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1 Introduction

Following the discovery of the Higgs boson H [1–6] by the ATLAS [7] and CMS [8] experiments, its
properties have been probed using proton–proton (pp) collision data produced by the Large Hadron Collider
(LHC) at CERN. The coupling properties of the Higgs boson to other Standard Model (SM) particles, such
as its production cross sections in pp collisions and decay branching fractions, can be precisely computed
within the SM, given the value of the Higgs boson mass. Measurements of these properties can therefore
provide stringent tests of the validity of the SM.

Higgs boson production and decay rates have been determined using the Run 1 dataset, through the
combination of ATLAS and CMS measurements [9]. More recently, these measurements have been
extended using the Run 2 dataset recorded by the ATLAS detector in the years 2015, 2016 and 2017, using
up to 79.8 fb−1 of pp collision data produced by the LHC. The analyses target several production and decay
modes, including: the H→ γγ and H→ Z Z∗→ 4`1 decay channels following the same methodologies as
those presented in Ref. [10] and Ref. [11] respectively, with improved selections for Higgs boson production

1 Throughout the paper ` denotes the light leptons e and µ.
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in association with a top–antitop pair, described in Ref. [12]; the H → WW∗ [13] and H → ττ [14] decay
channels; H → bb̄ in associated production with a weak vector boson V = W or Z (VH) [15, 16] and in
the weak vector-boson fusion (VBF) production process [17]; associated production with a top–antitop
pair (ttH) [12, 18, 19]; the H → µµ decay channel following the same methodology as presented in
Ref. [20], applied to the larger 2015–2017 input dataset; Higgs decays into invisible final states [21–24]; and
off-shell production of Higgs bosons [25]. This paper presents measurements of Higgs boson properties
at
√

s = 13TeV obtained from the combination of these results, using techniques similar to those in
Ref. [9]. A Higgs boson mass value of mH = 125.09GeV, corresponding to the central value of the
combination of ATLAS and CMS measurements in Run 1 [26], is used for SM predictions. The uncertainty
in the measured Higgs boson mass is considered in the H→ γγ and H→ Z Z∗→ 4` analyses. Similar
measurements [27–33], as well as their combination [34], have been reported by the CMS Collaboration.

All the input analyses except those for theH → µµ and theVBF, H → bb̄processes use a parameterization of
the Higgs boson signal yields based on the Stage 1 simplified template cross-section (STXS) framework [35,
36] described in Section 6.1. These cross sections are defined in the fiducial region |yH | < 2.5, where
yH is the Higgs boson rapidity, partitioned within each Higgs boson production process into multiple
kinematic regions based on the transverse momentum of the Higgs boson, the number of associated jets,
and the transverse momentum of associated W or Z bosons. The H → µµ and VBF, H → bb̄ analyses use
a coarser description based on the Higgs boson production mode only.

The paper is structured as follows: Section 2 describes the data and simulation samples and Section 3
presents the analyses in individual decay channels which are used as inputs to the combination. Section 4
provides a short description of the statistical procedures. The measurement of the signal strength µ,
defined as the ratio of the total Higgs boson signal yield to its SM prediction, is presented in Section 5.1.
Measurements of the cross sections of the main production processes within |yH | < 2.5, assuming SM
predictions for the branching fractions, are then shown in Section 5.2. The production modes considered
are gluon–gluon fusion (ggF), VBF, VH, ttH and associated production with a single top quark (tH).
Measurements of cross sections times branching fractions for Higgs boson production and decay processes
are shown in Section 5.3. Section 5.4 presents a parameterization where the measured quantities are
the cross section times branching fraction of the process gg → H → Z Z∗, together with ratios of
production cross sections and ratios of branching fractions. Common systematic uncertainties and modeling
assumptions partially cancel out in these ratios, reducing the model dependence of the result. Section 6
presents results in the STXS framework. Potential deviations from SM predictions are then probed in a
framework of multiplicative modifiers κ applied to the SM values of Higgs boson couplings [37], presented
in Section 7. Finally, Section 8 presents an interpretation of the data within two benchmark models of
beyond-the-SM (BSM) phenomena. Indirect limits on model parameters are set following a methodology
similar to that of Ref. [38]. Section 9 summarizes the results.

2 Data and simulated event samples

The results of this paper are based on pp collision data collected by the ATLAS experiment2 [39–41] in the
years 2015, 2016 and 2017, with the LHC operating at a center-of-mass energy of 13 TeV. The integrated

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upwards.
Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity
is defined in terms of the polar angle θ as η = − ln tan(θ/2). Angular distance is measured in units of ∆R ≡

√
(∆η)2 + (∆φ)2.

4



luminosities of the datasets used in each analysis are shown in Table 1. The uncertainty in the combined
2015–2016 integrated luminosity is 2.1% and 2.0% in the combined 2015–2017 integrated luminosity [42],
obtained using the LUCID-2 detector [43] for the primary luminosity measurements.

Table 1: Integrated luminosity and dataset used for each input analysis to the combination.

Analysis Dataset Integrated luminosity [fb−1]
H → γγ (including ttH, H → γγ)

2015–2017

79.8
H→ Z Z∗→ 4` (including ttH, H→ Z Z∗→ 4`) 79.8
VH, H → bb̄ 79.8
H → µµ 79.8
H→WW∗→ eνµν

2015–2016

36.1
H → ττ 36.1
VBF, H → bb̄ 24.5 – 30.6
ttH, H → bb̄ and ttH multilepton 36.1
H → invisible 36.1
Off-shell H → Z Z∗ → 4` and H → Z Z∗ → 2`2ν 36.1

Most analyses use a consistent set of simulated Higgs boson samples to describe the signal processes,
which is detailed in the following paragraphs. Exceptions are the VBF, H → bb̄ and off-shell production
analyses, described in Sections 3.5 and 3.9 respectively, and the measurements targeting decays of the
Higgs boson into invisible final states described in Section 3.8. The samples used for these analyses are
described separately at the end of this section. For each Higgs boson decay mode, the branching fraction
used corresponds to higher-order state-of-the-art theoretical calculations [35]. The simulated background
samples vary channel by channel and are described in the individual references for the input analyses.

Higgs boson production via gluon–gluon fusion was simulated using the Powheg Box [44–47] NNLOPS
implementation [48, 49]. The event generator uses HNNLO [50] to reweight the inclusive Higgs boson
rapidity distribution produced by the next-to-leading order (NLO) generation of pp→ H + parton, with
the scale of each parton emission determined using the MiNLO procedure [51–53]. The PDF4LHC15 [54]
parton distribution functions (PDFs) were used for the central prediction and uncertainty. The sample is
normalized such that it reproduces the total cross section predicted by a next-to-next-to-next-to-leading-order
(N3LO) QCD calculation with NLO electroweak corrections applied [35, 55–64]. The NNLOPS generator
reproduces the Higgs boson pT distribution predicted by the next-to-next-to-leading-order (NNLO) plus
next-to-next-to-leading-logarithm (NNLL) calculation of Hres2.3 [65–67], which includes the effects of
top- and bottom-quark masses and uses dynamical renormalization and factorization scales.

The VBF production process was simulated to NLO accuracy in QCD using the Powheg Box [68] generator
with the PDF4LHC15 set of PDFs. The sample is normalized to an approximate-NNLO QCD cross section
with NLO electroweak corrections applied [35, 69–71].

The qq → VH production processes were simulated to NLO accuracy in QCD using the Powheg Box,
GoSam [72] and MiNLO [51, 73] generators with the PDF4LHC15 set of PDFs. The samples are
normalized to cross sections calculated at NNLO in QCD with NLO electroweak corrections [74–83]. The
gg → ZH process was generated only at leading order (LO), using Powheg Box and NLO PDFs and
normalized to an NLO computation with next-to-leading-logarithm (NLL) corrections [35, 84].
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Higgs boson production in association with a top–antitop pair was simulated at NLO accuracy in QCD
using the Powheg Box [85] generator with the PDF4LHC15 set of PDFs for the H→ γγ and H→ Z Z∗→ 4`
decay processes. For other Higgs boson decays, the MadGraph5_aMC@NLO [86, 87] generator was
used with the NNPDF3.0 [88] set of PDFs. In both cases the sample is normalized to a calculation with
NLO QCD and electroweak corrections [35, 89–92].

In addition to the primary Higgs boson processes, separate samples are used to model lower-rate
processes. Higgs boson production in association with a bb̄ pair (bb̄H) was simulated using Mad-
Graph5_aMC@NLO [93] with NNPDF2.3LO PDFs [94] and is normalized to a cross section calculated
to NNLO in QCD [35, 95–97]. The sample includes the effect of interference with the ggF production
mechanism. Higgs boson production in association with a single top quark and a W boson (tHW) was
produced at LO accuracy using MadGraph5_aMC@NLO with the CTEQ6L1 PDF set [98]. Finally,
Higgs boson production in association with a single top quark in the t-channel (tHq) was generated at LO
accuracy using MadGraph5_aMC@NLO with CT10 [99] PDFs. The tH samples are normalized to NLO
QCD calculations [35, 100, 101].

The parton-level events were input to Pythia8 [102] or Herwig++ [103] to model the Higgs boson
decay, parton showering, hadronization, and multiple parton interaction (MPI) effects. The generators
were interfaced to Pythia8 for all samples except tHW . For Pythia8 the AZNLO [104] and A14 [105]
parameter sets were used, and for Herwig++ its UEEE5 parameter set was used.

Higgs boson decay branching fractionswere computed usingHDECAY [106–108] and PROPHECY4F [109–
111].

In the all-hadronic channel of the VBF, H → bb̄ analysis, the Powheg Box generator with the CT10 [99]
set of PDFs was used to simulate the ggF [112] and VBF production processes, and interfaced with
Pythia8 for parton shower. In the photon channel of the VBF, H → bb̄ analysis, VBF and ggF production
in association with a photon was simulated using the MadGraph5_aMC@NLO generator with the
PDF4LHC15 set of PDFs, and also using Pythia8 for parton shower. For both channels, contributions
from VH and ttH production were generated using the Pythia8 generator with the NNPDF3.0 set of PDFs,
and using the MadGraph5_aMC@NLO generator interfaced with Herwig++ and the NLO CT10 set of
PDFs, respectively.

In the analyses targeting Higgs boson decays into invisible final states, the ggF, VBF and ZH signals were
simulated in a similar way to the general procedure described above, but for the VBF production process
the NNPDF3.0 PDF set was used instead of PDF4LHC15, while for the ZH process the CT10 PDF set was
used.

In the off-shell production analysis, the gg → H∗ → Z Z process was generated together with the
corresponding irreducible continuum production, using the Sherpa 2.2.2 + OpenLoops [113–116]
generator and the NNPDF3.0 PDF set. The generation was performed at leading order with up to one
additional jet in the final state, and interfaced with the Sherpa parton shower [117]. The cross-section
calculations take into account K-factors following the methodology described in Ref. [25].

The particle-level Higgs boson events were passed through a Geant 4 [118] simulation of the ATLAS
detector [119] and reconstructed using the same analysis software as used for the data. Event pileup is
included in the simulation by overlaying inelastic pp collisions, such that the average number of interactions
per bunch crossing reproduces that observed in the data. The inelastic pp collisions were simulated with
Pythia8 using the MSTW2008lo [120] set of PDFs with the A2 [121] set of tuned parameters or using the
NNPDF2.3LO set of PDFs with the A3 [122] set of tuned parameters.
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Table 2: Summary of the signal regions entering the combined measurements. "Leptonic" and "hadronic" refers to ttH and VH processes where the associated tt
pair or vector boson decays to final states with respectively at least one lepton or no leptons. "Resolved" and "boosted" refers to configurations in which hadronic
Higgs boson decay products are reconstructed respectively as two or more jets, or a single jet. In the VBF, H→ γγ mode, pγγ j jT is the transverse momentum of the

system of the VBF jets and the photon candidates. In the VBF, H→ γγ analysis, p
`+Emiss

T
T is the transverse momentum of the system composed of the leading

lepton and the missing transverse momentum. Other notations are defined in Section 3. Each 0-jet and 1-jet H → WW∗ entry corresponds to two categories for
a leading lepton flavor of either e or µ. For H → ττ, each entry corresponds to three categories for τlepτlep, τlepτhad and τhadτhad, unless otherwise specified.
“Multilepton” refers to decays of the Higgs boson with one or more leptons, and encompasses H → WW∗, H → ττ, and H → Z Z∗ excluding H→ Z Z∗→ 4`.
The selections targeting H → µµ, H → invisible and off-shell Higgs boson production are not included this table.

H→ γγ H → Z Z∗ H → WW∗ H → ττ H → bb̄

ttH

ttH leptonic (3 categories) ttH multilepton 1 ` + 2 τhad ttH 1 `, boosted
ttH hadronic (4 categories) ttH multilepton 2 opposite-sign ` + 1 τhad ttH 1 `, resolved (11 categories)

ttH multilepton 2 same-sign ` (categories for 0 or 1 τhad) ttH 2 ` (7 categories)
ttH multilepton 3 ` (categories for 0 or 1 τhad)
ttH multilepton 4 ` (except H→ Z Z∗→ 4`)
ttH leptonic, H→ Z Z∗→ 4`
ttH hadronic, H→ Z Z∗→ 4`

VH

VH 2 ` VH leptonic 2 `, 75 ≤ pVT < 150 GeV, Njets = 2

VH 1 `, p
`+Emiss

T
T ≥ 150 GeV 2 `, 75 ≤ pVT < 150 GeV, Njets ≥ 3

VH 1 `, p
`+Emiss

T
T <150 GeV 2 `, pVT ≥ 150 GeV, Njets = 2

VH Emiss
T , Emiss

T ≥ 150 GeV 0-jet, p4`
T ≥ 100 GeV 2 `, pVT ≥ 150 GeV, Njets ≥ 3

VH Emiss
T , Emiss

T <150 GeV 1 ` pVT ≥ 150 GeV, Njets = 2
VH+VBF pj1

T ≥ 200 GeV 1 ` pVT ≥ 150 GeV, Njets = 3
VH hadronic (2 categories) 2-jet, mj j < 120 GeV 0 `, pVT ≥ 150 GeV, Njets = 2

0 `, pVT ≥ 150 GeV, Njets = 3

VBF

VBF, pγγ j jT ≥ 25 GeV (2 categories) 2-jet VBF, pj1
T ≥ 200 GeV 2-jet VBF VBF pττT > 140 GeV VBF, two central jets

VBF, pγγ j jT <25 GeV (2 categories) 2-jet VBF, pj1
T <200 GeV (τhadτhad only) VBF, four central jets

VBF high-mj j VBF+γ
VBF low-mj j

ggF

2-jet, pγγT ≥ 200 GeV 1-jet, p4`
T ≥ 120 GeV 1-jet, m`` < 30 GeV, p`2

T < 20 GeV Boosted, pττT > 140 GeV
2-jet, 120 GeV≤ pγγT <200 GeV 1-jet, 60 GeV≤ p4`

T <120 GeV 1-jet, m`` < 30 GeV, p`2
T ≥ 20 GeV Boosted, pττT ≤ 140 GeV

2-jet, 60 GeV≤ pγγT <120 GeV 1-jet, p4`
T < 60 GeV 1-jet, m`` ≥ 30 GeV, p`2

T < 20 GeV
2-jet, pγγT < 60 GeV 0-jet, p4`

T < 100 GeV 1-jet, m`` ≥ 30 GeV, p`2
T ≥ 20 GeV

1-jet, pγγT ≥ 200 GeV 0-jet, m`` < 30 GeV, p`2
T < 20 GeV

1-jet, 120 GeV≤ pγγT <200 GeV 0-jet, m`` < 30 GeV, p`2
T ≥ 20 GeV

1-jet, 60 GeV≤ pγγT <120 GeV 0-jet, m`` ≥ 30 GeV, p`2
T < 20 GeV

1-jet, pγγT < 60 GeV 0-jet, m`` ≥ 30 GeV, p`2
T ≥ 20 GeV

0-jet (2 categories)
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3 Individual channel measurements

Brief descriptions of the input analyses to the combination are given below. More details can be found in
the individual analysis references listed in each section. The categorization is summarized in Table 2. The
overlap between the event selections of the analyses included in the combination is found to be negligible.

3.1 H→γγ

The H→ γγ analysis [10, 12] requires the presence of two isolated photons [123] within the pseudorapidity
range |η | < 2.37, excluding the region 1.37 < |η | < 1.52 corresponding to the transition between the
barrel and endcap sections of the electromagnetic calorimeter. The transverse momenta of the leading and
subleading photons are required to be greater than 0.35mγγ and 0.25mγγ respectively, where mγγ is the
invariant mass of the diphoton system. The distribution of mγγ is used to separate the Higgs boson signal
from continuum background processes. These mainly arise from prompt γγ production, single-photon
production where an additional jet in the event is misidentified as a photon, and processes where two jets
are misidentified as photons. The event reconstruction and selection procedures are largely unchanged from
the ones described in Ref. [10]. The only significant change concerns the reconstruction of the calorimeter
energy clusters associated with the photons; a dynamical, topological cell clustering-based algorithm [124,
125] is now used instead of a sliding-window technique [123, 126].

Selected events are separated into 29 mutually exclusive categories based on the kinematics of the diphoton
system and associated particles, chosen to approximately match those of the Stage 1 STXS regions described
in Section 6.1. Seven categories are defined to select ttH production, including both semileptonic and
hadronic top-quark decay processes through various selections on the multiplicities and kinematics of
leptons [127–129], jets [130], and jets tagged as containing b-hadrons [131]. These categories are described
in Ref. [12]. The remaining events are classified into categories targeting the VH, VBF and ggF production
modes, described in Ref. [10]. Five categories are defined to select WH and ZH production with leptonic
decays of the W or Z , based on the presence of leptons and missing transverse momentum Emiss

T [132].
Seven categories cover the VBF and VH processes: one category requires the presence of two jets, with
the leading jet transverse momentum pj1

T > 200GeV; two categories select hadronic vector-boson decays
by requiring two jets with an invariant mass compatible with the W or Z boson mass; and four categories
enrich VBF production by requiring forward jets in a VBF-like topology. The requirement of a second jet
for the pj1

T > 200GeV category is a change compared to Ref. [10] where only one jet was required, and
helps to reduce contamination from ggF production. The remaining events are split into 10 categories,
separating events with 0, 1, and ≥ 2-jets and classifying them further according to the pseudorapidity of
the two photons (for 0-jet events) or the transverse momentum of the diphoton system pγγT (for 1 and ≥ 2-jet
events).

3.2 H→ ZZ∗→ 4`

The H→ Z Z∗→ 4` analysis requires the presence of at least two same-flavor and opposite-charge light-
lepton pairs. The analysis follows the strategy described in the previous publication [11], but employs
improved event reconstruction and electron reconstruction [125] techniques, and defines additional event
categories to enhance sensitivity to the production of the SM Higgs boson associated with a vector
boson (VH, V → `ν/νν) and with a top-quark pair [12]. The largest background is the continuum
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(Z (∗)/γ∗)(Z (∗)/γ∗) production, modeled using Monte Carlo simulation. Other background contributions
arise from Z + jets and tt production with two prompt leptons and are estimated using data. The four-lepton
invariant mass (m4`) distribution is used to separate the Higgs boson signal from background processes.
Boosted decision trees (BDTs) are employed to further separate the signal from the background processes
and to enhance the sensitivity to the various Higgs boson production modes.

To distinguish the ttH, VH, VBF, and ggF production modes and to enhance the purity of each kinematic
selection, 11 mutually exclusive reconstructed event categories based on the presence of jets and additional
leptons in the final state are defined. Candidate events with at least one b-tagged jet and three or more
additional jets, or one additional lepton and at least two additional jets are classified into categories enriched
in ttH production with fully hadronic or semileptonic top-quark decays respectively [12]. Events failing
these requirements but containing at least one additional lepton are assigned to a VH-enriched category
with leptonic vector boson decays. The remaining events are classified according to their jet multiplicity
(0-jet, 1-jet, and ≥ 2-jet). Events with at least two jets are divided into a VBF-enriched region, for which
the dijet invariant mass mj j is required to be above 120GeV, and a region enriched in VH events with a
hadronically decaying vector boson for mj j < 120GeV. The VBF-enriched region is further split into
two categories, in which the transverse momentum of the leading jet pj1

T is required to be either above
or below 200GeV. The selected 0-jet and 1-jet events are further separated according to the transverse
momentum p4`

T of the four-lepton system: the 0-jet events are split into two categories with a boundary at
p4`

T = 100GeV, with the lower p4`
T selection being enriched in Higgs boson events produced via ggF and

the higher p4`
T selection being enriched in Higgs boson events produced in association with a weak vector

boson. The 1-jet events are split into three categories, each containing predominantly Higgs boson events
produced via ggF, with boundaries at p4`

T = 60 and 120GeV to match the STXS selections described in
Section 6.1.

3.3 H→WW ∗→ eνµν

The H→WW∗→ eνµν analysis [13] included in the combination targets the ggF and VBF production
modes. Signal candidates are selected by requiring the presence of an isolated e±µ∓ pair, with transverse
momentum thresholds at 22 and 15 GeV for the leading and subleading lepton. Events with jets tagged
as containing b-hadrons are rejected to suppress background contributions originating from top-quark
production. Contributions from W→ τν decays in which the τ-leptons subsequently decay into electrons
or muons are also included.

The primary background processes are WW , top-quark, W+jets, Drell–Yan, and other diboson (W Z , Wγ,
Wγ∗, and Z Z) production. Most of these contributions are estimated using data in kinematic regions
enriched in the given process.

Selected events are classified according to the number of associated jets (Njets). Exclusive Njets = 0
and Njets = 1 selections are enriched in signal events produced via ggF. To isolate regions with higher
sensitivity, they are each further split into eight categories apiece, based on the flavor of the leading lepton
(e or µ), two bins of the invariant mass of the dilepton system m`` and two bins of the transverse momentum
of the subleading lepton p`2

T . The distribution of the transverse mass of the dilepton plus Emiss
T system

is used to separate the Higgs boson signal from background in each category. The Njets ≥ 2 category is
naturally sensitive to the VBF process. A central-jet veto is applied to suppress the multijet background
and the contribution from ggF production. The output of a BDT exploiting the kinematic properties of the
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two leading jets and the two leptons is used to separate the VBF Higgs boson production from background
processes, including Higgs boson production via ggF.

3.4 H → ττ

The H → ττ analysis [14] measures the Higgs boson production cross section in the VBF production
process or in ggF production with large Higgs boson transverse momentum pH

T . Final states with both
leptonic (τlep) and hadronic (τhad) decays of the τ-lepton are considered. Selected lepton candidates are
required to be of opposite charge, meet identification and isolation criteria and satisfy the pT thresholds of
the triggers used. Three mutually exclusive analysis channels, τlepτlep, τlepτhad, and τhadτhad, are defined
according to the number of selected electron, muon and τhad candidates. All channels require the presence
of at least one jet with high transverse momentum.

To exploit signal-sensitive event topologies, candidate events are divided into three categories targeting
the VBF process and two categories for high-pH

T Higgs production. The VBF categories collect events
with two jets with a large pseudorapidity separation and a high invariant mass (mj j). The Higgs boson
decay products are required to be in the central rapidity region. One VBF category is defined by requiring
the transverse momentum of the ττ system pττT to be above 140GeV, for τhadτhad events only. The two
remaining VBF categories are defined for lower and higher values of mj j , with definitions that differ
between the τlepτlep, τlepτhad, and τhadτhad channels. The high-pH

T categories select events with large
values of pττT , with contributions mainly from the ggF process. Events failing the VBF selection and with
pττT > 100GeV are selected. In order to improve the sensitivity of the analysis, two categories are defined
for pττT > 140GeV and pττT ≤ 140GeV, with additional selections on the angular separation between the
τ-leptons. The distribution of the invariant mass of the ττ system is used to separate the Higgs boson
signal from background. In all three sub-channels, the most important backgrounds are irreducible Z→ ττ

events, and events with one or two jets misidentified as τ-lepton decay products, primarily from multijet
and W+jets production.

3.5 H → bb̄

The H → bb̄ decay channel is used to measure the production cross section in the VH and VBF production
modes.

The search for H → bb̄ in the VH production mode [15, 16] considers final states containing at least
two jets, of which exactly two must be tagged as containing b-hadrons. Either zero, one or two charged
leptons are also required, exploring the associated production of a Higgs boson with a W or Z boson
decaying leptonically as Z→ νν, W→ `ν, or Z→ ``. Contributions from W→ τν and Z→ ττ decays in
which the τ-leptons subsequently decay into electrons or muons are also included. The largest background
contributions arise from V+heavy-flavor-jets and tt production, and their normalization is estimated using
data. Other significant background sources are single-top-quark and diboson (W Z and Z Z) production.
Their normalizations are obtained from theory predictions, while the shapes of their distributions are taken
from simulation. Multijet events enter the selection due to jets mismeasured in the calorimeters and are
estimated using data-driven control samples.

To enhance the signal sensitivity, selected candidate events are classified according to the charged-lepton
multiplicity, the vector-boson transverse momentum pVT , and the jet multiplicity. For final states with
zero or one lepton, pVT > 150GeV is required. In two-lepton final states, two regions are considered,
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75GeV < pVT < 150GeV and pVT > 150GeV. The pVT thresholds are chosen to select regions with
strong experimental sensitivity, and match the STXS definitions described in Section 6.1. Each of these
regions is finally separated into a category with exactly two reconstructed jets and another with three or
more. In the zero- and one-lepton channel, events with four or more jets are rejected. Topological and
kinematic selection criteria are applied within each of the resulting categories. BDTs incorporating the
event kinematics and topology, in addition to the dijet invariant mass, are employed in each lepton channel
and analysis region to separate the signal process from the sum of the expected background processes.

The H → bb̄ mode is also used to measure the VBF production process [17]. Three orthogonal selections
are employed, targeting two all-hadronic channels and a photon-associated channel. Each selection requires
the presence of at least two jets tagged as containing b-hadrons in the central pseudorapidity region
|η | < 2.5 as well as at least two additional jets used to identify the VBF topology.

The first of the two all-hadronic selections requires the b-tagged jets to have transverse momenta larger than
95GeV and 70GeV, while one of the additional jets is required to be in the forward region 3.2 < |η | < 4.4
and have a transverse momentum larger than 60GeV and another must satisfy pT > 20GeV and |η | < 4.4.
The transverse momentum pbbT of the system composed of the two b-tagged jets must be larger than
160GeV.

The second all-hadronic selection with four central jets is defined by the presence of two jets with |η | < 2.8
in addition to the b-tagged jets with |η | < 2.5. All selected jets must pass a common threshold requirement
of 55GeV on their transverse momenta. The pT of the bb̄-system is required to be larger than 150GeV.
Events containing at least one forward jet satisfying the selection criteria of the first all-hadronic channel
are removed.

A VBF+γ selection is defined by the presence of a photon with transverse momentum pT > 30GeV and
|η | < 2.37, excluding the region 1.37 < |η | < 1.52, which suppresses the dominant background from
non-resonant bb̄ j j production. Events must have at least four jets, all satisfying pT > 40GeV and |η | < 4.4,
with at least two jets in |η | < 2.5 passing the b-tag requirements. The invariant mass of the VBF jets is
required to be higher than 800GeV, and pbbT > 80GeV. In all three selections a BDT built from variables
describing jet and photon kinematics is used to enhance the sensitivity. The signal is extracted from a fit to
the distribution of the invariant mass mbb of the two b-tagged jets.

The main background contributions originate from non-resonant production of b-tagged jet pairs, with
smaller contributions from Z → bb̄ production. Non-resonant background yields in the photon-associated
channel are about two orders of magnitude lower than in the other two VBF selections. The VBF, H → bb̄
channels are included in all the measurements except for those presented in Section 6.

3.6 H → µµ

The H → µµ search uses a similar technique to the H→ γγ analysis, requiring a pair of opposite-charge
muons and using the distribution of the invariant mass mµµ to separate signal from background. Events are
classified into eight categories. The output of a BDT exploiting the kinematic properties of the two leading
jets and the two muons is used to define two categories targeting the VBF process. In order to enhance the
sensitivity of the analysis, the remaining events are classified into three ranges of the transverse momentum
pµµT of the dimuon system (pµµT < 15GeV, 15GeV ≤ pµµT < 50GeV and pµµT ≥ 50GeV) and two ranges of
the muon pseudorapidities ηµ (both muons within |ηµ | ≤ 1, or at least one muon outside this range), for a
total of six categories. The analysis closely follows the H → µµ search described in Ref. [20], which used
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a smaller dataset collected in the years 2015 and 2016 only. The analysis is not sensitive at the level of the
Higgs boson signal expected in the SM, and is only included in the results presented in Section 7.4.

3.7 t tH , H → bb̄ and t tH multilepton analyses

Searches for the associated production of the Higgs boson with a tt pair have been performed using Higgs
boson decays into bb̄ [19] and in multilepton final states, targeting Higgs boson decays into WW∗, Z Z∗

and ττ [12, 18]. These analyses complement the selections sensitive to ttH production defined in the
analyses of the H→ γγ and H→ Z Z∗→ 4` decay channels, described in Sections 3.1 and 3.2.

The search for ttH production with H → bb̄ employs two selections, optimized for single-lepton and
dilepton final states of tt decays. In the single-lepton channel, events are required to have one isolated
electron or muon and at least five jets, of which at least two must be identified as containing b-hadrons.
In the dilepton channel, events are required to have two opposite-charge leptons and at least three jets,
of which at least two must be identified as containing b-hadrons. Candidate events are classified into
11 (7) orthogonal categories in the single-lepton (dilepton) channel, according to the jet multiplicity
and the values of the b-tagging discriminant for the jets. In the single-lepton channel, an additional
category, referred to as boosted, is designed to select events with large transverse momenta for the Higgs
candidate (pH

T > 200 GeV) and one of the top-quark candidates (ptT > 250 GeV). In each signal-enriched
region, a BDT exploiting kinematic information of the events is employed to separate ttH production
from background processes. Some of the selected regions are enriched in the main background processes,
tt + light flavor, tt+ ≥ 1b, tt+ ≥ 1c, tt + V and non-tt production, and are used to estimate their yields.

The ttH search with Higgs boson decays into WW∗, Z Z∗ and ττ exploits several multilepton signatures
resulting from leptonic decays of vector bosons and/or the presence of τhad candidates. Seven final states,
categorized by the number and flavor of reconstructed charged-lepton candidates, are examined. They
are: one lepton with two τhad candidates, two same-charge leptons with zero or one τhad candidates, two
opposite-charge leptons with one τhad candidate, three leptons with zero or one τhad candidates, and four
leptons, excluding events from H→ Z Z∗→ 4` decays. Events in all channels are required to have at least
two jets, at least one of which must be b-tagged. Additional requirements are employed for each final
state. The largest backgrounds arise from leptons produced in heavy-flavor decays, photon conversions
or misidentified hadronic jets, from electron charge misreconstruction in events where opposite-sign
leptons are produced and from the production of tt +W/Z . Multivariate analysis techniques exploiting the
kinematic properties and topologies of the selected events are applied in most channels to improve the
discrimination between the signal and the background. The expected number of background events and the
associated kinematic distributions are estimated using data-driven methods and simulation.

3.8 Searches for invisible Higgs boson decays

Searches for decays of the Higgs boson into invisible final states select events with large missing transverse
momentum; backgrounds are suppressed by requiring in addition either jets with a VBF topology [21],
an associated Z boson decaying into charged leptons [22] or an associated W or Z boson decaying into
hadronic final states [23].

Production in the VBF topology is identified by requiring two jets with a pseudorapidity difference
|∆ηj j | > 4.8 and invariant mass mj j > 1TeV. The missing transverse momentum is required to be
larger than 180GeV. Events with isolated lepton candidates or additional jets are rejected. Three signal
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regions are defined for 1 < mj j < 1.5TeV, 1.5 < mj j < 2TeV and mj j > 2TeV. The leading background
processes, (Z→ ``)+jets production and (W→ `ν)+jets production with an undetected charged lepton, are
estimated in data using control regions and extrapolated to the signal region using MC simulations.

Production in association with a leptonically decaying Z boson is identified by requiring the presence of a
pair of isolated electrons or muons with an invariant mass close to mZ . The missing transverse momentum
is required to be larger than 90GeV. It must also be larger than 60% of the scalar sum of the transverse
momenta of the identified leptons and jets, and must be oriented back-to-back with the dilepton system in the
transverse plane. The leading background processes, (Z→ ``)(Z→ νν) production and (Z→ ``)(W→ `ν)

production with an additional undetected charged lepton, are estimated from simulation.

Two event topologies are considered in order to identify production in association with a hadronically
decaying W and Z boson. The resolved topology is defined by the presence of two jets compatible with
originating from the hadronic decay of aW or Z boson, reconstructed using the anti-kt algorithm [133] with
a radius parameter of 0.4. The merged topology identifies W or Z bosons with large transverse momentum
through the presence of a single jet, reconstructed using the anti-kt algorithm with a radius parameter of 1.
The missing transverse momentum is required to be larger than 150GeV and 250GeV for the resolved and
boosted topologies respectively. In both cases, events are categorized according to the multiplicity of jets
tagged as containing b-quarks. A separate category is also defined for events in which the mass of the jet
system, defined as the dijet mass in the resolved topology and the mass of the large-radius jet in the merged
topology, is compatible with a hadronic W or Z decay. The main backgrounds, from W+jets, Z+jets and tt
production, are estimated from control regions in data.

The statistical combination of these analyses [24] yields an observed (expected) upper limit on the branching
fraction for Higgs boson decays into invisible final states of Binv < 0.38 (0.21) at 95% confidence level.
In this paper, these analyses are only included in the coupling measurements presented in Sections 7.3
and 7.5.

3.9 Off-shell Higgs boson production

Measurements of the H∗ → Z Z final state in the mass range above the 2mZ threshold (off-shell region)
provide an opportunity to measure the off-shell coupling strength of the observed Higgs boson, as discussed
in Refs. [134–137]. The Z Z → 4` and Z Z → 2`2ν decay channels, detailed in Ref. [25], are used in these
measurements.

Assuming that the coupling modifiers are identical for on-shell and off-shell production, the total width of
the Higgs boson can be constrained from a combination with the on-shell measurements. It is also assumed
that the coupling modifiers are independent of the momentum transfer of the Higgs boson production
mechanism considered in the analysis, and that any new physics which modifies the off-shell signal strength
and the off-shell couplings does not modify the relative phase of the interfering signal and background
processes. Further, it is assumed that there are neither sizable kinematic modifications to the off-shell
signal nor new sizable signals in the search region of this analysis unrelated to an enhanced off-shell signal
strength [138, 139].

The analysis in the Z Z → 4` final state closely follows the Higgs boson measurements in the same final state,
described in Section 3.2, with the same event reconstruction, trigger and event selections and background
estimation methods. The off-peak region is defined to cover the range 220GeV < m4` < 2000GeV.
As in the H → Z Z∗ → 4` analysis, the background is dominated by qq̄/gg → Z Z production. A
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matrix-element-based discriminant is constructed to enhance the gg → H∗ → Z Z signal and is used in a
binned maximum-likelihood fit for the final result.

The analysis in the Z Z → 2`2ν channel is similar to the one designed to search for heavy Z Z reso-
nances [140] with the same object definitions. The analysis is performed inclusively in the number of
final-state jets and thus kinematic selections are optimized accordingly. SM Z Z and W Z production are the
major backgrounds. The transverse mass (mZZ

T ) [25], reconstructed from the momentum of the dilepton
system and the missing transverse momentum, is chosen as the discriminating variable. Events in the range
250GeV < mZZ

T < 2000GeV are used in a binned maximum-likelihood fit for the final result.

These off-shell analyses are only included in the coupling measurements presented in Section 7.5.

4 Statistical model

The statistical methods used in this paper follow those of Ref. [9]. The results of the combination are
obtained from a likelihood function defined as the product of the likelihoods of each input analysis. These
are themselves products of likelihoods computed in mutually exclusive regions selected in the analysis,
referred to as analysis categories.

The number of signal events in each analysis category k is expressed as

nsignal
k

= Lk

∑
i

∑
f

(σ × B)i f (A × ε)i f ,k (1)

where the sum runs over production modes i (i = ggF,VBF,WH, ZH, ttH, . . .) and decay final states
f ( f = γγ, Z Z∗,WW∗, ττ, bb̄, µµ), Lk is the integrated luminosity of the dataset used in category k, and
(A × ε)i f ,k is the acceptance times efficiency factor in category k for production mode i and final state
f . The cross section times branching fraction (σ × B)i f for each relevant pair (i, f ) are the parameters
of interest of the model. The measurements presented in this paper are obtained from fits in which these
products are free parameters (Section 5.3), or in which they are re-expressed in terms of smaller sets of
parameters: of a single signal-strength parameter µ (Section 5.1), of the cross sections σi in each of the
main production modes (Section 5.2), of ratios of cross sections and branching fractions (Sections 5.4
and Section 6.2) or of coupling modifiers (Section 7). Additional parameters, referred to as nuisance
parameters, are used to describe systematic uncertainties and background quantities that are constrained by
sidebands or control regions in data.

Systematic uncertainties that affect multiple analyses are modeled with common nuisance parameters
to propagate the effects of these uncertainties coherently to all measurements. The assessment of the
associated uncertainties varies between data samples, reconstruction algorithms and software releases,
leading to differences particularly between analyses performed using the 2017 dataset and those using
2015 and 2016 data only. Between these two sets of analyses, components of systematic uncertainties in
the luminosity, the jet energy scale, the electron/photon resolution and energy scale, and in the electron
reconstruction and identification efficiencies are also treated as correlated. Uncertainties due to the limited
number of simulated events used to estimate expected signal and background yields are included using the
simplified version of the Beeston–Barlow technique [141] implemented in the HistFactory tool [142].
They are counted among the systematic uncertainties.

Theory uncertainties in the signal, such as missing higher-order QCD corrections and PDF-induced
uncertainties, affect the expected signal yields of each production and decay process, as well as the signal
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acceptance in each category. These uncertainties are modeled by a common set of nuisance parameters
in most channels. For the signal-strength (Section 5.1) and coupling modifier (Section 7) results and
constraints on new phenomena (Section 8), which rely on the comparison of measured and SM-expected
yields, both the acceptance and signal yield uncertainties are included. For the cross-section and branching
fraction results of Sections 5.2 and 6, only acceptance uncertainties are considered. The effects of
correlations between Higgs boson branching fractions are modeled using the correlation model specified in
Ref. [35]. Uncertainties due to dependencies on SM parameter values and missing higher-order effects are
applied to the partial decay widths and propagated to the branching fractions. The uncertainties due to
modeling of background processes are typically treated as uncorrelated between analyses.

The measurement of the parameters of interest is carried out using a statistical test based on the profile
likelihood ratio [143],

Λ(α) =
L(α, ˆ̂θ(α))

L(α̂, θ̂)
,

where α and θ are respectively the parameters of interest and the nuisance parameters. In the numerator,
the nuisance parameters are set to their profiled values ˆ̂θ(α), which maximize the likelihood function for
fixed values of the parameters of interest α. In the denominator, both the parameters of interest and the
nuisance parameters are set to the values α̂ and θ̂ respectively which jointly maximize the likelihood.

In the asymptotic regime, in which the likelihood is approximately Gaussian, the value of −2 lnΛ(α)
follows a χ2 distribution with a number of degrees of freedom n equal to the dimensionality of the vector
α [143]. This property is assumed to hold for all the results presented in the following sections. Confidence
intervals for a confidence level (CL) 1− p are then defined as the regions with values of −2 lnΛ(α) below a
threshold F−1

χ2
n
(1− p), where F−1

χ2
n
is the quantile function of the χ2 distribution with n degrees of freedom.

The CLs prescription [144] is applied when setting an upper limits on a single parameter directly related
to measured event rates, for instance a production cross section. When setting limits in more than one
dimension, the CLs procedure is not applied.

For relevant parameters of interest, a physical bound on the parameter values is included in the statistical
interpretation. For example, branching fraction parameters cannot conceptually be smaller than zero. The
95% confidence interval quoted for such parameters is then based on the profile likelihood ratio restricted
to the allowed region of parameter space, using the t̃µ test statistic of Ref. [143]. The confidence interval is
defined by the standard χ2 cutoff, which leads to some over-coverage near the boundaries.

Uncertainties in the measurement parameters are in some cases broken down into separate components for
theory uncertainties affecting the background processes, theory uncertainties affecting the Higgs boson
signal production, experimental uncertainties including Monte Carlo (MC) statistical uncertainties, and
statistical uncertainties. Each component is derived by fixing the associated nuisance parameters to their
best-fit values θ̂ in both the numerator and denominator of Λ, and computing again the uncertainty in the
measurement parameters. This is done for each component in turn, following the order in which they are
listed above. The uncertainty obtained at each step is then subtracted in quadrature from the uncertainty
obtained in the previous step (in the first step, from the total uncertainty) to obtain the corresponding
uncertainty component. The statistical uncertainty component is obtained in the last step, with all nuisance
parameters fixed except for the ones that are only constrained by data, such as parameters used to describe
data-driven background estimates.

For the systematic uncertainties reported in the detailed breakdowns of Tables 3 and 5, a simpler procedure
is used: in each case the corresponding nuisance parameters are fixed to their best-fit values, while other
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nuisance parameters are left free, and the resulting uncertainty is subtracted in quadrature from the total
uncertainty.

The probability of compatibility with the Standard Model is quantified using the test statistic λSM =
−2 lnΛ(α = αSM), where αSM are the Standard Model values of the parameters of interest. A p-value3 pSM
for the probability of compatibility is computed in the asymptotic approximation as pSM = 1 − Fχ2

n
(λSM),

with n equal to the number of free parameters of interest. For the cross-section and branching fraction
measurements reported in this paper, this definition does not account for the uncertainties in the SM values
used as reference and may therefore lead to an underestimate of the probability of compatibility with the
SM.

Results for expected significances and limits are obtained using the Asimov dataset technique [143].

The correlation coefficients presented in this paper are constructed to be symmetric around the observed
best-fit values of the parameters of interest using the second derivatives of the negative log-likelihood ratio.
Hence, the correlation matrices shown are not fully representative of the observed asymmetric uncertainties
in the measurements. While the reported information is sufficient to reinterpret the measurements in
terms of other parameterizations of the parameters of interest, this provides only an approximation to the
information contained in the full likelihood function. For this reason, results for a number of commonly
used parameterizations are also provided in Sections 5 to 7.

5 Combined measurements of signal strength, production cross sections
and branching ratios

5.1 Global signal strength

The global signal strength µ is determined following the procedures used for the measurements performed
at
√

s = 7 and 8 TeV [9]. For a specific production mode i and decay final state f , the signal yield is
expressed in terms of a single modifier µi f , as the production cross section σi and the branching fraction
Bf cannot be separately measured without further assumptions. The modifiers are defined as the ratios of
the measured Higgs boson yields and their SM expectations, denoted by the superscript “SM”,

µi f =
σi

σSM
i

×
Bf

BSM
f

. (2)

The SM expectation by definition corresponds to µi f = 1. The uncertainties in the SM predictions
are included as nuisance parameters in the measurement of the signal strength modifiers, following the
methodology introduced in Section 4, where the procedures to decompose the uncertainties are also
described.

In the model used in this section, all the µi f are set to a global signal strength µ, describing a common
scaling of the expected Higgs boson yield in all categories. Its combined measurement is

µ = 1.11+0.09
−0.08 = 1.11 ± 0.05 (stat.) +0.05

−0.04 (exp.)
+0.05
−0.04 (sig. th.) ± 0.03 (bkg. th.)

3 The p-value is defined as the probability to obtain a value of the test statistic that is at least as high as the observed value under
the hypothesis that is being tested.
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where the total uncertainty is decomposed into components for statistical uncertainties, experimental
systematic uncertainties, and theory uncertainties in signal and background modeling. The signal theory
component includes uncertainties due tomissing higher-order perturbativeQCD and electroweak corrections
in the MC simulation, uncertainties in PDF and αs values, the treatment of the underlying event, the
matching between the hard-scattering process and the parton shower, choice of hadronization models, and
branching fraction uncertainties. The measurement is consistent with the SM prediction with a p-value of
pSM = 18%, computed using the procedure defined in Section 4 with one degree of freedom. The value
of −2 lnΛ(µ) as a function of µ is shown in Figure 1, for the full likelihood and the versions with sets of
nuisance parameters fixed to their best-fit values to obtain the components of the uncertainty.

Table 3 shows a summary of the leading uncertainties in the combined measurement of the global signal
strength. The dominant uncertainties arise from the theory modeling of the signal and background
processes in simulation. Further important uncertainties relate to the luminosity measurement; the selection
efficiencies, energy scale and energy resolution of electrons and photons; the estimate of lepton yields from
heavy-flavor decays, photon conversions or misidentified hadronic jets (classified as background modeling
in the table); the jet energy scale and resolution, and the identification of heavy-flavor jets.
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Figure 1: Variations of −2 lnΛ(µ) as a function of µ with all systematic uncertainties included (solid black line),
with parameters describing theory uncertainties in background processes fixed to their best-fit values (solid blue line),
with the same procedure also applied to theory uncertainties in the signal process (solid red line) and to all systematic
uncertainties, so that only statistical uncertainties remain (dotted black line). The dashed horizontal lines show the
levels −2 lnΛ(µ) = 1 and −2 lnΛ(µ) = 4 which are used to define, respectively, the 1σ and 2σ confidence intervals
for µ.
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Table 3: Summary of the relative uncertainties ∆µ/µ affecting the measurement of the combined global signal
strength µ. “Other” refers to the combined effect of the sources of experimental systematic uncertainty not explicitly
listed in the table. The sum in quadrature of systematic uncertainties from individual sources differs from the
uncertainty evaluated for the corresponding group in general, due to the presence of small correlations between
nuisance parameters describing the different sources and other effects which are not taken into account in the
procedure described in Section 4.

Uncertainty source ∆µ/µ [%]

Statistical uncertainty 4.4

Systematic uncertainties 6.2
Theory uncertainties 4.8

Signal 4.2
Background 2.6

Experimental uncertainties (excl. MC stat.) 4.1
Luminosity 2.0
Background modeling 1.6
Jets, Emiss

T 1.4
Flavor tagging 1.1
Electrons, photons 2.2
Muons 0.2
τ-lepton 0.4
Other 1.6

MC statistical uncertainty 1.7

Total uncertainty 7.6

5.2 Production cross sections

Higgs boson production is studied in each of its main production modes. The production mechanisms
considered are ggF, VBF, WH, ZH (including gg → ZH), and the combination of ttH and tH (ttH+tH).
In cases where several processes are combined, the combination assumes the relative fractions of each
component to be as in the SM, with theory uncertainties assigned. The small contribution from bb̄H is
grouped with ggF. Cross sections are reported in the region |yH | < 2.5 of the Higgs boson rapidity yH .
Results are obtained in a simultaneous fit to the data, with the cross sections of each production mechanism
as parameters of interest. Higgs boson decay branching fractions are set to their SM values, within the
uncertainties specified in Ref. [35].

The results are shown in Figure 2 and Table 4. The leading sources of uncertainty in the production
cross-section measurements are summarized in Table 5, with uncertainties computed as described in
Section 4. The measured ttH+tH production cross section differs from the ttH cross section reported in
Ref. [12], even after accounting for the difference between the |yH | < 2.5 region used in this paper and the
inclusive phase space considered in Ref. [12]. This is due in part to the inclusion of tH, which in Ref. [12]
is fixed to the SM expectation and not included in the reported ttH cross section, as well as to better control
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of systematic effects, especially those related to photon energy scale and resolution, due to the H→ γγ

categories targeting other processes which are included in this combination, as described in Section 3.1.
The correlations between the measured cross sections, shown in Figure 3, are significantly reduced relative
to previous analyses [9, 145].

A modest correlation of −15% between the ggF and VBF processes remains, however, because of
contributions from ggF production in the VBF-enriched selections. The probability of compatibility
between the measurement and the SM prediction corresponds to a p-value of pSM = 76%, computed using
the procedure outlined in Section 4 with five degrees of freedom.

Figure 4 shows the observed likelihood contours in the plane of σggF versus σVBF from individual channels
and the combined fit, together with the SM prediction. The cross sections for the other production modes
are profiled.

Significances above 5σ are observed for the combined measurements of the ggF, VBF, VH and ttH+tH
production processes. For the VBF process, the observed (expected) significance is 6.5σ (5.3σ). For
the WH and ZH modes, these are respectively 3.5σ (2.7σ) and 3.6σ (3.6σ). Combining WH and ZH
production into a single VH process, with the ratio of WH to ZH production set to its SM value leads to
an observed (expected) significance for this process of 5.3σ (4.7σ). For the combination of ttH and tH
production, the observed (expected) significance is 5.8σ (5.4σ).

Cross section normalized to SM value
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0.07+
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tH+Htt 1.21 0.24−
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Figure 2: Cross sections for ggF, VBF, WH, ZH and ttH+tH normalized to their SM predictions, measured with the
assumption of SM branching fractions. The black error bars, blue boxes and yellow boxes show the total, systematic,
and statistical uncertainties in the measurements, respectively. The gray bands indicate the theory uncertainties in the
cross-section predictions.
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Table 4: Best-fit values and uncertainties for the production cross sections of the Higgs boson, assuming SM values
for its decay branching fractions. The total uncertainties are decomposed into components for data statistics (Stat.),
experimental systematic uncertainties (Exp.), and theory uncertainties in the modeling of the signal (Sig. th.) and
background (Bkg. th.) processes. SM predictions are shown for the cross section of each production process. They
are obtained from the inclusive cross-sections and associated uncertainties reported in Ref. [35], multiplied by
an acceptance factor for the region |yH | < 2.5 computed using the Higgs boson simulation samples described in
Section 2. The observed (obs.) and expected (exp.) significances of the observed signals relative to the no-signal
hypothesis are also shown for all processes except ggF, which was observed in Run 1. For the WH and ZH modes, a
combined VH significance is reported assuming the SM value of the ratio of WH to ZH production.

Process Value Uncertainty [pb] SM pred. Significance
(|yH | < 2.5) [pb] Total Stat. Exp. Sig. th. Bkg. th. [pb] obs. (exp.)

ggF 46.5 ± 4.0 ± 3.1 ± 2.2 ± 0.9 ± 1.3 44.7 ± 2.2 -
VBF 4.25 + 0.84

− 0.77
+ 0.63
− 0.60

+ 0.35
− 0.32

+ 0.42
− 0.32

+ 0.14
− 0.11 3.515 ± 0.075 6.5 (5.3)

WH 1.57 + 0.48
− 0.46

+ 0.34
− 0.33

+ 0.25
− 0.24

+ 0.11
− 0.07 ± 0.20 1.204 ± 0.024 3.5 (2.7)

}
5.3 (4.7)

ZH 0.84 + 0.25
− 0.23 ± 0.19 ± 0.09 + 0.07

− 0.04 ± 0.10 0.797 + 0.033
− 0.026 3.6 (3.6)

ttH+tH 0.71 + 0.15
− 0.14 ± 0.10 + 0.07

− 0.06
+ 0.05
− 0.04

+ 0.08
− 0.07 0.586 + 0.034

− 0.049 5.8 (5.4)

g
g

F
σ

V
B

F
σ

W
H

σ

Z
H

σ

tH
+

Ht t
σ

tH+Htt
σ

ZH
σ

WH
σ

VBF
σ

ggF
σ

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

(X
,Y

)
ρ

0.08

0.01−

0.06−

0.15−

1

0.03

0.01

0.01

1

0.15−

0.03−

0.08−

1

0.01

0.06−

0.00

1

0.08−

0.01

0.01−

1

0.00

0.03−

0.03

0.08

ATLAS
-1

= 13 TeV, 24.5 - 79.8 fbs

| < 2.5
H

y= 125.09 GeV, |Hm

Figure 3: Correlation matrix for the measurement of production cross sections of the Higgs boson, assuming SM
values for its decay branching fractions.
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Table 5: Summary of the uncertainties affecting the production cross-section measurements. “Other” refers to
the combined effect of the sources of experimental systematic uncertainty not explicitly listed in the table. The
sum in quadrature of systematic uncertainties from individual sources differs from the uncertainty evaluated for the
corresponding group in general, due to the presence of small correlations between nuisance parameters describing
the different sources and other effects which are not taken into account in the procedure described in Section 4.

Uncertainty source ∆σggF
σggF

[%] ∆σVBF
σVBF

[%] ∆σWH

σWH
[%] ∆σZH

σZH
[%] ∆σt tH+tH

σt tH+tH
[%]

Statistical uncertainties 6.4 15 21 23 14
Systematic uncertainties 6.2 12 22 17 15

Theory uncertainties 3.4 9.2 14 14 12
Signal 2.0 8.7 5.8 6.7 6.3
Background 2.7 3.0 13 12 10

Experimental uncertainties (excl. MC stat.) 5.0 6.5 9.9 9.6 9.2
Luminosity 2.1 1.8 1.8 1.8 3.1
Background modeling 2.5 2.2 4.7 2.9 5.7
Jets, Emiss

T 0.9 5.4 3.0 3.3 4.0
Flavor tagging 0.9 1.3 7.9 8.0 1.8
Electrons, photons 2.5 1.7 1.8 1.5 3.8
Muons 0.4 0.3 0.1 0.2 0.5
τ-lepton 0.2 1.3 0.3 0.1 2.4
Other 2.5 1.2 0.3 1.1 0.8

MC statistical uncertainties 1.6 4.8 8.8 7.9 4.4
Total uncertainties 8.9 19 30 29 21
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Figure 4: Observed likelihood contours in the plane of σVBF versus σggF from individual channels and the combined
fit. Contours for 68% CL, defined in the asymptotic approximation by −2 lnΛ = 2.28, are shown as solid lines. The
95% CL contour for the combined fit, corresponding to −2 lnΛ = 5.99, is also shown as a dashed line. The crosses
indicate the best-fit values, and the solid ellipse the SM prediction. Higgs boson branching fractions are fixed to their
SM values within theory uncertainties. The probability of compatibility between the combined measurement and the
SM prediction, estimated using the procedure outlined in the text with two degrees of freedom, corresponds to a
p-value of pSM = 50%.
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5.3 Products of production cross sections and branching fractions

A description of both the production and decay mechanisms of the Higgs boson is obtained by considering
the products (σ × B)i f of the cross section in production process i and branching fraction to final state f .
The production processes are defined as in Section 5.2 except for the fact that the WH and ZH processes,
which cannot be reliably determined in all decay channels except H → bb̄, are considered together as a
single VH process, with the ratio of WH to ZH cross sections fixed to its SM value within uncertainties.
The decay modes considered are H→ γγ, H → Z Z∗, H → WW∗, H → ττ and H → bb̄. There are in
total 20 such independent products, but the analyses included in the combination provide little sensitivity
to ggF production in the H → bb̄ decay mode, and to VH production in the H → WW∗ and H → ττ

decay modes. The corresponding products are therefore fixed to their SM values within uncertainties. For
the same reason, in ttH production the H → Z Z∗ decay mode is considered together with H → WW∗

as a single H → VV∗ process, with the ratio of H → Z Z∗ to H → WW∗ fixed to its SM value. The
results are obtained from a simultaneous fit of all input analyses, with the 16 independent (σ × B) products
defined above as parameters of interest. They are shown in Figure 5 and Table 6. The correlation matrix
of the measurements is shown in Figure 6. The largest terms in absolute value are between the ttH,
H → VV∗ and ttH, H → ττ processes, and between the ggF, H → ττ and VBF, H → ττ processes. In
both cases, this is due to cross-contamination between these processes in the analyses providing the most
sensitive measurements. The probability of compatibility between the measurement and the SM prediction
corresponds to a p-value of pSM = 71%, computed using the procedure outlined in Section 4 with 16
degrees of freedom.
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Table 6: Best-fit values and uncertainties for the production cross sections times branching fractions of the Higgs
boson, for the combinations in which sufficient sensitivity is provided by the input analyses. Combinations not
shown in the table are fixed to their SM values within uncertainties. For ttH+tH production, H → VV∗ refers
to the combination of H → WW∗ and H → Z Z∗, with a relative weight fixed by their respective SM branching
fractions. The total uncertainties are decomposed into components for data statistics (Stat.), experimental systematic
uncertainties (Exp.), and theory uncertainties in the modeling of the signal (Sig. th.) and background (Bkg. th.)
processes. SM predictions [35] are shown for each process.

Process Value Uncertainty [fb] SM pred.
(|yH | < 2.5) [fb] Total Stat. Exp. Sig. th. Bkg. th. [fb]

ggF, H→ γγ 97 ± 14 ± 11 ± 8 ± 2 + 2
− 1 101.5 ± 5.3

ggF, H → Z Z∗ 1230 + 190
− 180 ± 170 ± 60 ± 20 ± 20 1181 ± 61

ggF, H → WW∗ 10400 ± 1800 ± 1100 ± 1100 ± 400 + 1000
− 900 9600 ± 500

ggF, H → ττ 2700 + 1700
− 1500 ± 1000 ± 900 + 800

− 300 ± 400 2800 ± 140

VBF, H→ γγ 11.1 + 3.2
− 2.8

+ 2.5
− 2.4

+ 1.4
− 1.0

+ 1.5
− 1.1

+ 0.3
− 0.2 7.98 ± 0.21

VBF, H → Z Z∗ 249 + 91
− 77

+ 87
− 75

+ 16
− 11

+ 17
− 12

+ 9
− 7 92.8 ± 2.3

VBF, H → WW∗ 450 + 270
− 260

+ 220
− 200

+ 120
− 130

+ 80
− 70

+ 70
− 80 756 ± 19

VBF, H → ττ 260 + 130
− 120 ± 90 + 80

− 70
+ 30
− 10

+ 30
− 20 220 ± 6

VBF, H → bb̄ 6100 + 3400
− 3300

+ 3300
− 3200

+ 700
− 600 ± 300 ± 300 2040 ± 50

VH, H→ γγ 5.0 + 2.6
− 2.5

+ 2.4
− 2.2

+ 1.0
− 0.9 ± 0.5 ± 0.1 4.54 + 0.13

− 0.12

VH, H → Z Z∗ 36 + 63
− 41

+ 62
− 41

+ 5
− 4

+ 6
− 4

+ 4
− 2 52.8 ± 1.4

VH, H → bb̄ 1380 + 310
− 290

+ 210
− 200 ± 150 + 120

− 80 ± 140 1162 + 31
− 29

ttH+tH, H→ γγ 1.46 + 0.55
− 0.47

+ 0.48
− 0.44

+ 0.19
− 0.15

+ 0.17
− 0.11 ± 0.03 1.33 + 0.08

− 0.11

ttH+tH, H → VV∗ 212 + 84
− 81

+ 61
− 59

+ 47
− 44

+ 17
− 10

+ 31
− 30 142 + 8

− 12

ttH+tH, H → ττ 51 + 41
− 35

+ 31
− 28

+ 26
− 21

+ 6
− 4

+ 8
− 6 36.7 + 2.2

− 3.1

ttH+tH, H → bb̄ 270 ± 200 ± 100 ± 80 + 40
− 10

+ 150
− 160 341 + 20

− 29
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BR normalized to SM×σ

2− 0 2 4 6 8

Total Stat. Syst. SMATLAS
-1= 13 TeV, 24.5 - 79.8 fbs

| < 2.5
H

y= 125.09 GeV, |Hm
= 71%

SM
p

ggF

VBF

VH

tH+Htt

Total Stat. Syst.

γγ 0.96 0.14± ( 0.11± , 0.08−

0.09+
)

ZZ* 1.04 0.15−

0.16+
( 0.14± , 0.06± )

WW* 1.08 0.19± ( 0.11± , 0.15± )

ττ 0.96 0.52−

0.59+
( 0.36−

0.37+
, 0.38−

0.46+
)

comb. 1.04 0.09± ( 0.07± , 0.06−

0.07+
)

γγ 1.39 0.35−

0.40+
( 0.30−

0.31+
, 0.19−

0.26+
)

ZZ* 2.68 0.83−

0.98+
( 0.81−

0.94+
, 0.20−

0.27+
)

WW* 0.59 0.35−

0.36+
( 0.27−

0.29+
, 0.21± )

ττ 1.16 0.53−

0.58+
( 0.40−

0.42+
, 0.35−

0.40+
)

bb 3.01 1.61−

1.67+
( 1.57−

1.63+
, 0.36−

0.39+
)

comb. 1.21 0.22−

0.24+
( 0.17−

0.18+
, 0.13−

0.16+
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γγ 1.09 0.54−

0.58+
( 0.49−

0.53+
, 0.22−

0.25+
)

ZZ* 0.68 0.78−

1.20+
( 0.77−

1.18+
, 0.11−

0.18+
)

bb 1.19 0.25−

0.27+
( 0.17−

0.18+
, 0.18−

0.20+
)

comb. 1.15 0.22−

0.24+
( 0.16± , 0.16−

0.17+
)

γγ 1.10 0.35−

0.41+
( 0.33−

0.36+
, 0.14−

0.19+
)

VV* 1.50 0.57−

0.59+
( 0.42−

0.43+
, 0.38−

0.41+
)

ττ 1.38 0.96−

1.13+
( 0.76−

0.84+
, 0.59−

0.75+
)

bb 0.79 0.59−

0.60+
( 0.29± , 0.52± )

comb. 1.21 0.24−

0.26+
( 0.17± , 0.18−

0.20+
)

Figure 5: Cross sections times branching fraction for ggF, VBF, VH and ttH+tH production in each relevant decay
mode, normalized to their SM predictions. The values are obtained from a simultaneous fit to all channels. The
cross sections of the ggF, H → bb̄, VH, H → WW∗ and VH, H → ττ processes are fixed to their SM predictions.
Combined results for each production mode are also shown, assuming SM values for the branching fractions into
each decay mode. The black error bars, blue boxes and yellow boxes show the total, systematic, and statistical
uncertainties in the measurements, respectively. The gray bands show the theory uncertainties in the predictions.
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Figure 6: Correlation matrix for the measured values of the production cross sections times branching fractions of the
Higgs boson, for the combinations in which sufficient sensitivity is provided by the input analyses.
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5.4 Ratios of cross sections and branching fractions

The products (σ × B)i f described in Section 5.3 can be expressed as

(σ × B)i f = σZZ
ggF ·

(
σi

σggF

)
·

(
Bf

BZZ

)
,

in terms of the cross section times branching fraction σZZ
ggF for the reference process gg → H → Z Z∗,

which is precisely measured and exhibits small systematic uncertainties, ratios of production cross sections
to that of ggF, σi/σggF, and ratios of branching fractions to that of H → Z Z∗, Bf /BZZ .

Results are shown in Figure 7 and Table 7. The probability of compatibility between the measurements
and the SM predictions corresponds to a p-value of pSM = 93%, computed using the procedure outlined in
Section 4 with nine degrees of freedom.

Parameter normalized to SM value

0 0.5 1 1.5 2 2.5 3

Total Stat. Syst. SMATLAS
-1= 13 TeV, 24.5 - 79.8 fbs

| < 2.5
H

y= 125.09 GeV, |Hm

= 93%
SM

p
Total Stat. Syst.

ZZ*
ggFσ 1.13 0.13± ( 0.11−

0.12+
, 0.06± )

ggFσ/VBFσ 1.24 0.27−

0.32+
( 0.22−

0.24+
, 0.15−

0.21+
)

ggFσ/WHσ 1.24 0.45−

0.59+
( 0.35−

0.44+
, 0.29−

0.39+
)

ggFσ/ZHσ 1.01 0.34−

0.47+
( 0.29−

0.37+
, 0.19−

0.30+
)

ggFσ/
tH+Htt

σ 1.20 0.27−

0.31+
( 0.21−

0.24+
, 0.17−

0.20+
)

ZZ*B/γγB 0.87 0.12−

0.14+
( 0.11−

0.12+
, 0.06−

0.07+
)

ZZ*B/WW*B 0.84 0.15−

0.18+
( 0.11−

0.13+
, 0.11−

0.12+
)

ZZ*B/ττB 0.86 0.22−

0.26+
( 0.17−

0.19+
, 0.14−

0.18+
)

ZZ*B/
bb

B 0.93 0.27−

0.38+
( 0.21−

0.27+
, 0.18−

0.26+
)

Figure 7: Results of a simultaneous fit for σZZ
ggF , σVBF/σggF, σWH/σggF, σZH/σggF, σttH+tH/σggF, Bγγ/BZZ ,

BWW/BZZ , Bττ/BZZ , and Bbb/BZZ . The fit results are normalized to the SM predictions. The black error bars,
blue boxes and yellow boxes show the total, systematic, and statistical uncertainties in the measurements, respectively.
The gray bands show the theory uncertainties in the predictions.
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Table 7: Best-fit values and uncertainties for σZZ
ggF , together with ratios of production cross sections normalized to

σggF, and ratios of branching fractions normalized to BZZ . The total uncertainties are decomposed into components
for data statistics (Stat.), experimental systematic uncertainties (Exp.), and theory uncertainties in the modeling of
the signal (Sig. th.) and background (Bkg. th.) processes. The SM predictions [35] are also shown with their total
uncertainties.

Quantity Value
Uncertainty

SM prediction
Total Stat. Exp. Sig. th. Bkg. th.

σZZ
ggF [pb] 1.33 ± 0.15 + 0.14

− 0.13 ± 0.06 + 0.02
− 0.01

+ 0.04
− 0.02 1.181 ± 0.061

σVBF/σggF 0.097 + 0.025
− 0.021

+ 0.019
− 0.017

+ 0.010
− 0.008

+ 0.011
− 0.008

+ 0.006
− 0.005 0.0786 ± 0.0043

σWH/σggF 0.033 + 0.016
− 0.012

+ 0.012
− 0.009

+ 0.007
− 0.006

+ 0.003
− 0.002

+ 0.007
− 0.005 0.0269 + 0.0014

− 0.0015

σZH/σggF 0.0180 + 0.0084
− 0.0061

+ 0.0066
− 0.0052

+ 0.0034
− 0.0021

+ 0.0016
− 0.0009

+ 0.0037
− 0.0025 0.0178 + 0.0011

− 0.0010

σttH+tH/σggF 0.0157 + 0.0041
− 0.0035

+ 0.0031
− 0.0028

+ 0.0020
− 0.0017

+ 0.0012
− 0.0008

+ 0.0013
− 0.0012 0.0131 + 0.0010

− 0.0013

Bγγ/BZZ 0.075 + 0.012
− 0.010

+ 0.010
− 0.009

+ 0.006
− 0.005 ± 0.001 ± 0.002 0.0860 ± 0.0010

BWW/BZZ 6.8 + 1.5
− 1.2

+ 1.1
− 0.9

+ 0.8
− 0.7 ± 0.2 + 0.6

− 0.5 8.15 ± < 0.01

Bττ/BZZ 2.04 + 0.62
− 0.52

+ 0.45
− 0.40

+ 0.36
− 0.31

+ 0.17
− 0.09

+ 0.12
− 0.09 2.369 ± 0.017

Bbb/BZZ 20.5 + 8.4
− 5.9

+ 5.9
− 4.6

+ 3.7
− 2.4

+ 1.3
− 0.9

+ 4.2
− 2.9 22.00 ± 0.51

6 Combined measurements of simplified template cross sections

6.1 Simplified template cross-section framework

Simplified template cross sections [35, 36] are defined through a partition of the phase space of the SM
Higgs production process into a set of non-overlapping regions. These regions are defined in terms of
the kinematics of the Higgs boson and, when they are present, of associated jets and W and Z bosons,
independently of the Higgs boson decay process. They are chosen according to three criteria: sensitivity
to deviations from the SM expectation, avoidance of large theory uncertainties in the corresponding SM
predictions, and to approximately match experimental selections so as to minimize model-dependent
extrapolations. Analysis selections do not, however, necessarily correspond exactly to the STXS regions.

All regions are defined for a Higgs boson rapidity yH satisfying |yH | < 2.5, corresponding approximately to
the region of experimental sensitivity. Jets are reconstructed from all stable particles with a lifetime greater
than 10 ps, excluding the decay products of the Higgs boson and leptons from W and Z boson decays,
using the anti-kt algorithm with a jet radius parameter R = 0.4, and must have a transverse momentum
pT,jet > 30GeV.

The measurements presented in this paper are based on the Stage 1 splitting of the STXS framework [35].
Higgs boson production is first classified according to the nature of the initial state and of associated
particles, the latter including the decay products ofW and Z bosons if they are present. These categories are,
by order of decreasing selection priority: ttH and tH processes; qq→ Hqq processes, with contributions
from both VBF production and quark-initiated VH production with a hadronic decay of the gauge boson;
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gg → ZH with Z → qq̄; VH production with a leptonic decay of the vector boson (V(lep)H), including
gg → ZH production; and finally the gluon–gluon fusion process. The last is considered together with
gg → ZH, Z → qq̄ production, as a single gg → H process. The bb̄H production mode is modeled
as a 1% [35] increase of the gg → H yield in each STXS bin, since the acceptances for both processes
are similar for all input analyses [35]. The ttH and tH processes are also combined in a single ttH+tH
category, assuming the relative fraction of each component to be as in the SM, within uncertainties.

The analyses included in this paper provide only limited sensitivity to the cross section in some bins of the
Stage 1 scheme, mainly due to limited data statistics in some regions. In other cases, they only provide
sensitivity to a combination of bins, leading to strongly correlated measurements. To mitigate these effects,
the results are presented in terms of a reduced splitting, with the measurement bins defined as merged
groups of Stage 1 bins (and in the case of V(lep)H with an additional splitting not present in the original
Stage 1 scheme, as described below). These measurement bins are defined as follows for each process:

• gg → H is separated into regions defined by the jet multiplicity and the Higgs boson transverse
momentum pH

T . A region is defined for events with one or more jets and pH
T ≥ 200GeV, providing

sensitivity to deviations from the SM at high momentum transfer. The remaining events are separated
into classes with 0, 1 and ≥ 2 jets in the final state. The one-jet category is further split in bins of pH

T ,
probing perturbative QCD predictions and providing sensitivity to deviations from the SM. Three
bins are defined with pH

T < 60GeV, 60GeV ≤ pH
T < 120GeV and 120GeV ≤ pH

T < 200GeV.

• qq → Hqq is separated into three regions. The first selects events in which the transverse momentum
of the leading jet pj

T is ≥ 200GeV. A second region, denoted byVH topo, is defined by pj
T < 200GeV

and the presence of two jets with an invariant mass mj j in the range 60 ≤ mj j < 120GeV, selecting
events originating from VH production in particular. The remaining events are grouped into a third
bin, denoted by VBF topo + Rest, which includes mainly the VBF-topology region (VBF topo)
defined by the presence of two jets with mj j ≥ 400GeV and a pseudorapidity difference |∆ηj j | ≥ 2.8,
as well as events that fall in none of the above selections (Rest). The measurement sensitivity for the
corresponding cross section is provided mainly by the VBF-topology region, within which the cross
section is measured precisely by the analyses targeting VBF production.

• V (lep)H is split into the two processes qq → WH and pp → ZH, the latter including both
quark-initiated and gluon-initiated production. These regions are further split according to pVT , the
transverse momentum of the W or Z boson. For the qq → WH process two bins are defined for
pVT < 250GeV and pVT ≥ 250GeV, while for pp→ ZH three bins are defined for pVT < 150GeV,
150GeV ≤ pVT < 250GeV and pVT ≥ 250GeV. This definition deviates from the one given in
Ref. [35], where the qq→ ZH and gg → ZH processes are measured separately and no splitting is
performed at pVT = 250GeV for gg → ZH, given the limited sensitivity of the current measurements
to separating the qq→ ZH and gg → ZH processes.

The above merging scheme of Stage 1 bins is summarized in Figure 8.

Sensitivity to the 0-jet and 1-jet, pH
T < 60GeV regions of the gg → H process is provided mainly by

the H→ Z Z∗→ 4`, H→ γγ and H→WW∗→ eνµν analyses, with the leading contribution in each region
coming from H→WW∗→ eνµν and H→ γγ respectively. For the 1-jet, 60 ≤ pH

T < 120GeV region, the
main contributions to the sensitivity are from H→ Z Z∗→ 4` and H→ γγ, dominated by the latter. The
H→ γγ analysis also provides the largest sensitivity in the rest of the gg → H regions as well as in the
qq→ Hqq sector, apart from the pj

T > 200GeV region for which H → ττ dominates the sensitivity. The
VH, H → bb̄ analysis provides the most sensitive measurements in the V(lep)H regions. Finally, the
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T
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gg/qq→ Hlν, plν, p, p
T
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T

V < 250 GeV 
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T

V ≥ 250 GeV ttH + tH

qq → Hqq, VH topo

Figure 8: Definition of the STXS measurement regions used in this paper. For each Higgs boson production process,
the regions are defined starting from the top of the corresponding schematic, with regions nearer the top taking
precedence if the selections overlap. The bb̄H production mode is considered as part of gg → H.

H→ γγ and ttH multilepton analyses provide the leading contributions to the measurement of the ttH+tH
region.

The measured event yields are described by Eq. (1), with parameters of interest of the form (σ × B)i f
denoting the cross section times branching fraction in STXS region i and decay channel f . The acceptance
factors (ε × A)k

i f
for each analysis category k are determined from SM Higgs boson production processes,

modeled using the samples described in Section 2, and act as templates in the fits of the STXS cross sections
to the data. The dependence on the theory assumptions is less than in the measurement of the total cross
sections in each production mode, since the (ε × A)k

i f
are computed over smaller regions. Assumptions

about the kinematics within a given STXS region lead to some model-dependence, which can be reduced
further by using a finer splitting of the phase space, as allowed by experimental precision. Results using a
splitting finer than the one described in this section are presented in Appendix A.

Theory uncertainties for the gg → H and qq → Hqq processes are defined as in Ref. [10], while those
of the V(lep)H process follow the scheme described in Ref. [146]. For the measurement bins defined by
merging several bins of the STXS Stage-1 framework, the (ε × A) factors are determined assuming that the
relative fractions of each Stage-1 bin are as in the SM, and SM uncertainties in these fractions are taken
into account.
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6.2 Results

The fit parameters chosen for the combined STXS measurements are the cross sections for Higgs boson
production in STXS region i times the branching fraction for the H → Z Z∗ decay, (σ × B)i,ZZ , and the
ratios of branching fractions Bf /BZZ for the other final states f . Similarly to the ratio model in Section 5.4,
the cross sections times branching fractions for final states other than Z Z are parameterized as

(σ × B)i f = (σ × B)i,ZZ ·

(
Bf

BZZ

)
.

The results are shown in Figures 9 and 10 and in Table 8. The observed upper limits at 95% CL on the
cross sections in the qq→ Hqq, VH topo and qq→ Hqq, pj

T ≥ 200 GeV bins are found to be 1.45 pb
and 0.59 pb, respectively, taking into account the physical bound on the parameter values as discussed in
Section 4. The corresponding expected upper limits are 1.53 pb and 0.80 pb, respectively.

The correlations between the measured parameters are shown in Figure 11. The largest anti-correlations
are between Bbb̄/BZZ and the cross-section measurements in the V(lep)H region, since the VH, H → bb̄
analysis is sensitive to products of these quantities; between the cross-section measurement in the gg → H
0-jet region and both Bγγ/BZZ and BWW/BZZ , since the H→ γγ, H→ Z Z∗→ 4` and H→WW∗→ eνµν
decay channels provide the most precise measurements in this region; between Bγγ/BZZ and the cross-
section measurement in the qq → Hqq, VBF topo + Rest region, since there is a tension between
the H→ γγ and H→ Z Z∗→ 4` measurements in this region; between Bττ/BZZ and the cross-section
measurement in the pH

T > 200GeV region, since the high-pH
T channels of the H → ττ analysis are

sensitive to their product; and between the cross-section measurements in the qq→ Hqq, pj
T ≥ 200 GeV

and gg → H, ≥ 1-jet, pH
T ≥ 200 GeV regions on the one hand, and the qq → Hqq, pj

T ≥ 200 GeV
and gg → H, 1-jet, 120 ≤ pH

T < 200 GeV regions on the other hand, since in both cases there is
cross-contamination between these processes in the experimental selections.

The largest positive correlations are between the (W → `ν)H and (Z → ``)H measurement regions,
related to their strong anti-correlation with Bbb̄/BZZ ; and between Bγγ/BZZ and BWW/BZZ , due to their
strong anti-correlation with the cross-section measurement in the 0-jet region.

The results show good overall agreement with the SM predictions in a range of kinematic regions of
Higgs boson production processes. The probability of compatibility between the measurement and the SM
prediction corresponds to a p-value of pSM = 89%, computed using the procedure outlined in Section 4
with 19 degrees of freedom.
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Figure 9: Best-fit values and uncertainties for the cross sections in each measurement region and of the ratios of
branching fractions Bf /BZZ , normalized to the SM predictions for the various parameters. The parameters directly
extracted from the fit are the products (σi × BZZ ) and the ratios Bf /BZZ . The black error bar shows the total
uncertainty in each measurement.
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Figure 10: Best-fit values and uncertainties for the cross sections in each measurement region and of the ratios of
branching fractions Bf /BZZ . The parameters directly extracted from the fit are the products (σi × BZZ ) and the ratios
Bf /BZZ ; the former are shown divided by the SM value of BZZ . The black error bar shows the total uncertainty in
each measurement.
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Figure 11: Correlation matrix for the measured values of the simplified template cross sections and ratios of branching
fractions. The fit parameters are the products (σi × BZZ ) and the ratios Bf /BZZ .
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Table 8: Best-fit values and uncertainties for the cross sections in each measurement region, and of the ratios of
branching fractions Bf /BZZ . The total uncertainties are decomposed into components for data statistics (Stat.)
and systematic uncertainties (Syst.). The SM predictions [35] are also shown for each quantity with their total
uncertainties. The parameters directly extracted from the fit are the products (σi × BZZ ) and the ratios Bf /BZZ ; the
former are shown divided by the SM value of BZZ .

Measurement region
(
(σi × BZZ )/BSM

ZZ

) Value Uncertainty [pb] SM prediction

[pb] Total Stat. Syst. [pb]

gg → H, 0-jet 35.5 + 5.0
− 4.7

+ 4.4
− 4.1

+ 2.5
− 2.2 27.5 ± 1.8

gg → H, 1-jet, pH
T < 60 GeV 3.7 + 2.8

− 2.7
+ 2.4
− 2.3

+ 1.5
− 1.4 6.6 ± 0.9

gg → H, 1-jet, 60 ≤ pH
T < 120 GeV 4.0 + 1.7

− 1.5
+ 1.5
− 1.4

+ 0.8
− 0.7 4.6 ± 0.6

gg → H, 1-jet, 120 ≤ pH
T < 200 GeV 1.0 + 0.6

− 0.5 ± 0.5 + 0.3
− 0.2 0.75 ± 0.15

gg → H, ≥ 1-jet, pH
T ≥ 200 GeV 1.2 + 0.5

− 0.4 ± 0.4 + 0.3
− 0.2 0.59 ± 0.16

gg → H, ≥ 2-jet, pH
T < 200 GeV 5.4 + 2.7

− 2.5
+ 2.2
− 2.1

+ 1.5
− 1.3 4.8 ± 1.0

qq→ Hqq, VBF topo + Rest 6.4 + 1.8
− 1.5

+ 1.5
− 1.3

+ 1.1
− 0.9 4.07 ± 0.09

qq→ Hqq, VH topo −0.06 + 0.70
− 0.58

+ 0.68
− 0.57

+ 0.16
− 0.12 0.515 ± 0.019

qq→ Hqq, pj
T ≥ 200 GeV −0.21 ± 0.33 + 0.29

− 0.28
+ 0.15
− 0.16 0.220 ± 0.005

qq→ H`ν, pVT < 250 GeV 0.90 + 0.49
− 0.40

+ 0.40
− 0.33

+ 0.28
− 0.22 0.393 ± 0.009

qq→ H`ν, pVT ≥ 250 GeV 0.023 + 0.028
− 0.015

+ 0.018
− 0.012

+ 0.022
− 0.008 0.0122 ± 0.0006

gg/qq→ H``, pVT < 150 GeV 0.17 + 0.25
− 0.31 ± 0.20 + 0.15

− 0.24 0.200 ± 0.008

gg/qq→ H``, 150 ≤ pVT < 250 GeV 0.028 + 0.042
− 0.037

+ 0.033
− 0.029

+ 0.026
− 0.023 0.0324 ± 0.0041

gg/qq→ H``, pVT ≥ 250 GeV 0.024 + 0.025
− 0.013

+ 0.016
− 0.011

+ 0.020
− 0.006 0.0083 ± 0.0009

ttH+tH 0.84 + 0.23
− 0.19

+ 0.18
− 0.16

+ 0.14
− 0.11 0.59 + 0.04

− 0.05

Branching fraction ratio Value
Uncertainty

SM prediction
Total Stat. Syst.

Bγγ/BZZ 0.074 + 0.012
− 0.010

+ 0.010
− 0.009

+ 0.006
− 0.005 0.0860 ± 0.0010

Bbb̄/BZZ 14 + 8
− 6

+ 5
− 4

+ 6
− 5 22.0 ± 0.5

BWW/BZZ 7.0 + 1.5
− 1.3

+ 1.1
− 0.9

+ 1.0
− 0.9 8.15 ± < 0.01

Bττ/BZZ 2.1 + 0.7
− 0.6 ± 0.5 + 0.5

− 0.3 2.37 ± 0.02

7 Interpretation of results in the κ framework

When testing the Higgs boson coupling strengths, the production cross sections σi, decay branching
fractions Bf and the signal-strength parameters µi f defined in Eq.( 2) cannot be treated independently, as
each observed process involves at least two Higgs boson coupling strengths. Scenarios with a consistent
treatment of coupling strengths in Higgs boson production and decay modes are presented in this section.
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7.1 Framework for coupling-strength measurements

Coupling-strength modifiers κ are introduced to study modifications of the Higgs boson couplings related
to BSM physics, within a framework [37] (κ-framework) based on the leading-order contributions to each
production and decay process. Within the assumptions made in this framework, the Higgs boson production
and decay can be factorized, such that the cross section times branching fraction of an individual channel
σ(i → H → f ) contributing to a measured signal yield is parameterized as

σi × Bf =
σi(κ) × Γf (κ)

ΓH
, (3)

where ΓH is the total width of the Higgs boson and Γf is the partial width for Higgs boson decay into
the final state f . For a given production process or decay mode j, the corresponding coupling-strength
modifier κj is defined by

κ2
j =

σj

σSM
j

or κ2
j =

Γj

ΓSMj
.

The SM expectation, denoted by the label “SM”, by definition corresponds to κj = 1.

The total width of the Higgs boson is affected both by modifications of the κj , and contributions from two
additional classes of Higgs boson decays: invisible decays, which are identified through an Emiss

T signature
in the analyses described in Section 3.8; and undetected decays, to which none of the analyses included
in this combination are sensitive (the latter includes for instance Higgs boson decays into light quarks,
or to BSM particles to which none of the input analyses provide appreciable sensitivity). In the SM, the
branching fraction for decays into invisible final states is ∼ 0.1%, from the H → Z Z∗ → 4ν process. BSM
contributions to this branching fraction and to the branching fraction to undetected final states are denoted
by Binv and Bundet respectively, with the SM corresponding to Binv = Bundet = 0. The Higgs boson total
width is then expressed as ΓH (κ, Binv, Bundet) = κ

2
H (κ, Binv, Bundet) Γ

SM
H with

κ2
H (κ, Binv, Bundet) =

∑
j BSM

f
κ2
j

(1 − Binv − Bundet)
. (4)

Constraints on Binv are provided by the analyses described in Section 3.8, but no direct constraints are
included for Bundet. Since its value scales all observed cross sections of on-shell Higgs boson production
σ(i→ H → f ) through Eqs. 3 and 4, further assumptions about undetected decays must be included in
order to interpret these measurements in terms of absolute coupling-strength scale factors κj . The simplest
assumption is that there are no undetected Higgs boson decays and the invisible branching fraction is as
predicted by the SM. An alternative, weaker assumption, is to require κW ≤ 1 and κZ ≤ 1 [37]. A second
alternative uses the assumption that the signal strength of off-shell Higgs boson production only depends on
the coupling-strength scale factors and not on the total width [134, 135], σoff(i → H∗ → f ) ∼ κ2

i,off × κ
2
f ,off.

If the coupling strengths in off-shell Higgs boson production are furthermore assumed to be identical to
those for on-shell Higgs boson production, κj,off = κj,on, and under the assumptions given in Section 3.9,
the Higgs boson total width can be determined from the ratio of off-shell to on-shell signal strengths [25,
147]. These assumptions can also be extended to apply to Binv as well as Bundet, as an alternative to the
measurements of Section 3.8.
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An alternative approach is to rely on measurements of ratios of coupling-strength scale factors, which can
be measured without assumptions about the Higgs boson total width, since the dependence on ΓH of each
coupling strength cancels in their ratios.

The current LHC data are insensitive to the coupling-strength modifiers κc and κs. Thus, in the following it
is assumed that κc varies as κt and κs varies as κb. Other coupling modifiers (κu , κd, and κe) are irrelevant
for the combination provided they are of order unity. The gg → H, H → gg, gg → ZH, H → γγ and
H → Zγ processes are loop-induced in the SM. The ggH vertex and the H → γγ process are treated
either using effective scale factors κg and κγ, respectively, or expressed in terms of the more fundamental
coupling-strength scale factors corresponding to the particles that contribute to the loop, including all
interference effects. The gg → ZH process is never described using an effective scale factor and always
resolved in terms of modifications of the SM Higgs boson couplings to the top quark and the Z boson. This
assumption impacts the description of BSM effects in gg → ZH, since these lead to modified production
kinematics [148]. However, the effect of introducing an explicit dependence on the transverse momentum
of the Z boson in the parameterization was found to have a negligible impact on the results at the current
level of experimental precision. Similarly, the H → Zγ decay is always expressed in terms of the Higgs
boson couplings to the W boson and the t-quark as no analysis targeting this decay mode is included in the
combination. These relations are summarized in Table 9. All uncertainties in the best-fit values shown in
the following take into account both the experimental and theoretical systematic uncertainties, following
the procedures outlined in Section 4.
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Table 9: Parametrizations of Higgs boson production cross sections σi , partial decay widths Γ f , and the total width
ΓH , normalized to their SM values, as functions of the coupling-strength modifiers κ. The effect of invisible and
undetected decays is not considered in the expression for ΓH . For effective κ parameters associated with loop
processes, the resolved scaling in terms of the modifications of the Higgs boson couplings to the fundamental SM
particles is given. The coefficients are derived following the methodology in Ref. [37].

Production Loops Interference
Effective

Resolved modifier
modifier

σ(ggF) X t–b κ2
g 1.04 κ2

t + 0.002 κ2
b
− 0.04 κt κb

σ(VBF) - - - 0.73 κ2
W + 0.27 κ2

Z

σ(qq/qg → ZH) - - - κ2
Z

σ(gg → ZH) X t–Z κ(ggZH) 2.46 κ2
Z + 0.46 κ2

t − 1.90 κZ κt
σ(WH) - - - κ2

W

σ(ttH) - - - κ2
t

σ(tHW) - t–W - 2.91 κ2
t + 2.31 κ2

W − 4.22 κt κW
σ(tHq) - t–W - 2.63 κ2

t + 3.58 κ2
W − 5.21 κt κW

σ(bb̄H) - - - κ2
b

Partial decay width

Γbb - - - κ2
b

ΓWW - - - κ2
W

Γgg X t–b κ2
g 1.11 κ2

t + 0.01 κ2
b
− 0.12 κt κb

Γττ - - - κ2
τ

ΓZZ - - - κ2
Z

Γcc - - - κ2
c (= κ

2
t )

Γγγ X t–W κ2
γ 1.59 κ2

W + 0.07 κ2
t − 0.67 κW κt

ΓZγ X t–W κ2
(Zγ)

1.12 κ2
W − 0.12 κW κt

Γss - - - κ2
s (= κ

2
b
)

Γµµ - - - κ2
µ

Total width (Binv = Bundet = 0)

ΓH X - κ2
H

0.58 κ2
b
+ 0.22 κ2

W

+0.08 κ2
g + 0.06 κ2

τ

+0.03 κ2
Z + 0.03 κ2

c

+0.0023 κ2
γ + 0.0015 κ2

(Zγ)

+0.0004 κ2
s + 0.00022 κ2

µ
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7.2 Fermion and gauge boson couplings

The model studied in this section probes the universal coupling-strength scale factors κV = κW = κZ for
all vector bosons and κF = κt = κb = κτ = κµ for all fermions. The effective couplings corresponding to
the ggH and H → γγ vertex loops are resolved in terms of the fundamental SM couplings. It is assumed
that there are no invisible or undetected Higgs boson decays, i.e. Binv = Bundet = 0. Only the relative sign
between κV and κF is physical. As a negative relative sign has been excluded [9], κV ≥ 0 and κF ≥ 0 are
assumed. These definitions can be applied either globally, yielding two parameters, or separately for each
of the five major decay channels, yielding ten parameters, κ fV and κ fF with the superscript f indicating the
decay mode. The best-fit values and uncertainties from a combined fit are

κV = 1.05 ± 0.04
κF = 1.05 ± 0.09.

Figure 12 shows the results of the combined fit in the (κV , κF ) plane as well as those of the individual decay
modes in this benchmark model. Both κV and κF are measured to be compatible with the SM expectation.
The probability of compatibility between the SM hypothesis with the best-fit point corresponds to a p-value
of pSM = 41%, computed using the procedure outlined in Section 4 with two degrees of freedom. In the
combined measurement a linear correlation of 44% between κV and κF is observed.
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Figure 12: Negative log-likelihood contours at 68% and 95% CL in the (κ fV , κ
f
F ) plane for the individual decay modes

and their combination (κF versus κV shown in black) assuming the coupling strengths to fermions and vector bosons
to be positive. No contributions from invisible or undetected Higgs boson decays are assumed. The best-fit value for
each measurement is indicated by a cross while the SM hypothesis is indicated by a star.
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7.3 Probing BSM contributions in loops and decays

To probe contributions of new particles either though loops or new final states, the effective coupling
strengths to photons and gluons κγ and κg are measured. These parameters are defined to be positive as
there is by construction no sensitivity to the sign of these coupling strengths. The modifiers corresponding
to other loop-induced processes are resolved. The potential new particles contributing to these vertex loops
may or may not contribute to the total width of the Higgs boson through direct invisible or undetected
decays. In the former case, the total width is parameterized in terms of the branching fractions Binv and
Bundet defined in Section 7.1. Furthermore, the benchmark models studied in this section assume that all
coupling-strength modifiers of known SM particles are unity, i.e. they follow the SM predictions, and that
the kinematics of the Higgs boson decay products are not altered significantly.

Assuming Binv = Bundet = 0, the best-fit values and uncertainties from a combined fit are

κγ = 1.00 ± 0.06

κg = 1.03+0.07
−0.06.

Figure 13 shows negative log-likelihood contours obtained from the combined fit in the (κγ, κg) plane.
Both κγ and κg are measured to be compatible with the SM expectation. The probability of compatibility
between the SM hypothesis with the best-fit point corresponds to a p-value of pSM = 88%, computed using
the procedure outlined in Section 4 with two degrees of freedom. A linear correlation of −44% between κγ
and κg is observed, in part due to the constraint on their product from the rate of H → γγ decays in the
ggF channel.

To also consider additional contributions to the total width of the Higgs boson, the assumption of no
invisible or undetected decays is dropped and Binv and Bundet are included as independent parameters in
the model. The measurements sensitive to Higgs boson decays into invisible final states described in
Section 3.8 are included in the combination and used to constrain Binv. The Bundet parameter is constrained
by decay modes that do not involve a loop process. The results from this model are

κγ = 0.97 ± 0.06
κg = 0.95 ± 0.08

Binv < 0.43 at 95% CL
Bundet < 0.12 at 95% CL.

Limits on Binv and Bundet are set using the t̃µ prescription presented in Section 4. The expected upper limits
at 95% CL on Binv and Bundet are 0.20 and 0.31 respectively. The probability of compatibility between
the SM hypothesis with the best-fit point corresponds to a p-value of pSM = 19%, computed using the
procedure outlined in Section 4 with four degrees of freedom.

The results for both models are summarized in Figure 14.
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Figure 13: Negative log-likelihood contours at 68% and 95% CL in the (κγ, κg) plane obtained from a combined fit,
constraining all other coupling-strength modifiers to their SM values and assuming no contributions from invisible
or undetected Higgs boson decays. The best-fit value for each measurement is indicated by a cross while the SM
hypothesis is indicated by a star.
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Figure 14: Best-fit values and uncertainties for effective modifiers to the photon and gluon couplings of the Higgs
boson, with either Binv = Bundet = 0 (left), or Binv and Bundet included as free parameters (right). In the latter case,
the measurements of the Higgs boson decay rate into invisible final states are included in the combination. The
SM corresponds to κγ = κg = 1 and Binv = Bundet = 0. All coupling-strength modifiers of known SM particles are
assumed to be unity, i.e. they follow the SM predictions.
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7.4 Generic parameterization assuming no new particles in loops and decays

In this model the scale factors for the coupling strengths to W , Z , t, b, τ and µ are treated independently.
The Higgs boson couplings to second-generation quarks are assumed to scale as the couplings to the
third-generation quarks. SM values are assumed for the couplings to first-generation fermions. Furthermore,
it is assumed that only SM particles contribute to Higgs boson vertices involving loops, and modifications
of the coupling-strength scale factors for fermions and vector bosons are propagated through the loop
calculations. Invisible or undetected Higgs boson decays are assumed not to exist. All coupling-strength
scale factors are assumed to be positive. The results of the H → µµ analysis are included for this specific
benchmark model. The results are shown in Table 10. The expected 95% CL upper limit on κµ is 1.79. All
measured coupling-strength scale factors in this generic model are found to be compatible with their SM
expectation. The probability of compatibility between the SM hypothesis with the best-fit point corresponds
to a p-value of pSM = 78%, computed using the procedure outlined in Section 4 with six degrees of
freedom. Figure 15 shows the results of this benchmark model in terms of reduced coupling-strength scale
factors, defined as

yV =

√
κV

gV

2v
=
√
κV

mV

v

for weak bosons with a mass mV , where gV is the absolute Higgs boson coupling strength and v = 246GeV
is the vacuum expectation value of the Higgs field, and

yF = κF
gF
√

2
= κF

mF

v

for fermions with a mass mF . For the b quark and the top quark, the MS running mass evaluated at a scale
of 125.09GeV is used.

Table 10: Fit results for κZ , κW , κb, κt , κτ and κµ, all assumed to be positive. In this benchmark model BSM
contributions to Higgs boson decays are assumed not to exist and Higgs boson vertices involving loops are resolved
in terms of their SM content. The upper limit on κµ is set using the CLs prescription.

Parameter Result

κZ 1.10 ± 0.08
κW 1.05 ± 0.08
κb 1.06 + 0.19

− 0.18

κt 1.02 + 0.11
− 0.10

κτ 1.07 ± 0.15
κµ < 1.53 at 95% CL
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Figure 15: Reduced coupling-strength modifiers κF mF

v for fermions (F = t, b, τ, µ) and √κV mV

v for weak gauge
bosons (V = W, Z) as a function of their masses mF and mV , respectively, and the vacuum expectation value of
the Higgs field v = 246GeV. The SM prediction for both cases is also shown (dotted line). The black error bars
represent 68% CL intervals for the measured parameters. For κµ the light error bars indicate the 95% CL interval.
The coupling modifiers κF and κV are measured assuming no BSM contributions to the Higgs boson decays, and the
SM structure of loop processes such as ggF, H → γγ and H → gg. The lower inset shows the ratios of the values to
their SM predictions.

7.5 Generic parameterization including effective photon and gluon couplings with and
without BSM contributions in decays

The models considered in this section are based on the same parameterization as the one in Section 7.4 but
the ggF, H → gg and H → γγ loop processes are parameterized using the effective coupling-strength
modifiers κg and κγ, similar to the benchmark model probed in Section 7.3.

The measured parameters include κZ , κW , κb, κt , κτ , κγ and κg. The sign of κt can be either positive or
negative, while κZ is assumed to be positive without loss of generality. All other model parameters are
also assumed to be positive. Furthermore it is assumed that the probed for BSM effects do not affect the
kinematics of the Higgs boson decay products significantly. Three alternative scenarios are considered for
the total width of the Higgs boson:
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(a) No BSM contributions to the total width (Binv = Bundet = 0).

(b) Both Binv and Bundet are added as free parameters to the model. The measurements of Higgs boson
decays into invisible final states described in Section 3.8 are included in the combination, for these
results only, and used to provide a constraint on Binv. The conditions κW ≤ 1 and κZ ≤ 1 are used to
provide a constraint on Bundet as discussed in Section 7.1.

(c) A single free parameter BBSM = Binv + Bundet is added to the model. The measurements of off-shell
production described in Section 3.9 are included in the combination, for these results only, and used
to provide a constraint on BBSM under the assumptions listed in Section 7.1.

The numerical results for the various scenarios are summarized in Table 11 and illustrated in Figure 16.
Limits on Binv, Bundet and BBSM are set using the t̃µ prescription presented in Section 4. All probed
fundamental coupling-strength scale factors, as well as the probed loop-induced coupling scale factors are
measured to be compatible with their SM expectation for all explored assumptions. Upper limits are set
on the fraction of Higgs boson decays into invisible or undetected decays. In scenario (b) the observed
(expected) 95% CL upper limits on the branching fractions are Binv < 0.30 (0.16) and Bundet < 0.21 (0.36),
and the lower limits on the couplings to vector bosons are κZ > 0.88 (0.76) and κW > 0.85 (0.77). In
scenario (c), the observed (expected) upper limit on BBSM is 0.49 (0.51). The probability of compatibility
between the SM hypothesis with the best-fit point in scenario (a) corresponds to a p-value of pSM = 88%,
computed using the procedure outlined in Section 4 with seven degrees of freedom.

Table 11: Fit results for Higgs boson coupling modifiers per particle type with effective photon and gluon couplings
and either (a) Binv = Bundet = 0, (b) Binv and Bundet included as free parameters, the conditions κW,Z ≤ 1 applied
and the measurement of the Higgs boson decay rate into invisible final states included in the combination, or (c)
BBSM = Binv + Bundet included as a free parameter, the measurement of off-shell Higgs boson production included in
the combination, and the assumptions described in the text applied to the off-shell coupling-strength scale factors.
The SM corresponds to Binv = Bundet = BBSM = 0 and all κ parameters set to unity. All parameters except κt are
assumed to be positive.

Parameter (a) Binv = Bundet = 0 (b) Binv free, Bundet ≥ 0, κW,Z ≤ 1 (c) BBSM ≥ 0, κoff = κon
κZ 1.11 ± 0.08 > 0.88 at 95% CL 1.20 + 0.18

− 0.17

κW 1.05 ± 0.09 > 0.85 at 95% CL 1.15 ± 0.18
κb 1.03 + 0.19

− 0.17 0.85 + 0.15
− 0.13 1.14 + 0.21

− 0.25

κt 1.09 + 0.15
− 0.14 [−1.08,−0.77] ∪ [0.96, 1.23] at 68% CL 1.18 ± 0.23

κτ 1.05 + 0.16
− 0.15 0.99 ± 0.14 1.16 + 0.22

− 0.24

κγ 1.05 ± 0.09 0.96 + 0.08
− 0.06 1.16 + 0.17

− 0.18

κg 0.99 + 0.11
− 0.10 1.05 + 0.12

− 0.14 1.08 + 0.17
− 0.18

Binv - < 0.30 at 95% CL -
Bundet - < 0.21 at 95% CL -
BBSM - - < 0.49 at 95% CL
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Figure 16: Best-fit values and uncertainties for Higgs boson coupling modifiers per particle type with effective
photon and gluon couplings and either Binv = Bundet = 0 (black); Binv and Bundet included as free parameters, the
conditions κW,Z ≤ 1 applied and the measurement of the Higgs boson decay rate into invisible final states included
in the combination (red); or BBSM = Binv + Bundet included as a free parameter, the measurement of off-shell Higgs
boson production included in the combination, and the assumptions described in the text applied to the off-shell
coupling-strength scale factors (blue). The SM corresponds to Binv = Bundet = 0 and all κ parameters set to unity. All
parameters except κt are assumed to be positive.
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7.6 Generic parameterization using ratios of coupling modifiers

The five absolute coupling-strength scale factors and two effective loop-coupling scale factors measured in
the previous benchmark model are expressed as ratios of scale factors that can be measured independent of
any assumptions about the Higgs boson total width. The model parameters are defined in Table 12. All
parameters are assumed to be positive. This parameterization represents the most model-independent
determination of coupling-strength scale factors that is currently possible in the κ-framework. The
numerical results from the fit to this benchmark model are summarized in Table 12 and visualized in
Figure 17. All model parameters are measured to be compatible with their SM expectation. The probability
of compatibility between the SM hypothesis with the best-fit point corresponds to a p-value of pSM = 85%,
computed using the procedure outlined in Section 4 with seven degrees of freedom.

The parameter λWZ in this model is of particular interest: identical coupling-strength scale factors for the
W and Z bosons are required within tight bounds by the SU(2) custodial symmetry and the ρ parameter
measurements at LEP and at the Tevatron [149]. The ratio λγZ is sensitive to new charged particles
contributing to the H→ γγ loop unlike in H → Z Z∗ decays. Similarly, the ratio λtg is sensitive to new
colored particles contributing through the ggF loop unlike in ttH events. The observed values are in
agreement with the SM expectation.

Table 12: Best-fit values and uncertainties for ratios of coupling modifiers. The second column provides the expression
of the measured parameters in terms of the coupling modifiers defined in previous sections. All parameters are
defined to be unity in the SM.

Parameter
Definition in terms
of κ modifiers

Result

κgZ κgκZ/κH 1.06 ± 0.07
λtg κt/κg 1.10 + 0.15

− 0.14

λZg κZ/κg 1.12 + 0.15
− 0.13

λWZ κW/κZ 0.95 ± 0.08
λγZ κγ/κZ 0.94 ± 0.07
λτZ κτ/κZ 0.95 ± 0.13
λbZ κb/κZ 0.93 + 0.15

− 0.13
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Figure 17: Measured ratios of coupling modifiers. The dashed line indicates the SM value of unity for each parameter.

8 Constraints on new phenomena

Two-Higgs-doublet models (2HDMs) [37, 150–152] and supersymmetry [153–158] are promising exten-
sions of the SM. The measurements are interpreted in these benchmark models, providing indirect limits
on their parameters that are complementary to those obtained by direct searches for new particles. The
interpretations presented in this section follow the procedure discussed in Ref. [38].

8.1 Two-Higgs-doublet model

In 2HDMs, the SM Higgs sector is extended by introducing an additional complex isodoublet scalar field
with weak hypercharge one. Four types of 2HDMs satisfy the Paschos–Glashow–Weinberg condition [159,
160], which prevents the appearance of tree-level flavor-changing neutral currents:

• Type I: One Higgs doublet couples to vector bosons, while the other one couples to fermions. The
first doublet is fermiophobic in the limit where the two Higgs doublets do not mix.

• Type II: One Higgs doublet couples to up-type quarks and the other one to down-type quarks and
charged leptons.

• Lepton-specific: The Higgs bosons have the same couplings to quarks as in the Type I model and to
charged leptons as in Type II.

• Flipped: The Higgs bosons have the same couplings to quarks as in the Type II model and to charged
leptons as in Type I.
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The observed Higgs boson is identified with the light CP-even neutral scalar h predicted by 2HDMs, and
its accessible production and decay modes are assumed to be the same as those of the SM Higgs boson. Its
couplings to vector bosons, up-type quarks, down-type quarks and leptons relative to the corresponding
SM predictions are expressed as functions of the mixing angle α between h and the heavy CP-even neutral
scalar, and the ratio of the vacuum expectation values of the Higgs doublets, tan β [38].

Figure 18 shows the regions of the (cos(β − α), tan β) plane that are excluded at a confidence level of 95 %
or higher, for each of the four types of 2HDMs. The expected exclusion limits in the SM hypothesis are also
overlaid. The data are consistent with the alignment limit [152] at cos(β − α) = 0, in which the couplings
of h match those of the SM Higgs boson, within one standard deviation or better in each of the tested
models. The allowed regions also include narrow, curved petal regions at positive cos(β − α) and moderate
tan β in the Type II, Lepton-specific, and Flipped models. These correspond to regions with cos(β+α) ≈ 0,
for which some fermion couplings have the same magnitude as in the SM, but the opposite sign.

8.2 Simplified Minimal Supersymmetric Standard Model

The scalar sector of the Minimal Supersymmetric Standard Model (MSSM) [161–163] is a realization of a
Type II 2HDM. As a benchmark, a simplified MSSM model in which the Higgs boson is identified with the
light CP-even scalar h, termed hMSSM [164–166], is studied. The assumptions made in this model are
discussed in Ref. [38]. Notably, the hMSSM is a good approximation of the MSSM only for moderate
values of tan β. For tan β & 10 the scenario is approximate due to missing supersymmetry corrections in
the Higgs boson coupling to b-quarks, and for tan β of O(1) the precision of the approximation depends on
mA, the mass of the CP-odd scalar [35]. The production and decay modes accessible to h are assumed to
be the same as those of the SM Higgs boson.

The Higgs boson couplings to vector bosons, up-type fermions and down-type fermions relative to the
corresponding SM predictions are expressed as functions of the ratio of the vacuum expectation values of
the Higgs doublets, tan β, mA, and the masses of the Z boson and of h.

Figure 19 shows the regions of the hMSSM parameter space that are indirectly excluded by the measurement
of the Higgs boson production and decay rates. The data are consistent with the SM decoupling limit at
large mA, where the h couplings tend to those of the SM Higgs boson. The observed (expected) lower limit
at 95 % CL on the CP-odd Higgs boson mass is at least mA > 480GeV (mA > 400GeV) for 1 ≤ tan β ≤ 25,
increasing to mA > 530GeV (mA > 450GeV) at tan β = 1. The observed limit is stronger than the expected
limit because the hMSSM model exhibits a physical boundary κV ≤ 1, but the Higgs boson coupling to
vector bosons is measured to be larger than the SM value, as presented in Section 7.
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Figure 18: Regions of the (cos(β − α), tan β) plane of four types of 2HDMs excluded by fits to the measured rates of
Higgs boson production and decays. Contours at 95% CL, defined in the asymptotic approximation by −2 lnΛ = 5.99,
are drawn for both the data and the expectation for the SM Higgs sector. The cross in each plot marks the observed
best-fit value. The angles α and β are taken to satisfy 0 ≤ β ≤ π/2 and 0 ≤ β − α ≤ π without loss of generality.
The alignment limit at cos(β − α) = 0, in which all Higgs boson couplings take their SM values, is indicated by the
dashed red line.
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Figure 19: Regions of the (mA, tan β) plane in the hMSSM excluded by fits to the measured rates of Higgs boson
production and decays. Likelihood contours at 95% CL, defined in the asymptotic approximation by −2 lnΛ = 5.99,
are drawn for both the data and the expectation of the SM Higgs sector. The regions to the left of the solid contour are
excluded. The decoupling limit, in which all Higgs boson couplings tend to their SM value, corresponds to mA→∞.

9 Conclusions

Measurements of Higgs boson production cross sections and branching fractions have been performed
using up to 79.8 fb−1 of pp collision data produced by the LHC at

√
s = 13 TeV and recorded by the ATLAS

detector. The results presented in this paper are based on the combination of analyses of the H → γγ,
H → Z Z∗, H → WW∗, H → ττ, H → bb̄ and H → µµ decay modes, searches for decays into invisible
final states, as well as on measurements of off-shell Higgs boson production.

The global signal strength is determined to be µ = 1.11+0.09
−0.08.

The Higgs boson production cross sections within the region |yH | < 2.5 are measured in a combined fit
for the gluon–gluon fusion process, vector-boson fusion, the associated production with a W or Z boson
and the associated production with top quarks, assuming the SM Higgs boson branching fractions. The
combined measurement leads to an observed (expected) significance for the vector-boson fusion production
process of 6.5σ (5.3σ). For the VH production mode the observed (expected) significance is 5.3σ (4.7σ).
The ttH + tH processes are measured with an observed (expected) significance of 5.8σ (5.3σ).

Removing the assumption of SM branching fractions, a combined fit is performed for the production cross
section times branching fraction for each pair of production and decay processes to which the combined
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analyses are sensitive. Results are also presented for a model in which these quantities are expressed using
the cross section of the gg → H → Z Z∗ process, ratios of production cross sections relative to that of ggF
production, and ratios of branching fractions relative to that of H → Z Z∗.

Cross sections are measured in 15 regions of Higgs boson production kinematics defined within the
simplified template cross-section framework, which primarily characterize the transverse momentum of
the Higgs boson, the topology of associated jets and the transverse momentum of associated vector bosons.
The measurements in all regions are found to be compatible with SM predictions.

The observed Higgs boson yields are used to obtain confidence intervals for κ modifiers to the couplings of
the SM Higgs boson to fermions, weak vector bosons, gluons, and photons and to the branching fraction of
the Higgs boson into invisible and undetected decay modes. A variety of physics-motivated constraints on
the Higgs boson total width are explored: Using searches for H → invisible and constraints on couplings
to vector bosons, the branching fraction of invisible Higgs boson decays into BSM particles is constrained
to be less than 30% at 95% CL, while the branching fraction of decays into undetected particles is less than
22% at 95% CL. The overall branching fraction of the Higgs boson into BSM decays is determined to be
less than 47% at 95% CL using measurements of off-shell Higgs boson production in combination with
measurements of SM Higgs boson production and rates. No significant deviation from the Standard Model
predictions is observed in any of the benchmark models studied.

Finally, the results are interpreted in the context of two-Higgs-doublet models and the hMSSM. Constraints
are set in the (mA, tan β) plane of the hMSSM and the (cos(β − α), tan β) plane in 2HDM Type-I, Type-II,
Lepton-specific and Flipped models.
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Appendix

A Simplified template cross-section measurement results with finer
granularity

This section presents measurements of STXS parameters in a model that has finer granularity than the
model of Section 6.2, and is thus closer to the original proposal of Stage 1 STXS in Refs. [35, 36]. The
changes relative to the model of Section 6.2 are as follows: in the gg → H process, the region defined
by pH

T ≥ 200GeV and ≥ 1 jets is split into separate bins for 1 jet and ≥ 2 jets; a VBF-topology (VBF
topo) region is defined for events with ≥ 2 jets using the same selection as in the qq → Hqq process;
the remaining ≥ 2 jet events are separated into three bins of pH

T in the same way as the 1-jet events; in
the qq → Hqq process, the VBF topo + Rest region is split into separate bins for VBF topo and Rest;
and in the qq → WH process, the pVT < 250GeV region is split into two bins for pVT < 150GeV and
150 ≤ pVT < 250GeV, matching the binning used in pp→ ZH. The results are shown in Figures 20 and
21.
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Figure 20: Best-fit values and uncertainties for the cross sections in each measurement region times the H → Z Z∗

branching fraction in a model with finer granularity. The results are shown normalized to the SM predictions for the
various parameters. The black error bar shows the total uncertainty in each measurement.
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Figure 21: Correlation matrix for the measured values of the simplified template cross sections in each measurement
region times the H → Z Z∗ branching fraction in a model with finer granularity.
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Auxiliary material

A Data distributions for the H→γγ, H→ ZZ∗→ 4` and H → µµ analyses

A.1 H→γγ

Figures 22 and 23 show the diphoton invariant mass distributions for events selected by the H→ γγ

analysis, with an event weight applied to illustrate the sensitivity of the analysis to the main Higgs boson
production modes. The diphoton invariant mass spectrum of events in the diphoton fiducial region is shown
in Figure 24.
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Figure 22: Weighted diphoton invariant mass spectrum in all the analysis categories observed in 79.8 fb−1 of
√

s = 13TeV data. Events are weighted by ln(1 + S90/B90), where S90 (B90) for each category is the expected signal
(background) in the smallest mγγ window containing 90% of the expected signal. The signal is the sum of all Higgs
production modes. The error bars represent 68% confidence intervals of the weighted sums. The solid red curve
shows the fitted signal-plus-background model with the Higgs boson mass constrained to 125.09 ± 0.24GeV. The fit
is done in all the analysis categories for the global signal strength, assuming the relative ratios of different production
modes are as predicted by the SM. The non-resonant background component of the fitted signal-plus-background
model is shown with the dotted blue curve. Both the signal-plus-background and background-only curves shown
here are obtained from the weighted sum of the individual curves in each analysis category. The lower panel shows
the residuals between the data and the non-resonant background component.
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Figure 23: Weighted diphoton invariant mass spectrum in all the analysis categories observed in 79.8 fb−1 of
√

s = 13TeV data. Events are weighted by ln(1 + S90/B90), where S90 (B90) for each category is the expected signal
(background) in the smallest mγγ window containing 90% of the expected signal. The signal is (a) ggF, (b) VBF, (c)
VH and (d) top-associated production respectively, while the other Higgs boson production modes are included in the
background. The error bars represent 68% confidence intervals of the weighted sums. The solid red curve shows the
fitted signal-plus-background model with the Higgs boson mass constrained to 125.09±0.24GeV. The fit is done in all
the analysis categories for the global signal strength, assuming the relative ratios of different production modes are as
predicted by the SM. The non-resonant and total background components of the fitted signal-plus-background model
are shown with the dotted blue curve and dashed green curve. Both the signal-plus-background and background-only
curves shown here are obtained from the weighted sum of the individual curves in each analysis category. The lower
panel shows the residuals between the data and the non-resonant background component.
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Figure 24: The diphoton invariant mass spectrum of events in the diphoton fiducial region. The solid red curve
shows the fitted signal-plus-background model when the Higgs boson mass is constrained to 125.09 ± 0.24GeV. The
background component of the fitted signal-plus-background model is shown with the dotted blue curve. The bottom
plot shows the residuals between the data and the background component of the fitted model.
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A.2 H→ ZZ∗→ 4`

Figure 25 shows the four-lepton invariant mass distribution for the Higgs boson candidates selected by the
H→ Z Z∗→ 4` analysis, and Figure 26 the distributions of the BDT output in the analysis categories where
a BDT is used.
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Figure 25: The expected and observed inclusive four-lepton invariant mass distributions for the selected Higgs boson
candidates, shown for an integrated luminosity of 79.8 fb−1 and at

√
s = 13TeV. The uncertainty in the prediction is

shown by the hatched band, calculated as described in Section 7.

84



ggF
BDT

1− 0.6− 0.2− 0.2 0.6 1

E
v
e
n
ts

0

5

10

15

20

25

30

35

40

45

50
Data

ggF+bbH

VBF

VH

ttH+tH

ZZ*

+V, VVV tt

tZ+jets, t

Uncertainty

ATLAS

 4l→ ZZ* →H 
113 TeV, 79.8 fb

 < 130 GeV
l4

115 < m

(a)
VBF

Low
4l

T
1jp

BDT

1− 0.6− 0.2− 0.2 0.6 1

E
v
e
n
ts

0

5

10

15

20

25
Data

VBF

ggF+bbH

VH

ttH+tH

ZZ*

+V, VVV tt

tZ+jets, t

Uncertainty

ATLAS

 4l→ ZZ* →H 
113 TeV, 79.8 fb

 < 130 GeV
l4

115 < m

(b)
VBF

Med
4l

T
1jp

BDT

1− 0.6− 0.2− 0.2 0.6 1

E
v
e
n
ts

0

2

4

6

8

10

12

14

16

18

20 Data

VBF

ggF+bbH

VH

ttH+tH

ZZ*

+V, VVV tt

tZ+jets, t

Uncertainty

ATLAS

 4l→ ZZ* →H 
113 TeV, 79.8 fb

 < 130 GeV
l4

115 < m

(c)

VBF
BDT

1− 0.6− 0.2− 0.2 0.6 1

E
v
e
n
ts

0

2

4

6

8

10

12

14

16

18

20

22
Data

VBF

ggF+bbH

VH

ttH+tH

ZZ*

+V, VVV tt

tZ+jets, t

Uncertainty

ATLAS

 4l→ ZZ* →H 
113 TeV, 79.8 fb

 < 130 GeV
l4

115 < m

(d)

VHHadBDT

1− 0.6− 0.2− 0.2 0.6 1

E
v
e
n
ts

0

2

4

6

8

10

12
Data

VH

ggF+bbH

VBF

ttH+tH

ZZ*

+V, VVV tt

tZ+jets, t

Uncertainty

ATLAS

 4l→ ZZ* →H 
113 TeV, 79.8 fb

 < 130 GeV
l4

115 < m

(e)

ttHHadBDT

1− 0.6− 0.2− 0.2 0.6 1

E
v
e
n
ts

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Data

ttH+tH

ggF+bbH

VBF

VH

ZZ*

+V, VVV tt

tZ+jets, t

Uncertainty

ATLAS

 4l→ ZZ* →H 
113 TeV, 79.8 fb

 < 130 GeV
l4

115 < m

(f)

Figure 26: Observed and expected BDT output distributions for the Higgs boson candidates selected by the
H→ Z Z∗→ 4` analysis in the (a) 0-jet, p4`

T < 100GeV, (b) 1-jet, p4`
T < 60GeV, (c) 0-jet, 60 < p4`

T < 120GeV, (d)
VBF-enriched, pT,jet < 200GeV, (e) VH-hadronic-enriched (f) ttH-hadronic-enriched categories for a dataset of
79.8 fb−1 collected at

√
s = 13TeV assuming the SM Higgs boson signal with a mass mH = 125GeV. No events are

observed in the ttH-hadronic-enriched category, while a small excess is observed at larger values of the BDT output
in the VBF-enriched category. The bin boundaries are chosen to maximize the significance of the targeted signal in
each category. The uncertainty in the prediction is shown by the hatched band.
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A.3 H → µµ

Figure 27 shows the dimuon invariant mass distribution for events selected by the H → µµ analysis,
separately for the categories targeting ggF production and those targeting VBF production.
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Figure 27: Dimuon invariant mass spectrum for events selected by the H → µµ analysis in 79.8 fb−1 of data collected
at
√

s = 13TeV in categories targeting (a) ggF and (b) VBF production. The solid blue curve shows the fit to the
background-only model, while the dashed red curve shows the signal distribution expected in the SM with the Higgs
boson mass set to 125GeV. The fit is performed using a global signal strength for all Higgs production processes,
assuming that the relative ratios of different modes are as predicted by the SM. The lower panel shows the ratio of the
data yield to the integral of the background-only fit in each bin.
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B Additional figures for production cross-section measurements

Figure 28 shows the same combined contours as shown in Figures 4, without the contours for the input
analyses overlaid. The correlations between the parameters of the ratio model of Section 5.4 are summarized
in Figure 29. The observed negative log-likelihood scans as a function of the Higgs production cross
sections normalized to their SM predictions, measured with the assumption of SM branching fractions, are
shown in Figure 30 for the full likelihood and the versions with sets of nuisance parameters fixed to their
best-fit values to obtain the components of the uncertainty as described in Section 4.
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Figure 28: Observed contours at 68% and 95% CL in the plane of σVBF versus σggF, defined in the asymptotic
approximation by −2 lnΛ = 2.28 and 5.99, respectively. The cross indicates the best-fit value and the solid ellipse
the SM prediction. The Higgs boson decay branching fractions are fixed to their SM values.
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Figure 29: Correlation matrix for the measured values of σZZ
ggF , together with ratios of production cross sections

normalized to σggF, and ratios of branching fractions normalized to BZZ .
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Figure 30: The observed negative log-likelihood scans as a function of the Higgs production cross sections for (a)
ggF, (b) VBF, (c) WH, (d) ZH and (e) ttH+tH normalized to their SM predictions, measured with the assumption
of SM branching fractions. All the other parameters of interest from the model are also varied in the minimization
procedure. Variations of the test statistic with all systematic uncertainties included (solid black line), with parameters
describing theory uncertainties in background processes fixed to their best-fit values (solid blue line), with the same
procedure also applied to theory uncertainties in the signal process (solid red line) and all systematic uncertainties
(dotted black line) are shown. The dashed horizontal lines show the levels −2 lnΛ = 1 and −2 lnΛ = 4 which are
used to define, respectively, the 1σ and 2σ confidence intervals for the parameter of interest.
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C Combined measurements of decay branching ratios

Table 13 and Figure 31 show the results of a fit to the data using as free parameters the ratios of the
branching fractions into γγ, Z Z∗, WW∗, ττ and bb̄ to their values in the SM. The Higgs boson production
processes are assumed to follow SM predictions.

Table 13: Best-fit values and uncertainties for the decay branching fractions of the Higgs boson normalized to their
SM predictions, measured under SM assumptions for the Higgs boson production processes. The total uncertainties
are decomposed into components for data statistics (Stat.), experimental systematic uncertainties (Exp.), and theory
uncertainties in the modeling of the signal (Sig. th.) and background (Bkg. th.) processes. The probability of
compatibility between the measurement and the SM prediction corresponds to a p-value of pSM = 74%, computed
using the procedure outlined in Section 4 with five degrees of freedom.

Branching
Value

Uncertainty
ratio Total Stat. Exp. Sig. th. Bkg. th.

Bγγ/BSM
γγ 1.06 ± 0.12 ± 0.08 + 0.08

− 0.07 ± 0.05 ± 0.01
BZZ/BSM

ZZ 1.20 + 0.15
− 0.14 ± 0.12 ± 0.05 + 0.07

− 0.05 ± 0.02
BWW/BSM

WW 1.05 + 0.17
− 0.16 ± 0.09 ± 0.09 + 0.06

− 0.05 ± 0.07
Bττ/BSM

ττ 1.10 + 0.28
− 0.26 ± 0.18 + 0.17

− 0.16
+ 0.12
− 0.08

+ 0.06
− 0.05

Bbb/BSM
bb

1.17 + 0.24
− 0.23 ± 0.15 ± 0.11 + 0.09

− 0.06
+ 0.13
− 0.12
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Figure 31: Branching fractions for H→ γγ, H → Z Z∗, H → WW∗, H → ττ and H → bb̄ normalized to their SM
predictions, measured under SM assumptions for the Higgs boson production processes. The black error bars, blue
boxes and yellow boxes show the total, systematic, and statistical uncertainties in the measurements, respectively.
The blue bands indicate the theory uncertainties in the predictions.
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D Ratios of cross sections and branching fractions

Figure 32 shows the observed negative log-likelihood scans as a function of σVBF/σggF, σttH+tH/σggF,
Bbb̄/BZZ and Bττ/BZZ measured using the parameterization introduced in Section 5.4 for the full likelihood
and the versions with sets of nuisance parameters fixed to their best-fit values to obtain the components of
the uncertainty as described in Section 4.
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Figure 32: The observed negative log-likelihood scans as a function of (a) σVBF/σggF, (b) σttH+tH/σggF, (c)
Bbb̄/BZZ and (d) Bττ/BZZ measured using a generic parameterization in terms of ratios of cross sections and
branching fractions. All the other parameters of interest from the model are also varied in the minimization procedure.
Variations of the test statistic with all systematic uncertainties included (solid black line), with parameters describing
theory uncertainties in background processes fixed to their best-fit values (solid blue line), with the same procedure
also applied to theory uncertainties in the signal process (solid red line) and all systematic uncertainties (dotted black
line) are shown. The dashed horizontal lines show the levels −2 lnΛ = 1 and −2 lnΛ = 4 which are used to define,
respectively, the 1σ and 2σ confidence intervals for the parameter of interest.
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An alternative parameterization from the one introduced in Section 5.4 for measuring ratios of cross
sections and branching fractions has been tested in order to reduce the correlations between the parameters
of interest. The products (σ × B)i f measured in Section 5.3 can be expressed as follows: σZZ

ggF is taken
as the normalization for the ggF, VBF and ttH production modes, while σbb̄

WH and σbb̄
ZH are taken as

normalization for the WH and ZH production modes, respectively:

(σ × B)i f = σZZ
ggF ·

(
σi

σggF

)
·

(
Bf

Bzz

)
for i = ggF,VBF, ttH

(σ × B)i f = σbb̄
WH ·

(
σi

σWH

)
·

(
Bf

Bbb̄

)
for i = WH

(σ × B)i f = σbb̄
ZH ·

(
σi

σZH

)
·

(
Bf

Bbb̄

)
for i = ZH.

Results are shown in Figure 33 and Table 14. The correlations between the measured parameters are
summarized in Figure 34. The probability of compatibility between the measurements and the SM
predictions corresponds to a p-value of pSM = 93%.

Table 14: Best-fit values and uncertainties for σZZ
ggF , σVBF/σggF, σbb̄

WH , σ
bb̄
ZH , σttH+tH/σggF, together with ratios

of production cross sections normalized to σggF, and ratios of branching fractions normalized to BZZ . The total
uncertainties are decomposed into components for data statistics (Stat.) and systematic uncertainties (Syst.). The SM
predictions [35] are also shown with their total uncertainties.

Quantity Value
Uncertainty

SM prediction
Total Stat. Syst.

σZZ
ggF [pb] 1.33 ± 0.15 + 0.14

− 0.13 ± 0.07 1.181 ± 0.061

σVBF/σggF 0.097 + 0.025
− 0.021

+ 0.019
− 0.017

+ 0.017
− 0.012 0.0786 ± 0.0043

σbb̄
WH [pb] 910 + 290

− 270
+ 200
− 190

+ 220
− 200 700 ± 16

σbb̄
ZH [pb] 490 + 150

− 140
+ 120
− 110

+ 100
− 90 463 + 20

− 16

σttH+tH/σggF 0.0159 + 0.0041
− 0.0035

+ 0.0031
− 0.0029

+ 0.0026
− 0.0021 0.0131 + 0.0010

− 0.0013

Bγγ/BZZ 0.075 + 0.012
− 0.010

+ 0.010
− 0.009

+ 0.006
− 0.005 0.0860 ± 0.0010

BWW/BZZ 6.8 + 1.5
− 1.2

+ 1.1
− 0.9

+ 1.0
− 0.9 8.15 ± < 0.01

Bττ/BZZ 2.04 + 0.62
− 0.52

+ 0.45
− 0.40

+ 0.40
− 0.33 2.37 ± 0.02

Bbb̄/BZZ 20.2 + 8.4
− 5.9

+ 5.9
− 4.6

+ 5.7
− 4.0 22.0 ± 0.5
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Parameter normalized to SM value
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Figure 33: Results of a simultaneous fit for σZZ
ggF , σVBF/σggF, σbb̄

WH , σ
bb̄
ZH , σttH+tH/σggF, Bγγ/BZZ , BWW/BZZ ,

Bττ/BZZ , and Bbb̄/BZZ . The fit results are normalized to the SM predictions. The black error bars, blue boxes and
yellow boxes show the total, systematic, and statistical uncertainties in the measurements, respectively. The gray
bands show the theory uncertainties in the predictions.

94



g
g

F
Z
Z
*

σ

g
g

F
σ/

V
B

F
σ

b
b W
H

σ

b
b Z
H

σ

g
g

F
σ/

tH
+

Ht t
σ

Z
Z
*

B/
γ

γ
B

Z
Z
*

B/
b

b
B

Z
Z
*

B/
W
W
*

B

Z
Z
*

B/
τ

τ
B

ZZ*
B/ττB

ZZ*
B/

WW*
B

ZZ*B/
bb

B

ZZ*B/γγB

ggF
σ/

tH+Htt
σ

bb
ZH

σ

bb
WH

σ

ggF
σ/

VBF
σ

ggF
ZZ*σ

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

(X
,Y

)
ρ

0.29−

0.48−

0.17−

0.61−

0.13−

0.01

0.04−

0.23−

1

0.30−

0.26−

0.12−

0.16−

0.27

0.01−

0.01

1

0.23−

0.01

0.02

0.23

0.01

0.08−

0.01−

1

0.01

0.04−

0.01

0.01

0.25

0.01−

0.08−

1

0.01−

0.01−

0.01

0.18−

0.14−

0.37−

0.16−

1

0.08−

0.08−

0.27

0.13−

0.36

0.45

0.32

1

0.16−

0.01−

0.01

0.16−

0.61−

0.19

0.20

1

0.32

0.37−

0.25

0.23

0.12−

0.17−

0.29

1

0.20

0.45

0.14−

0.01

0.02

0.26−

0.48−

1

0.29

0.19

0.36

0.18−

0.01

0.01

0.30−

0.29−

ATLAS
-1

= 13 TeV, 24.5 - 79.8 fbs

| < 2.5
H

y= 125.09 GeV, |Hm

Figure 34: Correlation matrix for the measured values of σZZ
ggF , σVBF/σggF, σbb̄

WH , σ
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E Additional figures and results for simplified template cross-section
measurements

E.1 Negative log-likelihood scans as function of simplified template cross-section
parameters

Figure 35 shows the observed negative log-likelihood scans as a function of qq → Hqq × BZZ, pj
T ≥

200 GeV, qq → H`ν × BZZ, pVT ≥ 250 GeV, and gg/qq → H`` × BZZ, pVT ≥ 250 GeV normalized to
their SM predictions for the full likelihood and the versions with sets of nuisance parameters fixed to their
best-fit values to obtain the statistical component of the uncertainty as described in Section 4.
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Figure 35: Observed (solid line) and expected (dotted line) negative log-likelihood scans as a function of (a) qq→
Hqq × BZZ, pj

T ≥ 200 GeV, (b) qq→ H`ν × BZZ, pVT ≥ 250 GeV, and (c) gg/qq→ H`` × BZZ, pVT ≥ 250 GeV
normalized to their SM predictions. All the other parameters of interest from the model are also varied in the
minimization procedure. The dashed horizontal lines at −2 lnΛ = 1 (−2 lnΛ = 4) indicate the levels used to define
the 1σ (2σ) confidence interval for the corresponding parameter.
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E.2 Simplified template cross-section measurements with ratios of branching fractions set
to their SM values

This section presents measurements of STXS parameters in a model similar to that of Section 6.2, but with
the ratios of Higgs boson branching fractions Bf /BZZ for final states f other than Z Z fixed to their SM
values within uncertainties. The parameters of interest are thus the cross sections in each measurement
region. The results are shown in Figure 36 and Table 15. The observed (expected) upper limits at 95% CL
on the cross sections in the qq→ Hqq, (V → qq̄)H and qq→ Hqq, pj

T ≥ 200 GeV bins are set at 1.25
(1.32) pb and 0.47 (0.62) pb, respectively, using the CLs method. The results show good overall agreement
with the SM predictions in each region. The probability of compatibility between the measurement and the
SM prediction corresponds to a p-value of pSM = 80%, computed using the procedure outlined in Section 4
with 15 degrees of freedom. The correlations between the measured parameters are shown in Figure 37.

Table 15: Best-fit values and uncertainties for the cross sections in eachmeasurement region. The total uncertainties are
decomposed into components for data statistics (Stat.) and systematic uncertainties (Syst.). The SM predictions [35]
are also shown for each quantity with their total uncertainties. The parameters directly extracted from the fit are
σi . The ratios of Higgs boson branching fractions Bf /BZZ for final states f other than Z Z fixed to their SM values
within uncertainties.

Measurement region
(
σi

) Value Uncertainty [pb] SM prediction

[pb] Total Stat. Syst. [pb]

gg → H, 0-jet 32.5 ± 3.6 ± 2.8 ± 2.5 27.5 ± 1.7

gg → H, 1-jet, pH
T < 60 GeV 3.5 + 2.6

− 2.5
+ 2.1
− 2.0 ± 1.4 6.6 ± 0.9

gg → H, 1-jet, 60 ≤ pH
T < 120 GeV 3.7 + 1.5

− 1.4
+ 1.3
− 1.2

+ 0.8
− 0.7 4.6 ± 0.6

gg → H, 1-jet, 120 ≤ pH
T < 200 GeV 0.9 ± 0.5 ± 0.4 + 0.3

− 0.2 0.75 ± 0.15

gg → H, ≥ 1-jet, pH
T ≥ 200 GeV 1.1 + 0.4

− 0.3 ± 0.3 ± 0.2 0.59 ± 0.16

gg → H, ≥ 2-jet, pH
T < 200 GeV 4.9 + 2.3

− 2.2
+ 1.9
− 1.8

+ 1.4
− 1.2 4.8 ± 1.0

qq→ Hqq, VBF topo + Rest 5.6 + 1.3
− 1.2 ± 1.0 + 0.9

− 0.7 4.07 ± 0.07

qq→ Hqq, VH topo −0.06 + 0.61
− 0.52

+ 0.59
− 0.51

+ 0.15
− 0.11 0.515 ± 0.018

qq→ Hqq, pj
T ≥ 200 GeV −0.19 + 0.29

− 0.28
+ 0.25
− 0.24

+ 0.13
− 0.14 0.220 ± 0.004

qq→ H`ν, pVT < 250 GeV 0.67 + 0.30
− 0.28 ± 0.22 + 0.19

− 0.17 0.393 ± 0.008

qq→ H`ν, pVT ≥ 250 GeV 0.014 + 0.009
− 0.008 ± 0.007 ± 0.005 0.0122 ± 0.0005

gg/qq→ H``, pVT < 150 GeV 0.17 ± 0.16 + 0.13
− 0.12 ± 0.10 0.200 ± 0.008

gg/qq→ H``, 150 ≥ pVT < 250 GeV 0.020 ± 0.022 ± 0.018 ± 0.012 0.0324 ± 0.0040

gg/qq→ H``, pVT ≥ 250 GeV 0.015 + 0.008
− 0.007

+ 0.007
− 0.006

+ 0.004
− 0.002 0.0083 ± 0.0009

ttH+tH 0.70 + 0.15
− 0.14 ± 0.10 + 0.12

− 0.11 0.59 + 0.03
− 0.05
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Figure 36: Best-fit values and uncertainties for the cross sections in each measurement region in a model where all
the branching fractions are assumed to be as in the SM. The results are shown normalized to the SM predictions for
the various parameters. The black error bar shows the total uncertainty in each measurement.
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Figure 37: Correlation matrix for the measured values of the simplified template cross sections in each measurement
region in a model where the all the branching fractions are assumed to be as in the SM.
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F Additional figures and results for interpretations in the κ framework

F.1 Fermion and gauge boson couplings

Figure 38 shows the same combined contours as shown in Figure 12, without the contours for the inputs
analyses overlaid. Figure 39 shows the observed and expected negative log-likelihood scans of the κV and
κF parameters from a combined fit excluding searches for off-shell Higgs production and for Higgs decays
into invisible final states.
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Figure 38: Observed contours at 68% and 95% CL in the (κF, κV) plane, defined in the asymptotic approximation by
−2 lnΛ = 2.28 and 5.99, respectively. The cross indicates the best-fit value and the star the SM prediction.
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Figure 39: Observed (solid line) and expected (dotted line) negative log-likelihood scans of the (a) κV and (b) κF
parameters from a combined fit excluding searches for off-shell Higgs production and for Higgs decays into invisible
final states. All the other parameters of interest from the list in the legend are also varied in the minimization
procedure. The dashed horizontal lines at −2 lnΛ = 1 (−2 lnΛ = 4) indicate the levels used to define the 1σ (2σ)
confidence interval for the corresponding parameter.

F.2 Probing BSM contributions in loops and decays

Figure 40 shows the observed and expected negative log-likelihood scans of the κγ and κg parameters
from a combined fit excluding searches for off-shell Higgs production and for Higgs decays into invisible
final states. Figure 41 shows the observed and expected negative log-likelihood scans of the κg, κγ, Binv
and Bundet parameters from a combined fit including searches for Higgs decays into invisible final states.
Figure 42 shows the negative log-likelihood contours at 68% and 95% CL in the (Binv, Bundet) plane
obtained in this model. Figure 43 shows the correlation matrix obtained in fits to data using the model
described in Section 7.3.
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Figure 40: Observed (solid line) and expected (dotted line) negative log-likelihood scan of the (a) κγ and (b) κg
parameters from a combined fit excluding searches for off-shell Higgs production and for Higgs decays into invisible
final states. All the other parameters of interest from the list in the legend are also varied in the minimization
procedure. The dashed horizontal lines at −2 lnΛ = 1 (−2 lnΛ = 4) indicate the levels used to define the 1σ (2σ)
confidence interval for the corresponding parameter.
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Figure 41: Observed (solid line) and expected (dotted line) negative log-likelihood scan of the (a) κg, (b) κγ, (c) Binv
and (d) Bundet parameters from a combined fit including searches for Higgs decays into invisible final states. All the
other parameters of interest from the list in the legend are also varied in the minimization procedure. In (a) and (b),
the dashed horizontal lines at −2 lnΛ = 1 (−2 lnΛ = 4) indicate the levels used to define the 1σ (2σ) confidence
interval for κg and κγ. In (c) and (d), the dashed red line shows the level used to obtain the 95% CL upper limits on
Binv and Bundet.
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decays, with BBSM included as a free parameter.
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F.3 Generic parameterization assuming no new particles in loops and decays

Figure 44 shows the correlation matrix obtained in fits to data using the model described in Section 7.4.
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Figure 44: Correlation matrix obtained in the fit to the data using a generic parameterization assuming no new
particles in loops and decays.

F.4 Generic parameterization including effective photon and gluon couplings with and
without BSM contributions in decays

Figure 45 shows the observed and expected negative log-likelihood scans of the κW , κZ , κt , κb, κτ , κγ and
κg parameters from a combined fit using a generic coupling parameterization without BSM contributions
in the decays, described in Section 7.5. Figure 46 and 47 show the observed and expected negative
log-likelihood scans of the Binv and Bundet parameters from a combined fit including searches for Higgs
decays into invisible final states using a generic coupling parameterization. Figure 48 shows the observed
and expected negative log-likelihood scans of the BBSM parameter from a combined fit including searches
for off-shell Higgs production using a generic coupling parameterization. Figure 49 shows the correlation
matrix obtained in fits to data using the models described in Section 7.5.
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Figure 45: Observed (solid line) and expected (dotted line) negative log-likelihood scan of the (a) κW , (b) κZ , (c) κt ,
(d) κb, (e) κτ , (f) κγ and (g) κg parameters from a combined fit using a generic coupling parameterization without
BSM contributions in the decays. All the other parameters of interest from the list in the legend are also varied in the
minimization procedure. The dashed horizontal lines at −2 lnΛ = 1 (−2 lnΛ = 4) indicate the levels used to define
the 1σ (2σ) confidence interval for the corresponding parameter.

106



0.05 0.1 0.15 0.2 0.25 0.3 0.35

inv.B

0

1

2

3

4

5

6

7

8Λ
2

 l
n

 
−

ATLAS
1− = 13 TeV, 24.5  79.8 fbs

| < 2.5
H

y = 125.09 GeV, |Hm

]
undet.

,B
inv.

,Bγκ,gκ,τκ,bκ,tκ,Zκ,Wκ[

Observed

 > 0tκObserved, 

 < 0tκObserved, 

SM expected

(a)

0.1 0.2 0.3 0.4 0.5 0.6

undet.B

0

1

2

3

4

5

6

7

8Λ
2

 l
n

 
−

ATLAS
1− = 13 TeV, 24.5  79.8 fbs

| < 2.5
H

y = 125.09 GeV, |Hm

]
undet.

,B
inv.

,Bγκ,gκ,τκ,bκ,tκ,Zκ,Wκ[

Observed

 > 0tκObserved, 

 < 0tκObserved, 

SM expected

(b)

Figure 46: Observed (solid line) and expected (dotted line) negative log-likelihood scan of the (a) Binv, (b) Bundet
parameters from a combined fit including searches for Higgs decays into invisible final states using a generic coupling
parameterization. All the other parameters of interest from the list in the legend are also varied in the minimization
procedure. The dashed red horizontal lines indicate the levels used to obtain the 95% CL upper limits on Binv and
Bundet.
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a combined fit including searches for off-shell Higgs production using a generic coupling parameterization. All the
other parameters of interest from the list in the legend are also varied in the minimization procedure The dashed red
horizontal line indicates the level used to obtain the 95% CL upper limit on BBSM.
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Figure 49: Correlation matrix obtained in the fit to the data using generic parameterizations including effective
photon and gluon couplings with Binv = Bundet = 0.

F.5 Generic parameterization using ratios of coupling modifiers

Figure 50 shows the observed and expected negative log-likelihood scans of the λγZ , λtg, λbZ and λWZ

parameters from a combined fit using a generic coupling parameterization without assumptions about the
Higgs boson total width, described in Section 7.6. Figure 51 shows the correlation matrix obtained in fits
to data.
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Figure 50: Observed (solid line) and expected (dotted line) negative log-likelihood scan of the (a) λγZ , (b) λtg, (c)
λbZ , and (d) λWZ parameters from a combined fit using a generic coupling parameterization without assumptions
about the Higgs boson total width. All the other parameters of interest from the list in the legend are also varied in
the minimization procedure. The dashed horizontal lines at −2 lnΛ = 1 (−2 lnΛ = 4) indicate the levels used to
define the 1σ (2σ) confidence interval for the corresponding parameter.
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Figure 51: Correlation matrix obtained in the fit to the data using a generic parameterization using ratios of coupling
modifiers.
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G Average number of SM Higgs bosons selected by input analyses from
each fb−1 of 13 TeV data

Assume SM Higgs boson with mH = 125.09 GeV, |yH | < 2.5, and all the nuisance parameters at nominal
values, the average number of Higgs bosons selected by input analyses considered in this combination
(except for H → invisible and Off-shell H → Z Z∗ → 4` and H → Z Z∗ → 2`2ν) each fb−1 at 13 TeV is
summarized in Table 16.

Table 16: Average number of SMHiggs bosons (mH = 125.09 GeV, |yH | < 2.5) selected by input analyses considered
in this combination (except for H → invisible and Off-shell H → Z Z∗ → 4` and H → Z Z∗ → 2`2ν) from each
fb−1 at 13 TeV. The numbers are reported for each main production mode, as well as for each decay channel.

Decay Total ggF VBF WH ZH ttH+tH

H → γγ 46.4 41.1 3.19 0.998 0.676 0.505
H → Z Z∗ 1.50 1.24 0.109 0.0316 0.0222 0.104
H → WW∗ 42.2 29.8 3.05 0.758 0.209 8.36
H → ττ 17.1 9.31 3.82 0.715 0.419 2.85
H → bb̄ 66.0 9.68 9.68 4.81 6.30 35.5
H → µµ 6.67 5.96 0.474 0.143 0.0765 0.0112
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H Per-channel contributions to the STXS measurement sensitivity
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Figure 52: Contributions of the main Higgs boson decay channel in the measurement of the STXS parameters in the
strong-merging scheme. For each parameter, a fit to an Asimov dataset generated in the SM hypothesis is performed.
The free parameters in the fit are the event yields of decays into H→ γγ, H → Z Z∗, H → WW∗, H → ττ and
H → bb̄ within the STXS region under consideration, and the yields of the other STXS regions considered inclusively
over all decay processes. In the ttH+tH category the H → WW∗ and H → ττ processes are combined, since the
measurements of their decay rates are strongly correlated. The contribution of the decay channel f is computed as

w f =
1/σ2

f∑
f ′ 1/σ2

f ′
, where σf is the uncertainty on the corresponding event yield.
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