Research Mechanical. Release 19.0$$uhttp://www.ansys.com/products/$$x[8] [online] Available: http://www.ansys.com/products/. Show Context
002688857 999C5 $$9CURATOR$$9refextract$$hP. Ferracin et al.$$o9$$sIEEE Trans.Appl.Supercond.,22,4901604$$tDesign of LD1 a large-aperture high-field Nb 3 Sn dipole magnet$$x[9] P. Ferracin et al., " Design of LD1 a large-aperture high-field Nb 3 Sn dipole magnet ", IEEE Trans. Appl. Supercond., vol. 22, no. 3, Jun. 2012. Show Context View Article Full Text: PDF (700KB)$$y2012
002688857 999C5 $$9refextract$$hS. Caspi et al.$$mShow Context View Article Full Text: PDF (781KB)$$o10$$sIEEE Trans.Appl.Supercond.,11,2272-2275$$tThe use of pressurized bladders for stress control of superconducting magnets$$x[10] S. Caspi et al., "The use of pressurized bladders for stress control of superconducting magnets", IEEE Trans. Appl. Supercond., vol. 11, no. 1, pp. 2272-2275, Mar. 2001. Show Context View Article Full Text: PDF (781KB)$$y2001
002688857 999C5 $$9refextract$$adoi:10.1016/j.cryogenics.2006.01.011$$hA. Portone et al.$$o11$$sCryogenics,46,494-506$$tDesign and optimization of the 12.5 T EFDA dipole magnet$$x[11] A. Portone et al., "Design and optimization of the 12.5 T EFDA dipole magnet", Cryogenics, vol. 46, pp. 494-506, 2006. Show Context , DOI: 10.1016/j.cryogenics.2006.01.011$$y2006
002688857 999C5 $$9CURATOR$$9refextract$$hD. Tommasini$$m[online] Available:$$o12$$rCERN-ACC-2016-0030$$tBaseline specifications and assumptions for ccelerator magnet: Milestone M5.2$$uhttps://cds.cern.ch/record/2150689$$x[12] D. Tommasini, "Baseline specifications and assumptions for ccelerator magnet: Milestone M5.2", (2016), [online] Available: https://cds.cern.ch/record/2150689. Show Context$$y2016
002688857 999C5 $$9CURATOR$$9refextract$$hD. Schoerling$$mJun. 13, 2018$$o13$$tPrivate email communication$$x[13] D. Schoerling, "Private email communication", Jun. 13, 2018. Show Context$$y2018