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Abstract
This review describes the duality between color and kinematics and its applic-
ations, with the aim of gaining a deeper understanding of the perturbative
structure of gauge and gravity theories. We emphasize, in particular, applica-
tions to loop-level calculations, the broad web of theories linked by the duality
and the associated double-copy structure, and the issue of extending the duality
and double copy beyond scattering amplitudes. The review is aimed at doctoral
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students and junior researchers both inside and outside the field of amplitudes
and is accompanied by various exercises.
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1. Introduction

Gauge and gravity theories play a crucial role in our understanding of physical phenomena.
Yet, they appear to be distinct. The weak, strong and electromagnetic interactions are manifest-
ations of gauge theories, while gravity shapes the macroscopic evolution of the Universe and
spacetime itself. Finding a unified framework which seamlessly combines these two classes
of theories constitutes, arguably, the most important open problem in theoretical physics. It is
by now clear that realizing this unification requires a departure from conventional approaches
through new principles or novel symmetries. The double-copy perspective reviewed here offers
a radically different way to interpret gravity. Its relation to the other forces through color/k-
inematics duality [1, 2] leads to remarkable new insights and powerful computational tools.

Despite their clear differences, gauge and gravity theories are already known to share many
features, supporting the existence of an underlying unified framework, such as string theory.
While many of these similarities are not apparent from a standard Lagrangian or Hamiltonian
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standpoint, the study of objects closely related to observable quantities, such as scattering
amplitudes, reveals deep and highly-nontrivial connections. This is most apparent in their per-
turbative expansions, which make it clear that the dynamics of these two classes of theories
are governed by the same kinematical building blocks, even when their physical properties are
strikingly different.

The developments which exposed these features were systematized by the introduction of
the duality between color and kinematics and of the double-copy construction. The scatter-
ing amplitudes of many perturbative quantum field theories (QFTs) exhibit a double-copy
structure. It is central to our ability to carry out calculations to very high loop orders and a
property of all supergravities whose amplitudes have been analyzed in detail. This leads to
the natural question whether all (super)gravity theories are double copies of suitably-chosen
matter-coupled gauge theories. Perhaps more importantly, the double copy realizes a unifica-
tion of gauge and gravity theories in the sense of providing a framework where calculations
in both theories can be carried out using an identical set of building blocks, yielding vast
simplifications.

The primary purpose of this review is to offer an introduction to the duality between
color and kinematics—also referred to as color/kinematics (CK) duality and Bern–Carrasco–
Johansson (BCJ) duality—and the associated double-copy relation in the hope of stimulating
new progress both inside and outside of the fairly well-understood setting of scattering amp-
litudes. Beyond gauge and gravity theories, double-copy relations also provide a new perspect-
ive on QFT, generating a surprisingly wide web of theories through building blocks obeying
the same algebraic relations.

The duality essentially states that scattering amplitudes in gauge theories—and, more gen-
erally, in theories with some Lie-algebra symmetry—can be rearranged so that kinematic
building blocks obey the same generic algebraic relations as their color factors. Via the duality,
we can not only constrain the kinematic dependence of each graph, but we can also convert
gauge-theory scattering amplitudes to gravity ones through the simple replacement

color⇒ kinematics . (1)

Evidence provided by explicit calculations suggests that CK duality and the double-copy con-
struction hold for a wide class of theories at loop level [2–23]. Formal proofs, using a vari-
ety of methods [24–29], have been constructed for only tree-level scattering amplitudes in
these theories. The duality also gave novel descriptions for tree-level amplitudes in bosonic
and supersymmetric string theories, as well as in various effective field theories related to
spontaneous symmetry breaking, and more. It has also been observed that, in the presence of
adjoint-representation fermions, the duality implies supersymmetry [30].

The schematic rule (1) has served as a powerful guide for many studies in perturbative
gravity and supergravity, especially on their loop-level ultraviolet (UV) properties (see e.g. [2,
6, 31–40]), showing a surprisingly tame behavior. For many supergravity theories, the physical
degrees of freedom are obtained by the substitution (1). In others, such as pure Einstein gravity,
the desired spectrum can only be obtained after a subset of the double-copy states are projected
out. As we describe in some detail in section 5, CK duality and the associated double-copy
properties hold for a remarkably large web of theories.

Given the success at exploiting the double-copy structure for scattering amplitudes, it is nat-
ural to wonder whether it also carries over to other areas of gravitational physics, especially
for understanding and simplifying generic classical solutions. Scattering amplitudes have an
important property that makes transparent the duality and double-copy structure: they are inde-
pendent of the choice of gauge and field-variables. Generic classical solutions, on the other
hand, do depend on these choices, making the problem of relating gauge and gravity classical

4



J. Phys. A: Math. Theor. 57 (2024) 333002 Topical Review

solutions inherently more involved. Nevertheless, the prospect of solving problems in gravity
by recycling gauge-theory solutions is especially alluring. While the differences with scatter-
ing amplitudes are significant and make it a nontrivial challenge to implement this program,
there has been significant progress in unraveling both the underlying principles of CK dual-
ity [26, 41–49] and finding explicit examples of classical solutions related by the double-copy
property [50–77]. One of themost promising applications of the double copy beyond scattering
amplitudes relates to gravitational-wave physics, as highlighted by [57, 69, 78–82].

The origins of the double copy can be traced back to the dawn of string theory, with
the observation of a curious connection between the Veneziano scattering amplitude [83],
A(s, t), (later identified as an open-string scattering amplitude) and the Virasoro–Shapiro amp-
litude [84, 85], M(s, t,u), (later identified as a closed-string amplitude). With an appropriate
normalization, these two amplitudes are related as [86]

M(s, t,u) =
sin(πα ′s)
πα ′ A(s, t)A(s,u) , (2)

where α ′ is the inverse string tension. The arguments are the kinematic (Mandelstam) invari-
ants of a four-point scattering process,

s= (p1 + p2)
2
, t= (p2 + p3)

2
, u= (p1 + p3)

2
. (3)

Equation (2) carries over to all string states, including the gluons of the open string and the
gravitons in the closed string. In the low-energy limit, when string theory reduces to field
theory, it yields a relation between scattering amplitudes in Einstein gravity and those of Yang–
Mills (YM) theory [87],

Mtree
4 (1,2,3,4) =

(κ
2

)2
sAtree

4 (1,2,3,4)Atree
4 (1,2,4,3) , (4)

where Atree
4 (1,2,3,4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1,2,3,4) is a four-graviton tree amplitude andκ is the gravitational coupling to related to

Newton’s constant via κ2 = 32πGN and, for reasons that will become clear shortly, the polar-
ization vectors of gluons on the right-hand side of equation (4) are taken to be null. We will
typically suppress the gravitational coupling by setting κ= 2 in this review; however, occa-
sionally we display it for clarity. The color-ordered partial tree amplitudes are the coefficients
of basis elements once the amplitude’s color factors are expressed in the trace color basis, and
the coupling g is set to unity. They are gauge invariant—see section 2 and e.g. [88–92] for fur-
ther details. Equation (4) is rather striking, asserting that tree-level four-graviton scattering is
described completely by gauge-theory four-gluon scattering, bypassing the usual machinery of
general relativity. Similar relations were later derived for higher-point string-theory tree-level
amplitudes [86], and generalized in the field-theory limit to an arbitrary number of external
particles [93]. Besides the remarkable implication that the detailed dynamics of the gravita-
tional field can be described in terms of the dynamics of gauge fields, equation (4) has other
surprising features not visible in standard Lagrangian formulations. For example, equation (4)
implies that the four-graviton amplitude can be re-arranged so that Lorentz indices factor-
ize [94, 95] into ‘left’ indices belonging to one gauge-theory amplitude and ‘right’ indices
belonging to another gauge theory.
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Figure 1. Gauge theories have three- and four-point vertices in a Feynman diagrammatic
description.

Figure 2. Gravity theories have an infinite number of higher-point contact interactions
in a Feynman diagrammatic description.

1.1. Motivation: complexity of gravity versus gauge theory

It is interesting to contrast the remarkable simplicity encoded in the relation (4) with the much
more complicated expressions that arise from standard Lagrangian methods. Scattering amp-
litudes for gauge and gravity theories can be obtained using the Feynman rules derived from
their respective Lagrangians

LYM =−1
4
F a

µνF
aµν , LEH =

2
κ2

√
−gR . (5)

Here Faµν is the usual YM field strength and R the Ricci scalar.
Following standard Feynman-diagrammatic methods, we gauge-fix and then extract the

propagator(s) and the three- and higher-point vertices. For gravity we also expand around flat
spacetime, taking the metric to be gµν = ηµν +κhµν where ηµν is the Minkowski metric and
hµν is the graviton field. As illustrated in figures 1 and 2, with standard gauge choices, gauge
theory has only three- and four-point vertices, while gravity has an infinite number of vertices
of arbitrary multiplicity. The complexity of each individual interaction term is perhaps more
striking than their infinite number. Consider, for example, the three-graviton interaction. In the
standard de Donder gauge, ∂νhνµ = 1

2∂µh
ν
ν , the corresponding vertex is [96, 97],

G3µρ,νλ,στ (p1,p2,p3)

= iSym

[
−1

2
P3 (p1 · p2ηµρηνληστ )−

1
2
P6 (p1νp1ληµρηστ )+

1
2
P3 (p1 · p2ηµνηρληστ )

+P6 (p1 · p2ηµρηνσηλτ )+ 2P3 (p1νp1τηµρηλσ)−P3 (p1λp2µηρνηστ )

+P3 (p1σp2τηµνηρλ)+P6 (p1σp1τηµνηρλ)+ 2P6 (p1νp2τηλµηρσ)

+2P3 (p1νp2µηλσητρ)− 2P3 (p1 · p2ηρνηλσητµ)
]
, (6)

where we set κ= 2, pi are the momenta of the three gravitons, ηµν is the flat metric, ‘Sym’
implies a symmetrization in each pair of graviton Lorentz indices µ↔ ρ, ν↔ λ and σ↔ τ ,
and P3 and P6 signify a symmetrization over the three graviton legs, generating three or six
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Figure 3. The three Feynman diagrams corresponding to the s, t and u channels.

terms respectively. The symmetrization over the three external legs ensures the Bose symmetry
of the vertex. In total, the vertex has of the order of 100 terms. This generally undercounts the
number of terms, because within a diagram each vertex momentum is a linear combination of
the independent momenta of that diagram.

We may contrast this to the three-gluon vertex in Feynman gauge,

Vabc
3µνσ (p1,p2,p3) = g f abc [(p1 − p2)σ ηµν + cyclic] . (7)

which does not appear to bear any obvious relation to the corresponding three-graviton ver-
tex (6). These considerations seemingly suggest that gravity is much more complicated than
gauge theory. Moreover, the three-graviton vertex immediately appears to conflict with the
simple factorization of Lorentz indices into left and right sets visible in equation (4). The first
term in equation (6), for example, contains a factor ηµρ which explicitly contracts a left grav-
iton index with a right one.

The reason why the three-graviton vertex is so complicated is that it is gauge-dependent8.
With special gauge choices and appropriate field redefinitions [94, 95, 98, 99], it is possible
to considerably simplifying the Feynman rules. Still, direct perturbative gravity calculations
in a Feynman diagram approach are rather nontrivial, especially beyond leading order, even
with modern computers. To eliminate the gauge dependence we should instead focus on the
three-vertex with on-shell conditions imposed on external legs, by demanding that the vertex
is contracted into physical states that satisfy,

εµρ = ερµ , pµε
µρ = 0 , pρε

µρ = 0 , εµ
µ ≡ ηµνεµν = 0 , (8)

where p is a graviton momentum and εµν the associated graviton polarization tensor. This
removes all trace and longitudinal terms, reducing the vertex to a simple form,

G3µρ,νλ,στ (p1,p2,p3) =−i [(p1 − p2)σ ηµν + cyclic] [(p1 − p2)τ ηρλ + cyclic] , (9)

exposing its simple relation to the three-gluon vertex of gauge theory. This is a hint that there
should be much better ways to organize the perturbative expansion of gravity. We now turn
to four-graviton scattering amplitude, which is a better example as it corresponds directly to a
physical process.

1.2. Invitation: four-point example

Consider the full four-gluon tree amplitude in YM theory, which can be obtained, for example,
by following textbook Feynman rules [100]. We write it as a sum over three channels corres-
ponding to the three diagrams in figure 3

iAtree
4 = g2

(nscs
s

+
ntct
t

+
nucu
u

)
, (10)

8 While somewhat less complicated than the three-graviton vertex, the three-gluon vertex is also gauge-dependent.
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where the Mandelstam variables are defined in equation (3). The s-channel color factor, nor-
malized to be compatible with the scattering amplitudes literature [88], is

cs =−2f a1a2bf ba3a4 , (11)

where the color-group structure constants f abc are the standard textbook ones [100]. With this
normalization, the s-channel kinematic numerator, ns, is

ns =−1
2
{[(ε1 · ε2)pµ1 + 2(ε1 · p2)εµ2 − (1↔ 2)] [(ε3 · ε4)p3µ + 2(ε3 · p4)ε4µ − (3↔ 4)]

+s [(ε1 · ε3)(ε2 · ε4)− (ε1 · ε4)(ε2 · ε3)]} , (12)

where the momenta and polarization vectors satisfy on-shell conditions p2i = εi · pi = 0.
The other color factors and numerators are obtained by cyclic permutations of the particle
labels (1,2,3):

ctnt = csns
∣∣
1→2→3→1

, cunu = csns
∣∣
1→3→2→1

. (13)

Feynman rules for gluons contain a four-gluon vertex, as in figure 1. Here we have absorbed its
contribution into the three diagrams in figure 3 according to the color factors, by multiplying
and dividing by an appropriate propagator. This is the origin of the term on the second line of
equation (12).

A key property of the gauge-theory scattering amplitude (10) is its linearized gauge invari-
ance. To check this, we need to verify that the amplitude vanishes with the replacement
ε4 → p4. Upon doing this replacement for the s-channel numerator we get, after some algebra,
the nonzero result

ns
∣∣
ε4→p4

=− s
2
[(ε1 · ε2)((ε3 · p2)− (ε3 · p1))+ cyclic(1,2,3)]≡ sα(ε,p) , (14)

which is no surprise since individual diagrams are, in general, gauge dependent. The func-
tion α(ε,p) is clearly invariant under cyclic permutations of the labels (1,2,3). For the full
amplitude we get therefore

nscs
s

+
ntct
t

+
nucu
u

∣∣∣
ε4→p4

= (cs+ ct+ cu) α(ε,p) , (15)

where α(ε,p) is the expression in equation (14). Hence the amplitude is gauge invariant if
cs+ ct+ cu vanish, i.e.

cs+ ct+ cu =−2
(
f a1a2bf ba3a4 + f a2a3bf ba1a4 + f a3a1bf ba2a4

)
= 0 . (16)

This is the standard Jacobi identity, which indeed is satisfied by the group-theory structure
constants in a gauge theory.

Consider the three-term sum over kinematic numerators in equations (12) and (13),
ns+ nt+ nu, analogous to the sum over color factors on the left-hand side of equation (16).
Remarkably, this combination vanishes when the on-shell conditions are applied,

ns+ nt+ nu = 0 . (17)

We will refer to this relation as a kinematic Jacobi identity. This was originally noticed some
time ago for four-point amplitudes, as a curiosity related to radiation zeros in four-point
amplitudes [101–103]. Generic representations of four-point amplitudes in terms of diagrams
with only cubic vertices obey these identities, but at higher points nontrivial rearrangements
are needed. The significance of the identity equation (17) and its generality was understood
later [1, 2]. We refer to kinematic identities that are analogous to generic color-factor identities
as a duality between color and kinematics. It turns out that they constitute an ubiquitous, yet

8
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hidden, structure not only of gauge theories, but also of an ever-increasing web of theories, as
described in section 5.

Exercise 1.1. Use equations (12) and (13) to verify the numerator Jacobi identity (17).
Redefine the numerators by eliminating cu in favor of cs and ct, defining new numerators n ′

s
and n ′

t as the coefficient of cs/s and ct/t. The numerator n ′
u vanishes by construction. Show

that the kinematic Jacobi identity still holds for these redefined numerators.

The fact that the kinematic factors satisfy the same relations as the color factors suggests
that they are mutually exchangeable. Indeed, we can swap color factors for kinematic factors
in the YM four-point amplitude (10), which gives a new gauge-invariant object that, as we will
discuss momentarily, is a four-graviton amplitude,

iAtree
4

∣∣∣∣∣ ci→ñi
g→κ/2

≡ iMtree
4 =

(κ
2

)2
(
n2s
s
+
n2t
t
+
n2u
u

)
. (18)

The new amplitudeMtree
4 doubles up the kinematic numerators, and sowe refer to it as a double

copy. (The i in front of the Mtree
4 is a phase convention.) The expression in equation (18) has

the following properties: the external states are captured by symmetric polarization tensors
εµν = εµεν , the interactions are of the two-derivative type, and the amplitude is invariant under
linearized diffeomorphism transformations. By choosing the polarization vectors to be null
ε2 = 0 (corresponding to circular polarization), implying that εµν is traceless, this amplitude
should describe the scattering of four gravitons in Einstein’s general relativity, up to an overall
normalization. There are a number of ways to prove that this is the case, including using on-
shell recursion relations [41] and ordinary gravity Feynman rules [94]; here we will show that
equation (18) reproduces the Kawai–Lewellen–Tye (KLT) form of gravity amplitudes [86],
derived using the low-energy limit of string theory.

The diffeomorphism invariance of the amplitude requires some elaboration. Consider a
linearized diffeomorphism of the asymptotic (weak) graviton field hµν . The diffeomorphism
is parametrized by the function ξµ and take the simple form

δhµν = ∂µξν + ∂νξµ . (19)

Translating this to momentum space implies that a diffeomorphism-invariant amplitude should
vanish upon replacing a polarization tensor as: εµν → pµεν + pνεµ. Applying this to leg 4 of
the amplitude, we find

n2s
s
+
n2t
t
+
n2u
u

∣∣∣
εµν
4 →pµ4 ε

ν
4 +p

ν
4 ε

µ
4

= 2(ns+ nt+ nu) α(ε,p) = 0 . (20)

Thus, we see that the kinematic Jacobi identity needs to be satisfied for the amplitude to be
invariant under linearized diffeomorphism transformations, in complete analogy to the color
Jacobi identity in the gauge-theory amplitude.

Returning to the YM amplitude, we note that the amplitude can be written in a manifestly
gauge-invariant form if we solve the Jacobi relation by choosing ct =−cu− cs,

iAtree
4 = g2

(nscs
s

+
ntct
t

+
nucu
u

)
= g2

((ns
s
− nt

t

)
cs−

(nt
t
− nu

u

)
cu
)

≡ ig2Atree
4 (1,2,3,4)cs− ig2Atree

4 (1,3,2,4)cu . (21)
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The partial amplitudesAtree
4 (1,2,3,4), which we define to be stripped of color and the coupling,

are gauge invariant because the color-dressed amplitude Atree
4 is now decomposed in a basis

of independent color factors, with elements cs and cu, and thus the gauge invariance of Atree
4

implies the gauge invariance of the individual terms of this decomposition.
It is not difficult to show that the partial amplitude can be written as

Atree
4 (1,2,3,4) =−i t8F

4

st
, (22)

where

t8F
4 ≡ 4Tr(F1F2F3F4)−Tr(F1F2)Tr(F3F4)+ cyclic(1,2,3) (23)

contains various Lorentz traces over four linearized Fourier transformed field strengths,

Fµν
i ≡ pµi ε

ν
i − εµi p

ν
i , (24)

where the fields are replaced with polarization vectors. These are manifestly invariant under
linearized gauge transformations.

We can also solve the kinematic Jacobi relation (17) by choosing nt =−nu− ns. The partial
amplitudes then become

iAtree
4 (1,2,3,4) =

ns
s
− nt

t
= ns

(
1
s
+

1
t

)
+
nu
t
,

iAtree
4 (1,3,2,4) =

nt
t
− nu

u
=−nu

(
1
u
+

1
t

)
− ns

t
, (25)

which may also be organized as a matrix relation

i

(
Atree
4 (1,2,3,4)
Atree
4 (1,3,2,4)

)
=

(
1
s +

1
t

1
t

− 1
t − 1

u −
1
t

)(
ns
nu

)
. (26)

It might seem that it is possible to solve for the numerators in terms of the partial amplitudes
by inverting the two-by-two matrix of propagators. Existence of a solution would contradict,
however, the fact that on the one hand numerators are gauge-dependent and on the other partial
amplitudes are gauge-invariant. Indeed, the matrix of propagators has no inverse as its determ-
inant is proportional to s+ t+ u= 0. At best, we can solve for one of the numerators, say, nu,

nu = i tAtree
4 (1,2,3,4)+ u

ns
s
. (27)

Replacing this into Atree
4 (1,3,2,4) in equation (25), the dependence on the undetermined kin-

ematic numerator ns cancels out, and we obtain the gauge-invariant relation

Atree
4 (1,3,2,4) =

s
u
Atree
4 (1,2,3,4) . (28)

Given the vanishing of the determinant of the above matrix of propagators, it is not surpris-
ing to find that the two partial amplitudes are linearly dependent. In fact, one may phrase
equation (28) as the orthogonality condition of the left-hand side of equation (26) onto the
null eigenvector of the matrix of propagators.

The existence of relations between partial amplitudes is a general feature. Such BCJ amp-
litude relations exist whenever the duality between color and kinematics and gauge invariance
conspire to prevent the relation between partial amplitudes and numerators to be inverted.
These relations have been demonstrated in a variety of ways, including using both string the-
ory [104–112] and field theory methods [113–118].
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In string theory, one finds similar identities that follow from world-sheet monodromy rela-
tions. For massless vector amplitudes of the open string, from world-sheet monodromy rela-
tions [104, 105] one finds

Atree
4 (1,3,2,4) =

sin(πα ′s)
sin(πα ′u)

Atree
4 (1,2,3,4) . (29)

where α ′ is the inverse string tension.
We can also use the two relations, nt =−nu− ns and nu = tAtree

4 (1,2,3,4)+ uns/s, in
equation (18). The result is

Mtree
4 (1,2,3,4) = − i

[
n2s
s
+
n2t
t
+
n2u
u

]
=−i st

u

[
Atree
4 (1,2,3,4)

]2
, (30)

where, as usual, we have suppressed the gravitational coupling setting κ= 2. As for the gauge-
theory case, ns drops out; as in that case, this is to be expected as it would otherwise lead to
a relation between gauge invariant and gauge-dependent quantities,Mtree

4 and ns respectively.
We can put this equation into a more standard form using a relabeling identity (28),

Mtree
4 (1,2,3,4) =−i sAtree

4 (1,2,3,4)Atree
4 (1,2,4,3) , (31)

which is the simplest of the KLT relations between gravity and gauge-theory amplitudes. We
derived it here as a consequence of CK duality and gauge-invariance constraints, but the ori-
ginal derivation [86] comes from string theory. It is worth noting that these relations are not
unique given amplitude relations such as equation (28).

Replacing the four-point YMamplitude in the from equation (22) into the KLT relation (31),
we obtain an explicit form for the four-graviton amplitude

Mtree
4 (1,2,3,4) =−i t16R

4

stu
, (32)

where we define t16R4 in terms of t8F 4 in equation (23) as

t16R
4 ≡

(
t8F

4
)2
. (33)

As the notation suggest, t16R4 can also be written as a contraction between a rank-16 tensor
t16 and four linearized Riemann tensors, using the relationship to linearized gauge-theory field
strengths in equation (24),

Rµνρσ
i = Fµν

i Fρσ
i = (pµi ε

ν
i − εµi p

ν
i )(p

ρ
i ε

σ
i − ερi p

σ
i ) . (34)

1.3. Outline of topics

In this review, we will describe the duality between color and kinematics and the double copy,
as proposed in the original work [1, 2], and later refined through various extensions and applic-
ations. As indicated in figure 4, CK duality and double copy are intertwined with the topics
of several vigorous research fields. The areas that the review will mainly focus on include the
web of theories, loop amplitudes and the classical double copy. The web of theories allude
to the large classes of known double-copy constructions and their underlying single-copy the-
ories, whose existence became clear after important theories, such as Chern–Simons [119],
Yang–Mills–Einstein (YME) [120], Maxwell-Einstein [120, 121], spontaneously-broken the-
ories [122] and gauged supergravities [123] were observed to fit into the general framework.
In addition, from the Cachazo, He and Yuan (CHY) formulation [124], it was observed [125]
that also effective field theories such as the non-linear-sigma-model (NLSM) [126], (Dirac)-
Born-Infeld (DBI) and special-Galileon theory played a central role.
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Figure 4. Connections of CK duality to various topics. This review will discuss in some
detail the connection of CK duality to the topics in the upper right (with the main
chapters indicated) and less so to the topics on the lower right. The various topics are
intertwined with each other as well.

The usefulness of the duality and the double copy for loop amplitudes became clear once
the framework was applied to obtain compact integrands for the three- [2] and four-loop [6]
amplitudes inN = 4 SYM and inN = 8 supergravity. By now it is clear that loop amplitudes
in many other theories can be obtained using the duality and double copy.

When the double copy was shown to be applicable to problems of classical gravity, such
as the Schwarzschild and Kerr metrics [51] as well as other perturbatively constructable met-
rics [58], it opened the door to further applications relevant to gravitational physics. With
the discovery of gravitational waves from merging binary black holes and neutron stars [127,
128], it is becoming increasingly important to find better ways to accurately calculate classical
observables in general relativity. The double-copy approach is still in its infancy, but it bears
the promise of drastically changing the way we think of carrying out computations in gravity.

In order to keep the discussion manageable, we will not discuss in much detail the chal-
lenges of understanding gravitational radiation and potentials (see e.g. [129–132] for reviews
and [78, 80, 82] for a state-of-the-art application of the double copy). Nor will we be thor-
ough in describing the connections to string theory (see e.g. [104, 105, 133, 134]), the CHY
construction [124, 135–137] and ambitwistor strings [138–148], all of which have interesting
connections to CK duality and the double-copy construction.

The outline of topics in each section is as follows: in section 2, we describe the duality in
some detail and give various examples, and show how the double copy implies diffeomorphism
invariance of gravity. In section 3, we give a way to visualize how the duality can be thought
of as specifying amplitudes in terms of boundary data on a graph of graphs and on making use
of relabeling invariance. Then, in section 4, we discuss the inheritance of symmetries in the
double-copy theories from their component theories. Section 5 gives a detailed description
of the web of double-copy constructible theories, emphasizing the widespread applicability of
these ideas. In section 6, we give loop-level examples of the duality between color and kin-
ematics. In section 7, we explain a generalized double-copy procedure that does not require
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loop integrands to manifest the duality. Section 8 discusses the important issue of extend-
ing the double-copy procedure to solutions of the classical Equations of motion. Conclusions
and prospects for the future are given in section 9. In appendix A, we collect acronyms and
notation used throughout the review. Appendix B summarizes spinor helicity and on-shell
supersymmetry, which will be useful in various sections. Finally, appendix C briefly describes
generalized unitarity, used in sections 6 and 7.

2. The duality between color and kinematics

The duality between color and kinematics is by now an extensive topic with a variety of per-
spectives and applications. However, it is not always clear from the literature what rules govern
this framework. In this section, the central aspects of CK duality will be described, with the
aim of clarifying the reason for imposing various requirements as well as providing an under-
standing of when they can be relaxed.

2.1. What is the duality between color and kinematics?

CK duality in its original formulation states that it is possible to reorganize the perturbative
expansion of tree-level amplitudes in D-dimensional pure YM theory with a general gauge
group G in terms of cubic diagrams where the kinematic numerators obey the same Jacobi
relations and symmetry properties as their color factors [1, 2]. While it is not a priori obvious
why such a reorganization is possible or even desirable, from a Lagrangian perspective this
is a highly nontrivial statement about YM theory. The associated double-copy construction
however, does make it clear that the duality is worth understanding because of the way it
connects gravity to gauge theory. While there are tree-level proofs of the duality from the
amplitudes perspective [24, 25, 149], at present, only a partial Lagrangian-level understanding
has been achieved [41, 42, 150, 151].

More generally, CK duality refers to the statement that in many gauge theories, extending
well beyond YM theories with or without matter, it should be possible to reorganize the per-
turbative expansion so that there is a one-to-one map between the Lie-algebra identities of the
color factors carried by certain diagrams (with cubic or higher-point vertices) and the identities
of the kinematic numerators of the same diagrams. In the broad class of general gauge theories,
one can think of CK duality as a constraint that can be imposed on fields, gauge-group rep-
resentations, interactions and operators, such that the theories give amplitudes that exhibit the
duality structure. These constraints often result in theories with properties that are interesting
for reasons not directly related to the duality [120–122, 152, 153].

In generalizing beyond gauge theories, one can consider matter theories that are comprised
of spin <1 states that transform nontrivially under a semi-simple global group. In this case,
CK duality refers to the one-to-one map between the Lie-algebra relations of this global group
and the relations satisfied by the corresponding kinematic numerators of the diagrams. It is
convenient to still refer to the global group as the color group since such theories can often
be regarded as the matter sector of a gauge theory. Such matter theories can have amplitudes
that nontrivially obey the duality (as in the case of the NLSM [126] discussed in sections 3.2
and 5.3.11), thus mimicking the intricate kinematic structure of gauge theories, or they can be
completely trivial manifestations of the duality (e.g. bi-adjoint ϕ3 theory [44, 154]). The most
remarkable aspect of CK duality is that it naturally leads to scattering amplitudes in double-
copy theories. Section 5 describes a remarkable web of theories that are connected by the
duality and the double copy.
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Finally, for amplitudes that are not obtained from the standard QFT framework involving
Feynman diagrams, such as string-theory amplitudes, it is convenient to define CK duality to
mean that these amplitudes obey the same relations as if they were generated by a duality-
satisfying diagrammatic expansion of the gauge-theory type. For example, the single-trace
vector-amplitude sector of the heterotic string obeys the same relations as that of YM the-
ory [155]. Hence, we can write heterotic string amplitudes as a sum over cubic diagrams with
duality-satisfying kinematic numerators, even if this might not seem completely natural from
a string-theory perspective.

2.2. General statement of the duality and the double copy for gauge theories

Consider scattering amplitudes in a nonabelian gauge theory with the following properties:
there is a gauge-group G under which all fields transform nontrivially; particles of different
mass are assigned to various representations of the gauge group; the interactions are controlled
by a gauge coupling constant g and a set of elementary color tensors C =

{
f abc,(ta) ji , . . .

}
. The

set of elementary color tensors may include higher-rank tensors as indicated by the ellipsis.
An L-loop m-point scattering amplitude in this D-dimensional gauge theory can then be

organized as9

A(L)
m = iL−1gm−2+2L

∑
i

ˆ
dLDℓ

(2π)LD
1
Si

cini
Di

, (35)

where the sum runs over the distinct L-loop m-point diagrams that can be constructed by con-
tracting the elements of C in various allowed ways (consistent with the choice of external
particle representations, and where the valency of each vertex is determined by the tensor
rank). We take each such diagram to correspond to a unique color factor ci. Each diagram has
an associated denominator factor Di which is constructed by taking a product of the denom-
inators of the Feynman propagators ∼ 1/(p2 −m2

j ) of each internal line of the diagram. For
simplicity of notation, we assume that the color representation of the line uniquely specifies
the mass mj of the propagator. Cases with differing masses, but the same color representa-
tion, are easily taken into account by setting appropriate masses and representations equal at
the end. The adjoint representation is by default massless and is associated to gluons (and, in
some cases, additional fields). The remaining nontrivial kinematic dependence is collected in
the kinematic numerator ni associated with each diagram. The numerators ni are in general
gauge-dependent functions that depend on external momenta pj, loop momenta ℓl, polariza-
tions εj, spinors, flavor, etc everything except for the color degrees of freedom. The integral
measure is defined as dLDℓ=

∏L
l=1 d

Dℓl. Finally, Si are standard symmetry factors that remove
internal overcount of loop diagrams; they can be computed by counting the number of discrete
symmetries of each diagram with fixed external legs.

The color factors ci are in general not independent. They satisfy linear relations that are
inherited from the Lie algebra structure, such as the Jacobi identity and the defining commut-
ation relation,

f daef ebc− f dbef eac = f abef ecd ,

(ta) ki
(
tb
) j
k
−
(
tb
) k
i
(ta) jk = i f abc (tc) ji , (36)

9 Our conventions for the overall phase of gauge-theory and gravity amplitudes follow the one in [156] rather than
the original BCJ papers [1, 2].
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Figure 5. Color-algebra relations in the adjoint (a) and fundamental representation (b).
The curly lines show adjoint representation states and the straight lines fundamental
representation. The vertices correspond to the color matrices in equation (38).

and similar identities for other color tensors that might appear in the theory. In equation (36)
we follow the standard textbook normalization of color generators [100],

Tr
(
tatb
)
=
δab

2
. (37)

Such Lie-algebra relations are directly tied to gauge invariance of amplitudes.
In the amplitudes community, color generators differ from the textbook definition by a

√
2

factor absorbed into each generator [88]. It is also useful to rescale the group-theory structure
constants and make them imaginary,

Ta ≡
√
2ta, f̃abc ≡ i

√
2f abc . (38)

After these changes, the new trace normalization is

Tr
(
TaTb

)
= δab , (39)

and the defining commutation relations are

f̃daẽfebc− f̃dbẽfeac = f̃abẽfecd ,

(Ta) ki
(
Tb
) j
k
−
(
Tb
) k
i
(Ta) jk = f̃abc (Tc) ji , (40)

as illustrated in figure 5. These identities imply that there exist relations between triplets of
color factors {ci,cj,ck} which take, for example, the form ci − cj = ck.

The scattering amplitude (35) is said to obey CK duality if the kinematic numerator factors
obey the same general algebraic relations as the color factors do, e.g.

ni − nj = nk ⇔ ci − cj = ck , (41)

which is a generalization of the kinematic Jacobi identity in equation (17). The relative signs
between the terms depend on choices in defining the color factors for each diagram. The essen-
tial point regarding the signs is that whatever choice is made for the color factors are inherited
by the corresponding numerator factors. Another form of the duality in terms of color traces
has also been found [48, 157–161], but the most natural form is in terms of color factors of
diagrams as described above.

It is a nontrivial task to find duality-satisfying numerators since standard methods such
as Feynman rules, on-shell recursion [162], or generalized unitarity [163–166], generally do
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not automatically gives such numerators. A straightforward but somewhat tedious way to find
such representations is to use an ansatz constrained to match the amplitude and manifest the
duality [4, 6]. Constructive ways to obtain numerators have also been devised [24–29, 167–
169]. Aside from amplitudes, the duality has also been found to hold for currents with one
off-shell leg [9, 17, 21, 22, 114, 170–172]. A natural way for making the duality valid for
general off-shell quantities would be to find a Lagrangian that generates Feynman rules whose
diagrams manifest the duality. At present, such Lagrangian is only known to a few orders in
perturbation theory [41, 42, 150, 151]; an important problem is to find a closed form of such
a Lagrangian valid to all orders.

The color relations (40) have important implications for kinematic numerators of diagrams.
If we start with a set of numerators that satisfy the duality (41), and shift the numerators,

ni = n ′
i −∆i . (42)

subject to the constraint,∑
i

ˆ
dLDℓ

(2π)LD
1
Si

ci∆i

Di
= 0 , (43)

the amplitude is unchanged. Because the color factors are not independent, nontrivial shifts
of the kinematic numerators can be carried out. In this way, without changing the amplitude,
we can rewrite the amplitude in terms of a set of numerators n ′

i not obeying the duality rela-
tions (41) starting from ones that do obey it. The ∆i are pure gauge functions, i.e. they drop
out of the amplitude.

When we have numerators ni that obey the same algebraic relations as the color
factors ci, we can obtain sensible objects by formally replacing color factors by kinematic
numerators as

ci → ni , (44)

in any given formula or amplitude. Given the algebraic properties are the same, this replace-
ment is consistent with gauge-invariance properties inherited from the gauge theory. As we
discuss below, this color-to-kinematics replacement—or double-copy construction—gives us
gravity amplitudes with remarkable ease.

Consider two amplitudes A(L)
m and Ã(L)

m , and organize them as in equation (35).
Furthermore, take the color factors to be the same in the two amplitudes, and label the two
sets of numerators as ni and ñi, respectively. If at least one of the amplitudes, say Ã(L)

m , mani-
fests CK duality, we may now replace the color factors of the first amplitude with the duality-
satisfying numerators ñi of the second one. This gives the double-copy formula for gravita-
tional scattering amplitudes [1, 2],

M(L)
m = A(L)

m

∣∣∣
ci→ñi
g→κ/2

= iL−1
(κ
2

)m−2+2L∑
i

ˆ
dLDℓ

(2π)LD
1
Si

ni ñi
Di

, (45)

where the gravitational coupling κ/2 which compensates for the change of engineering dimen-
sion when replacing color factors with kinematic numerators. In general we will omit the
factors of κ/2 by taking κ= 2.

For the replacement ci → ñi to be valid under the integration symbol, it is important that
the color factors are not explicitly evaluated by summing over the contracted indices. At least
one contracted index per loop should not be explicitly summed over; this is required so that the
duality is not spoiled by treating color and kinematics differently. The numerators depend on
loop momenta ni = ni(ℓ) that is not yet integrated over, thus analogously the color factors
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should be thought of as depending on the unevaluated internal indices. If this subtlety is
ignored, it may happen that color factors explicitly vanish when combining the color sum with
symmetries of particular color factors, and this vanishing behavior should not be imposed on
the un-integrated numerators. Stated differently, we do not wish to impose any specific color-
factor properties on the numerator factors, only generic ones.

As the notation suggests, the two sets of numerators ni, ñi can differ in several ways: (1)
they can describe different gauge choices for the same scattering process, (2) they can describe
different external states in the same theory, and (3) they can originate from two different gauge
theories. The first case allows us to work with numerators where only one set obeys the duality
manifestly. The second case allows us to describe gravitational states that are not built out of
a symmetric-tensor product

(gravity state) = (gauge state)⊗ ( ˜gauge state) . (46)

The third case allows us to describe gravitational theories that are not left-right symmetric
double copies of gauge theories

(gravity theory) = (gauge theory)⊗ ( ˜gauge theory) . (47)

In section 5, we will see that this latter case is crucial for probing the web of double-copy-
constructible theories.

When two different gauge theories are considered in the double-copy formula, it is import-
ant that both, in principle, can be put into a form displaying CK duality, even if this property
needs only to be explicit in one of the amplitudes. This ensures that the generalized unitar-
ity cuts of the loop-level double-copy formula will be unique and gauge invariant. The link
between gauge invariance and BCJ amplitude relations has been explored in [173–177]. The
amplitude relations can also be understood in terms of a symmetry that act as momentum-
dependent shifts on the color factors [178, 179]. Note that the precise form of the BCJ amp-
litude relations depends on the details of the gauge-group representations and elementary color
tensors. The standard BCJ amplitude relations [1], for example, follow from considering the-
ories with only adjoint particles that interact via f abc color tensors.

We will come back to the double-copy constructions of different theories in later sections,
but for now we will focus on illustrating the details of CK duality on some familiar gauge
theories.

2.3. Example 1: tree level amplitudes with adjoint-only particles

Consider pure YM theory in D spacetime dimensions, consisting of gluons transforming in
the adjoint representation of a gauge group G, with Lagrangian

LYM =−1
4

(
Faµν

)2
, where F a

µν = ∂µA
a
ν − ∂νA

a
µ + g f abcAbµA

c
ν . (48)

Next considerm-point tree-level amplitudes.We know that the only color structure that appears
are contractions of f abc structure constants, thus the color factors must be in one-to-one cor-
respondence with all possible cubic diagrams with m external legs.

Cubic diagrams at multiplicity m= j+ 1 can be built recursively by attaching a new leg
to every possible edge of a multiplicity-j diagram. There are (2j− 3) edges of a given j-point
diagram, hence the recursion gives:

number of cubic diagrams= 1× 3× 5× 7× ·· ·× (2j− 3) = (2m− 5)!! . (49)
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We organize the tree amplitude in terms of all such propagator-distinct diagrams with only
cubic vertices,

Atree
m ≡A(0)

m =−igm−2
(2m−5)!!∑
i=1

ci ni
Di

, (50)

where ci are the color factors that are straightforwardly obtained from the ith diagram.
Similarly, the Di denote the denominators of the propagators that correspond to the diagram
lines. The ni are the corresponding kinematic numerators. Depending on the context we will
alternate between using the diagram factors ni,ci,Di with subscripts indexed by a diagram-
id number, as well as a functional maps from graph to their respective factors: ni ≡ n(gi),
ci ≡ c(gi), and Di ≡ D(gi) where gi is the graph corresponding to the index i.

It is useful to first clarify what we mean by independent diagrams. The least redundancy
occurs whenwe insist on only one instance of a diagramwith the same propagator contribution.
This is distinct from the number of unique diagram topologies. Let us take a concrete example
at four-points. We have discussed in section 1 that we need s, t, and u diagrams at four point.
They have same graphical topology, but different external labels, which results in different
generic propagator contributions.

As a trivial example, at four points for each distinct propagator structure we can relabel the
external legs without altering the propagators but flipping the signs of the color. For example,
consider the s-channel diagram in figure 3 which we can label as gs:1. Taking the graph gs:2 to
be gs:1 but with legs 1 and 2 swapped, we obtain the same propagator but the color factors are
different:

c(gs:1) = f̃a1a2b̃fba3a4 ,

c(gs:2) = f̃a2a1b̃fba3a4 , (51)

where we use the normalization in equation (38). The color factors, while distinct, are
related by a negative sign inherited by the antisymmetry of the structure generators: c(gs:2) =
−c(gs:1). For the purpose of describing scattering amplitudes in terms of functions of dia-
grams, we will always take the kinematic factors of the diagrams to obey the same antisym-
metry: n(gs:2) =−n(gs:1), whether or not we are discussing a CK-satisfying representation10.
This means that for any multiplicity and loop order we will have in mind a canonical layout
of distinct diagrams which determine the color factor and numerator signs. These signs cancel
from color-dressed amplitudes because the numerator sign are correlated with the color signs.
However, they will affect the signs appearing in the relation between color-ordered partial
amplitudes and kinematic numerators, as well as the relative signs between terms in the Jacobi
identities.

To be more explicit, as illustrated in figure 6, triplets of diagrams (i, j,k) satisfy Jacobi
relations of the form

ci− cj+ ck =
(̃
fdaẽfebc− f̃abẽfecd+ f̃dbẽfeca

)
Cabcd = 0 . (52)

where the last factor Cabcd is a color tensor that is common to the diagrams in the triplet
(external adjoint indices a1, . . . ,am are suppressed). As noted above, the relative signs are
simply due to choices in the ordering of the color indices in the f̃abcs. While these relative
sign choices are arbitrary, these signs are the same as for the corresponding kinematic Jacobi
identities.

10 The word representation here refers to the specific functional form used to describe the amplitude.
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Figure 6. A Jacobi identity embedded in a generic diagram. The diagram can be either
at tree level or at loop level. The arrows indicate that the lines are oriented the same way.

More generally, the (2m− 5)!! color factors in (50) are related by Jacobi identities. In total,
at every multiplicity m there are 1

3 (m− 3)(2m− 5)!! such Jacobi relations; however, only
(2m− 5)!!− (m− 2)! of them are independent equations because we can formally solve all
Jacobi relations by mapping the color factors to a (m− 2)! basis.

Writing the adjoint generator matrices as (̃fa)bc ≡ f̃bac, defined in equation (38), we can
write any color factor as products of f̃ai’s, possibly involving commutators of the adjoint gen-
erators. For example, pick a cubic tree diagram and find the unique path through the diagram
that connect leg 1 and legm. For each cubic vertex along this path, write down the correspond-
ing commutator of f̃ai’s that describes the subdiagram that attaches this vertex. The product of
these factors give ci for the full diagram. For example, consider the color factor of the following
diagram

where the adjoint indices of leg 1 andm correspond to the external matrix indices of the adjoint
representation. The commutators arise from systematically eliminating subdiagrams involving
f̃bac using the standard Lie-algebra identity f̃abc̃fc = [̃fa, f̃b]. Once only commutators of f̃ai ’s
remain, they can of be written out as differences and sums of generators in different orders.

In summary, any color factor can in general be written as

ci =
∑

σ∈Sm−2

biσ
(̃
faσ(2) f̃aσ(3) f̃aσ(4) · · · f̃aσ(m−1)

)
a1am

, (54)

where biσ ∈ {0,±1} are coefficients that depend on the permutation and on the specific color
factor. They can be evaluated case by case, but their explicit values are not important here
for our purposes. The main result is that color factors ci in equation (50) can be eliminated
in favor of expressing the gauge-theory tree amplitude in terms of a sum over the possible
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products of adjoint generators f̃ai , where the first and m-th leg is kept fixed. This gives a so-
called Del Duca–Dixon–Maltoni (DDM) color decomposition [180] of the gauge-theory tree
amplitude,

Atree
m = gm−2

∑
σ∈Sm−2

Atree
m (1,σ (2) ,σ (3) , . . . ,σ (m− 1) ,m)

(̃
faσ(2) f̃aσ(3) · · · f̃aσ(m−1)

)
a1am

, (55)

where the sum runs over (m− 2)! permutations. The kinematic coefficients multiplying
the color factors define a basis of (m− 2)! partial amplitudes, which we indicate as
Atree
m

(
1,σ(2),σ(3), . . . ,σ(m− 1),m

)
. This is usually called the Kleiss-Kuijf (KK) basis [181].

The partial tree amplitudes in YM theory, Atree
m

(
1,2, . . . ,m

)
, have a number of useful

properties [88]:

• They are functions of kinematic variables only, (εi,pi); the color dependence is only reflected
by the ordering of the external particle labels.

• They at most have poles in planar channels, i.e. when consecutive momenta add up to a null

momentum
(∑

j≤i⩽k pi
)2

= 0 (mod m).
• The amplitudes are invariant under cyclic permutations:

Atree
m (1,2, . . . ,m) = Atree

m (2, . . . ,m,1) . (56)

• Under reversal of the ordering, they at most change by a sign flip:

Atree
m (m, . . . ,2,1) = (−1)mAtree

m (1,2, . . . ,m) . (57)

• They satisfy a photon-decoupling identity:∑
σ∈cyclic

Atree
m (1,σ (2) , . . . ,σ (m)) = 0 , (58)

where cyclic permutations of all but one leg are summed over.
• They satisfy KK relations [181]:

Atree
m (1,α,m,β) = (−1)|β|

∑
σ∈α ⊔⊔βT

Atree
m (1,σ,m) , (59)

where α and β are arbitrary-sized lists of the external legs, βT is used to represent the reverse
ordering of the list β, and α ttβT is the shuffle product of these lists (i.e. permutations that
separately maintain the order of the individual elements belonging to each list). |β| denotes
the number of elements in the list β.

• They obey BCJ relations, which in the simplest incarnation take the form [1]:

m−1∑
i=2

p1 · (p2 + . . .+ pi) A
tree
m (2, . . . , i,1, i+ 1, . . . ,m) = 0 . (60)

• After considering all permutations of the above BCJ relation, there are only (m− 3)! inde-
pendent partial tree amplitudes [1]. The position of three consecutive legs can be fixed in the
cyclic ordering; for example, Atree

m

(
1,2,σ(3), . . . ,σ(m− 1),m

)
can be chosen as the inde-

pendent BCJ basis.

The first property is obvious from our definition of the partial amplitudes; however, the remain-
ing ones require some explanation.
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The fact that the partial tree amplitudes are invariant under cyclic permutations of their
arguments is most easily seen after a basis change of the color factors. We rewrite the color
factors in terms of traces of generators, Ta. From equation (40)

f̃abc ≡ i
√
2f abc = Tr

([
Ta,Tb

]
Tc
)
= Tr

(
TaTbTc

)
−Tr

(
TbTaTc

)
, (61)

which follows from the identity (40) after multiplying both sides with Tc
′
, tracing over the

fundamental indices, and using equation (39). This basis change implicitly assumes that we
have specialized to a gauge group were we can use ‘t Hooft’s double-line notation [182], say
G= U(Nc).

The generators of U(Nc) obey the completeness relation (Ta)ji(T
a)lk = δliδ

j
k, implying that

products of several f abc can be expressed by merging several traces(̃
f a2 f̃ a3 · · · f̃ am−1

)
a1am

= f̃
a1a2b1

f̃ b1a3b2 · · · f̃ bm−3am−1am

= Tr(Ta1Ta2Ta3 · · ·Tam)+ (−1)mTr(Tam · · ·Ta3Ta2Ta1)+ . . . (62)

where on the last line the suppressed terms corresponds to 2m−1 distinct permutations of
the trace over m generators. Out of all the permutations that appear, only the two displayed
terms have the property that the generators Ta1 and Tam are adjacent (in the cyclic sense).
This implies that, after replacing the DDM color factors with the trace-basis color factors
in equation (55), we can uniquely identify the location of, say, the Tr(Ta1Ta2Ta3 · · ·Tam)
factor. It appears only once in (̃fa2 f̃a3 · · · f̃am−1)a1am , which uniquely multiplies the partial tree
amplitude Atree

m (1,2,3, . . . ,m). Hence, Atree
m (1,2,3, . . . ,m) must be the kinematic coefficient of

Tr(Ta1Ta2Ta3 · · ·Tam) in the trace-basis decomposition of the YM tree amplitude.
By crossing symmetry in the trace basis, the decomposition into partial amplitudes has the

form

Atree
m = gm−2

∑
σ∈Sm−1

Atree
m (1,σ (2) ,σ (3) , . . . ,σ (m)) Tr(Ta1Taσ(2)Taσ(3) · · ·Taσ(m)) , (63)

which can be straightforwardly verified starting from equation (55). Crossing symmetry
requires the summation over (m− 1)! terms, since we can fix the location of one leg, say leg
1, by the cyclic property of the trace. (m− 1)! is significantly larger than the (m− 2)! terms
in equation (55). Where did the extra terms come from? In fact, they are the terms we sup-
pressed in equation (62), which have combined in various ways to complete the formula (63).
Finally, since the partial amplitudes in the DDMdecomposition are the same partial amplitudes
that appear in the trace decomposition, it follows that the partial amplitudes inherit the cyclic
invariance of the trace. Further details of the trace basis and partial amplitudes may be found
in [88].

A number of the other properties discussed above also follow from the exercise of
mapping between the DDM and trace basis. The reversal (anti-)symmetry follows from
observing that the term (−1)mTr(Tam · · ·Ta3Ta2Ta1) in equation (62) always goes together
with Tr(Ta1Ta2Ta3 · · ·Tam). The photon-decoupling identity follows from realizing that we can
replace one generator in equation (63) by the U(1) ‘photon’ generator TU(1) = 1, which nat-
urally belongs to the gauge group U(Nc) = SU(Nc)×U(1). However, gluons do not couple
directly to photons since the latter have no charges. This can be seen directly by looking at the
structure constants f̃abU(1) = Tr([Ta,Tb]1) = 0. Hence, the photon-decoupling identity follows
from the vanishing of the amplitude with one photon.

The KK relations are explained by the fact that there are two different decompositions of
the tree amplitude, the DDM (55) and the trace (63) decomposition, which use a different
number of partial amplitudes, (m− 2)! and (m− 1)!, respectively. The only way that this can
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be consistent is if there exist relations that map the (m− 1)! partial amplitudes into a (m− 2)!
basis. This is precisely what the KK relations do. Recall that it was because the color factors
are built only out of f̃abc’s, which obey the Jacobi relations, that we could find the (m− 2)!
basis. Thus, any theory where all fields transform in the adjoint representation and the whose
amplitudes depend only color tensor is f abc will obey the KK relations.

The BCJ amplitude relations are a consequence of CK duality, specifically of its interplay
with gauge invariance. Consider the (m− 2)! partial amplitudes expressed in terms of numer-
ators, they take the form

Atree
m (1,σ (2) , . . . ,σ (m− 1) ,m) =−i

∑
i∈planar

biσ
ni
Di
, (64)

where ni are the kinematic numerator factors of the diagrams canonical to some ordering lay-
out, Di are the propagators of the diagram, biσ ∈ {0,±1} are coefficients that depend on the
ordering σ (see also equation (54)), and the sum is only nonvanishing for planar diagrams with
respect to the ordering σ.

We can impose kinematic Jacobi identities on the numerators, expressing all diagram
numerators in terms of (m− 2)! independent master numerators.We can then imagine attempt-
ing to invert the matrix between color-ordered amplitudes and these master numerators. One
will find a remarkable surprise—only (m− 3)! master numerators can be solved for in terms
of some (m− 3)! color-ordered amplitudes—the rest of the master numerators contribute only
as unfixed parameters representing a kind of generalization of gauge freedom. The remaining
equations relate color-ordered amplitudes directly to simple functions of the ordered amp-
litudes with (m− 3)! legs fixed with no dependence on numerator choice. For example, fol-
lowing the original presentation [1], one can express the entirety of the KK (m− 2)! basis
amplitudes in terms of (m− 3)! amplitudes as follows:

Atree
m (1,2,{α} ,3,{β}) =

∑
σ∈POP({α},{β})

Atree
m (1,2,3,σ)

|α|+3∏
k=4

Fk (3,σ,1)
s24...k

, (65)

where |α| is the length of the list {α}, and the sum runs over partially ordered permutations
(POP) of the merged {α} and {β} sets. To be clear we are referring to leg labels, e.g. in s24...k,
with labels 4 through k as the first (k− 3) entries of the ordered list {α,β}. Equation (65)
gives all permutations of {α}

⋃
{β} consistent with the order of the {β} elements. Either α or

β may be empty, trivially so for the α case. The function Fk associated with leg k is given by,

Fk ({ρ}) =
{ ∑m−1

l=tk
Sk,ρl if tk−1 < tk

−
∑tk

l=1Sk,ρl if tk−1 > tk

}

+

 s24...k if tk−1 < tk < tk+1

−s24...k if tk−1 > tk > tk+1

0 otherwise

 , (66)

where

si j ...k ≡ (pi + pj+ · · ·+ pk)
2
, (67)

and tk is the position of leg k in the set {ρ}, except for t3 and t|α|+4 which are always defined
to be,

t3 ≡ t5 , t|α|+4 ≡ 0 . (68)
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Figure 7. The color-dressed tree-level five-point amplitude an be organized using these
fifteen graphs with only cubic vertices.

For |α|= 1 this means that t3 = t5 = 0. The expression Si,j is given by,

Si,j =
{

sij if i < j or j = 1 or j = 3
0 otherwise

}
. (69)

The so-called fundamental BCJ relations (equation (60)) occur when the |α|= 1. These amp-
litude relations were first identified in [1], and then proven, first as a low-energy limit of string-
theory relations [104, 105], and then directly using the Britto-Cachazo-Feng-Witten (BCFW)
recursion relations in field theory [113, 115].

Consider the five-point amplitude (e.g. governing two-to-three scattering), which offers
a first nontrivial example. In this case, 15 distinct cubic diagrams contribute, as illustrated
in figure 7. Only five of these contribute to a given color-ordered partial amplitude. Let us
consider diagram nine from figure 7. To see which color-orderings (and with which signs)
this diagram can contribute, we expand its canonical color-factor in the trace basis. The color
factors follow from dressing with the structure functions f̃abc. Going to a trace basis we see
that the color factor associated with diagram nine is:

c9 = Tr [Ta1Ta2Ta4Ta5Ta3 ]−Tr [Ta1Ta3Ta2Ta4Ta5 ] +Tr [Ta1Ta3Ta4Ta2Ta5 ]

+Tr [Ta1Ta3Ta5Ta2Ta4 ]−Tr [Ta1Ta3Ta5Ta4Ta2 ]−Tr [Ta1Ta4Ta2Ta5Ta3 ]

−Tr [Ta1Ta5Ta2Ta4Ta3 ] +Tr [Ta1Ta5Ta4Ta2Ta3 ] . (70)

This implies that diagram nine will contribute to multiple color-ordered partial amplitudes,
defined as the coefficient of each color trace in the full amplitude, with a variety of signs. The
signs associated with each diagram in a partial amplitude are easily determined for a given
color ordering by reordering the legs of each diagram to match the color ordering without
allowing lines to cross, and keeping track of the signs from permuting the ordering of legs in
each vertex.
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Taking the layout as depicted in figure 7, each diagram contributes to a color-ordered partial
amplitude according to whether we can flip the legs at each vertex (with a minus sign for each
flip) so that the cyclic ordering of legs matches the ordering of the arguments of the partial
amplitudes. For example, we have,

iAtree
5 (1,3,5,4,2) =

n1
D1

+
n2
D2

+
n6
D6

− n9
D9

− n12
D12

, (71)

as well as

iAtree
5 (1,3,5,2,4) =

n3
D3

+
n4
D4

+
n5
D5

+
n9
D9

+
n12
D12

, (72)

where the ni are the kinematic numerators and the 1/Di are the products of Feynman propag-
ators that can be read of from graph gi in figure 7.

Jacobi relations imply that the ni of the diagrams in figure 7 are given as linear functions of
numerators {n1,n2,n3,n4,n5,n6}, which we take as the master numerators. In total there are
nine independent Jacobi relations,

n7 = n6 − n1 , n8 = n2 − n1 , n9 = n3 − n2 , n10 = n4 − n3 , n11 = n5 − n4 ,

n12 = n5 − n6 , n13 = n10 − n7 , n14 = n11 + n8 , n15 = n12 − n9 . (73)

Solving this system in terms of the six master numerators gives

n7 =−n1 + n6 , n8 =−n1 + n2 , n9 =−n2 + n3 , n10 =−n3 + n4 ,

n11 =−n4 + n5 , n12 = n5 − n6 , n13 = n1 − n3 + n4 − n6 ,

n14 =−n1 + n2 − n4 + n5 , n15 = n2 − n3 + n5 − n6 . (74)

Remarkably, by using equation (74), we can show that the partial amplitudes (71) and (72)
contain all information necessary to describe all other ordered amplitudes at five point. For the
sake of argument, solving equations (71) and (72) for n1 and n4 gives:

n1 = iD1A
tree
5 (1,3,5,4,2)− n2

D1

D2
− n6

D1

D6
+(n3 − n2)

D1

D9
+(n5 − n6)

D1

D12
,

n4 = iD4A
tree
5 (1,3,5,2,4)− n3

D4

D3
− n5

D4

D5
+(n2 − n3)

D4

D9
+(n6 − n5)

D4

D12
, (75)

where we have replaced n9 and n12 with the master numerators, using equation (74). Using
this, we express any other partial amplitude in terms of Atree

5 (1,3,5,4,2) and Atree
5 (1,3,5,2,4)

by plugging in the solution (74) for these expressions for n1 and n4. Consider, for example, the
partial amplitude:

iAtree
5 (1,3,2,5,4) =− n2

D2
− n3
D3

− n4
D4

− n8
D8

+
n11
D11

. (76)

Jacobi relations constrain n8 =−n1 + n2, and n11 =−n4 + n5. Replacing all non-master
numerators with master numerators using equation (74), in conjunction with equation (75),
we find:
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iAtree
5 (1,3,2,5,4) = iAtree

5 (1,3,5,4,2)
D1

D8
+ iAtree

5 (1,3,5,2,4)

(
−1− D4

D11

)
−
(

1
D2

+
1
D8

+
D1

D2D8
+

1
D9

+
D1

D8D9
+

D4

D9D11

)
n2

+

(
1
D9

+
D1

D8D9
+

D4

D3D11
+

D4

D9D11

)
n3

+

(
1
D5

+
1
D11

+
D4

D5D11
+

1
D12

+
D1

D8D12
+

D4

D11D12

)
n5

−
(

D1

D6D8
+

1
D12

+
D1

D8D12
+

D4

D11D12

)
n6 . (77)

Using the explicit value of the propagators, a dramatic cancellation occurs under momentum
conservation:

Atree
5 (1,3,2,5,4) =−Atree

5 (1,3,5,2,4)

(
1+

s25
s23

)
+Atree

5 (1,3,5,4,2)
s345
s23

− n6
(s23 + s24 + s25 + s345)

s23s24s35
+ n3

(s23 + s24 + s25 + s345)
s23s24s245

+ n5
(s24 (s25 + s35)+ s23 (s24 + s235)+ s235 (s25 + s345))

s23s24s35s235

− n2
(s23 (s24 + s45)+ s45 (s25 + s345)+ s24 (s245 + s345))

s23s24s45s245

=−Atree
5 (1,3,5,2,4)

(
1+

s25
s23

)
+Atree

5 (1,3,5,4,2)
s345
s23

. (78)

All the coefficients in front of the remaining explicit numerators vanish, giving
Atree
5 (1,3,2,5,4) solely in terms of a basis of partial amplitudes Atree

5 (1,3,5,4,2) and
Atree
5 (1,3,5,2,4). Indeed, this occurs for every partial amplitude, yielding, the BCJ and KK

amplitude relations [1].
An interesting corollary of the independence of the remaining five-point partial amplitudes

on n2,n3,n5,n6, once n1 and n4 are chosen as in equation (75), is that we can choose to set
the former numerators to zero since they have no effect on any of the partial amplitudes. This
forces n1 and n4 to be nonlocal since they must absorb the propagators of the diagrams whose
numerators are set to zero.

2.3.1. KLT formula and proof of tree-level adjoint CK duality. In this section we briefly review
the KLT formulae for gravity tree-level amplitudes [86], first derived using string theory. We
will show how they are intimately tied to the BCJ double copy in equation (45), and how
they can be used to directly construct duality-satisfying numerators in purely-adjoint gauge
theories.

Let us start by quoting the explicit KLT relations at three-, four-, five- and six-points,

Mtree
3 (1,2,3) = iAtree

3 (1,2,3) Ãtree
3 (1,2,3) ,

Mtree
4 (1,2,3,4) =−i s12Atree

4 (1,2,3,4) Ãtree
4 (1,2,4,3) ,

Mtree
5 (1,2,3,4,5) = i s12s45A

tree
5 (1,2,3,4,5) Ãtree

5 (1,3,5,4,2)

+ i s14s25A
tree
5 (1,4,3,2,5) Ãtree

5 (1,3,5,2,4) ,
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Mtree
6 (1,2,3,4,5,6) =− i s12s45A

tree
6 (1,2,3,4,5,6)

(
s35Ã

tree
6 (2,1,5,3,4,6)

+ (s34 + s35) Ã
tree
6 (2,1,5,4,3,6)

)
+P (2,3,4) , (79)

where the Mtree
n are tree-level gravity amplitudes and the Atree

n are color-ordered gauge-
theory partial amplitudes, and P(2,3,4) represents a sum over all permutations of leg labels
2,3, and 4.

If A and Ã are the tree-level amplitudes of D-dimensional pure YM theory, then the map
between the two sets of on-shell gluon polarization vectors εiµ, with SO(D− 2) little-group
indices i, and those of the double-copy fields can be made explicit,

(εh)ijµν = ε((iµ ε
j))
ν (graviton) ,

(εB)ijµν = ε[iµε
j]
ν (B-field) , (80)

(εϕ)µν =
εiµε

j
νδij

D− 2
(dilaton) .

On the first line the gluon polarizations are multiplied in symmetric-traceless combinations
corresponding to the 1

2 (D− 2)(D− 1)− 1 states of a graviton. On the second line they are
antisymmetrized corresponding to the 1

2 (D− 2)(D− 3) states of an antisymmetric tensor field.
The completeness of the set of gluon polarization vectors implies that the right-hand side of
the third line of equation (80) is proportional to ηµν up to momentum-dependent terms, so
(εϕ)µν describes a single state. Adding them all up we find the (D− 2)2 states in the tensor
product of two massless vectors, as we should.

The double copy of D-dimensional pure YM theory gives gravity amplitudes Mtree that
follow from the Lagrangian [183, 184]

S=
ˆ
dDx

√
−g
[
−1

2
R+

1
2(D− 2)

∂µϕ∂µϕ+
1
6
e−4ϕ/(D−2)HλµνHλµν

]
, (81)

where Hλµν is the field strength of the two-index antisymmetric tensor Bµν and the non-
canonical normalization of the dilaton quadratic term is chosen to avoid non-rational depend-
ence on the spacetime dimension D. The Z2 symmetry Bµν →−Bµν generates a consistent
truncation of this Lagrangian to Einstein gravity coupled to ϕ. The further Z2 symmetry of this
truncation, ϕ→−ϕ, allows a further consistent truncation to Einstein gravity. The double copy
analog of this truncation is realized by choosing gluon polarizations in symmetric-traceless
combinations, as for the graviton polarizations in equation (80).

To show the connection to the BCJ double copy, consider, for example, the five-point tree
amplitude. The double-copy amplitude in terms of Jacobi-satisfying numerators is,

Mtree
5 (1,2,3,4,5) =−i

15∑
i=1

ni ñi
Di

=−i ñ1
(
n1
D1

+
n1
D7

+
n1
D8

+
n1 + n4
D13

+
n1 + n4
D14

)
− i ñ4

(
n4
D4

+
n4
D10

+
n4
D11

+
n1 + n4
D13

+
n1 + n4
D14

)
, (82)

where we used the solution (74) and the propagators 1/Di can be read off from the diagrams
in figure 7. As usual, where we suppress an overall factor of (κ/2)3. Remarkably, after using
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the solution (74) for both the ni and ñi, the result depends only on the numerators n1,n4 and
ñ1, ñ4. Using equation (75), we have,

Mtree
5 (1,2,3,4,5) =−

(
ñ1A

tree
5 (1,2,3,4,5)+ ñ4A

tree
5 (1,4,3,2,5)

)
= i s12s45A

tree
5 (1,2,3,4,5) Ãtree

5 (1,3,5,4,2)

+ i s14s25A
tree
5 (1,4,3,2,5) Ãtree

5 (1,3,5,2,4) . (83)

This implies that we can express the double copy in terms of partial tree amplitudes of the two
gauge theories.

This structures applies also at higher points, and is captured by the m-point formula [86]:

Mtree
m =−i

∑
σ,ρ∈Sm−3(2,...,m−2)

Atree
m (1,σ,m− 1,m)S [σ|ρ] Ãtree

m (1,ρ,m,m− 1) , (84)

where we suppress an overall factor of (κ/2)m−2. The formula makes use of a matrix S[σ|ρ]
known as the field-theory KLT kernel. This is an (m− 3)!× (m− 3)!matrix of kinematic poly-
nomials that acts on the color-ordered amplitudes for (m− 3)! permutations of the external
legs [24, 93, 185, 186]:

S [σ|ρ] =
m−2∏
i=2

2p1 · pσi + i∑
j=2

2pσi · pσjθ (σj,σi)ρ

 , (85)

where θ(σj,σi)ρ = 1 if σj is before σi in the permutation ρ, and zero otherwise. A compact
definition, which reproduces equation (85) upon use of momentum conservation and on-shell
conditions, can be given recursively 11 as [169],

S [A, j|B, j,C] = 2(p1 + pB) · pj S [A|B,C] , S [2|2] = s12 , (86)

where multiparticle labels B= (b1,b2, . . . ,bp) involve multiple external legs, and we use the
notation pB = pb1 + pb2 + . . .+ pbp . Using the recursive formula, we can obtain four-, five- and
six-point KLT relations as particular cases.

In addition, the field-theory KLT kernel allows us to find explicit expressions for duality-
satisfying tree-level numerators in the purely-adjoint case. The construction that we give here
was independently worked out in references [24, 149]. The idea is to define the numerators
for a subset of diagrams called half-ladder (or multi-peripheral) diagrams, whose structure is
illustrated in figure 8. Corresponding to permutations of these half-ladder diagrams we specify
(m− 2)! master numerators via,

n(1,σ (2, . . . ,m− 2) ,m− 1,m) =− i
∑

ρ∈Sm−3

S [σ|ρ] Ãtree
m (1,ρ,m,m− 1) ,

n(1, τ (2, . . . ,m− 1) ,m)
∣∣∣
τ(m−1) ̸=m−1

= 0 , (87)

11 This recursive presentation of the KLT kernel has a string theory origin [24].
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Figure 8. An m-point half-ladder tree diagram.

and take the remaining (2m− 5)!!− (m− 2)! numerators to be determined by the Jacobi rela-
tions. By definition these numerators satisfy all the kinematic Jacobi relations and hence they
obey the CK duality. However, to conclude that they define valid numerators we must also
prove that they give correct amplitudes, both in gauge theory and in gravity.

Consider the DDM decomposition introduced in equation (55) for gauge-theory amplitudes
with only adjoint particles. We use CK duality to replace the color factors in that formula with
the above defined numerators,

Mtree
m =Atree

m

∣∣∣
ci→ni

=
∑

τ∈Sm−2

Atree
m (1, τ (2, . . . ,m− 1) ,m) n(1, τ (2, . . . ,m− 1) ,m)

=
∑

σ,ρ∈Sm−3

Atree
m (1,σ,m− 1,m)S [σ|ρ] Ãtree

m (1,ρ,m,m− 1) . (88)

On the first line we have a DDM decomposition for gravity amplitudes, where the half-ladder
numerators play the same role as the half-ladder color factors in equation (55). On the second
line we have plugged in the explicit numerators, and used the fact that only (m− 3)! of them
are non-vanishing. As is obvious, the KLT formula (86) is reproduced. This implies that we
get correct gravity amplitudes, given that both Atree

m and Ãtree
m are gauge-theory amplitudes. If

we take Atree
m to be amplitudes in bi-adjoint ϕ3-theory and Ãtree

m are YM amplitudes, then the
above KLT formula gives back YM amplitudes. Hence the numerators in equation (87) give
correct amplitudes.

This completes the constructive proof showing that CK duality can be satisfied for gauge
theories with adjoint particles, given that all the BCJ amplitude relations (65) hold, which
implies that the KLT formula hold. This argument relies on the availability of a DDM rep-
resentation of the amplitude and on the existence of the field-theory KLT kernel. Pure YM
theory, or N = 1,2,4 super-YM (SYM) theory are examples where tree-level CK duality is
proven by this argument. Note, however, that the above numerators are nonlocal functions
and the crossing symmetry of the amplitude does not follow automatically from relabeling the
numerators. Hence it often desirable to find other representations of tree-level numerators. In
specific cases, we can find representations of an amplitude with desired properties by imposing
these properties on an ansatz whose coefficients are determined by requiring that it match the
amplitude, a strategy also tremendously useful at loop level—see sections 3.2 and 6.

Similar considerations hold for amplitudes with multiple distinguishable adjoint scal-
ars, although it may be necessary to introduce four-scalar interactions for the duality to
hold [187]. As we discuss in section 2.6, imposing the duality on fermionic amplitudes implies
supersymmetry.

2.4. Example 2: matter in fundamental representation

We now generalize the discussion in the previous subsection by introducing matter in the fun-
damental representation, as it appears in quantum chromodynamics (QCD) [188–190]. To be
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Figure 9. Color verticeswith planar ordering consistent with the color-ordered Feynman
rules.

Table 1. Number of cubic diagrams, ν(m,k), in the full m-point amplitude with k dis-
tinguishable quark-antiquark pairs and (m− 2k) gluons.

k \m 3 4 5 6 7 8

0 1 3 15 105 945 10 395
1 1 3 15 105 945 10 395
2 — 1 5 35 315 3465
3 — — — 7 63 693
4 — — — — — 99

specific, let us consider YM theory with gauge group G and with Nf fundamental fermions12.
For simplicity we call this theory QCD, given that it precisely matches QCD once we specify
the gauge group to be SU(3) and the number of quark flavors to be six; its Lagrangian is

LQCD =−1
4

(
Faµν

)2
+ qα

(
i��D−M β

α

)
qβ , where Dµ = ∂µ − igAaµt

a , (89)

where α,β = 1, . . . ,Nf are flavor indices, and spinor indices and fundamental gauge group
indices are suppressed. The mass matrixM β

α is taken to be diagonal. The only color tensors are
in this case f abc and (ta) ji which both have three free indices. Thus, all color factors will again
correspond to cubic diagrams. A difference with the pure-adjoint case is that we now need to
decorate the lines of the diagrams with the appropriate representation: adjoint, fundamental or
anti-fundamental. This is illustrated in figure 9. A general color decomposition of tree-level
amplit be found in [189] (see also [191–193]).

Without loss of generality we write the QCD m-point tree amplitude in terms of diagrams
with cubic vertices,

Atree
m,k =−igm−2

ν(m,k)∑
i∈cubic diag.

ci ni
Di

, (90)

where ci are color factors, ni are kinematic numerators, and Di are denominators encoding
the propagator structure of the cubic diagrams. The denominators (and numerators) may in
principle contain masses, corresponding to massive quark propagators. For k quark-antiquark
pairs and (m− 2k)> 0 gluons, we may count the number of cubic diagrams. Assuming that
the quarks are all of distinct flavor, one can then show that the number of nonzero diagrams
is ν(m,k) = (2m−5)!!

(2k−1)!! [189]. As exemplified in table 1, the numbers grow modestly with the
number of quarks.

Amplitudes with multiple quarks of the same flavor and mass can be obtained from distinct-
flavor amplitudes by setting masses to be equal and summing over permutations of quarks

12 A similar example of YM theory with scalars in matter representations will be discussed in section 5.2.
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Figure 10. The diagrams contributing to the two-quark two-gluon amplitude.

with appropriate fermionic signs. Therefore, we do not lose generality by taking all k quark-
antiquark pairs to have distinct flavor and mass. To be explicit, in table 1 we provide total
counts ν(m,k) of cubic diagrams for different amplitudes up to eight particles and four quark
pairs. It agrees with the usual counting of standard QCD Feynman diagrams restricted to those
diagrams that only have trivalent vertices.

The color factors ci in equation (90) are constructed from the cubic diagrams using only
two building blocks: the structure constants f̃abc for three-gluon vertices and generators (Ta) ji
for quark-gluon vertices, as shown in figure 9. When separating color from kinematics, the
diagrammatic crossing symmetry only holds up to signs dependent on the permutation of legs.
These signs are apparent in the total antisymmetry of f̃abc. For a uniform treatment of the fun-
damental representation, it convenient to introduce a similar antisymmetry for the fundamental
generators,

(Ta)ji ≡−(Ta) ji ⇔ f̃cab =−f̃bac . (91)

This allows us to introduce a similar antisymmetry in color-ordered kinematic vertices, so
that they are effectively the same as for the adjoint representation. As noted in equation (40)
the color factors obey Jacobi and commutation identities. They both imply color-algebraic
relations of the form given in equation (41), and differ only by the subdiagrams as drawn in
figure 6, but otherwise have common diagram structure. The interdependence among the color
factors ci means that the corresponding kinematic coefficients ni/Di are in general not unique,
as reflected by the underlying gauge dependence of the numerators.

A first interesting example of an amplitude is the four-point amplitude for two gluons and
a quark-antiquark pair displayed in figure 1013,

Atree
4,1 (1q̄,2g,3g,4q) =−ig2

(
nscs
s−m2

q
+
ntct
t

+
nucu
u−m2

q

)
, (92)

where the numerators are

ns =
1
2
ū1��ε2

(
��p12δ

α1
α4

−M α1
α4

)
��ε3v4 , nu =

1
2
ū1��ε3

(
��p13δ

α1
α4

−M α1
α4

)
��ε2v4 ,

nt = nu− ns , (93)

and the color factors

cs = (Ta3Ta2) i1i4 , cu = (Ta2T a3)
i1
i4
, ct = cu− cs = f̃

a2a3b (
T b
) i1
i4
. (94)

Here the Greek indices α1,α2 are global (flavor) indices carried by the fermions.

13 When useful, we use the slightly-nonstandard notation An
(
1Φ1, . . . ,nΦn

)
to display explicitly the external states

in an amplitude.

30



J. Phys. A: Math. Theor. 57 (2024) 333002 Topical Review

Figure 11. The diagrams contributing to the four-point pure-quark amplitude.

Following the same steps as in pure YM theory one can show that the numerator relation
together with the kinematics constraints at four points imposes massive BCJ relations for the
partial amplitudes,(

s−m2
q

)
Atree
4,1 (1q̄,2g,3g,4q) =

(
u−m2

q

)
Atree
4,1 (1q̄,3g,2g,4q) . (95)

More generally, one can understand this relation as a consequence of gauge redundancy. We
have two independent numerators, which are not invariant under gauge transformations. We
can thus at most build one gauge-invariant quantity out of these, and hence all partial amp-
litudes must be related.

At general multiplicitym, the BCJ amplitude relations in their simplest incarnation take the
form,

m−1∑
i=2

p1 · (p2 + . . .+ pi) A
tree
m,k (2, . . . , i,1g, i+ 1, . . . ,m) = 0 , (96)

where leg 1 must be a massless gluon in the adjoint. Unlike equation (60), here the particles
2, . . . ,n may have any spin, mass, and gauge-group representation. The partial amplitude is
constructed as a sum over planar Feynman graphs in the same fashion as for the purely adjoint
case; however, the color decomposition for these mixed adjoint-generic-representation amp-
litudes is quite different. See [189, 191–193] for details.

As a further nontrivial example at four points, consider the fundamental representation four-
quark amplitude displayed in figure 11. This amplitude is given as a sum over two displayed
diagrams,

Atree
4,2 (1q̄,2q,3q̄,4q) =−ig2

(nscs
s

+
ntct
t

)
, (97)

where the color factors are

cs = (Ta) i1i2 (Ta) i3i4 , ct = (Ta) i1i4 (Ta) i3i2 , (98)

and the kinematic factors are

ns =−1
2
(ū1γµv2)(ū3γ

µv4)δ
α1
α2
δ α3
α4
, nt =−1

2
(ū1γµv4)(ū3γ

µv2)δ
α1
α4
δ α3
α2
. (99)

For this amplitude, neither the color nor the kinematic factors satisfy any relations among
themselves, hence CK duality is trivially satisfied. Indeed, each kinematic numerator is gauge
invariant by itself and thus the amplitude representation is necessarily unique. We will how-
ever see in section 5 that in some cases it is possible or even necessary to impose additional
numerator relations for matter amplitudes without external gluons.

We now look more in detail at the theory obtained from the double-copy formula with two
sets of QCD numerators. It will consist of gravity coupled to a single massless complex scalar,
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as well as a set of massive photons and scalars. Massless and massive fields in this theory
originate from the double copy of adjoint and fundamental gauge-theory fields, respectively.
As an example, we give the amplitude between four massive (complex) photons γ,

Mtree
4 (1γ̄,2γ,3γ̄,4γ) =−i

(
ns
(
ns|Nf→1

)
s

+
nt
(
nt|Nf→1

)
t

)
, (100)

where we trivialize the number of flavors on one side in order to avoid a redundant description
with a factorized flavor group in the gravitational theory.

Writing out the expression we have

Mtree
4 (1γ̄,2γ,3γ̄,4γ) =−i

{
[(ū1γµv2)(ū3γµv4)]

2

4s
δ α1
α2
δ α3
α4

+
[(ū1γµv4)(ū3γµv2)]

2

4t
δ α1
α4
δ α3
α2

}
. (101)

The square can be upgraded to a tensor product since the external spinors can be chosen dif-
ferently for the two numerator copies.

In order to better understand the double-copy amplitude, we may write it in terms of chiral
spinors and explicitly write out the little group indices. For example, using the massive spinor-
helicity variables reviewed in appendix B, we simplify the above expression to obtain

Mtree
4

(
1γ̄aa

′
,2γbb

′
,3γ̄cc

′
,4γdd

′
)
=−i

{(
〈1a 3c〉

[
2b 4d

]
+ [1a 3c]〈2b 4d〉+ 〈1a 4d〉

[
2b 3c

]
+
[
1a 4d

]
〈2b 3c〉

)2 δα1
α2
δα3
α4

s
+(2↔ 4)

}
. (102)

2.5. Double copy implies diffeomorphism symmetry

Why does the double copy of gauge-theory amplitudes yield amplitudes of some gravity the-
ory? A minimal criterion is that the expression obtained from the double-copy method be
invariant under linearized diffeomorphisms. Here we show that invariance of the double-copy
amplitudes under linearized diffeomorphisms is a direct consequence of color-kinematics dual-
ity and gauge invariance of the two gauge-theory factors entering the construction.

We start from a general linearized gauge transformation acting on a single external gluon
with momentum p. Its polarization vector transforms as: εµ(p)→ εµ(p)+ pµ. Gauge invari-
ance of the amplitude implies that every diagram numerator should shift as

ni → ni + δi , δi = ni
∣∣∣
ε→p

. (103)

Then, the entire amplitude is unaffected provided that the shifts δi obey∑
i

ciδi
Di

= 0 , (104)

which must hold since by assumption the gauge-theory amplitude is gauge invariant.
Aside from the explicit expressions for the numerator factors, the above equation must rely

exclusively on the generic algebraic properties of the color factors ci, namely antisymmetry
and Jacobi identities. This means that, if we have CK-duality-satisfying numerators ñi in some
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gauge theory and consider their double copy with another set of gauge numerators ni, then any
linearized gauge transform of the ni will leave the double-copy amplitude invariant:∑

i

niδi
Di

= 0 . (105)

We now analyze in more detail the significance of this transformation. A general coordin-
ate transformation can be used to impose both transversality and tracelessness on the on-
shell asymptotic states that enter the definition of a scattering amplitude. This, in turn, results
in imposing the conditions εµν(p)pν = 0= εµν(p)ηµν on the graviton’s polarization tensor.
After this choice of gauge, amplitudes will still be invariant under the subset of linearized
diffeomorphisms that do not modify the above conditions. These will act as

εµν (p)→ εµν (p)+ p(µqν) , (106)

where q is a reference vector that obeys p · q= 0, but is otherwise generic. The parenthesis
denote symmetrization of spacetime indices.

The first step of formulating a double-copy construction is to establish a map between
gravity asymptotic states and pairs of gauge-theory states. In general, the double-copy grav-
iton will be obtained by taking the symmetric-traceless part of the product of the two gauge-
theory gluons, i.e. its polarization tensor will be obtained from the gluon’s polarizations as
εµν = ε((µε̃ν)), where the double brackets indicate the symmetric-traceless part14.

We now study tree-level amplitudes obtained from the double-copy method. We take a set
of duality-satisfying numerators ni only for one of the gauge-theory factors. The other set of
numerators is taken in the form

ñ ′
i = ñi +∆̃i ,

∑
i

∆̃i ci
Di

= 0 . (107)

While the numerators ñ ′
i can violate CK duality, they can be obtained from a set of duality-

satisfying numerators ñi with a transformation of the form (42) with parameters ∆̃i. Hence, we
are assuming that there exists an amplitude presentation for which the duality is satisfied also
for the second gauge theory. However, in the double-copy method, we use a set of numerators
with different properties for one of the theories, a fact that will be advantageous in practical
calculations.

Starting from the double-copy gravity amplitude in equation (45) at tree level, a tree amp-
litude can then be expressed as

iMm =
∑
i

ni ñi
Di

+
∑
i

ni ∆̃i

Di
=
∑
i

ni ñi
Di

, (108)

where we have not included the overall (κ/2)n−2. Because numerator factors ni obey the same
algebraic relations as the color factors ci, equation (107) implies the last equality above. Using
equation (108), the variation of the double-copy amplitude under a linearized diffeomorphism
of the form (106) becomes

iMm → iMm+
∑
i

δi ñi |ε̃→q

Di
+
∑
i

ni |ε→q δ̃i
Di

. (109)

14 We also note that the antisymmetric and trace parts of the product of the two gauge-theory gluon polarizations are
identified with an antisymmetric tensor field and the dilaton. These two field are generically present in amplitudes
from the double copy unless additional steps are taken to ensure their removal, as we will see in section 5.3.4.
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The two terms are of the form (105) and hence vanish because of CK duality. We then con-
clude that invariance of the amplitude under linearized diffeomorphisms at tree level follows
from gauge invariance of the gauge theories entering the double-copy construction provided
that CK duality is obeyed. Diffeomorphism invariance of the amplitudes at loop level can also
be established through generalized unitarity [194]. We will see in the next subsection and in
sections 4 and 5 that the double copy can also be used to engineer amplitudes which are invari-
ant under other symmetries, including supersymmetry and gauge symmetry. In fact, one can
think of the double copy as a clever procedure to write down amplitudes that obey a prescribed
set of on-shell Ward identities starting from gauge-theory data. By construction, these amp-
litudes also obey standard factorization properties as well as crossing symmetry. The basic
intuition is that gauge invariance together with mild assumptions on the singularity structure
are sufficient to fix the form of amplitudes [173, 174].

2.6. Adjoint fermions + duality ⇒ supersymmetry

In section 2.4 we discussed CK duality in the context of YM theory with matter fermions.
We now look at the case of adjoint fermions in arbitrary dimension. In this case, we will see
that the duality is equivalent to the existence of supersymmetry, as argued in [30] (see also
[117] for a related discussion). For concreteness, we specialize to D-dimensional YM theory
minimally coupled to a single adjoint Majorana fermion, described by the Lagrangian

L= Tr

[
−1

4
FµνF

µν +
i
2
ψ̄��Dψ

]
. (110)

In all dimensions, the four-gluon and two-gluon-two-fermion amplitudes respect the duality
between color and kinematics without any further constraint. However, four-fermion amp-
litudes leads to an interesting constraint. This amplitude is given by

Atree
4 (1ψ,2ψ,3ψ,4ψ) = i

(
(ū1γµv2)(ū3γµv4)cs

2s
+

(ū2γµv3)(ū1γµv4)ct
2t

+
(ū3γµv1)(ū2γµv4)cu

2u

)
, (111)

where the ūi and vi are spinor external states which obey ūi γµvj = ūjγµvi due to the Majorana
condition, ūi = vTi C. In dimensions in which a Weyl representation can be chosen one of the
terms above vanishes.

The requirement that Atree
4 (1ψ,2ψ,3ψ,4ψ) obeys CK duality forces the gamma matrices

to obey the relation

(ū1γµv2)(ū3γ
µv4)+ (ū2γµv3)(ū1γ

µv4)+ (ū3γµv1)(ū2γ
µv4) = 0 . (112)

Equation (112) is the equivalent to the Fierz identity that appears in the supersymmetry trans-
formation of the Lagrangian (110). This analysis can be repeated for pseudo-Majorana spinors
with analogous results. Overall, an identity of this form can be satisfied only forD= 3,4,6,10,
i.e. the dimensions for which the theory (110) is supersymmetric.

The relation between CK duality with adjoint fermions and supersymmetry should not seem
surprising in hindsight. In principle, adjoint fermions can be combined with gluons with the
double-copy procedure, resulting in a gravity theory which includes spin-3/2 fields. However,
it is known that local supersymmetry is required to have a consistent theory of interacting spin-
3/2 fields. This is another example of the duality between color and kinematics underpinning
the consistency of the gravity theory from the double copy. We shall see more examples along
this line in the following sections.
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By repeating the discussion in section 2.5, it is straightforward to see that the double copy
of a gauge theory with another gauge theory that has global supersymmetry leads to a theory
that exhibits local supersymmetry. Indeed, a linearized local supersymmetry transformation of
a gravitino polarization vector-spinor uαµ(p) is

uαµ (p)→ uαµ (p)+ pµξα , (113)

where ξα is the transformation parameter which, in order to preserve the γ-tracelessness
of the gravitino wave function must obey the massless Dirac equation, p/ξ = 0. Then, the
transformation of a double-copy amplitude (after a discussion similar to the one that led to
equation (109)) is

Mtree
m →Mtree

m +
∑
i

δi ñi |ũα→ξα

Di
, (114)

where ũα is the spinor that, through the double copy, generates the gravitino under considera-
tion. Since the parameter ξ of the supersymmetry transformation has the same properties as the
original spinor ũα it replaces, the factor ñi |ũα→ξα has the same properties as ñi, in particular
it obeys Jacobi relations. Thus, the variation of the double-copy amplitude under (linearized)
supersymmetry transformations vanishes, implying that the double-copy theory exhibits local
supersymmetry.

More generally, we may expect that, under the right circumstances, the double copy of a
gauge theory with a theory that exhibits a global symmetry leads to a theory where the global
symmetry is promoted to a local symmetry. We shall return to this point in section 4.

The emergence of supersymmetry from CK duality offers a novel perspective on the max-
imal number of gravitini that can consistently enter a supergravity theory. As we have seen, a
gauge theory coupled to fermions can exhibit CK duality in at most ten dimensions dimensions.
Thus, this is the highest dimension which a supergravity theory can be given a double-copy
interpretation in the sense described here. Taking two such theories gives therefore the largest
number of supersymmetries, which is two in ten dimensions or, upon dimensional reduc-
tion, eight in four dimensions. This observation recovers the usual bound following from the
requirement that the exist multiplets of supersymmetry algebra containing fields of spin s⩽ 2.

2.7. General lessons from applying CK duality

In the previous subsections, we presented various concrete examples of theories which obey
CK duality. Statements about CK duality often depend on the details of the theories under
consideration and on what observables are being studied. Since the duality is often used as a
shortcut for computing gravitational amplitudes, one can restrict to gauge theories suitable for
giving broad classes of consistent gravitational theories once the numerators are assembled
via the double-copy method. Expanding on the examples discussed earlier, in the rest of this
review we will focus mostly on theories with the following general features:

• There exists (at most) one massless gauge field, the gluon, that transform in the adjoint of a
gauge group G, and all fields of the gauge theory are charged under this group. We will see
in section 5 that this requirement translates to the equivalence principle in gravity.

• The gauge groupG is a completely general Lie group in the sense that no assumptions on its
rank need be imposed on it. Note that throughout this section the only properties of the gauge
group we have utilized are the Jacobi relations of its structure constants and the commutation
relations of its representation matrices, which do not require to spell out our choice of Lie
group.
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• Amplitudes involving adjoint fields (gluons or adjoint matter) should admit perturbative
expansions where the kinematic numerators obey the same Lie algebra relations (e.g. Jacobi
identities) as the corresponding adjoint-valued color factors. We have seen in section 2.5
that this property is essential for obtaining a gravitational theory after the double copy. This
condition also implies the universality of gravitational self-interactions.

• Amplitudes involving fields in generic representations of the gauge group should admit per-
turbative expansions where the kinematic numerators obey the same Lie algebra relations as
the generators of those representations. The simplest example of non-purely-adjoint theory
has been discussed in section 2.4.

These general properties guarantee that every diagram in the perturbative expansion of an
amplitude has a unique nontrivial color factor, which obeys the minimal constrains imposed
by the Lie algebra of the gauge group, and furthermore that the coupling to the unique gluon is
universally controlled by the gauge-group representations. The kinematic factors can then be
constrained to obey the duality by enforcing the one-to-one map between color and kinematic
identities. Along these lines, in section 5.1 we will articulate a more precise set of working
rules which will define the properties of the gauge theories employed for obtaining a web of
double-copy-constructible theories.

3. Geometric organization

The dual Jacobi identities give nontrivial relations between diagram numerators. Here we
describe the systematics of these relations and how they can be used to express amplitudes’
integrands in terms of the contributions of a small set of master diagrams. This is generally
very helpful at higher perturbative orders because it allows us to express an integrand in terms
of a (small) subset of all of its terms. To this end, we will first describe a useful geometric
organization via a graph of graphs15 that offers insight into the information flow of the duality
identities. We will then illustrate the general case through some examples.

3.1. Amplitudes in terms of boundary data

The duality between color and kinematics provides a set of relations between diagrams. Section
2 frames the discussion of the duality in terms of vector and matrix operations between linear
spaces of numerators of diagrams and linear spaces of scattering amplitudes. Here we give
an alternative perspective, using the language of graphs [196, 197]. This offers a useful way
to visualize how a small set of graphs is sufficient to describe the entire amplitude. We shall
see that the minimal set of graphs whose numerators need to be specified can be thought of as
boundary data on the graph of graphs describing the amplitude.

As a simple example, consider the four-gluon tree amplitude. After absorbing any contact
terms into graphs with only cubic vertices, this amplitude can be described by the three graphs
in figure 3, corresponding to the s-channel, t-channel, and u-channel. Both the kinematic and
color numerators of these three graphs satisfy the (dual) Jacobi identities in equations (16) and
(17), cs+ ct+ cu = 0 and ns+ nt+ nu = 0. These equations are equivalent to the statement
that any two ‘single-copy’ numerator dressings determine the third one. We can draw this
relationship as a graph of graphs, where each vertex represents a specific graph participating

15 See [195] for a related application of such an approach towards identifying scattering forms of amplitudes.
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Figure 12. Graph of graphs relevant to four-point tree-level scattering forms a triangle.
Each vertex represents one of the three graphs in figure 3, and every edge represents a
Jacobi orWhiteheadmove (cf figure 13). Every triangle in the graph of graphs represents
a Jacobi relation that can be used to constrain a dressing of one vertex graph in terms of
dressings of the other two vertex graphs.

in the Jacobi relation and the edges connect to the other two vertices (i.e. graphs) that determine
the first vertex.

These relations can be summarized in the triangle shown in figure 12. Each vertex or node in
figure 12 is one of the three cubic graphs from figure 3 that would contribute to the four-point
amplitude. Every edge in this graph of graphs corresponds to a Jacobi move on the internal
propagator of one of the vertex graphs that transmutes it into another. In the mathematics
literature these moves are known as Whitehead moves [198]. The basic moves for acting on
graphs represented by the edges in figure 12 are denoted t̂ and û and are shown in figure 13.
The first move, which we call t̂, takes the s-channel graph in figure 3 and converts it to the
t-channel. Similarly, we call û the move that converts the s-channel graph to the u-channel
one. The move that takes the t-channel graph to the u-channel graph can be understood as
the composition û ◦ t̂. Alternatively, we can view it as one of the same basic operations as
on the s-channel graph but acting on a graph with permuted labels. Strictly speaking, one
should associate a direction with each move, but we will ignore this distinction because, up
to relabelling, the reverse operation is identical to the forward one. It is not difficult to see
that each edge in the triangle graph of graphs contains the graphs contributing to a particular
four-point color-ordered partial amplitude, and the entire triangle itself represents an occasion
for Jacobi to be satisfied by a dressing of the graphs (whether color or kinematic).

This basic structure generalizes straightforwardly to higher-point amplitudes. Consider it
at five points: in total there are 15 distinct cubic graphs (constructible by starting with one five
point cubic graph and applying t̂ and û on each of it is internal edges, and repeating on new
graphs until closure) contributing to the full color-dressed integrand as displayed in figure 14.

Exercise 3.1. Draw individual five-point graphs for each vertex in figure 14. Label the edge
operations to get from graph to graph.

Let us focus on the subset of five graphs comprising the ordered partial amplitude
Atree
5 (1,3,5,4,2), as indicated in equation (71). As shown in figure 15, all five graphs can
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Figure 13. Operations that relate edges of one graph to edges of another.

Figure 14. Graph of graphs for the full color-dressed five-point partial amplitude,
with vertex labels corresponding to the graphs given in figure 7. Two color-ordered
partial amplitude graphs are highlighted, corresponding to Atree

5 (1,3,5,4,2) and
Atree
5 (1,3,5,2,4), cf equations (71) and (72) respectively, as well as figure 15.

be found by starting with any graph that has the relevant external ordering and applying t̂ to
its two internal edges to find and connect two other graphs with the same color order. It is
interesting to note that each edge in the graph represents a shared factorization channel for
the internal propagator not mutated between the two connected graphs. We keep applying t̂
until closure. This procedure of repeated t̂ application, building a graph of all the graphs of a
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Figure 15. Graph of graphs relevant to the color-ordered five-point partial amplitude
Atree
5 (1,3,5,4,2). The vertices correspond to the indicated five-point graphs given in

figure 7, with the understanding that each labeled graph contributes to this color order
with signs determined by its color factor as in equation (71). The edges in the color-
ordered graph of graph represent application of t̂ on vertex-graph edges until closure.

given color-order, carves out the skeletal graph16 of a polytope known as the associahedron.
(see [200, 201]). Associahedra are often also called Stasheff polytopes. As t̂ preserves color
order, each Stasheff skeletal graph is composed of all the graphs that contribute to a fixed color
order [197]. Indeed every Stasheff subgraph of the full graph of graphs represents the contri-
butions of a particular ordered partial amplitude to the full amplitude. This is exemplified by
the two highlighted pentagonal subgraphs of figure 14 which represent the ordered amplitudes
Atree
5 (1,3,5,2,4) and Atree

5 (1,3,5,4,2).

Exercise 3.2. Find another pentagonal subgraph in figure 14 besides the two highlighted ones.
Which color-ordered amplitude does it represent?

Of course, the full five-point amplitude requires all 15 cubic graphs (cf equation (50)),
as displayed in the complete five-point graph of graphs figure 14. Every triangle subgraph
represents a Jacobi identity that single-copy numerator dressings could satisfy.

One question when presented with the graph of graphs, is whether it is easy to see howmany
ordered amplitude (Stasheff) subgraphs are required to specify a full color-dressed amplitude.
A natural conclusion is (m− 2)! of them, because this is the minimal number of ordered amp-
litude subgraphs whose union of vertex-graphs includes all (2m− 5)!! vertex-graphs that con-
tribute to the full amplitude. In terms of our five-point graph of graphs, drawn in figure 14, it
would be necessary to identify six different pentagonal subgraphs for every vertex-graph to be

16 Typically called a one-skeleton (see [199]).

39



J. Phys. A: Math. Theor. 57 (2024) 333002 Topical Review

Figure 16. Due to the nine Jacobi relations (six outer triangles, and three inner triangles),
only the six outer boundary graphs are needed to specify bulk data via Jacobi relations.

included at least once. This corresponds to the KK [181] basis, which gives the full amplitude
in terms of partial amplitudes [180] as per equation (55).

Exercise 3.3. Find six color-ordered partial amplitudes (pentagonal subgraphs) in the five-
point graph of graphs shown in figure 14 that together include every node at least once. What
color-ordered amplitudes do they correspond to? Is it a KK basis?

The counting works differently for an amplitude where both the kinematic numerators and
the color factors obey Jacobi identities. Consider the external boundary graphs of figure 16. As
noted above, Jacobi identities are represented by triangles in the graph of graphs. By working
inwards using Jacobi identities in figure 16, we see that each pair of neighboring graphs in
the six external boundary graphs completely specify all other graphs. So, for theories that can
satisfy the dual Jacobi identities, we need only specify data on this external boundary. More
generally, for anm-point amplitude, it turns out that only (m− 2)! boundary graph numerators
are sufficient to specify all other graph numerators via Jacobi and (m− 3)! ordered amplitudes
are independent. For example, in the case of the five-point amplitudes, the two highlighted
partial amplitudes in figure 14 are sufficient to generate all others.

The spanning boundary graphs at tree level, sometimes referred to as the master graphs,
have a geometric association as well. Consider the half-ladder graph shown in figure 8. A
half-ladder graph (also called a multiperipheral graph) is a cubic tree-graph where all vertices
but two connect two internal edges. They are called half-ladders because they can be drawn
to resemble one half of a ladder split down all rungs. For any multiplicity, a choice of master
graphs can be obtained by taking any half-ladder graph and acting with the û move on all
internal edges until no new graphs are generated. All graphs so generated will remain half-
ladders with different labels and their corresponding graph of graphs forms the one-skeleton
of a polytope known as a permutahedron [201].

Exercise 3.4. Why is at least one half-ladder graph required at any multiplicity in the set of
Jacobi master-graphs?

As discussed in section 2, the mismatch between the number of independent gauge-theory
amplitudes and the number of independent numerators leads to a gauge freedom that allows
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some numerators to take on arbitrary values, neither altering the amplitudes nor the BCJ amp-
litude relations. At five points, four of the numerators can be arbitrarily chosen, i.e. even set
to zero, making the remaining numerators nonlocal. In addition, the fact that there are only
(m− 3)! independent gauge-theory amplitudes is directly related to the fact that in the KLT
formula (84) only (m− 3)! independent partial amplitudes appear for each of the two gauge
theories.

As typical with graphical organization of amplitudes, the total number of independent
graphs will increase factorially, going as (m− 2)! for multiplicity m. While this is a reduction
over the total (2m− 5)!! cubic graphs that contribute to the complete amplitude, a more useful
question is the minimal information required to build the complete amplitude (at tree level,
and, more generally, the amplitude’s integrand at loop level). Remarkably, as we now show,
by imposing diagram symmetry, we can specify only a single half-ladder diagram, which then
determines all other diagrams at any given multiplicity at tree level. This allows us to avoid
specifying a factorially-growing number of diagrams.

3.2. Applying relabeling invariance at tree-level

As a warm-up before turning to gauge theory, we consider the NLSM [202], as defined by the
Lagrangian in the Cayley parameterization [169, 203, 204],

LNLSM =
1
2
Tr

{
∂µφ

1
1−λφ2

∂µφ
1

1−λφ2

}
, (115)

where φ is a Lie-algebra valued Goldstone-boson scalar field in the adjoint representation.
Here the color symmetry is global. Although this theory has only even-point interactions, we
can assign its data to graphs with only cubic vertices by multiplying and dividing by appropri-
ate inverse propagators. In terms of diagrams with only cubic vertices, dimensional analysis
dictates that each vertex effectively carries two powers of momentum. The first nonvanish-
ing amplitude is at four points. We will see that, by imposing Jacobi identities and relabeling
symmetry on the kinematic numerators of the diagrams, we can obtain the four-point scatter-
ing amplitude of this theory. At higher points, we will also either need to impose additional
conditions to uniquely fix the amplitudes to this theory. It is sufficient to impose the manifest-
ation of only quartic poles in amplitudes [205], which in combination with color-kinematics
encodes the necessary [206–208] vanishing soft-scalar limits, or Adler zero conditions [209].
Higher-derivative deformations of the NLSM and their compatibility with the KK and the BCJ
amplitudes relations have been discussed in [210].

To start the construction of the four-point amplitude, consider the four-point half-ladder
graph. Since we require the dimensions of the numerator to match that following from the
NLSMLagrangian and therefore carry four powers of momentum, we take a numerator ansatz:

where sab = (pa+ pb)2 and α and β are to be constrained by symmetry and the kinematic
Jacobi identities. The other kinematic invariant is sac =−sab− sbc, and it is not independent.

Imposing the Jacobi constraints,

n(a,b,c,d) = n(c,a,d,b)+ n(d,a,b,c) , (117)
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relates α and β according to

0= αs2ab−αs2bc−βsbcsac−αs2ac

=−2αsabsbc+βsabsbc− 2αs2bc+βs2bc , (118)

where we used sac =−sab− sbc. Given that the Mandelstam invariants sab and sbc are inde-
pendent, we find β = 2α; thus, the numerator is uniquely fixed up to its overall scale, which
may be identified as the coupling of the model:

n(a,b,c,d)∝ sab (sab+ 2sbc) . (119)

One can verify that this expression satisfies all necessary antisymmetry constraints, e.g. it
changes sign with a↔ b or c↔ d. The full amplitude, up to overall normalization is then

Atree
NLSM ∝ c(1,2,3,4)n(1,2,3,4)

s12
+
c(3,1,4,2)n(3,1,4,2)

s13

+
c(4,1,2,3)n(4,1,2,3)

s14
, (120)

where the color factors are obtained by dressing each vertex with a structure constant f abc. The
key lesson is that, by taking the numerators to be functions of the graph labels, only a single
numerator needs to be specified.

Exercise 3.5. Repeat the above analysis assuming only degree-one monomials in the
Mandelstam invariants. What theory could this construction correspond to?

Next, consider the case of YM theory at four points. In this case the numerator ansatz is con-
structed out of external momenta and polarization vectors {ε1, . . . ,ε4}, subject to the require-
ments that every εi appears once in each term and that every term has exactly two momenta.
These constraints guarantee consistency with the structure of Feynman rules. The possible
third-degree monomials are constructed from the following independent Lorentz invariants:

{s12,s13,(p1 · ε2) ,(p1 · ε3) ,(p2 · ε1) ,(p2 · ε3) ,(p2 · ε4) ,(p3 · ε1) ,
(p3 · ε2) ,(p3 · ε4) ,(ε1 · ε2) ,(ε1 · ε3) ,(ε1 · ε4) ,(ε2 · ε3) ,(ε2 · ε4) ,(ε3 · ε4)} . (121)

There are 30 possible combinations, leading to an ansatz with an equal number of parameters.
Besides constraining it with the kinematic Jacobi identity (117), we also impose the antisym-
metry constraints at the two vertices17,

n(a,b,c,d) =−n(a,b,d,c) =−n(b,a,c,d) , (122)

matching the antisymmetry of the color factors.
Applying these constraints on the ansatz built from the monomials in equation (121) fixes

all but five of the ansatz’ coefficients. Further imposing gauge invariance on one external leg
then fixes the form of the numerator. In fact, it is sufficient to impose gauge invariance on one
leg when the amplitude is factorized on the pole of a given channel, i.e. for sab → 0,

n(a,b,c,d) |sab→0, and εa→pa
→ 0 . (123)

17 See section 2.1, equation (51) and discussion below it.
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This gives

n(a,b,c,d)∝ {[(εa · εb)pµa + 2(εa · pb)εµb − (a↔ b)] [(εc · εd)pcµ + 2(εc · pd)εdµ
−(c↔ d)]+ sab [(εa · εc)(εb · εd)− (εa · εd)(εb · εc)]} , (124)

in agreement with equation (12). We note that, as explained in [173, 174], one can also determ-
ine the amplitude using other constraints, in particular from gauge invariance andmild assump-
tions on the singularity structure.

Exercise 3.6. Verify explicitly that the four-point YM numerator given above satisfies the
Jacobi constraint.

Emboldened by the success to obtain four-point amplitude by imposing dual-Jacobi rela-
tions, we continue to the next multiplicity for the NLSM. As for four points, the duality
involves not only imposing kinematic Jacobi relations, but also the same antisymmetry carried
by color factors. For the half-ladder numerators,

these antisymmetry constraints read:

n(a,b,c,d,e) =−n(a,b,c,e,d) =−n(b,a,c,d,e) =−n(d,e,c,a,b) . (126)

The Jacobi identities corresponding to the two independent propagators of the five-point half-
ladder graphs are:

n(a,b,c,d,e) = n(a,c,b,d,e)+ n(c,b,a,d,e) ,

n(a,b,c,d,e) = n(a,b,d,c,e)+ n(b,a,e,c,d) . (127)

One can immediately see the need to impose two Jacobi relations from the two triangles that
touch every vertex in the graph of graphs for the five-point tree as drawn in figure 16.

At five points, we have a 35-parameter ansatz comprised of all degree-three monomials
with factors from

{sab,sac,sad,sbc,sbd} . (128)

The constraints in equations (126) and (127) fix 34 parameters, leaving uswith a unique expres-
sion, up to an overall coefficient,

n(a,b,c,d,e)∝ (sac+ sbc)(sad (sbd+ sbe)−{a↔ b}) . (129)

Remarkably, the five-point amplitudes obtained from these numerators actually vanish, in line
with the fact that odd-point amplitudes vanish in the NLSM.Moreover, this amplitude vanishes
without having to impose the requirement that the underlying theory has no three-point vertex
(i.e. that there is no two-particle factorization channel). This in turn suggests that there do not
exist CK-satisfying scalar two-derivative theories with only fields in the adjoint representation
that are not the NLSM.

Exercise 3.7. Verify that the above numerator satisfies the two independent Jacobi relations
at five points.

Exercise 3.8. Verify explicitly that a color-ordered amplitude, sayAtree
5 (1,2,3,4,5), expressed

in terms of its cubic graphs using the diagram numerator in equation (129) vanishes.
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One can continue in this way, systematically building up higher-point amplitudes. It is also
useful to impose other physical constraints such as the vanishing of all factorization limits
where at least one factor is an odd-point amplitude:

lim
s1...2k→0

s1...2kA
tree
n (1, . . . ,n) = 0 , (130)

or, equivalently, the vanishing of the residue of the simple pole in s1...2k:∑
states

Atree
2k+1 (1, . . .2k,p)A

tree
n−2k+1 (−p,2k+ 1,n)

∣∣
p2=0

= 0 . (131)

These conditions guarantee recursively consistency with the vanishing of the odd-point tree
amplitudes with multiplicity smaller than n. Let us illustrate this for the six-point amplitude.
For our scalar theory, we have nine independent external momentum invariants; from them
we can construct 495 degree-four monomials thus obtaining a 495-parameter ansatz for the
half-ladder graph. CK duality alone constrains all but 23. Imposing the vanishing of the color-
ordered factorization∑

states

Atree
3 (1,2,p) Atree

5 (−p,3,4,5,6) = 0 , (132)

leaves six unconstrained parameters. Although individual diagrams depend on them, these
parameters always appear in the same linear combination in front every color-ordered par-
tial amplitude, which indeed reproduce the six-point partial NLSM amplitudes, up to the
overall normalization. Other factorization limits, e.g. 0= Ress23=0(Atree

6 (1,2,3,4,5,6)) =∑
statesA

tree
3 (2,3,p) Atree

5 (−p,4,5,6,1), do not constrain them any further, implying that it
should be possible to remove five of the remaining six parameters by a local generalized gauge
transformation.

When combined, relabeling symmetry and the dual Jacobi relations are extremely con-
straining and can be used to determine scattering amplitudes in the NLSM and gauge theory.
As the number of legs and loops increases, this process of constraining an ansatz becomes
increasingly more tedious. However, there are now a variety of constructive approaches for
building tree-level and low-loop numerators that satisfy the kinematic Jacobi identities [14,
24–26, 28, 29, 149, 156, 211–216].

In general, higher-loop integrands is a more involved problem, perhapsmore in gauge theor-
ies than for the NLSM. Direct approaches based on constraining ansätze have proven an effect-
ive means of generating gauge-theory loop integrands [6, 217]. We will see explicit examples
in section 6. It turns out, however, that it can be difficult to find gauge-theory numerators
that manifest the duality between color and kinematics thus complicating the construction
of corresponding gravity integrands. Nevertheless, a generalized double-copy procedure out-
lined in section 7 can be used to convert gauge-theory integrands in generic representations
to integrands in gravity theories; for example, this procedure was used to obtain the five-loop
four-point integrand of N = 8 supergravity and determine its UV behavior [38, 218].

4. Gravity symmetries and their consequences

Symmetries are essential for understanding the properties of gauge and gravity theories. In the
context of the framework provided by CK duality and the double copy, which relates QFTs
order-by-order in perturbation theory, it is hence interesting to explore how symmetries ori-
ginate and transfer. Not all symmetries of double-copy theories are currently well-understood
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from this perspective; likewise, the consequences of certain symmetries of single-copy par-
ent theories have yet to be properly understood18. In this section we review the current status
of the relation between the symmetries of the single- and double-copy theories. We begin
by outlining which (part) of the symmetries of a Lagrangian can be identified and analyzed
through scattering-amplitude techniques emphasizing that, while the linearized part of sym-
metries can be manifest, nonlinear symmetries affect only special momentum configurations
of scattering amplitudes. We then proceed to discuss the linearly-realized global symmetries
and to extend the diffeomorphism and local-supersymmetry discussion in section 2 to also
include nonabelian gauge symmetry. All these symmetries are inherited from the symmetries
of their single-copy parents. We then discuss certain enhanced symmetries, i.e. symmetries
which, while unrelated to any of the single-copy symmetries, act linearly on the double-copy
asymptotic states. The ability to efficiently compute amplitudes and analyze them for special
momentum configurations is essential to explore the emergence of nonlinear symmetries in
the double copy.

4.1. Symmetries: Lagrangian vs. scattering amplitudes

Lagrangians exhibiting nonlinear symmetries—such as supersymmetry in a formulation
without auxiliary fields, or nonabelian gauge symmetries—are usually constructed through
an iterative Noether procedure. One starts with the free-field theory with the desired spectrum,
which is invariant under the linearized form of the desired symmetries and simultaneously
deforms the action and the transformation rules such that the resulting action is invariant off-
shell under the deformed transformations. The resulting symmetry algebra closes up to the
equations of motion. Thus, this approach leads to actions and transformation rules of the form

S= S2 + S3 + S4 + . . . ,

δ = δ(0) + δ(1) + δ(2) + . . . , (133)

where the n-field term Sn in the action determines the (n− 2)-field term δ(n−2) in the trans-
formation rules. For example,

δ(0)S3 + δ(1)S2 = 0 ,

δ(0)S4 + δ(1)S3 + δ(2)S2 = 0 . (134)

The first relation implies that the cubic term is invariant under the undeformed transformations
up to terms proportional to the free equations of motion.

Quantummechanically, symmetries are realized throughWard identities, which relate time-
ordered correlation functions of the fundamental fields of the theory. Nonlinear transformation
rules imply that the relevant Ward identities contain correlation functions of different multi-
plicities. For example, for a transformation δϕ∝ ϕk, an n-point Green’s function is related to
(n+ k− 1)-point Green’s functions. Moreover, locality of the transformation rules imply that,
for k⩾ 2, these k fields are at the same spacetime point(s).

Upon Lehmann–Symanzik–Zimmermann (LSZ) reduction, Ward identities simplify con-
siderably. For asymptotic states with momenta p1, . . . ,pn, the amputation leading to the

18 Moreover, symmetries of sectors of a single-copy parent theories that relate to the gauge group—such as symmetries
of the planar sector–seem difficult to capture because of ‘contamination’ from other sectors.
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n-point amplitude selects the most singular term, proportional19 to
∏n

i=1(p
2
i −m2

i )
−1. For an

(n+ k− 1)-point (k= 2,3, . . .) Green’s function resulting from a nonlinear term in a (sym-
metry) transformation, momentum conservation requires that it has a different pole structure.
Thus, all such terms are amputated away and all effects of nonlinear terms in the symmetry
transformations that underlie the structure of off-shell Ward identities are projected out by
the LSZ reduction. The resulting on-shell Ward identities imply that, for generic momenta,
S-matrix elements are invariant only under the linearized symmetry transformations. This
argument fails when the additional fields appearing in nonlinear symmetry transformations
all carry vanishing momenta; indeed, in this case, the off-shell (n+ k)-point Green’s func-
tion develops a pole

∏n
i=1(p

2
i −m2

i )
−1 and gives a nonvanishing contribution after the LSZ

n-point amputation. We shall return in section 4.5 to this special momentum configuration
and interpret it as the soft limit of a higher-point scattering amplitude.

It is not difficult to identify these features in nonabelian YM theory: the amplitudes vanish
if the polarization vector of a gluon εµ(p) is replaced by the momentum20

δ(0)Aµ = ∂µΛ −→ δεµ (p) = pµΛ(p) . (135)

They are also invariant under the global part of the gauge group, which is the only remnant of
the nonlinearity of the gauge transformation.

Not all symmetry transformations have a linearized approximation. An outstanding class
of examples are the U-duality symmetries of extended supergravity theories, such as the E7(7)

duality group of N = 8 supergravity. It turns out that only their maximal compact subgroup,
which is isomorphic to the on-shell R-symmetry group, has such an approximation. It is there-
fore an interesting question whether on-shell methods can probe symmetry transformations
which are inherently nonlinear.

A possible approach, put forward in [219] and further explored in [220, 221], effectively
amounts to constructing the quantum one-particle irreducible (1PI) effective action and study-
ing its symmetries. Indeed, the quantum 1PI effective action is determined21 by the S-matrix
of the theory up to terms proportional to the free equations of motion. Consequently, up to
the corresponding contact terms and assuming absence of anomalies, the off-shell Ward iden-
tities of all symmetries—in particular of the nonlinear ones—should hold. In this formalism,
anomalies appear as violations of the Ward identities of the corresponding symmetries which
cannot be removed by the addition of finite local counterterms to the (effective) action. These
counterterms may be simultaneously interpreted both as part of the definition of the theory and
as an ambiguity in the construction of the effective action from the S-matrix.

Another approach geared towards the exploration of nonlinearly-realized symmetries was
first described in [222] for the E7(7) symmetry of N = 8 supergravity in four dimensions.
It amounts to (1) the vanishing of scattering amplitudes in the limit in which momenta of
one scalar field vanish and (2) the identification/extraction of the structure constants of the
nonlinearly-realized part of the symmetry group from the limit in which two scalar fields
have vanishing momenta. In section 4.5 we will outline this approach and summarize some
of its many generalizations to nonlinearly-realized (Volkov-Akulov) supersymmetry [220,
223, 224], Bondi–Metzner–Sachs (BMS) symmetry [225–227], anomalous symmetries [228],

19 Here we assume that external states have generic masses mi. Assuming from the outset that external states are
massless does not alter the conclusion.
20 It is worth mentioning that, from the perspective of the gauge-fixed theory, the transformation εµ → εµ +Λ(p)pµ

can also be interpreted as εµ not being a proper Lorentz vector [173]. Indeed, the polarization vector is constrained
to obey p · ε= 0 so, on shell, any transformation of ε can include a shift by pµ.
21 One may use other methods, such as those outlined in [219], to construct the effective action.
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effective theories [229], string theory [230–232] and theories with spontaneously-broken con-
formal invariance [233]. For discussions of soft theorems at the quantum level see [234–238].
While neither of these two approaches is specifically tied to the double-copy construction, they
may provide strategies to understanding aspects of symmetries of the double-copy theories and
their relation to their single-copy parents.

4.2. Global symmetries; on-shell R symmetry

In the absence of anomalies, the scattering amplitudes of a theory exhibit its off-shell sym-
metries to all orders in perturbation theory22. Below, we shall review how the double copy
expresses this property.

As we reviewed at length in previous chapters, at tree level the KLT relations build grav-
ity scattering amplitudes from gauge-theory amplitudes. More generally, for all double-copy
theories (including the non-gravitational ones), there exist analogous relations that build their
scattering amplitudes in terms of pairs of theories. It is therefore clear that, at tree level, the
global symmetry group G of a double-copy theory is at least as large as the product of the
global symmetry groups G1,2 of the parent theories:

G⊃ G1 ⊗G2 . (136)

In a Feynman-diagram approach to the construction of scattering amplitudes, one can
arrange that each diagram exhibits all off-shell global symmetries of the classical Lagrangian.
The construction of tree-level CK-satisfying numerators in terms of tree-level amplitudes [24,
149] implies that, at tree level, the same is true for each single-copy parent theory if one also
demands that the amplitude obey CK duality. Thus, equation (136) also holds in this approach.

In the presence of a symmetry-preserving regulator, generalized unitarity then guarantees
that the regularized cuts of higher-loop amplitudes of the double-copy theory also inherit all
the global symmetries of the single-copy parent theories.

Exercise 4.1. Explore if there is a general statement that can be made about anomalous global
symmetries, i.e. whether all anomalous global symmetries of the single-copy parent theories
remain anomalous in the double-copy theory. To this end, consider the example of a four-
dimensional gauge theory with chiral fermions and construct examples of the double-copy
amplitudes that involve scattering amplitudes of this theory that are sensitive to the chiral
anomaly.

Not all global symmetries of a double-copy theory are inherited; in fact, inheritance of some
symmetries demands that others be enhanced. Consider, for example, the case of the double
copy of two theories withN1 andN2-extended supersymmetry, respectively. Their supersym-
metry algebras have SU(N1) and SU(N2) R symmetry (perhaps with additional decoupledU(1)
factors) and, according to the previous discussion, the double-copy theory will be invariant
under at least SU(N1)× SU(N2) transformations. However, the (N1 +N2)-extended super-
symmetry algebra that is expected based on the number of supercharges has a larger R sym-
metry, SU(N1 +N2). Thus, to extendR1 ⊗R2 to the completeR symmetry group, it is necessary
to identify further 2N1N2 + 1 generators. The first 2N1N2 generators were constructed in [239,
240] in terms of the supersymmetry generators of the two single-copy parent theories. In four
dimensions, they are

GĨJ = Q+IQ̃− J̃ and GĨJ = Q−
IQ̃+

J̃ , (137)

22 This assumes the existence of a regulator that preserves these symmetries.
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Table 2. Action of the GĨJ generator defined in equation (137) on the states of N = 8
supergravity. The action of the generators GĨJ is obtained by reversing the direction of
the arrows.

where Q and Q̃ are the supersymmetry generators of the two single-copy parent theories,
respectively, and the ± indices represent their helicity. These generators have vanishing total
helicity. From their structure it is clear that they change the helicities of the two single-copy
components in opposite ways, such that the helicity of the double-copy state is unchanged. For
the case of N = 8 supergravity, their action on states is given in table 2.

The remaining (Cartan) generator which is necessary to recover the complete (and expec-
ted) R-symmetry group may in principle be obtained from the closure of the off-diagonal GĨJ

and GĨJ. In section 4.4, we shall review another way of identifying it, as well as its physical
interpretation.

An interesting feature which has been observed in explicit examples, some of which are
described in section 5, is that certain gravity theories have two distinct double-copy real-
izations. In these cases, each version of the construction exhibits different manifest sym-
metries and, while following the pattern above, the details of the symmetry enhancement
are different. An example discussed in [241] from a double-copy perspective and in [242]
from a string-theory point of view, is N = 4 supergravity with two vector multiplets, which
can be realized both as (N = 4 SYM)×(YM+2 scalars) and (N = 2 SYM)×(N = 2 SYM).
While in the former construction the complete SU(4) R symmetry of supergravity is mani-
fest, the latter only has a manifest SU(2)× SU(2) symmetry. A more dramatic example is
provided by three-dimensional N ⩾ 8 supergravities, which can be realized [243, 244] either
in terms of two three-dimensional SYM theories or in terms of two Chern–Simons-matter the-
ories [245–250] (see also [119] for the double-copy realization of maximally supersymmetric
three-dimensional supergravity [251]).

To study the origin of the symmetries of a gravitational theory from the double-copy factors,
it is sometimes convenient to introduce a manifestly covariant formulation by defining the
action of the double copy on the off-shell linearized (super)fields, following an approach intro-
duced in [56, 239, 252–256]. To give an explicit example, we consider the double copy of two
vector fields, which in this language is written as

Hµν = hµν +Bµν +ϕηµν = Aaµ ⋆Φ
−1
aa ′ ⋆ Ãa

′

ν , (138)

where Aaµ and Ãa
′

µ are the fields in the left and right gauge theory, respectively. The resulting
double-copy field Hµν (sometimes referred to as the ‘fat graviton’ [58], see also section 8)
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needs to be decomposed in irreducible representations of the Lorentz group, giving the graviton
field, the dilaton and an antisymmetric tensor Bµν . This version of the construction is formu-
lated in position space and hence relies on the convolution among linearized superfields, which
is defined as

[f ⋆ g] (x) =
ˆ
d4y f(y)g(x− y) . (139)

Crucially, Φaa ′ is a bi-adjoint scalar field which is employed to contract the gauge indices of
the left and right fields. The action of a symmetry transformation on left and right fields is then
written as

δAaµ = ∂µΛ
a+ f abcA

b
µθ

c+ δ̂Aaµ ,

δÃaµ = ∂µΛ̃
a+ f abcÃ

b
µθ̃

c+ δ̂Ãaµ , (140)

where Λa, Λ̃a, θa and θ̃a are the parameters of local abelian and global nonabelian gauge trans-
formations, while δ̂ indicates a global transformation under the (super)Poincaré group. The
bi-adjoint scalars are designed to offset the left and right gauge transformations, and trans-
form as [253]

δΦ−1
aa ′ =−f bacΦ−1

ba ′θ
c− f b

′

a′c ′Φ
−1
ab′ θ̃

c′ + δ̂Φ−1
aa′ . (141)

While this approach treats the action of the gauge-theory symmetries in an elegant way, the
full dictionary is known only at the linearized level. As it was shown in [256], the linearized
gravitational equations of motion can be obtained from the linearized gauge-theory ones. It
remains an open question how to include interactions in this formalism (which are naturally
incorporated from the perspective of scattering amplitudes).

Exercise 4.2. Use equation (141) to show that the fat graviton defined in equation (138) is
inert under nonabelian gauge transformations. Moreover, show that its local transformation
rules are a linear combination of linearized diffeomorphisms and gauge transformations of a
two-index antisymmetric tensor field.

4.3. Local symmetries

In section 2, we discussed in detail the emergence of diffeomorphism invariance and local
supersymmetry in gravity scattering amplitudes obtained from the double-copy construction.
The former is a direct consequence of the gauge invariance of the two single-copy gauge the-
ories and manifest CK-satisfying form for at least one of the two gauge theories [156, 173,
174]. The latter is a consequence of the gauge invariance of one of the single-copy gauge the-
ories, supersymmetry of the second, and manifest CK-satisfying form for at least one of them.
The on-shell supersymmetry Ward identities of the double-copy theory follow from those of
the single-copy parents. In this section we review how similar mechanisms lead to other local
symmetries in double-copy theories.

As discussed in the beginning of this section, scattering amplitudes in theories with local
symmetries that act nonlinearly on fields are invariant under the global part of the symmetry
group (if it acts linearly) as well as under its linearized local transformations. The converse,
however, does not necessarily hold: scattering amplitudes that are invariant under some global
symmetry group G and under abelian local transformations do not necessarily describe a QFT
with a local G symmetry. For example, they may correspond to a field theory with dim(G)
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abelian vector fields. It is of course not difficult to distinguish between these two possibil-
ities by inspecting the scaling dimension of certain scattering amplitudes, which is different
according to whether the theory involves abelian and nonabelian vector fields.

From the discussion in section 2, it is clear that, in any double-copy theory, each vector
field whose asymptotic states are realized as a product of a scalar- and a vector-field asymp-
totic states exhibits a Maxwell gauge symmetry, which is a consequence of the corresponding
gauge symmetry of the vector field in the single-copy parent theory23. In order to associate
these vector fields to a local nonabelian symmetry, the corresponding amplitudes must exhibit
several properties: (1) be invariant under the adjoint action of some a global nonabelian sym-
metry group on the asymptotic states of vector fields and (2) have the correct dimension to be
consistent with minimal coupling. The second property demands that a three-vector amplitude
have unit dimension,[

A(0)
3

]
= 1 , (142)

as in a standard nonabelian gauge theory. To obtain such amplitudes through double copy, at
least one of the single-copy parent theories must have amplitudes of dimension zero. Lorentz
invariance and locality imply then that the corresponding single-copy fields labeling such
amplitudes must be scalars. To satisfy property (1), the corresponding amplitude must be
momentum-independent and coming from a Lagrangian of the type

L= · · ·+ fabcFABCϕaAϕbBϕcC+ . . . , (143)

where the ellipsis stand for other interactions. This reasoning led to the double-copy realization
of YME theories, as described in [120]. It was also used in [257] to obtain amplitudes in the
same theory through a KLT-like construction. This procedure can be extended to give a double-
copy realization of spontaneous breaking of YMgauge symmetry of supergravity theory [122];
spontaneous breaking of this symmetry is related to explicit breaking of a global symmetry
of one of the single-copy parent theories. We shall review its applications more thoroughly in
section 5.3.7.

The same analysis implies that the double-copy fields that are realized as products of single-
copy fields with nonzero spin cannot couple directly to the nonabelian vector potential and
can couple only to its field strength. Indeed, in a conventional gauge theory, any three-point
amplitude with at least one field with nonzero spin has unit dimension. Thus, the correspond-
ing double-copy three-point amplitude has dimension 2 and cannot be given by a minimal-
coupling term.

The analysis above can be extended to interactions of gravitini with abelian or nonabelian
gauge potentials. Such interactions are the tell-tale of gauged supergravities—that is, super-
gravities in which part of the R symmetry is gauged. The gravitino minimal coupling around
Minkowski space is

L3 ∼ ψ̄µγ
µνρDνψρ , (144)

and, thus, as for the case of lower-spin fields, the two-gravitini-vector amplitudes have again
unit dimension. Since all three-point amplitudes in conventional gauge theories that could
have this spin content in their product have at least unit dimension, it follows that their double

23 We note that the single-copy origin of Maxwell gauge symmetry is not obvious if the vectors are realized as in
terms of two fermions.
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copy can only describe the coupling of gravitini and field strengths and thus, a more refined
argument is needed to accommodate minimal couplings of gravitini.

The observation that sidesteps the difficulty exposed above [123] is that, assuming that the
theory has a Minkowski ground state, the three-point amplitude following from the minimal
coupling of a gravitino with a vector field spontaneously breaks supersymmetry. Consequently,
some of the gravitini must be massive and therefore their double-copy realization must involve
a single-copy theory with massive vector fields and another one with massive fermions. The
former must therefore be a spontaneously-broken gauge parent theory while the latter turns
out to exhibit explicit supersymmetry breaking (this construction will be illustrated in detail
in section 5.3.8). The general pattern is that, through the double copy, explicit breaking of a
global symmetry can be promoted to spontaneous breaking of the local version of the same
symmetry.

4.4. Dualities

We have seen in section 4.2 that double-copy theories inherit all the global symmetries of
their single-copy parents and that some of the single-copy symmetries combine in nontrivial
ways (e.g. two supersymmetry generators combine to become a bosonic R-symmetry gener-
ator) to enhance the inherited symmetries. Lagrangian-based supergravity considerations sug-
gest the existence of much larger symmetries—the U-duality symmetries—which are typically
noncompact. In pure supergravities in various dimensions, these symmetries were originally
discussed in [258, 259]; their maximal compact subgroup is isomorphic to the on-shell R-
symmetry group of the theory. Depending on the dimension, they are either symmetries of
the Equations of motion (in four dimensions) or symmetries of the Lagrangian (e.g. in five
dimensions). In four dimensions, the field strengths and their duals form an irreducible repres-
entation of the U-duality group, which therefore contains electric/magnetic duality as one of its
generators. While the general understanding U-duality symmetries from the double-copy per-
spective is currently an open problem, their dimension-dependent properties suggest that their
realization should involve transformations that are not off-shell symmetries in the single-copy
parent theories.

Carrasco et al [260] showed that a universal generator of the U-duality groups of four-
dimensional supergravities can be realized as the difference of the little-group generators (heli-
city) of the two single-copy parent theories; the charges of the double-copy fields under this
generator are

Q= q
(
h− h̃

)
. (145)

Note that this transformation acts on the positive and negative helicity vector fields in the
double-copy theory with opposite phases. Because of this property, the above transforma-
tion can be identified as an electric/magnetic duality transformation acting on vector fields,
combined with additional transformations of other fields [261, 262]. It is not a priori clear
why this transformations should be a symmetry of the double-copy theory at tree level. One
can nonetheless check that for N ⩾ 5 it is part of the on-shell R symmetry of the theory and
thus part of the maximal compact subgroup of the U-duality. For example, decomposing the
positive-helicity (denoted with the index ‘+’ below) and scalar states ofN = 8 supergravity in

representations of the (SU(4), S̃U(4))U(1) subgroup of the SU(8) R symmetry (of which only
SU(4)× SU(4) is manifest in the double copy) one finds
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1+ = (1,1)0 ,

8+ = (4,1)q⊕ (1,4)−q
,

28+ = (6,1)2q⊕ (1,6)−2q⊕ (4,4)0 , (146)

56+ =
(
4̄,1
)3q⊕ (1, 4̄)−3q⊕ (6,4)q⊕ (4,6)−q

,

70 = (1,1)4q⊕ (1,1)−4q⊕
(
4̄,4
)2q⊕ (4, 4̄)−2q⊕ (6,6)0 .

As pointed out in [260], the U(1) charges resulting from this decomposition are exactly given
by equation (145). The decomposition of the negative helicity states is obtained by conjugating
the first four lines of equation (146); the U(1) charge changes sign under conjugation and may
be also identified as being proportional to the net number of indices of the states in table 2.
From this table, we also see that supersymmetry generators change theU(1) charge by 1/2 unit,
while the off-diagonal R-symmetry generators enhancing SU(4)× ˜SU(4)→ SU(8) change the
U(1) charge by one unit. While we illustrated here its relevance for N = 8 supergravity, the
U(1) symmetry described by equation (145) is required for obtaining the complete on-shell
R-symmetry for all N ⩾ 5 supergravities, as follows from the fact that the latter theories can
be obtained as consistent truncations of the former.

For 1⩽N ⩽ 4, this symmetry is present at tree level but it is anomalous [260, 263]. This
anomaly sources certain loop-level amplitudes which vanish at tree level. In the realization
of these theories as double copies with one non-supersymmetric gauge-theory factor, these
anomalous amplitudes [260] can be traced to a self-duality anomaly of YM theory [264].When
realized as double copies of supersymmetric gauge theories, the identification of anomalous
amplitudes is more subtle: they arise from µ-terms24 which, in each gauge theory, give only
O(ϵ) terms but give finite terms only after the double copy [20]. It turns out [265] that, at least
forN = 4 supergravity, the anomalous amplitudes can be canceled at one loop by the addition
of a finite local counterterm to the classical action; this counterterm restores the U(1) sym-
metry at the expense of breaking other symmetries25 that do not appear to impose any obvious
selection rules on amplitudes. The same counterterms also cancels the two-loop anomalous
amplitudes [266]. The full consequences of these cancellations remain to be explored26.

It is instructive to consider theU(1) transformation with charges (145) vis à vis the observa-
tion discussed in section 4.2 that the same supergravity theorymay have (two or perhaps more)
different double-copy realizations. While a general analysis is yet to be carried out, it is not
difficult to see on a case-by-case basis that this symmetry may play different roles. To this end,
consider N = 4 supergravity with two vector multiplets, realized as (N = 4 SYM)×(YM+2
scalars) and (N = 2 SYM)×(N = 2 SYM), both of which can be obtained as different (orbi-
fold) truncations27 of the double-copy constructions ofN = 8 supergravity. In the former, the
SU(4) R symmetry in manifest and the U(1) symmetry is part of the SU(1,1) duality group of
N = 4 supergravity. In the latter, only SU(2)× SU(2)⊂ SU(4) is manifest and the U(1) sym-
metry is required to enhance it to the complete SU(4)R symmetry. In this formulation the origin
of U(1)⊂ SU(1,1) is not clear. Similarly, the further enhancement to the SO(6,2)× SU(1,1)

24 µ-terms are numerator terms proportional to the extra-dimensional parts of loop momenta. Such terms vanish
identically if the integrand is evaluated in four dimensions.
25 They are the two generators that, together with U(1), form the SU(1,1) classical U-duality group of the theory.
26 For N = 0 supergravity, defined as the double copy of two pure YM theories, this symmetry is also present; it
represents theU(1) rephasing of the dilaton-axion. It survives at the quantum level because there are no fields that can
contribute to its anomaly.
27 See section 5.2.2 for details on field-theory orbifolds in this and related contexts.
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complete U-duality group (see section 5) is currently an open problem, on the same footing
as SU(8)→ E7(7) in N = 8 supergravity28.

The definition of this universalU(1) symmetry in (145), does not single out supergravities as
the only double-copy theories that exhibit this symmetry. There exist many non-gravitational
four-dimensional field theories exhibiting electric/magnetic duality; for all those that have a
double-copy realization, the transformations of the asymptotic states under duality have the
same form (145). An example is the Born–Infeld theory; in this case duality implies that only
split-helicity amplitudes (i.e. amplitudes with an equal number of positive and negative vec-
tor fields) are nonvanishing. While this can be proven to all multiplicities through various
techniques [261, 262], it would be interesting to understand this property from the perspect-
ive of the double-copy construction. Quite generally, it remains an interesting open question to
understand the consequences of duality from the perspective of the single-copy parent theories.

The one-loop all-multiplicity all-plus and single-minus amplitudes of the Born-Infeld the-
ory were constructed using D-dimensional unitarity and supersymmetric decomposition in
[269] and integrated using dimension-shifting relations in [270]. The amplitudes in both
classes turn out to be nonvanishing, implying that, similarly to N = 4 supergravity, duality
appears to be anomalous in the non-supersymmetric Born-Infeld theory in this regularization
scheme. It remains an open question [269] whether the anomaly is physical or whether it can be
removed by a finite local counterterm at the expense of other symmetries. Arguments presen-
ted in [262] suggest that it should be possible to restore duality with a counterterm that breaks
Lorentz invariance.

4.5. Soft theorems as tests of enhanced global symmetries

As described at length in section 4.1, supergravity considerations suggest the existence of a
much larger symmetry group then the one manifestly realized on on-shell scattering amp-
litudes. Part of this (U-duality) group acts nonlinearly and thus does not impose standard
selection rules on scattering amplitudes; consequently, the corresponding generators cannot
be realized manifestly (i.e. linearly) on scattering amplitudes simultaneously with supersym-
metry and Lorentz invariance29. Because of these features, it is not currently known how to
identify the single-copy origin of the noncompact U-duality transformations. The discussion
in section 4.1 and the ability to compute scattering amplitudes efficiently (both at tree and loop
level) gives us an alternative route to probe the existence of these symmetries, borrowing from
the supergravity knowledge that scalar fields of the theory parametrize coset space of the form
G/H, where G is the U-duality group and H its maximal compact subgroup. In this section,
departing from the philosophy in the rest of this review, we shall assume that supergravity
amplitudes are available (through the double-copy or by some other means) and describe how
to identify the hidden existence of the noncompact U-duality symmetries.

28 For supergravity theories for which the scalar fields parametrize the locally-homogeneous spaceG/HwithH being
the maximal compact subgroup ofG, the noncompact part ofG can be identified onceH and its representations carried
by scalars are determined [267]; see also [239, 240, 268] for further details from the double-copy perspective at the
noninteracting level. It is nevertheless not clear how to construct the noncompact G-generators in terms of operators
in the single-copy theories.
29 We note that a Lagrangian formulation of N = 8 that has manifest E7(7) symmetry was constructed in [271] and
further explored in [272]. This formulation, however, breaks manifest Lorentz invariance. Moreover, diffeomorphism
transformations on vector fields are realized in a nonstandard way. It would be interesting to explore the scattering
amplitudes of N = 8 supergravity in this formulation and compare them to the standard form.

53



J. Phys. A: Math. Theor. 57 (2024) 333002 Topical Review

This problem was first discussed in detail in [222], where it was shown that the existence of
nonlinearly realized symmetries of this type can be identified through the vanishing of single-
soft-scalar limit of scattering amplitudes, while the precise group structure can be inferred from
the limit in which the momenta of two scalar fields become simultaneously soft.We review this
construction, which was also extended to other nonlinearly-realized or spontaneously-broken
symmetries, as well as to fields with nontrivial Lorentz-transformation properties, in [220, 224,
228, 231, 236]. A thorough analysis of the soft limits in effective field theories was carried out
in [229, 273].

Consider, following [222], a symmetry groupGwith generators falling into two sets, T and
X, broken to the subgroup H generated by T. Schematically, the commutation relations are

[T,T]∼ T , [T,X]∼ X , [X,X]∼ T . (147)

From a Lagrangian point of view (if one is available), there exists a (Nambu-Goldstone) scalar
for each of the broken generators X. In general, this Lagrangian has many degenerate vacua;
moving from one to another amounts to giving nonzero vacuum expectation values (VEVs)
to the Nambu–Goldstone scalars. From the perspective of scattering amplitudes, a vacuum-
expectation value of a field corresponds to a condensate of the zero-momentum mode. Thus,
exploring the change in vacuum state is equivalent to exploring the properties of scattering
amplitudes in the zero-momentum limit for some of the scalars.

A similar conclusionmay be reached by revisiting the argument in section 4.1 showing that,
for generic momentum configurations, LSZ reduction renders scattering amplitudes insensit-
ive to nonlinear field transformations. Assuming a generic transformation rule δϕ ∼ ϕk⩾2, the
same argument implies that, if all but one of the fields on the right-hand side of the transform-
ation carry vanishing momentum, then the transformed Green’s function has the same poles as
the original one and therefore survives the LSZ reduction. Thus, the nonlinear parts of a sym-
metry transformation should have a reflection on higher-multiplicity scattering amplitudes in
which the additional asymptotic states have vanishing momenta.

Starting with some vacuum state |0〉, a neighboring one is obtained through a G transform-
ation with parameters given by the VEVs of the old scalars in the new vacuum:

|0〉θ = eiX
αθα |0〉 . (148)

Since the G-symmetry requires that amplitudes around the two vacua be the same, the conclu-
sion is therefore that the scattering amplitudes with at least one zero-momentum scalar field
vanish identically. For a single soft scalar, this reproduces the celebrated Adler zero [209].
One may turn the single-soft-scalar limit argument around and infer [121] that, in a theory
that has vanishing single-soft-scalar limits, the scalar fields belong to a locally-homogeneous
space (i.e. a space that has a transitive local group action).

A more involved argument [222] extracts the structure constants of the broken symmetry
group from the double-soft-scalar limit of scattering amplitudes:

Mn+2 (1,2,3, . . . ,n+ 2)
p1,p2→0

−−−−−−−−→ 1
2

n+2∑
i=3

pi · (p2 − p1)
pi · (p2 + p1)

TMn (3, . . . ,n+ 2) , (149)

where T is the G-generator given by the commutator of the X generators corresponding to the
two soft scalars. The momenta of the two scalars should be taken soft at the same rate.

Exercise 4.3. As we discussed in section 4.1 we have seen that scattering amplitudes with
generic momenta are insensitive to nonlinear terms in symmetry transformations because the
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LSZ reduction projects out their contribution. An interesting unexplored problem is the contri-
bution of terms with special momentum configurations. Consider a nonlinear symmetry trans-
formation whose nonlinear parts contains bilinears and cubic terms. Assuming that only one of
the fields in the nonlinear terms carries nonzero momentum, explore the features of the single-
and double-soft-scalar limits of amplitudes by applying LSZ construction to Green’s functions
acted upon by such special transformations.

The construction reviewed above does not refer to any specific order in perturbation theory
and thus relies on absence of U-duality anomalies. Its conclusions have been used to constrain
and characterize possible counterterms ofN = 8 supergravity, which should be such that their
contributions to scattering amplitudes have soft limits following the same pattern. Through
this reasoning it was shown that a suggested three-loop R4 counterterm is inconsistent with
the E7(7) symmetry of N = 8 supergravity [273]. Along the same lines, [274] argued that the
first deformation ofN = 8 supergravity that is consistent with the soft-scalar behavior required
by E7(7) symmetry can appear at seven loops and corresponds to a supersymmetric completion
of a D8R4 operator.

Generic diffeomorphism transformations are nonlinear. As we discussed in the beginning
of this section and in section 4.4, infinitesimal/linearized diffeomorphisms are symmetries
of scattering amplitudes: shifting the graviton polarization tensor ε(p)µν 7→ ε(p)µν + p(µΛν)

with Λµ being the parameter of the transformation, leaves amplitudes invariant. By defini-
tion, large diffeomorphisms do not have a linearized approximation; the BMS transformations
(named after Bondi, van der Burg, Metzner and Sachs [275–277]) arise, in a certain gauge, as
residual diffeomorphism symmetries of asymptotically-flat spacetimes which do not fall off
at infinity. It was argued in [278–280] that the Ward identities of these symmetries imply the
tree-level single-soft-graviton behavior of scattering amplitudes. Quantum corrections have
been discussed in [235, 281], with the conclusion that they affect the linear order in the small
momentum if all other momenta are generic. The identification of the BMS algebra in the
double-soft-graviton limit of scattering amplitudes was discussed in [227].

Other symmetries can also be probed through double-soft limits. For example, by explicitly
inspecting the tree-level amplitudes of a certain Akulov–Volkov theory [223, 224] showed that
the double-soft-goldstino limit yields the supersymmetry algebra. Moreover, for 4⩽N ⩽ 8
supergravities in four dimensions and forN = 16 supergravity in three dimensions, tree-level
scattering amplitudes have a universal behavior in the double-soft-fermion limit which is ana-
logous to the scalar one. The photon and graviton soft theorems were discussed from an
effective-field-theory standpoint in [229], where a complete classification of local operators
responsible for modifications of soft theorems at subleading order for photons and subsub-
leading order for gravitons was derived.

The original discussion [222] of the U-duality symmetries in supergravity and its sub-
sequent generalizations assumed absence of anomalies of the spontaneously-broken sym-
metry. Possible anomalies have been included in this framework in [228], from the perspect-
ive of the effective action; the conclusion of the analysis is that, while the single-soft limits
receive corrections signaling the anomalous breaking of the symmetry, double-soft limits are
unaffected. This is probably a reflection of the anomaly (defined as the nonvanishing of the
divergence of the symmetry current) being invariant under the classical symmetry.

5. A web of double-copy-constructible theories

As we have seen in the previous sections, the duality between color and kinematics and the
double-copy construction express amplitudes of gravitational theories in terms of simpler
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Figure 17. Schematic rendition of the web of theories. Nodes represent the main double-
copy-constructible theories discussed in this section, which include gravitational the-
ories (rectangular nodes), string theories (oval nodes) and non-gravitational theories
(octagonal nodes). Undirected links are drawn between theories that have a common
gauge-theory factor in their construction (different gauge-theory factors correspond to
different colors). Directed links connect theories obtained by modifying/deforming both
gauge-theory factors (e.g. adding matter, assigning VEVs). Details are given throughout
section 5.3.

building blocks from gauge theory. It has become clear that this property is not an accident of
few very special theories, but extends to large classes of gravitational and non-gravitational
theories. Seemingly unrelated theories have been shown to share—and thus be connected
by—the same set of building blocks, yielding a ‘web of theories’ which can be analyzed with
double-copy methods (see figure 17). In this section, we aim to probe this web more in detail.
Particularly prominent results will be the classification of homogeneous N = 2 Maxwell-
Einstein supergravities [282], which can be reproduced and streamlined by double-copy meth-
ods, the double-copy construction for YME [120, 125, 257, 283] and gauged supergravities
[123, 284], and the construction for Dirac–Born–Infeld (DBI) theories [125, 285].Wewill also
see that some of the building blocks which appear, for example, in the double-copy construc-
tion for conformal supergravities play a role in a family of ‘stringy’ double-copy constructions.
Similar webs of theories have appeared, for example, in the contexts of the scattering equations
formalism [125], amplitude transmutation [285], and soft limits [286].

The simplest examples of double-copy-constructible theories we have discussed so far
includeN ⩾ 4 supergravity and Einstein gravity coupled to a dilaton and two-form field. Once
a double-copy structure has been established for a given gravitational theory, it is relatively
straightforward to obtain the tree-level amplitudes of its consistent truncations. In this way, we
can study amplitudes in a handful of additional theories. At the same time, it is well-known
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Table 3. Freedom in specifying the two-derivative action in extended (ungauged) super-
gravities with 2⩽N ⩽ 8 in four dimensions.

Supergravities Free parameters Scalar geometry

N > 4 supergravities None Symmetric spaces
N = 4 supergravity Number of vector multiplets Symmetric space
N = 3 supergravity Number of vector multiplets Symmetric space
N = 2, vector multiplets, 5D
uplift

CIJK-tensor Very-special Kähler geometry

N = 2, vector multiplets, 4D
only

Free degree-two holomorphic
function (prepotential)

Special Kähler geometry

N = 2, hypermultiplets, from
c-map

CIJK-tensor or prepotential Special/very special quaternionic
Kähler geometry

N = 2, hypermultiplets, general See text Quaternionic Kähler geometry

that supergravity theories with N < 4 have a very rich structure which goes beyond the few
theories that can be understood as truncations of more supersymmetric gravities. Ungauged
supergravities with N ⩾ 5 and two-derivative actions are unique. Starting from N = 4, it
becomes possible to have various matter contents. While N = 3,4 supergravities are com-
pletely specified by the number of vector multiplets, additional information on interactions
needs to be provided for theories with N = 2 supersymmetry. Supergravity theories gener-
ically involve scalar fields, which can be regarded as the coordinates of a manifold. While
extended N > 2 supersymmetry allows only a discrete set of symmetric scalar manifolds,
supersymmetry poses less stringent constraints whenN ⩽ 2. Specifically, in four dimensions,
supergravities with vector multiplets possess special-Kähler scalar manifolds, while the geo-
metry is quaternionic-Kähler in the case of supergravities with hypermultiplets [287].

In table 3, we list the information which needs to be provided to specify unambiguously
ungauged supergravity theories with 2⩽N ⩽ 8, together with the corresponding geometries.
It should be noted that theories with N = 2 have different geometrical properties depending
on whether or not they have a five-dimensional uplift. Theories with vectors multiplets which
can be lifted to five dimensions are uniquely specified by a symmetric constant tensor CIJK
whose indices run over the total number of vector fields. Since this tensor can be obtained
from inspecting specific three-point interactions, supergravities of this sort have the pleasant
property of being entirely constructible from their three-point amplitudes, a property that we
will utilize extensively later in this section. Intrinsically-four-dimensional theories are signi-
ficantly less constrained. They are fully specified by a homogeneous degree-two holomorphic
function—the prepotential—which is otherwise arbitrary. Theories with hypermultiplets pos-
sess even more freedom: N = 2 supersymmetry only require the hypermultiplet scalar mani-
fold be quaternionic-Kähler (that is, to admit an hermitian metric and three complex structures
which satisfy the quaternionic algebra). At the same time, a subset of these theories can be
regarded as the image of supergravities with vector multiplets under an operation known as
c-map; specifying these theories requires the same information as their vector counterparts.
When studying supergravities with reduced supersymmetry it is important to keep in mind
how this freedom is reflected in the gauge-theory data entering the double-copy construction.

Supergravities studied in the double-copy context have thus far been mostly theories of the
Maxwell-Einstein class, i.e. theories in which all vector fields are abelian and there are no
charged matter fields. From a Lagrangian perspective, supergravities with nonabelian gauge
interactions have also been studied, see [287, 288] for reviews. They can be further divided into
YME theories and proper gauged supergravities. In the former class, a nonabelian subgroup
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of the isometry group of the scalar manifold is promoted to a gauge symmetry. In the latter
case, part of the R symmetry is promoted to gauge symmetry. This procedure, customarily
referred to as gauging, does not introduce additional vector fields. It minimally couples some
of the existing vector fields while also giving them nonabelian self-interactions and extending
the resulting theory so that it is invariant under the required number of supercharges. In an
amplitude context, YME theories have been studied from a variety of perspectives, including
scattering equations [125, 283, 289], collinear limits of gauge theory amplitudes [290], BCFW
recursion [214, 216], string theory [133, 134], ambitwistor strings [140] and, of course, the
double-copy construction [120]. Through this work, it has become clear that amplitudes in
such theories may be written as linear combinations of (color-ordered) amplitudes or ordinary
YM theory [133, 214, 216, 289]. We will see later in this section that the above property has
a very straightforward double-copy interpretation. Gauged supergravities display a consider-
ably more involved structure. Once a subset of the R symmetry is gauged (i.e. some of the
R-symmetry generators appear in the covariant derivatives), supersymmetry requires a scalar
potential to appear in the theory. According to whether the potential vanishes or not at a crit-
ical point, the theory admits Minkowski, Anti-de Sitter or de Sitter vacua. Minkowski vacua
break supersymmetry spontaneously (partly or completely), resulting in massive gravitini. The
study of gauged supergravities in the double-copy framework is still in the early stages, but
encouraging results are available which will be reviewed later in this section.

A growing body of work seems to suggest that the existence of a double-copy structure is not
merely an accidental feature of highly-supersymmetric theories, but a generic property of very
large classes of gravities. To determine whether the double-copy property is a hidden struc-
ture of gravitational interactions it is necessary to identify the gauge-theory counterparts of
all data required to specify a generic gravity theory, whether it be ungauged, YME or gauged.
While this program has not yet been completed, important progress has been made in formu-
lating double-copy constructions for theories which include, among others, pure supergrav-
ities, homogeneous N = 2 Maxwell-Einstein supergravities, homogeneous N = 2 theories
with hypermultiplets, large classes of YME or gauged theories, and conformal supergravit-
ies. A list of ungauged and gauged theories for which a double-copy construction is currently
known can be found in tables 4 and 5, respectively. Gauge theories with fields in various mat-
ter (non-adjoint) representations of the gauge group are a rather common building block for
this class of extended constructions. Useful tools for treating matter representations in a way
that makes manifest color and numerator relations will be introduced in section 5.2. We will
then discuss systematics of the process of identifying the gravity theory given, through double
copy, by a pair of gauge theories and study several examples in section 5.3.

Double-copy constructibility is a property that goes beyond gravitational theories. Various
theories without a graviton, most prominently some variants of the DBI theory have also been
shown to possess this property (see table 6).We shall briefly review their construction in section
5.3.11.

5.1. The rules of the game

To capture as many gravities as possible, we need to consider gauge theories which are more
general than the ones discussed at length in previous sections. At the same time, having in
mind a double-copy construction which leads to a sensible gravity theory with desirable basic
properties, it makes sense to impose some requirements on the gauge theories under consid-
eration. Some additional requirements will also be imposed for simplicity reasons; in both
cases, one can contemplate generalizations in which some of the stated rules of the game bent
or broken.
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Table 4. Non-exhaustive list of ungauged gravities and supergravities for which a double-copy construc-
tion is presently known. Theories are given in four dimensions unless otherwise stated.

Gravity Gauge theories References Variants and notes

N > 4 supergravity • N = 4 SYM theory
• SYM theory (N = 1,2,4)

[1, 2, 31,
291, 292]

N = 4 supergravity
with vector
multiplets

• N = 4 SYM theory
• YM-scalar theory from

dim. reduction

[1, 2, 31,
293]

• N = 2×N = 2 construc-
tion is also possible

Pure N < 4
supergravity

• (S)YM theory with matter
• (S)YM theory with ghosts

[188] • Ghost fields in fundamental
rep

Einstein gravity • YM theory with matter
• YM theory with ghosts

[188] • Ghost/matter fields in
fundamental rep

N = 2
Maxwell–Einstein
supergravities
(generic family)

• N = 2 SYM theory
• YM-scalar theory from

dim. reduction

[120] • Truncations to N = 1,0
• Only adjoint fields

N = 2
Maxwell–Einstein
supergravities
(homogeneous
theories)

• N = 2 SYM theory with
half hypermultiplet

• YM-scalar theory from
dim. reduction with matter
fermions

[121, 294] • Fields in pseudo-real reps
• Include Magical

Supergravities

N = 2 supergravities
with hypermultiplets

• N = 2 SYM theory with
half hypermultiplet

• YM-scalar theory from
dim. red. with extra matter
scalars

[121, 240] • Fields in matter representa-
tions

• Construction known in
particular cases

N = 2 supergravities
with vector/
hypermultiplets

• N = 1 SYM theory with
chiral multiplets

• N = 1 SYM theory with
chiral multiplets

[239, 241,
295]

• Construction known in
particular cases

N = 1 supergravities
with vector
multiplets

• N = 1 SYM theory with
chiral multiplets

• YM-scalar theory with
fermions

[188, 239,
241, 295]

• Fields in matter reps
• Construction known in

particular cases

N = 1 supergravities
with chiral multiplets

• N = 1 SYM theory with
chiral multiplets

• YM-scalar with extra
matter scalars

[188, 239,
241, 295]

• Fields in matter reps
• Construction known in

particular cases

Einstein gravity with
matter

• YM theory with matter
• YM theory with matter

[1, 188] • Construction known in par-
ticular cases

(Continued.)
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Table 4. (Continued.)

R + ϕR2 + R3

gravity
• YM theory + F3 + F4 +
. . .

• YM theory + F3 + F4 +
. . .

[296] • Extension to N ⩽ 4 repla-
cing one of the factors by
undeformed SYM theory

Conformal
(super)gravity

• DF2 theory
• (S)YM theory

[152, 153] • N ⩽ 4
• Involves specific gauge

theory with dimension-six
operators

3D maximal
supergravity

• BLG theory
• BLG theory

[119, 243,
297]

• 3D only

Table 5. Gauged/YME gravities and supergravities for which a double-copy construc-
tion is presently known.

Gravity Gauge theories References Notes

YME supergravities • SYM theory [120, 125, 133,
134, 140, 214, 216,
257, 283, 285, 289]

• Trilinear scalar
couplings

• YM + ϕ3 theory • N = 0,1,2,4 possible

Higgsed supergravities • SYM theory (Coulomb
branch)

[122] • N = 0,1,2,4 possible

• YM + ϕ3 theory with
extra massive scalars

• Massive fields in
supergravity

• 0⩽N ⩽ 8 possible
U(1)R gauged
supergravities

• SYM theory (Coulomb
branch)

[123] • SUSY is spontaneously
broken

• YM theory with SUSY
broken by fermion masses

• Only theories with
Minkowski vacua

Gauged supergravities
(nonabelian)

• SYM theory (Coulomb
branch)

[284] • SUSY is spontaneously
broken

• YM + ϕ3 theory with
massive fermions

• Only theories with
Minkowski vacua

First of all, for simplicity, we choose to focus on theories for which amplitudes can be organ-
ized exclusively in terms of cubic graphs. This is a natural generalization of the gauge theories
from the previous sections, which possess this property, and is a natural choice for describ-
ing gravities that are entirely specified by their three-point interactions. Hence, we restrict the
space of gauge theories under consideration according to the following rule:

Working rule 1: consider gauge theories with only cubic invariant tensors or,
alternatively, theories for which amplitudes can be organized in terms of cubic
graphs.

Allowed invariant tensors will include, for example, structure constants, representation
matrices and cubic Clebsch–Gordan coefficients. It should be emphasized that the gauge the-
ories under consideration can and will possess quartic vertices. Our requirement constrains
higher-point interaction vertices to be made of color building blocks which are cubic. If
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this property is satisfied, amplitudes can be expressed in terms of cubic graphs by includ-
ing a suitable number of inverse propagators in the numerator factors. While this rule is
quite desirable for the sake of simplicity, it can in principle be broken. A notable viola-
tion are the Bagger–Lambert–Gustavsson (BLG) and Aharony–Bergman–Jefferis–Maldacena
(ABJM) theories, which are most naturally organized in terms of quartic graphs [119, 243,
297].

Within the class of cubic theories, however, we need to consider cases which are as general
as possible. This motivates the second rule:

Working rule 2: the gauge theories will include matter fields transforming in
general (not necessarily irreducible) representations of the gauge group (which
is not necessarily semisimple). Only one adjoint representation will be allowed.

Considering general gauge groups and representations will allow us to capture very large famil-
ies of (super)gravities which would not otherwise be accessible through double-copy methods.
The main observation is that there is nothing in the double-copy construction that requires that
representations be divided into irreducible blocks. At the same time, we want to obtain theories
with a single graviton. This forces us to combine all gauge-theory gluons in a single adjoint
representation, even when the gauge group is the product of several factors each possessing its
own adjoint representation. In case of more than one semi-simple factor in the gauge group,
we need to take all gauge coupling constants to be the same. Since all fields in the gauge theory
have canonical couplings with gluons, our second rule can also be regarded as the double-copy
incarnation of the equivalence principle.

Additionally, massive fields are typically assigned to non-adjoint representations such that
all the fields in a given representation have the same mass. This will be accompanied by mass-
matching conditions of the spectrum of the two sides of the double copy.

Combining the first two rules, we obtain a generic amplitude structure that involves cubic
graphs in which internal and external legs carry definite representations of the gauge group.
Cubic vertices between three representations are allowed only when it is possible to extract
a gauge singlet in their tensor product (or, alternatively, there exist a nonvanishing invariant
tensor with the three corresponding indices). Whenever a vertex involves two lines carrying
the same representation, its symmetry or antisymmetry will be dictated by the representations
under consideration (real representations will imply antisymmetry, pseudo-real representa-
tion will imply symmetry). Additionally, color factors will obey three-term identities follow-
ing from the Jacobi relations, the generators’ commutation relations and additional algebraic
relations which may also involve the Clebsch–Gordan coefficients. Consequently, the duality
between color and kinematics must to be imposed in the following way:

Working rule 3: numerator factors in a duality-satisfying presentation of an
amplitude need to have the same algebraic properties as the color factors. This
includes symmetry properties as well as obeying two- and three-term identities.

As discussed in section 2, this rule ensures that the gravity theory obtained through double
copy is invariant under linearized diffeomorphisms. If there exists (massive) vector fields
that transform in non-adjoint representations, additional gauge-group Lie algebra relations are
needed to guarantee that gauge invariance aside from Jacobi and commutation relations. The
same relations should be imposed on the kinematic numerators for all fields that transform
in the same representations as the vectors. For some classes of constructions, it will be con-
venient to consider a slight variant of Working Rule 3 which instructs to impose the algebraic
properties of the color factors of one theory on the numerators of the other theory entering the
double-copy construction (and vice versa).
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Finally, we need a procedure for consistently pairing representations in the two gauge
theories when we substitute color factors with numerator factors following the double-copy
prescription. A priori, several choices are possible. However, the following criterion is con-
venient, elegant and easy to implement:

Working rule 4: each state in the double-copy (gravitational) theory cor-
responds to a gauge-invariant bilinear of gauge-theory states. For this to be
possible, we will identify the gauge groups of the two theories entering the
construction.

A concrete consequence of this rule is that gauge-theory states in the adjoint representation
will double copy among themselves, but not with states in matter non-adjoint representations.
Similarly, states in two matter representations will be combined only when the tensoring of
the representations includes a singlet. Considering general graphs, two numerators will be
combined only when working rule 4 is satisfied by each internal and external line. We will see
that this requirement is essential for preventing the gravity from the double copy from having
too many gravitini.

The space of all possible gauge theories is quite vast (though perhaps not quite as vast as that
of gravitational theories). The purpose of the working rules we laid out is to restrict this space
to a subset which is sufficiently large to capture a considerable number of theories and yet suffi-
ciently small to allow a thorough analysis. It is not difficult to enlarge it by relaxing some of the
rules. We emphasize that many gauge theories which might be naively rejected as unphysical,
such as theories with ghost fields, may be admissible—even in some sense necessary—from
a double-copy perspective. This is because, through double copy, gauge-theory data is decon-
structed and reassembled in a highly-nontrivial way and undesirable features of gauge theories
can be rendered harmless by this process.

The rules stated in this section should be slightly modified when constructing theories that
are not gravitational. In this case, the gauge group should be replaced by a global symmetry
group in the theories entering the construction.

5.2. Tools for extensions

Having established the general rules of the game, we will now analyze particular examples.We
start by considering a YM-scalar theory with only adjoint fields and trilinear cubic couplings
[120]. Its Lagrangian can be written as

LYM+ϕ3 =−1
4
F â
µνF

µνâ+
1
2

(
Dµϕ

A
) â (

DµϕA
) â− g2

4
f âb̂êf êĉd̂ϕAâϕBb̂ϕAĉϕBd̂

+
1
3!
λg FABCf âb̂ĉϕAâϕBb̂ϕCĉ . (150)

The indices â, b̂, ĉ are gauge-group adjoint indices. A,B,C= 1, . . . ,n are global indices carried
by the scalars30. The theory has a SO(n) global symmetry which is broken by the trilinear coup-
lings to the subgroup preserved by the FABC tensor. Field strengths and covariant derivatives
are

F â
µν = ∂µA

â
ν − ∂νA

â
µ + gf âb̂ĉAb̂µA

ĉ
ν ,

30 In this section, we frequently use hatted indices for gauge-group indices of the gauge theories that enter the double
copy, to help distinguish them from global indices and gauge indices that appears in gravitational theories.
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(
Dµϕ

A
) â

= ∂µϕ
Aâ+ gf âb̂ĉAb̂µϕ

Aĉ . (151)

To understand the constraints imposed by CK duality on the parameters of this theory we first
analyze the four-scalar amplitudes. There is a clean separation between the contribution from
the trilinear scalar coupling and the one from gluon exchange (the latter including the contact
term). After a short calculation, the s-channel numerator can be written as

ns = δABδCD (t− u)−
(
δACδBD− δADδBC

)
s−λ2FABEFECD , (152)

while the other numerators can be obtained by relabeling the external lines. The three corres-
ponding color factors obey standard Jacobi relations; imposing the duality between color and
kinematics then results in the condition

λ2
(
FABEFECD+FBCEFEAD+FCAEFEBD

)
= 0 . (153)

The λ0 part of the numerator factors satisfies the duality automatically. This follows from the
YM-scalar theory with λ= 0 being the dimensional reduction of a pure YM theory in higher
dimension, which is known to satisfy the duality at arbitrary multiplicity. At order λ2, the
kinematic Jacobi relations imply that FABC-tensors must themselves obey Jacobi relations.
This implies that they can be regarded as the structure constants of some global group which
is unrelated to the gauge group. What remains to be done is to consider amplitudes involving
vectors and amplitudes at higher points. It turns out that no further constraint on the theory
appears. It has been explicitly checked that the Lagrangian obeys CK duality up to at least six
points [120].

A second example which we review in detail is YM theory with complex scalars in a matter
representation [122]; an analogous example involvingmatter fermionswas discussed in section
2. For such a field content, trilinear couplings are forbidden by gauge symmetry; the first
possible scalar self-interaction is quartic, so the Lagrangian is

Lscalar = DµφD
µφ − a

g2

2

(
φt âφ

)(
φt âφ

)
, (154)

where φ is a complex scalar, t â are representation matrices and a is a constant. Products
are understood in the sense of matrix multiplication, as representation indices are not dis-
played explicitly to avoid cluttering the expression. The two-scalar two-gluon amplitude in this
theory is31

A4

(
1φı̂,2φȷ̂,3A

â,4Ab̂
)

= ig2
{(

4(ε4 · k1)(ε3 · k2)+ t(ε3 · ε4)
t

(
t âtb̂
) ı̂

ȷ̂
+(3↔ 4)

)
+i

4(ε3 · k1)(ε4 · k2)− 4(ε4 · k1)(ε3 · k2)+ (u− t)(ε3 · ε4)
s

f âb̂ĉ
(
tĉ
) ı̂

ȷ̂

}
, (155)

where we have displayed explicitly the gauge representation indices ı̂, ȷ̂. As a consequence
of the commutation relation for the group generators, the color factors obey a three-term
identity, [

t â, tb̂
]
= i f âb̂ĉtĉ → ct− cu = cs . (156)

31 We use the slightly-nonstandard notation, e.g. An
(
1Φ1, . . . ,nΦn

)
, which displays explicitly the external states.
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It is easy to verify that the same identity is automatically satisfied by the numerators in the
above amplitude,

nt− nu = ns . (157)

This is possibly the simplest nontrivial example of the duality between color and kinematics
for theories with non-adjoint fields. While CK duality for the two-scalar two-gluon amplitude
is a rather straightforward generalization of the case of amplitudes with fields in the adjoint
representation, the four-scalar amplitude exposes new subtleties. This amplitude is

A4
(
1φı̂,2φȷ̂,3φk̂,4φ̂l

)
= ig2

{
s− u− a t

t

(
t â
) ı̂

l̂

(
t â
) ȷ̂

k̂
+(3↔ 4)

}
. (158)

Due to the scalar being complex, the amplitude involves only two terms; in principle, we may
consider imposing the extra identity(

t â
) ı̂

l̂

(
t â
) ȷ̂

k̂
−
(
t â
) ȷ̂

l̂

(
t â
) ı̂

k̂
= 0 . (159)

However, this identity is not satisfied except for special gauge groups and representations, so
it would seem that our Working Rule 3 does not compel us to impose (159) in the general
case. At the same time, the numerator factors can easily obey the corresponding two-term
kinematic identity if we fix a= 1. Whether of not this choice should be made depends on the
situation in which the kinematic numerators are used. For example, wemight choose to use this
theory in a double-copy construction that involves massiveW fields in a matter representation
(we will see that this is required, for example, for constructing Higgsed supergravities). In
these cases, the spontaneously-broken gauge symmetry results in Ward identities that can be
satisfied only if the massive vectors belong to specific representations for which color factors
obey additional relations which are of the form (159). Hence, it will be appropriate to impose
two-term identities on the numerators of the second gauge theory entering the double copy.
In contrast, whenever (159) is not necessary for deriving some Ward identity in the gravity
theory, there is no particular reason for imposing the corresponding numerator identity.

So far, we have presented two examples of theories which obey CK duality. In some cases,
it is sufficient to write down simple gauge theories, verify that they obey the duality up to at
least a certain multiplicity, and feed the corresponding numerators in the double-copy appar-
atus. However, this approach quickly becomes inconvenient as the number of matter repres-
entations increases. Hence, we would like to have systematic tools for obtaining more general
theories which obey the duality from simpler ones. These tools will be reviewed in the next
three subsections.

5.2.1. Breaking representations into pieces. A first step for generating theories with fields
transforming in matter representations in a way that preserves the duality is to start from the
adjoint representation of a larger gauge group and decompose it into representations of a sub-
group. This amounts to splitting the adjoint index of the larger groups Â as

Â → (â, α̂1, . . . , α̂p) , (160)

where â is the adjoint index of the smaller subgroup and α̂1, . . . , α̂p are indices of other repres-
entations. While it is always possible to choose them to correspond to irreducible representa-
tions, we will not do so here. The structure constants of the original gauge group are broken
down as follows:{

f ÂB̂Ĉ
}

→
{
f âb̂ĉ, f aαi β̂i , f α̂i β̂jγ̂k

}
. (161)
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Figure 18. Breaking of an adjoint representation into representations of a smaller sub-
group. Curly lines denote the adjoint representation of the smaller group; double lines
denote matter representations.

Here f âb̂ĉ are the structure constants of the unbroken subgroup, f âα̂i β̂i give the representation
matrices of the ith matter representation and f α̂i β̂jγ̂k give Clebsch–Gordan coefficients for rep-
resentations i, j, and k. We note that f âb̂α̂ = 0 from closure of the algebra of the unbroken gauge
group. The notation above suggests that we have assumed the matter representations above to
be real; the complex case can be treated analogously by introducing a pairing between some
representations i, j,k and their conjugate, denoted as ı̄, ȷ̄, k̄. The breaking of the adjoint repres-
entation acts in the following way on color and numerator factors:

• Color factors are split into different pieces according to the representations carried by
internal and external lines (see figure 18); color identities are preserved by this operation,
but one needs to take into account that some color factor may vanish upon direct evaluation.

• Numerator factors are unchanged. Graphs with the same topology but different represent-
ation labels will inherit the same numerator factors as the original graphs of the unbroken
theory. Whenever numerators obey a three-term identity in the unbroken theory, the identity
will be inherited by the broken theory.

Two-term identities of the form (159) deserve a more detailed discussion. Before decomposi-
tion into representations of a subgroup, color factors obey the standard Jacobi relations, which
at four points can be written as
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If we consider the case in which the initial adjoint representation is broken into three pieces
(adjoint, a single complex matter representation, its conjugate), the corresponding identity for
external matter is

because the structure constant does not contain a component with two indices in the same
complex representation. Hence, the original three-term color identity has collapsed into a two-
term identity. However, the decomposition of color factors with respect to a subgroup does not
affect the kinematic numerators so, if the original theory obeys CK duality, the numerators still
obey three-term kinematic identities after the decomposition. In other words, a nonvanishing
numerator is associated to a vanishing color factor. We will see that this will require extra
care, e.g. in the construction of Higgsed supergravities in section 5.3.7. Note that a nonzero
kinematic numerator can be associated with a vanishing color factor also in theories with only
adjoint fields, as we shall see in section 6.

5.2.2. Field-theory orbifolds. If we consider a gauge theory which possesses a certain num-
ber of global/flavor symmetries (which may include the R symmetry), it is always possible
to truncate it to its sector which is invariant under the combined action of some elements of
the global and gauge groups. Specifically, a generic adjoint field Φ of the original theory will
transform as

Φ → RFgΦg† , (164)

where g is the gauge-group element andR,F are the corresponding elements of theR-symmetry
and global-flavor group (R-symmetry and global indices are not explicitly displayed). It is
convenient to consider elements (g,R,F) which belong to a discrete subgroup Γ of the sym-
metry group of the theory we are considering, that is we have elements g,R,F such that
gk = I,F k = I,Rk = I for some k32. Theories obtained with this construction are referred to
as field-theory orbifolds in the literature [311]. Given (g,R,F) above, we can immediately
write a projector

PΓΦ =
1
|Γ|

∑
(g,R,F)∈Γ

RFgΦg† , (165)

where |Γ| denotes the rank ofΓ. It is easy to verify that this projector sets to zero all components
of Φ which are not invariant under Γ.

To give a simple example, we start fromN = 4 SYM theory with SU(2N) gauge group and
consider an Γ = Z2 orbifold with generators

r= diag(1,1,−1,−1) , g=

(
IN 0
0 −IN

)
. (166)

The matrix r gives the action of the unique nontrivial generator of Z2 on the fundamental R-
symmetry indices; the action of Z2 on other representation of the R symmetry can be obtained

32 Other subgroups can also be considered.

66



J. Phys. A: Math. Theor. 57 (2024) 333002 Topical Review

by taking tensor products of r. In this case, it is convenient to represent the action of the
projector on the components of a on-shell N = 4 superfield V Â

N=4 which is written as (460).
The part of this superfield which survives the orbifold projection (165) is

V Â
N=4 → A â

+ + ηiλ
âi
+ + ηrλ

α̂r
+ + η1η2ϕ

â12 + ηi ηrϕ
α̂ir

+ η3η4ϕ
â34 + η1η2ηrλ

α̂r
− + ηi η3η4λ

âi
− + η1η2η3η4A

â
− , (167)

where i, j = 1,2 and r,s= 3,4. The gauge-group indices â, b̂ and α̂, β̂ run over the (reducible)
SU(N)× SU(N)×U(1) adjoint representation and the bi-fundamental representation, respect-
ively. This result can be organized in N = 2 on-shell superfields as

V Â
N=4 →V â

N=2 + ηrΦ
α̂r
N=2 + η3η4V

â
N=2 , r= 3,4, (168)

where ΦN=2 is the on-shell hypermultiplet superfield. Hence, we see that the theory resulting
from the orbifold projection (165) with Γ = Z2 acting as (166) is an N = 2 SYM theory with
gauge group SU(N)× SU(N)×U(1) and one matter hypermultiplet in the bi-fundamental rep-
resentation.

Exercise 5.1. Work out spectrum and on-shell superfield organization for the Z2 orbifold pro-
jection of N = 4 SYM theory with generators

r= diag(−1,−1,−1,−1) , g=

(
IN 0
0 −IN

)
. (169)

What is the residual supersymmetry?

Exercise 5.2. Formulate an orbifold projection of N = 4 SYM preserving N = 1 supersym-
metry. Work out the multiplet structure of the on-shell superfields.

Field-theory-orbifold amplitudes are constructed through a set of Feynman rules which
are obtained directly by taking the Feynman rules of the parent theory and dressing both
internal and external lines with projectors of the form (165). For a tree-level amplitude, one
can use invariance of the propagators and vertices under global and gauge symmetries to move
all projectors from internal to external lines. The result is that all tree-level amplitudes of a
theory constructed as an orbifold can be obtained from the amplitudes of the parent theory
by inserting projectors on the external legs or, alternatively, by ensuring that the asymptotic
states are invariant under the orbifold group. Particularly relevant to us, this property has the
consequence that all numerator relations of the parent theory are preserved by the orbifold
construction [30].

Exercise 5.3. Consider N = 4 SYM theory with SU(2N+ 1) gauge group. Show that the
projection with orbifold group generators

r= diag(1,1,−1,−1) , g=

(
−I2N 0
0 1

)
, (170)

yields a N = 2 theory with a hypermultiplet in the fundamental representation.

The reader may wonder whether there is a straightforward way to extend this result to loop
level. At one loop, using the symmetries of propagators and vertices, projectors can be removed
from all but one internal line (which can be chosen freely). Additionally, particular classes of
loop-level amplitudes (for example, planar amplitudes in the large-N limit) are inherited from
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the parent theory (for a subset of so-called regular orbifolds) [311, 312]. Loop-level amp-
litudes can of course be constructed from tree-level ones with unitarity methods. For general
amplitudes and choices of orbifold groups, the properties at loop-level will not be directly
related to the ones of the parent theory and the orbifold construction will be used to obtain
tree-level building blocks to be employed with unitarity methods. This construction has been
instrumental, for example, in the study of one-loop amplitudes for supergravities that can be
embedded in the N = 8 maximal theory [30, 241].

5.2.3. Masses as compact momenta. Once representations of a larger gauge group are
broken into smaller pieces, it is in principle possible to introduce nonzero masses for some
of the fields. At the same time, if we intend to consider more general theories of gravity com-
ing from the double copy, we need some procedure for generating massive states (for which
the most natural choice is the Higgs mechanism). If we consider gauge theories that can be
written in higher dimension, a straightforward way to create mass terms from an amplitude
perspective consists of assigning to some of the fields momenta in one of the extra (compact)
dimensions.

Our starting point is to consider adjoint fields in a higher-dimensional theory which are
written as

AµÂ (⃗x,xD+1)
∣∣∣
D+1

=
(
ei xD+1m

)̂AB̂
AµB̂ (⃗x) ,

ϕaÂ (⃗x,xD+1)
∣∣∣
D+1

=
(
ei xD+1m

)̂AB̂
ϕaB̂ (⃗x) , a= 1, . . . ,n , (171)

where m ÂB̂ is a mass matrix with Â, B̂ indices in the adjoint, x⃗ is the D-dimensional coordinate
and xD+1 is the internal direction. If the mass matrix vanishes, this is equivalent to ordinary
dimensional reduction. The condition above can also be implemented in position space through
the differential equation

∂D+1

(
AµÂ

ϕaÂ

)∣∣∣
D+1

= i mÂB̂

(
AµB̂

ϕaB̂

)
. (172)

Introducing this mass term has the effect of breaking the adjoint representation of the gauge
group into various representations with respect to which m ÂB̂ is block-diagonal. We choose
m ÂB̂ to be given by

m ÂB̂ = igVf 0̂ÂB̂ . (173)

Fields that commute with the gauge-group generator t 0̂ will not have a mass since that implies
that f 0ÂB̂ vanish. We can now explicitly show that the kinetic term of the scalars in (D+ 1)
dimensions is identical to a kinetic term in D dimensions plus a ϕ4-term in which a scalar
acquires a VEV:

1
2

(
Dµϕ

aÂ
)2 ∣∣∣

D+1
→ 1

2

(
Dµϕ

aÂ
)2

− 1
2

(
i m ÂB̂ϕaB̂+ gf ÂB̂Ĉϕ0B̂ϕaĈ

)2

=
1
2

(
Dµϕ

aÂ
)2

+
g2

2
tr
([
Vt0 +ϕ0,ϕa

]2)
, (174)
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where we have renamed the gauge field in the internal direction, AÂD+1 → ϕ0Â (the global index
a does not include a= 0). We then inspect the (D+ 1)-dimensional vector-field kinetic term,

−1
4

(
F Â

µν

)2 ∣∣∣
D+1

→−1
4

(
F Â

µν

)2
+

1
2

(
∂µϕ

0Â− imÂB̂AB̂µ + gf ÂB̂ĈAB̂µϕ
0Ĉ
)2

=−1
4

(
F Â

µν

)2
+

1
2

((
Dµϕ

0
)Â− imÂB̂AB̂µ

)2

=−1
4

(
F Â

µν

)2
+

1
2

((
Dµϕ

0 +Dµ〈ϕ0〉
)Â)2

. (175)

This term is identical to the D-dimensional vector-field kinetic term plus the kinetic term for
ϕ0 in the presence of a VEV

〈ϕ0〉= Vt 0̂ . (176)

Adding the quartic potential terms for the scalars, one sees that the (D+ 1)-dimensional
massless (S)YM Lagrangian in the presence of a compact momentum of the form (171) is
indeed equivalent to a spontaneously-brokenD-dimensional SYMLagrangianwithVEVgiven
by (176). Strictly speaking, we have shown that this procedure works only in the presence of a
quartic potential generated by dimensional reduction of a higher-dimensional pure (S)YM the-
ory. The case of more general scalar potentials need to be considered separately. The argument
in this subsection gives a prescription for finding amplitudes of theories with fields becoming
massive though the Higgs mechanism, in terms of higher-dimensional massless amplitudes. If
the higher-dimensional theory obeys CK duality, the massive amplitudes will inherit the same
algebraic properties [122]. BCJ amplitude relations with massive particles were also derived
in [116] using the CHY formalism.

5.2.4. Identifying the right supergravity. At this point, we have developed some basic tech-
niques to start from the amplitudes of an arbitrary theory which is known or can be shown to
obey the duality between color and kinematics and generate the amplitudes of more involved
theories, which may include fields in non-adjoint representations and mass terms from the
Higgs mechanism, in a way that preserves numerator relations. In principle, we can use
the numerators from various theories obtained with this procedure for producing amplitudes
through the double-copy technique. As discussed in sections 2 and 4, these amplitudes will
obey the Ward identities related to invariance under linearized diffeomorphisms and hence
should be the amplitudes from some gravitational theory. Identifying the precise theory, how-
ever, is not always straightforward. In principle, one could consider a generic Lagrangian
involving the Einstein–Hilbert term (or, in case of conformal gravity, some Weyl2 gravita-
tional action) and arbitrary matter interactions. Up to terms which vanish due to the equations
of motion, this Lagrangian can be fixed order by order by comparing its amplitudes with the
ones from the double-copy method. In practice, the implementation of this program is limited
by one’s desire to evaluate higher-point tree amplitudes. For many theories however, minimal
information about symmetries and lower-point interactions can be sufficient for identifying
the theory completely and, in principle, for writing down its Lagrangian (with some help from
the relevant supergravity literature). More specifically:

• Symmetry considerations are sufficient for identifying supergravities with extended N ⩾ 4
supersymmetry and particular theories with reduced supersymmetry that can be viewed as
truncations of more supersymmetric theories [31, 239, 241]. Such considerations can also be
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sufficient to formulate constructions for theories with homogeneous scalar manifolds, with
some residual freedom that needs to be fixed with minimal information on their interactions
[121, 240].

• Very broad classes of Maxwell-Einstein supergravities with N = 2 supersymmetry which
can be lifted up to at least five spacetime dimensions can be uniquely specified by their
three-point interactions (specifically, three-vector amplitudes in five-dimensions). In a sense,
these theories constitute a natural testing ground for double-copy constructions with reduced
supersymmetry [120, 121].

• More generally, there exist amplitudes which capture physical features of the desired
supergravity theory. For example, YME theories or gauged supergravities with nonabelian
gauge group will possess non vanishing three-point amplitudes between three gluons [120].
Gauged supergravities will have nonvanishing amplitudes between two gravitini and one
vector [123]. Knowledge of these amplitudes can either allow identification of the theory or
point to the general class to which the theory belongs.

• Some theories are characterized in terms of their soft limits. These include e.g. theories with
homogeneous target spaces [121, 222], the NLSM and some of its extensions [125, 285,
306], and the special Galileon theory [309].

5.3. Examples

We now proceed to discussing some examples. A list of the main double-copy constructible
theories at the time of this writing can be found in tables 4–6.

5.3.1. Theories withN ⩾ 4 supersymmetry. Pure supergravities withN = 4 and 8 have been
originally formulated from a Lagrangian perspective in [313, 314] and [258, 315], respect-
ively, while the N = 5 and N = 6 Lagrangians were obtained by truncation [316] from that
of the N = 8 supergravity. Amplitudes of theories with extended N ⩾ 4 supersymmetry will
be given by a double copy involving N = 4 SYM theory together with a YM or SYM theory.
The possibilities are the following [31]:

N = 8 supergravity : (N = 4 SYM)⊗ (N = 4 SYM) ,

N = 6 supergravity : (N = 4 SYM)⊗ (N = 2 SYM) ,

N = 5 supergravity : (N = 4 SYM)⊗ (N = 1 SYM) ,

N = 4 supergravity : (N = 4 SYM)⊗ (N = 0 YM) . (177)

All double copies above involve gauge theories with only adjoint fields. These are cases in
which the symmetries of the desired supergravity single out the correct construction, without
any free parameters. Supergravities withN > 4 are unique. ForN = 4 supergravities one can
add matter in the form ofN = 4 vector multiplets, which correspond to adding adjoint scalars
in the non-supersymmetric gauge theory.

Perturbative mass spectra and on-shell superfield structure of the theories listed above can
be straightforwardly obtained from the on-shell superfields of the gauge theories. Alternatively,
all theories with N > 4 and some examples of N = 4 theories can be seen as truncations of
N = 8 supergravity using a field-theory orbifold construction.

N = 4 supergravity has an alternative double-copy construction, in terms of two N = 2
SYM theories coupled to hypermultiplets in matter representations. Apart from the mass spec-
tra, it has been verified that tree-level and four-point one-loop amplitudes in the two realiza-
tions are the same, including anomalous amplitudes [20, 241].
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Table 6. List of non-gravitational theories constructed as double copies.

Double copy Starting theories References Variants and notes

DBI theory • NLSM [125, 126, 285,
298–301]

• N ⩽ 4 possible
• (S)YM theory • Also obtained as α ′ → 0

limit of abelian Z-theory

Volkov–Akulov theory • NLSM [125,
302–308]

• Restriction to
external fermions
from supersymmetric DBI

• SYM theory (external
fermions)

Special Galileon theory • NLSM [125, 285, 301,
306, 309]

• Theory is also characterized
by
its soft limits

• NLSM

DBI + (S)YM theory • NLSM + ϕ3 [125, 126, 156,
285, 298–300,
306, 310]

• N ⩽ 4 possible
• (S)YM theory • Also obtained as α ′ → 0

limit of semi-abelianized
Z-theory

DBI + NLSM theory • NLSM [125, 126, 156,
285, 298–300]• YM + ϕ3 theory

We now look more in detail at the pureN = 4 supergravity in four dimensions. The theory
involves one complex scalar, whose asymptotic states are obtained by taking the double copy
of gauge-theory gluons with opposite polarizations. Geometrically, the scalar can be regarded
as the complex coordinate of the coset space

M4D =
SU(1,1)
U(1)

. (178)

As we will discuss more in detail later, the fact that the scalar lives in an homogeneous space
can be confirmed by checking the vanishing of the scalar soft limits at tree level33. More expli-
citly, the bosonic part of the Lagrangian for pure N = 4 supergravity has a relatively simple
form,

e−1L= − R
2
+

1
4
∂µτ∂

µτ̄

(Imτ)2
− 1

4
ImτF I

µνF
Iµν − 1

8
Reτe−1 ϵµνρσF I

µνF
I
ρσ

= − R
2
+

1
4

(
∂µτ∂

µτ̄

(Imτ)2
+ iτ

(
F+I
µν

)2 − i τ̄
(
F−I
µν

)2)
, (179)

where τ = i e−ϕ +χ is the dilaton-axion scalar, F̃ I
µν = (i/2)eϵµνρσFIρσ, F±I

µν = (F I
µν ±

F̃ I
µν)/2, and I= 1, . . . ,6 is an index running over the vector fields in the theory. Alternatively,

the kinetic term for the scalars can be written with a Cayley parameterization of the form (115).
In contrast to more supersymmetric settings, the double-copy construction forN = 4 super-

gravities can be easily modified by adding extra adjoint scalars in the non-supersymmetric
gauge theory. This can be done by considering a YM theory coupled to N scalars, which is

33 In N = 4 supergravity the single-soft-scalar limit no longer vanishes at one loop [260] due to an anomaly of the
U(1) symmetry in equation (178). Finite local counterterms can be used to restore this symmetry (at the expense of
the other SU(1,1) generators) [265]. This counterterm also restores the vanishing single-soft-scalar limit.
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the reduction to four dimensions of D= (N+ 4) pure YM theory34. This theory is invariant
under an SO(N) symmetry, which is the subgroup of the D-dimensional Lorentz group trans-
verse to four dimensions, SO(1,3+N)→ SO(1,3)× SO(N). Under this symmetry, the vector
fields are inert while the scalars transform in the vector (fundamental) representation. Since
these scalars transform in the adjoint representation of the gauge group, they can be double-
copied with theN = 4 vector multiplet to yield N vector multiplets in the supergravity theory.
Their scalars transform in the (N,6) representation of SO(N)× SO(6), where latter factor is
the R-symmetry group35.

InN = 4 supergravity scalars fields outside the graviton multiplet parametrize a homogen-
eous space of the form

M4D =
G
H
, (180)

where the stabilizer group H is the symmetry which is linearly realized and thus visible in
amplitudes involving scalars. Thus, the symmetry which is manifest in the double-copy con-
struction cannot be larger than H. In our case, we have SO(N)× SO(6)⊆ H. This suggests
that the 6N vector multiplet scalars parametrize SO(6,N)/(SO(6)× SO(N)) and, together with
equation (178), that the (6N+ 2) real scalars in the four-dimensionalN = 4 supergravity the-
ory parametrize the symmetric space

M4D =
SO(6,N)

SO(6)× SO(N)
× SU(1,1)

U(1)
. (181)

The double-copy construction forN ⩾ 4 supergravities can be used to find expressions for
amplitudes at one loop, which are discussed in section 6. Beyond one loop, amplitudes in
extended supergravity theories have been the subject of intense investigation, especially on
their UV properties. Lore has it that all supergravity must diverge at a sufficiently high loop
order. Is this actually true or might there be surprises? A variety of multiloop calculations for
N ⩾ 4 supergravity have been carried out to analyze UV properties:

• Four-point amplitudes for pureN = 4 supergravity have been shown to be UV-finite at three
loops and UV-divergent at four loops in four dimensions [33, 36, 37, 293]. The four-loop
UV-divergence appears to be related to a U(1) anomaly [260, 263, 265, 266]. Full one- and
two-loop four-point amplitudes in N = 4 supergravity are given in [31, 32].

• Four-point amplitudes for N = 5 supergravity are finite at least through four loops in four
dimensions [292]. Despite various attempts, there is no standard symmetry explanation for
the ‘enhanced cancellations’ that lead to this improved UV behavior [317]. See, however,
[318, 319] for arguments suggesting that U-duality invariancemay be ultimately responsible.
It is of considerable interest to settle the origin of these cancellations, and to know whether
they continue to higher orders.

• The complete two-loop four-point amplitude of N = 6 supergravity may be found in [32].
As yet there have not been any direct studies of the critical dimension of this theory at high
loop orders, although it follow from the calculations inN = 5 supergravity that divergences

34 Recall that dimensional reduction is an operation which is known to preserve CK duality. These theories will
sometimes be denoted as YMDR.
35 Vector fields in this theory are of two types: graviphotons, which are part of the gravition multiplet and transform
in (1,6) and vectors which are part of the additional vector multiplets, which transform as (N,1).
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cannot appear before five loops. Standard symmetry considerations imply that divergences
are delayed until at least five loops [317, 320].

• UV properties of four-point amplitudes in N = 8 supergravity have been analyzed in detail
through five loops [38]. In contrast to the case of N = 5 supergravity, N = 8 supergrav-
ity at five loops does not appear have enhanced cancellations, but it is possible that this
is an artifact of the fact that the analysis is carried out in the fractional critical dimension
D= 24/5, where from various considerations [321, 322] divergences are first expected to
appear. A proper study of this issue in the most interesting dimensionD= 4 requires a seven-
loop computation, as suggested by symmetry considerations [274, 321–326]. The complete
three-loop four-point and two-loop five-point amplitudes of N = 8 supergravity have been
obtained [327, 328], starting from integrands constructed via the double copy [2, 4]. The
construction ofN = 8 one-, two- and three-loop integrands via the double copy is described
in section 6.

5.3.2. Maxwell–Einstein theories with N = 2 supersymmetry. In this section we discuss
amplitudes in theories with N = 2 supersymmetry in four dimensions (eight supercharges).
Theories of this type are no longer specified solely by their matter content. Hence, we need
a strategy to conveniently classify the interactions consistent with N = 2 supersymmetry.
An efficient approach is to focus on theories that can be uplifted to five dimensions. The
Lagrangians for these theories have long been known explicitly [329–332]. Here we will write
only the bosonic part of the Lagrangian36:

e−1L=−1
2
R− 1

4
◦
aIJF

I
µνF

Jµν+
1
2
gxy∂µϕ

x∂µϕy+
e−1

6
√
6
CIJKε

µνρσλFIµνF
J
ρσA

K
λ. (182)

All vectors in the Lagrangian are taken to be abelian (YME theories will be discussed in section
5.3.6). The index I= 0,1, . . . ,n runs over the number of vectors in the theory with I= 0 cor-

responding to the graviphoton. FIµν are the field strengths, while
◦
aIJ and gxy are functions of

the physical scalars ϕx (x= 1, . . . ,n). The key insight is that the symmetric constant tensor
CIJK is sufficient to specify the theory completely, i.e. to fix all functions appearing in the two-
derivative Lagrangian. The formalismmanifesting this feature introduces an auxiliary ambient
space with coordinates ξI and dimension equal to the number of vectors in the theory which,
together with the CIJK-tensor, are used to define a cubic polynomial

V (ξ)≡ CIJKξ
IξJξK . (183)

In turn, this is used to define a metric on the ambient space:

aIJ (ξ)≡−1
3
∂

∂ξI
∂

∂ξJ
lnV (ξ) . (184)

The scalar manifold M5D is defined as the hypersurface obeying the equation

V (h) = CIJKh
IhJhK = 1 , hI =

√
2
3
ξI. (185)

36 For consistency with the rest of this review, this Lagrangian is written with a metric of mostly-minus signature, in
contrast to most of the supergravity literature.
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The functions
◦
aIJ(ϕ) and gxy(ϕ) which appear in the Lagrangian are given by the restriction of

the ambient-space metric toM5D and the pullback to that surface of the ambient space metric,
respectively:

◦
aIJ (ϕ) = aIJ

∣∣
V(h)=1

; gxy (ϕ) =
3
2
∂ξI

∂ϕx
∂ξJ

∂ϕy
aIJ

∣∣∣∣
V(h)=1

. (186)

The functions appearing in the fermionic part of the Lagrangian can also be expressed in
terms of the CIJK-tensor. Since the CIJK-tensor can be obtained by inspecting three-point amp-
litudes, N = 2 Maxwell–Einstein theories in five dimensions are uniquely specified by their
three-point interactions. This is in contrast to Maxwell–Einstein theories that only exist in four
dimensions as well as theories with hypermultiplets. It is in principle possible to compute amp-
litudes from the Lagrangian (182) using Feynman rules. To this end one should first expand
around a scalar-base point (i.e. some background values for the scalar fields) at which the scalar
and vector kinetic terms are positive-definite. The quadratic terms should then be diagonalized
in order to find the spectrum, the propagators, and the vertices. For practical calculations, it is
often convenient to reduce the theory to four dimensions and use the spinor-helicity formalism.

To identify the simplest supergravity theories we will utilize symmetry considerations
together with minimal information on the trilinear interaction terms. A natural starting point
is to consider a double copy of the form

N = 2 supergravity : (N = 2 SYM)⊗ (N = 0 YM) ,

in which the non-supersymmetric theory is a pure (4+ n)-dimensional YM theory reduced
to four dimensions. Bosonic asymptotic states from the double copy are identified with those
from the supergravity Lagrangian as follows [120]37:

A−1
− = ϕ̄ ⊗A− , h− = A− ⊗A− , A−1

+ = ϕ ⊗A+ , h+ = A+ ⊗A+ ,

A0
− = ϕ ⊗A− , i z̄0 = A+ ⊗A− , A0

+ = ϕ̄ ⊗A+ , −i z0 = A− ⊗A+ ,

AA− = A− ⊗ϕA , i z̄A = ϕ̄ ⊗ϕA , AA+ = A+ ⊗ϕA , −i zA = ϕ ⊗ϕA . (187)

The index A above has range A= 1,2, . . . ,n. Note that, in four dimensions, an extra vector
field (A−1

µ ) is present. ϕ denotes the single complex scalar in the N = 2 SYM theory. Since
all gauge-theory fields are in the adjoint representations, each field bilinear is associated to a
supergravity state. Overall, the construction produces a supergravity with the following prop-
erties:

(i) has N = 2 supersymmetry in four dimensions;
(ii) has (n+ 1) vector multiplets in four dimensions. Scalars obtained as ϕ⊗ϕA transform

under a U(1)× SO(n) symmetry;
(iii) uplifts to five dimensions whenever n> 0;
(iv) has vanishing single-soft limits at tree level (this can be checked explicitly);
(v) the supergravity can be seen as a truncation ofN = 4 supergravity with the same number

of vector multiplets.

37 The phase in the map between the asymptotic states from the supergravity Lagrangian and the ones from the double
copy was chosen to match the phase conventions in the supergravity literature, see e.g. [121, 329, 332]. Note that z0

is the same scalar as τ from the previous subsection.
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Putting together all available information, the scalar manifold of the resulting theory turns
out to be

M4D =
SO(n,2)

SO(n)× SO(2)
× SU(1,1)

U(1)
. (188)

This infinite family of theories is known in the supergravity literature as the generic Jordan
family ofN = 2 Maxwell-Einstein supergravities. The corresponding cubic polynomial in the
natural basis is [329]38:

V (ξ) =
√
2
(
ξ0
(
ξ1
)2 − ξ0

(
ξi
)2)

, i = 2,3, . . . ,n . (189)

Exercise 5.4. Calculate explicitly
◦
aIJ and gxy corresponding to the cubic polynomial above.

Exercise 5.5. Calculate the three point amplitude Mtree
3

(
1A0

−,2A
A
−,3z̄

B
)
using the double-

copy prescription and the map (187).

5.3.3. Homogeneous N = 2 Maxwell–Einstein supergravities. We now want to consider
more general theories with N = 2 supersymmetry and homogeneous scalar manifolds. A
scalar manifold is said to be homogeneous if it admits a transitive group of isometries. From
an amplitude perspective, not all these isometries will linearly realized, i.e. some of them cor-
respond go constant shifts of the scalars which modify the vacuum of the theory. Hence, in the
homogeneous case, all coordinates of the manifold are Goldstone bosons and, consequently
all single-soft limits of scalar amplitudes vanish (see for example [222]). In short, drawing
from the discussion in section 4.5, we have the following criterion:

A necessary condition for a theory to possess a (locally) homogeneous scalar
manifold is that all single-soft limits of scalar amplitudes vanish.

We also note that double-soft limits can be used to identify the particular homogeneous space
under consideration (i.e.G inG/H) [222]. More generally, each independent vanishing single-
soft scalar limit will correspond to an isometry of the scalar manifold.

We now return to the double-copy construction outlined in section 5.3.2. A natural exten-
sion consists of adding some matter fields in both gauge theories. Hypermultiplets are the only
available matter that can be coupled to N = 2 SYM theory. One hypermultiplet consists of
four real scalars and two Majorana fermions and is an irreducible representation of theN = 2
supersymmetry algebra. For the construction described below, we will need to assign matter
representations of the gauge group to hypermultiplets. If the gauge-group representation is
pseudo-real, an additional option becomes available: we may consider a half-hypermultiplet
instead of a full one. A single half-hypermultiplet is by itself a representation of the supersym-
metry algebra, but one is forced to include the Charge-Parity-Time reversal (CPT)-conjugate
states unless its gauge-group representation is pseudo-real. This leads to a full hypermultiplet.
Taking a single half-hypermultiplet, i.e. choosing the smallest representations of supersym-
metry algebra, amounts to introducing the minimal possible number of states and, in principle,
allows us to manifest a larger global symmetry in the non-supersymmetric theory.

If the desired supergravity theory is of theMaxwell–Einstein class, the non-supersymmetric
gauge theory needs to be a YM-scalar theory with extra fermions, so that additional vector
multiplets are obtained as double copies involving one gauge-theory hypermultiplet and one

38 The detailed form of theC-tensor may be changed by field redefinitions without changing the scattering amplitudes.
See [329] for a discussion of the canonical and natural basis.
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fermion. Because of Working Rule 4, we will take the additional fermions to transform in the
same pseudo-real representation R used for the supersymmetric theory. The Lagrangian is
then written as

L=− 1
4
F â
µνF

âµν +
1
2
(Dµϕ

a)
â
(Dµϕa)

â
+
i
2
λ
α
Dµγ

µλα

+
g
2
ϕaâΓa β

α λ
α
γ5t

â
Rλβ −

g2

4
f âb̂êf ĉd̂âϕaâϕbb̂ϕaĉϕbd̂ , (190)

where â, b̂ are adjoint indices of the gauge group and α,β = 1, . . . ,nF and a,b= 1, . . . ,(D− 4)
are global indices. The matrices Γa β

α in the global indices need to be constrained by imposing
the duality between color and kinematics at four points.

Imposing the duality on amplitudes between two adjoint scalars and two matter fermions
gives the constraint [121]{

Γa,Γb
}
=−2δab , (191)

that is, the matrices Γa are gamma matrices which belong to a (D− 4)-dimensional Euclidean
Clifford algebra. Because of this relation, the non-supersymmetric theory can be regarded as
the dimensional reduction of a YM theory coupled to fermions in D dimensions. A second
parameter, P, will count the number of irreducible fermions in D dimensions.

Exercise 5.6. Show that imposing CK duality on amplitudes the two-scalars two-fermion
amplitudes given by the Lagrangian (190) yields the relation (191).

An important difference with the standard treatment of D-dimensional spinors is the fact
that fermions transform in pseudo-real representations of the gauge group. To obtain irredu-
cible spinors, a case-by-case analysis is necessary. Depending on the value of the parameter
D, one can impose reality (R) or pseudo-reality (PR) conditions [121]

λ= λtC4CV , R : C= CD−4 , PR : C= CD−4Ω , (192)

where CD−4 and C4 are the internal and spacetime charge-conjugation matrices, respectively.
They obey the relations CD−4Γ

aC−1
D−4 =−ζ(Γa)t, C4γ

µC−1
4 =−ζ(γµ)t, ζ =±1. V is the unit-

ary antisymmetric matrix entering the pseudo-reality condition for the gauge-group represent-
ation matrices, Vt âRV

† =−(t âR)∗. Ω is an antisymmetric real matrix acting on indices which
run over the number P of irreducible spinors. Alternatively, if D is even, one can impose Weyl
conditions. If we have more than one irreducible spinor, an extra flavor symmetry is present
(either U(P), SO(P) or USp(P), depending on whether Weyl, Reality or pseudo-Reality condi-
tions were employed). A separate treatment is needed whenD= 6,10 (mod 8). In these dimen-
sions, there are two inequivalent irreducible spinors with different chirality and one needs to
introduce parameters P, Ṗ which count the number of each.

Explicit computations reveal that soft-scalar limits vanish for amplitudes constructed by
the double copy [121]. Hence, this generalized construction yields supergravities with homo-
geneous scalar manifolds. The dimension-by-dimension analysis is given in table 7. The num-
ber of vector multiplets in the four-dimensional supergravity is equal to (D− 3+ nF), where
nF(D,P, Ṗ) is the number of 4D fermions in the non-supersymmetric gauge theory; the super-
gravity bosonic states are obtained as double copies in the following way [121]:
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Table 7. Parameters in the double-copy construction for homogeneous supergravities
[121, 240]. nF(D,P, Ṗ) is the number of 4D irreducible spinors in the non-
supersymmetric gauge theory, which can obey a reality (R), pseudo-reality (PR) orWeyl
(W) conditions. Note that the pattern repeats itself with periodicity 8.

D DD 4D fermions nF(D,P, Ṗ) Conditions Flavor group

4 1 P R or W SU(P)
5 1 P R SO(P)
6 1 P+Ṗ RW SO(P)×SO(Ṗ)
7 2 2P R SO(P)
8 4 4P R or W U(P)
9 8 8P PR USp(2P)
10 8 8P+8Ṗ PRW USp(2P)×USp(2Ṗ)
11 16 16P PR USp(2P)
12 16 16P R or W U(P)
k+8 16Dk 16r(k,P, Ṗ) as for k as for k

A−1
− = ϕ̄ ⊗A− , h− = A− ⊗A− , A−1

+ = ϕ ⊗A+ , h+ = A+ ⊗A+ ,

A0
− = ϕ ⊗A− , i z̄0 = A+ ⊗A− , A0

+ = ϕ̄ ⊗A+ , −i z0 = A− ⊗A+ ,

AA− = A− ⊗ϕA , i z̄A = ϕ̄ ⊗ϕA , AA+ = A+ ⊗ϕA , −i zA = ϕ ⊗ϕA ,

Aα− = χ− ⊗λα− , i z̄α = χ+ ⊗λα− , Aα
+ = χ+ ⊗λα+ , −i zα = χ+ ⊗λα− . (193)

Exercise 5.7. Show that the amplitudeMtree
5

(
z0, z̄0,zα, z̄β ,z0

)
has vanishing single-soft limits

for all external scalars.

Exercise 5.8. Show that the amplitude Mtree
3

(
1Aa−,2A

α
−,3z̄

β
)
can be expressed as

Mtree
3

(
1Aa−,2A

α
−,3z̄

β
)
=

κ

2
√
2
〈12〉2

(
UtΓaC−1

)αβ
. (194)

A remarkable result is that the theories listed in table 7 reproduce the complete classifica-
tion of homogeneous supergravities by de Wit and van Proeyen [282]. Theories obtained with
this construction include some classic examples. Specifically, for P= 1 and D= 7,8,10,14,
we find the so-called Magical Supergravities. These theories exhibit additional symmetry
enhancement, which results in the corresponding scalar manifolds being symmetric spaces.
Their scalar manifolds are:

MR
4D =

Sp(6,R)
U(3)

, MC
4D =

SU(3,3)
S(U(3)×U(3))

, MH
4D =

SO∗ (12)
U(6)

,

MO
4D =

E7(−25)

E6 ×U(1)
. (195)

An important property is that Magical theories are unified, that is there exists a symmetry with
respect to which all vector fields transform in a single irreducible representation. Physically,
this implies that fields from different matter multiplets have the same properties. In contrast,
vectors in generic homogeneous theories typically have different interactions according to
whether they are obtained as vector-scalar or as fermion-fermion from a double-copy perspect-
ive. The construction of these theories from a supergravity perspective relies on degree-three
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Jordan algebras which have as elements 3× 3 matrices with entries in the four division algeb-
ras (R,C,H,O). Reviewing the supergravity construction is beyond the scope of this review;
we refer the reader to [329] for details.

Aside from the magical supergravities, there is another class of examples of unified theory
in four dimensions. They are obtained by choosingD= 4 and P is arbitrary. It is not difficult to
see that the construction exhibits a global U(P) flavor symmetry, as well as that the resulting
supergravity theory will have (P+ 1) complex scalars in its spectrum. Putting together this
information results in the scalar manifold [121, 240]

M4D =
U(P+ 1,1)

U(P+ 1)×U(1)
, (196)

which is the complex projective space CPP+1. Theories in this family are also referred to as
minimally-coupled or the Luciani model. The analysis can be repeated in dimensions different
from four. In five and six dimensions we find exactly one infinite-dimensional family of unified
theories:

5D : Generic non-Jordan family M5D =
SO(P+ 1,1)
SO(P+ 1)

, (197)

6D : Generic Jordan family M6D =
SO(P+ 1,1)
SO(P+ 1)

. (198)

In both cases, the double-copy construction is similar to the one in four dimensions: the non-
supersymmetric gauge theory is a YM theory in the appropriate dimension with an arbitrary
number of fermions and no additional scalars. While the parameter P is by construction non-
negative, it should be noted that pure supergravities in dimensions 4,5,6 can be obtained
as particular cases by setting P=−1. This observation will be consequential in formulat-
ing double-copy constructions for pure supergravities withN = 2 in various dimensions. The
construction outlined in this section has been used to compute one-loop matter amplitudes in
these theories and to analyze their UV properties at that order, see [294].

5.3.4. Pure supergravities. Pure supergravities withN = 1,2,3 have been originally formu-
lated from a Lagrangian perspective in [287, 333–335] and [336, 337], respectively. Regardless
of the number of supercharges which are manifest in the construction, a double-copy gravity
theory in four dimensions contains a complex scalar which is obtained from the product of
gluons of opposite polarizations. For extendedN ⩾ 4 supersymmetry, this scalar still belongs
to the gravity multiplet. ForN < 4, however, the gravity multiplet does not contain any scalar
field so the complex scalar under consideration belongs to a matter multiplet. Hence, to obtain
pure supergravities with N < 4, one needs to modify the construction and remove the con-
tributions to amplitudes of the unwanted scalar. At tree level, one can always project out the
unwanted scalars from the amplitudes by judiciously choosing the asymptotic states. Special
care is however necessary for loops.

A solution to the problem was first outlined in [188]. The first step is to introduce an addi-
tional matter representation (the fundamental representation, without any loss of generality) in
both gauge theories. The precise map depends on the desired amount of supersymmetry and
is listed in table 8. Since the various graphs contributing to the amplitude carry representation
information associated to all internal and external lines, we can organize the graphs with no
external matter according to the number of matter loops.We can then treat the additional matter
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Table 8. Pure gravities constructed as double copies [188]. The construction necessit-
ates ghosts from matter-antimatter double copies. Barred multiplets transform in the
anti-fundamental representation. For compactness, graviton and vector supermultiplets
H,VN<4 include the CPT-conjugate states. Pairs of chiral/antichiral N = 1 supermul-
tiplets are grouped in N = 2 hypermultiplets, denoted as ΦN=2.

N tensoring vector states ghosts = matter ⊗ matter

0+ 0 Aµ ⊗Aν = hµν ⊕ϕ ⊕ a (ψ+ ⊗ψ−)⊕ (ψ− ⊗ψ+) = ϕ ⊕ a
1+ 0 VN=1 ⊗Aµ =HN=1 ⊕ΦN=2 (ΦN=1 ⊗ψ−)⊕ (Φ̄N=1 ⊗ψ+) = ΦN=2

2+ 0 VN=2 ⊗Aµ =HN=2 ⊕VN=2 (ΦN=2 ⊗ψ−)⊕ (Φ̄N=1 ⊗ψ+) = VN=2

1+ 1 VN=1 ⊗VN=1 =HN=2 ⊕ 2ΦN=2 (ΦN=1 ⊗ Φ̄N=1)⊕ (Φ̄N=1 ⊗ΦN=1) = 2ΦN=2

2+ 1 VN=2 ⊗VN=1 =HN=3 ⊕VN=4 (ΦN=2 ⊗ Φ̄N=1)⊕ (Φ̄N=2 ⊗ΦN=1) = VN=4

2+ 2 VN=2 ⊗VN=2 =HN=4 ⊕ 2VN=4 (ΦN=2 ⊗ Φ̄N=2)⊕ (Φ̄N=2 ⊗ΦN=2) = 2VN=4

as a ghost multiplet by associating an extra minus sign to each matter loop (as with Faddeev–
Popov ghosts). More explicitly, loop-level pure-supergravity amplitudes are constructed using
the prescription

M(L)
m = iL−1

(κ
2

)m+2L−2 ∑
i∈cubic

ˆ
dLDℓ

(2π)LD
(−1)|i|

Si

ni ñi
Di

, (199)

where |i| denotes the number of matter loops in the ith graph. It has been shown by explicit
calculation through two loops and argued to all loop orders that amplitudes obtained with this
prescription have the same unitarity cuts as the ones of the pure supergravities listed in table 8.
It is interesting to note thatN = 2 ghost multiplets are constructed as double copies involving
fermions in the non-supersymmetric theory. One can in principle consider an analogous con-
struction involving scalars, but amplitudes constructed in this way would have unitarity cuts
which are different from those of pure supergravities. This observation provides a clue on the
meaning of the construction: formally, the prescription above is equivalent to considering one
of the unified infinite families of supergravities described at the end of the last subsection and
setting P=−1.

Explicit calculations show that pure Einstein gravity is UV-divergent at two loops39 [340,
341], although it is finite at one loop because the candidate counterterm is a total derivative
in four dimensions [342]. For N = 1,2,3 pure supergravities, UV divergences cannot appear
before three loops [343, 344]; the relevant explicit calculations at this loop order, probing the
appearance of divergences, have as yet not been carried out.

5.3.5. Theories with hypermultiplets and supergravities with N < 2. An alternative option
is to couple matter hypermultiplets with N = 2 supergravity. In general, supergravities with
hypermultiplets are less constrained than theories with vector multiplets. A subset of such
theories, however, appears to be closely related to theories with vector multiplets through a
procedure known as c-map [345].

Starting from a Maxwell–Einstein theory in four dimensions, one first reduces the theory
to three dimensions. After dualization of the vector field, each supermultiplet in the three-
dimensional theory contains four real scalars and four Majorana fermions, which is the field

39 The interpretation of the divergence is rather subtle because of its dependence on evanescent operators and choice
of fields [338, 339].
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content corresponding to a hypermultiplet. Since the hypermultiplet action is the same in any
dimension up to six, the three-dimensional theory obtained with this procedure can be uplifted
to higher dimension, leading to the image of the original Maxwell–Einstein theory under the
c-map.

The basic double-copy construction for theories with hypermultiplets was mentioned in
[121] and further detailed in [240]. It relies on taking as one copy N = 2 SYM theory with
matter hypermultiplets and, as the second copy, a YM theory with extra matter scalars. The
simplest realization of this construction involves a SYM theory with a single hypermultiplet
in a real representation and a YM theory with m real scalars. A Lagrangian for the latter
theory is40:

L=−1
4
F â
µνF

âµν +
1
2
Dµφ

IDµφI+
g2

4

(
φ[It âRφ

J]
)(

φ[It âRφ
J]
)
. (200)

Scalar fields φI are labeled by flavor indices I,J= 1, . . . ,m, which refer to the global SO(m)
symmetry, and gauge-group representation indices for some real representation R, which we
do not display; t âR are the gauge-group generators in this representation and â, b̂ are adjoint
indices. One can verify that this theory obeys CK duality at four points. The computation is
identical to the one for a higher-dimensional YM theory reduced to four dimensions, with the
only difference being related to representation of the scalar fields.

Based on the symmetry SO(m)× SO(4) which is manifest in the construction, the 4m real
hypermultiplet scalars in the theory together with the universal dilaton-axion parametrize the
scalar manifold

M4D =
SU(1,1)
U(1)

× SO(m,4)
SO(m)× SO(4)

. (201)

The second term in the product manifold is the special quaternionic-Kähler manifold which
is the image of the generic Jordan family scalar manifold under the c-map. From the point of
view of scattering amplitudes, the relation between the two classes of theories is a consequence
of the fact that the kinematic numerator factors from the non-supersymmetric gauge theory are
identical in the two constructions. The differences relate to the pairing between the kinematic
numerators of the two gauge theories, which is now different because of the different gauge-
group representations and color factors.

Several additional constructions for ungauged supergravities with various matter contents
deserve mention:

• Various (N = 1)× (N = 1) double copies were studied in [239, 241, 295, 346]. In this case,
at least one hypermultiplet is present. Since N = 1 gauge theories do not generically uplift
to higher dimensions, the construction does not manifestly give a supergravity which can be
written in five dimensions and, hence, three-point amplitudes cannot be used to specify the
theory completely. Instead, the identification relies on symmetry consideration and on the
possibility of embedding the theory into a supergravity with extended supersymmetry.

• Several examples of N = 1 supergravities constructed as double copies are known. The
known examples can often be seen as truncations of theories with a larger number of super-
symmetries [239, 241, 295, 346].

40 In principle, it is possible to choose a different coefficient for the quartic scalar coupling while preserving CK
duality. Indeed the scalar sector of this theory is the same as the theory discussed at the end of section 5.2. The theory
given here can also be constructed as a field-theory orbifold of an adjoint YM theory in higher dimension. See also
[122] for a similar discussion.
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• Various examples of non-supersymmetric gravities constructed as double copies are known
[1, 188]. Among these, the simplest example is Einstein gravity with a scalar and antisym-
metric tensor, which we have already encountered in section 2. This theory is constructed as
the square of YM theory. In four-dimensions, the antisymmetric tensor is dual to an axion.
The scalar-sector Lagrangian is then identical to the one in (179).

• An interesting version of the construction applies to the so-called twin supergravities [347].
These are pairs of supergravities with different amounts of supersymmetries which share the
same bosonic Lagrangian but have different fermionic field content and interactions.

Exercise 5.9. Consider two supergravities constructed as field theory orbifolds of N = 8
supergravity with the following generators:

Theory 1 :R= diag
(
1,e

2π i
3 ,e

2π i
3 ,e

2π i
3 ,1,1,1,1

)
, R ′ = diag(1,1,1,1,−1,−1,−1,−1) ,

Theory 2 :R= diag(1, i, i, i,−1,−1,−1,−i) .

Find the corresponding spectra and, using the manifest symmetries of the construction, find
a candidate for the scalar manifolds.

5.3.6. YME theories. YME theories are supergravities that involve nonabelian gauge inter-
actions among (some of) the vector fields. Surprisingly, they admit a very simple double-copy
realization, which relies on the following principle [120]:

To introduce nonabelian gauge interactions in a gravitational theory from the
double copy, it is sufficient to add trilinear couplings among adjoint scalar fields
in one of the gauge theories entering the construction.

The relevant Lagrangian was introduced in (150). The effect of the trilinear coupling is to
introduce nonzero supergravity amplitudes of the form

M3
(
1AA−,2A

B
−,3A

C
+

)
= iA3 (1A−,2A−,3A+)A3

(
1ϕA,2ϕB,3ϕC

)
=− κ

2
√
2
λFABC 〈12〉3

〈23〉〈31〉
= i

κ

4
λF̃ABC 〈12〉3

〈23〉〈31〉
, (202)

i.e. amplitudes between three spin-1 fields which are proportional to an antisymmetric tensor
obeying Jacobi relations and have the same momentum dependence as the three-gluon amp-
litudes from the supergravity Lagrangian. In particular, the supergravity gauge coupling con-
stant gs is related to the parameter λ in (150) as

gs =
(κ
4

)
λ, (203)

where we have temporarily re-introduced κ. In this construction, the global-symmetry tensor
FABC, which obeys the Jacobi identity (153), is identified with the structure constants of the
supergravity gauge group. Hence, a global symmetry in one of the two gauge theories becomes
a local symmetry in the resulting double-copy gravity theory.

We note that this approach gives, by construction, gauge groups which are subgroups of
the manifest isometry group of the corresponding Maxwell-Einstein theory. These groups are
necessarily compact. Gauging a subgroup of the R symmetry, a construction which results in
the so-called gauged supergravities, requires a more involved procedure which will be outlined
in section 5.3.8. The double-copy construction for YME theories can be adapted to supergrav-
ities with various amounts of supersymmetry, which are listed in table 9 [120].
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Table 9. Amplitudes in YME gravity theories for different number of supersymmetries,
corresponding to different choices for the left gauge-theory factor entering the double
copy [120]. YMDR denotes the YM-scalar theory obtained from dimensional reduction.

Gravity coupled to YM Gauge theory 1 Gauge theory 2

N = 4 YME supergravity N = 4 SYM YM + ϕ3

N = 2 YME supergravity (gen.Jordan) N = 2 SYM YM + ϕ3

N = 1 YME supergravity N = 1 SYM YM + ϕ3

N = 0 YME + dilaton + Bµν YM YM + ϕ3

N = 0 YMDR-E + dilaton + Bµν YMDR YM + ϕ3

Aside from spelling out the construction at the level of the gauge-theory Lagrangian, it is
interesting to consider the implications of the double-copy structure on YME amplitudes. We
start from the double copy(

YM+ϕ3
)
=
(
YM+ϕ3

)
⊗
(
ϕ3 theory

)
, (204)

i.e. we note that the double copy between the YM+ϕ3 theory and the bi-adjoint ϕ3 theory gives
amplitudes from the YM+ϕ3 theory itself. By choosing numerator factors corresponding to the
DDM basis [180], we then write a color-ordered tree amplitude between k gluons and m⩾ 2
scalars in the YM+ϕ3 theory as follows

AYM+ϕ3

k,m (1, . . . ,k |k+ 1, . . . ,k+m) =−i
∑

w∈σ12...k

Nk (w)A
ϕ3

k+m (w) + Perm(1, . . . ,k) . (205)

Aϕ3

k+m(w) are amplitudes in bi-adjoint ϕ3 theory that are color-ordered only with respect to
one of the two colors. In the above formula we are summing over all color orderings w that
belong to the set σ123···k; which is explicitly constructed using a shuffle product , as

σ123···k =
{
{k+ 1,γ,k+m}

∣∣∣γ ∈ α β
}
, where

α= {1,2,3, . . . ,k} and β = {k+ 2, . . . ,k+m− 1} . (206)

The set σ123···k contains all shuffles of the gluon (α) and scalar (β) sets that respect the ordering
within each set, with the additional constraint that the first and last scalars are held fixed. We
will refer to the elements of this set as ‘words’ w. A remarkable observation is that gauge
invariance is sufficient to fix the numerators Nk(w) in the expression above.

Color-ordered single-trace YME amplitudes are obtained by replacing the ϕ3 partial amp-
litudes with partial amplitudes belonging to pure YM theory (or its supersymmetric relatives,
depending on the target gravitational theory) [156],

MYME(SG)
k,m (1, . . . ,k |k+ 1, . . . ,k+m)=

∑
w∈σ12...k

Nk (w)A
(S)YM
k+m (w)+ Perm(1, . . . ,k) .

(207)

Since the partial amplitudes A(S)YM
k+m (w) obey the same relations as Aϕ3

k+m(w) (including in par-
ticular the BCJ relations), the YME amplitudes given by this formula will be by construction
gauge invariant. The numerators Nk(w) are obtained by imposing gauge invariance on (205),
that is by imposing that the amplitude vanishes after the replacement

εi → pi . (208)
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Figure 19. Half-ladder graph for the YM+ϕ3 theory. The gluons are denoted with
1,2, . . . ,k and the remaining particles are scalars. zi denote the momentum of the internal
scalar to the right of gluon i.

Along the same lines of section 3.2, we construct the numerators Nk(w) from the following
independent Lorentz invariants:

{(εi · zi) , (pi · zi) , (εi · εj) , (εi · pj) , (pi · pj)} , (i, j = 1, . . . ,k) (209)

where pi denote only the momenta of the gluons. The momenta of the scalars will only appear
implicitly through the region momenta zi = zi(w) that we define as

zi (w) =
∑

1⩽j⩽l
wl=i

pwj , (210)

which give the sum of the momenta of all the particles to the left of the ith gluon in the
multiperipheral graph corresponding to the word w (including the gluon momentum pi, see
figure 19).

We consider the case of one external gluon (k= 1). By dimensional analysis, each term in
N(w) will need to contain a single factor of momentum. σ1 is the set of external-leg orderings in
which the order of the scalars is preserved and the single external gluon is inserted in different
positions (leaving a scalar as the first and last entry). A natural guess for the numerator is
given by

N1 = 2(ε1 · z1) . (211)

We can check gauge invariance with the replacement (208); the gauge variation of the amp-
litude becomes∑

w∈σ1

(p1 · z1)A(S)YM
m+1 (w) = 0 , (212)

which is zero as a consequence of the BCJ relations. Indeed, (212) is precisely the fundamental
BCJ relation (60) [1, 113]. That this BCJ relation can be obtained from YME amplitudes with
a single graviton, using the numerator (211), was first shown in [133].

The next-simplest example has two external gluons. Now σ12 will be the set of external-leg
orderings in which the two gluons are inserted in different positions while leaving the order of
scalars and gluons unchanged (and keeping scalars as the first and last entries). The last term
in (207) is obtained by exchanging the two external gluons. The numerators are

N2 = 4(ε1 · z1)(ε2 · z2)+ 2(p2 · z2)(ε1 · ε2) , (213)
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where the last (contact) term is fixed by imposing gauge invariance. Taking a gauge variation
ε1 → p1 of the amplitude we obtain:

4

(∑
w∈σ12

+
∑
w∈σ21

)
(p1 · z1)(ε2 · z2)A(S)YM

m+2 (w)

+ 2(ε2 · p1)

(∑
w∈σ12

(p2 · z2)A(S)YM
m+2 (w)+

∑
w∈σ21

(p1 · z1)A(S)YM
m+2 (w)

)
. (214)

Using the fundamental BCJ relation (60), the reader can verify that the above gauge variation
reduces to

(ε2 · p1)
∑
w∈σ12

((p1 · z1)+ (p2 · z2))A(S)YM
m+2 (w) = 0 . (215)

This is equivalent to the sum of two BCJ relations and thus vanishes for all amplitudes that
satisfy CK duality.

Exercise 5.10. Verify (215) starting from (214) and using the fundamental BCJ relation.

Semi-recursive expressions for YME amplitudes with up to five external gravitons were
given in [156]. General expressions for any multiplicity based on BCFW recursion were given
in [214] in the single-trace case and in [216] in the multi-trace case. The reader may also
consult [212, 289] for alternative expressions obtained through the CHY formalism and [307,
348] for loop-level amplitudes in YME theory.

5.3.7. Higgsed supergravities. A key feature of the double-copy construction for YME the-
ories is that it can be generalized to cases in which the nonabelian gauge supersymmetry of
the supergravity theory is spontaneously broken. Since YME theories possess a moduli space
in which the unbroken-gauge phase is given by a single isolated point, the fact that the double-
copy construction admits an extension of this sort gives a strong hint of its applicability for gen-
eric gravity theories. At the same time, the construction we review here is one of the simplest
examples in which some of the fields are massive. The double-copy construction for a Higgsed
supergravity has the schematic form

(Higgsed YME SG) = (Coulomb-branch SYM theory)⊗ (YM+massive scalars) . (216)

Schematically, amplitudes for the first gauge-theory factor can be obtained with a two-step
process: (1) break the gauge-group down to a subgroup (see section 5.2.1); (2) assign masses
(seen as compact momenta) to fields transforming in matter representations of the unbroken
subgroup (see section 5.2.3). We have seen in section 5.3.6 that, with the appropriate choices
of gauge theories, the global symmetry in one of the gauge-theory factors becomes a nona-
belian gauge symmetry in (super)gravity. The scenario discussed here extends this property
by showing that an explicitly-broken symmetry in one of the two gauge theories becomes,
through the double copy, a spontaneously-broken gauge symmetry in (super)gravity.

To avoid a notationally-heavy discussion, we will review here the simplest example of the
Higgsed double-copy construction.We start from aN = 2 SYM theorywith SU(N+M) gauge
group and decompose it with respect to the SU(M)× SU(N)×U(1) subgroup. The direct sum
of the adjoint representations of the unbroken gauge-group factors is denoted as G; the corres-
ponding fields are left massless. In addition, there will be two vector multiplets transforming
in the bifundamental R= (M,N) and anti-bifundamental R= (M,N) representations. These
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Table 10. Bosonic fields in gauge-theory factors for the example of double-copy con-
struction for Higgsed supergravities.

Fields Representation Mass

(Aµ,ϕ, ϕ̄) G 0
(Wµ,φ) R m
(Wµ,φ) R −m

Fields Representation Mass

(Aµ,ϕ, ϕ̄) G 0
φ R m
φ R −m

fields are mademassive by a suitable assignment of momenta along one single compact dimen-
sion. This relies, implicitly, on the fact that the theory can be uplifted to higher dimension. The
resulting bosonic states are given in table 10 (while fermionic states are not displayed). As dis-
cussed in section 5.2.3, this is equivalent to giving a scalar VEV

〈ϕ〉= Vt 0̂ , (217)

where t 0̂ =diag
(

1
M IM,−

1
N IN
)
and V is a real parameter (since our assignment of compact

momenta only involves a single compact dimension).
At this stage, we need to examine the constraints coming from the duality between color and

kinematics at four points. CK duality for amplitudes between two adjoint and two matter fields
is automatically satisfied. This is a consequence of the fact that the theory can be obtained
by assigning compact momenta to a higher-dimensional massless theory, as explained in
section 5.2.3. Alternatively, one could adopt a bottom-up approach and start from a Lagrangian
involving massive vectors and scalars and leave free parameters in the interaction terms.
Imposing CK duality would fix the interaction terms to be the ones of the Coulomb-branch
theory.

Amplitudes involving four matter fields require a more detailed analysis. In particular, scat-
tering amplitude of four massive scalars can be cast in the form

A4

(
1φα̂,2φβ̂ ,3φ

γ̂ ,4φδ̂
)
=−ig2

(
ntct
Dt

+
nucu
Du

+
nscs
Ds

)
, (218)

where the color factors are41

ct = f̃ â δ̂
α̂ f̃ â γ̂

β̂
, cu = f̃ â γ̂

α̂ f̃ â δ̂
β̂
, cs = f̃ γ̂δ̂ϵ̂ f̃

ϵ̂
α̂β̂
, (219)

while the inverse propagators are

Dt = (p1 + p4)
2
, Du = (p1 + p3)

2
, Ds = (p1 + p2)

2 − (2m)2 . (220)

To understand the mass (2m) in the massive channel it is useful to recall that masses have been
assigned as momenta in some additional dimensions. Because of this, masses are conserved at
each vertex. Since the color factor cs contains two fields of the same complex representation
of masses mmeeting at a vertex, the third field must necessarily have mass 2m. The kinematic
numerators are given by:

nt =−p1 · p2 + p1 · p3 + 2m2 , nu =−2p1 · p2 +m2 − p1 · p3 ,
ns = p1 · p2 + 2p1 · p3 +m2 . (221)

These numerators can be obtained from (12) by assigning momenta along a single compact
dimension or, alternatively, from the YM-scalar Lagrangian (154) with a= 0.

41 As discussed in section 2, it is convenient to write the color factors in terms of F̃ABC =
√
2iFABC.
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Exercise 5.11. Modify the example discussed above by introducing a VEV that corresponds
to compact momenta along two compact dimensions. Write the numerators for four-scalar
amplitudes.

We note that the s-channel color factor is zero because there does not exist an invariant
gauge-group object with two bifundamental and one anti-bifundamental indices42. However,
the corresponding numerator factor is nonzero. Alternatively stated, the color factors obey two-
term algebraic relations, while numerator factors obey three-term relations. This observation
affects the choice of the second gauge-theory factor entering the double-copy construction,
which must have an identically-vanishing s-channel numerator.

We choose a non-supersymmetric theory with one complex massive scalar transforming
in the representation conjugate to the one of the Coulomb-branch theory (see table 10). Its
Lagrangian is

L=− 1
4
F̃ â
µν F̃

âµν +
1
2
Dµϕ

aâDµϕaâ+DµφD
µφ −m2φφ − g2

4
f âb̂êf ĉd̂êϕaâϕbb̂ϕaĉϕbd̂

− g2

2

(
φt âRφ

)(
φt âRφ

)
+ g2ϕaâϕab̂φt âRt

b̂
Rφ + gλϕ2âφt âRφ , (222)

where a,b= 1,2, tR are gauge-group representation matrices for the massive scalars, and only
ϕ2â enters the trilinear scalar couplings. The reason for this latter choice is that we want a
construction which manifestly uplifts to five dimensions. Without any loss of generality we
can rotate the other scalars which appear in the trilinear couplings into ϕ2â. One can check that
numerators of this theory obey a two-term relation.

Putting all together, the spectrum of the resulting supergravity theory is given by [122]:

A−1
− = ϕ̄ ⊗A− , h− = A− ⊗A− , A−1

+ = ϕ ⊗A+ , h+ = A+ ⊗A+ ,

A0
− = ϕ ⊗A− , i z̄0 = A+ ⊗A− , A0

+ = ϕ̄ ⊗A+ , −i z0 = A− ⊗A+ ,

AA− = A− ⊗ϕA , i z̄A = ϕ̄ ⊗ϕA , AA+ = A+ ⊗ϕA , −i zA = ϕ ⊗ϕA ,

Wi =Wi ⊗φ , φ = φ ⊗φ . (223)

with massive fields given by R⊗R bilinears (the index i runs over the massive-vector three
physical polarizations). Note that this construction has two free parameters: the mass m and
the constant λ in the trilinear scalar couplings. Comparison with amplitudes from the Higgsed
supergravity Lagrangian leads to the identification (203)43. The masses of supergravity fields
are the same as those of the gauge-theory fields from which they are constructed. In turn,
this determines the choice of scalar base-point for the supergravity perturbative expansion that
matches the result of the double copy. Given the presence of two massive W bosons in the
supergravity spectrum, the supergravity gauge-symmetry breaking is SU(2)→ U(1).

This is arguably the most straightforward example of Higgsed supergravity construc-
ted as double copy. In the general case, we need to consider a generic breaking of the
Coulomb-branch theory. The structure constants, generators and Clebsch–Gordan coefficients
obey relations inherited from the Jacobi relations of the original gauge group. A first set of
relations is

42 In a standard formulation of the Higgs mechanism, this channel does not appear in the amplitude because the
necessary vertices are absent from the Lagrangian.
43 To obtain a Higgsed supergravity, we take λ> 0 strictly.
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Table 11. New double-copy constructions corresponding to spontaneously-brokenYME
gravity theories for different amounts of supersymmetry [122]. The dimensionally-
reduced YMDR theory must have at least one scalar to provide the VEV responsible
for spontaneous symmetry breaking.

Gravity coupled to��YM Left gauge theory Right gauge theory

N = 4��YME supergravity N = 4 S��YM YM + ��ϕ
3

N = 2��YME supergravity (gen. Jordan) N = 2 S��YM YM + ��ϕ
3

N = 0��YMDR-E + dilaton + Bµν ��YMDR YM + ��ϕ
3

f d̂âĉf ĉb̂ê− f d̂b̂ĉf ĉâê = f âb̂ĉf d̂ĉê ,

f â β̂
γ̂ f b̂ γ̂

α̂ − f b̂ β̂
γ̂ f â γ̂

α̂ = f âb̂ĉf ĉ β̂
α̂ ,

f â γ̂
ϵ̂ f ϵ̂ β̂

δ̂
− f â β̂

ϵ̂ f ϵ̂ γ̂

δ̂
= f â ϵ̂

δ̂
f γ̂ β̂
ϵ̂ . (224)

These relations are necessary to ensure gauge invariance. The Clebsch–Gordan coefficients

f γ̂ β̂
ϵ̂ need to obey additional identities:

f α̂ γ̂
ϵ̂ f ϵ̂ β̂

δ̂
− f α̂ β̂

ϵ̂ f ϵ̂ γ̂

δ̂
= f α̂ ϵ̂

δ̂
f γ̂ β̂
ϵ̂ ,(

f β̂ ϵ̂
γ̂ f α̂

ϵ̂ δ̂
+ f α̂ ϵ̂

δ̂
f β̂ϵ̂ γ̂ + f â β̂

γ̂ f â α̂
δ̂

)
−
(
α̂↔ β̂

)
= f α̂ β̂

ϵ̂ f ϵ̂
δ̂ γ̂
. (225)

The seven-term identity is to be thought of as a compact way of writing a set of three- and two-
term identities. The general construction for Higgsed supergravities proceeds as follows [122]:

• One introduces a non-supersymmetric gauge theory with massive scalars and imposes the
identities (224) and (225) on its numerator factors. Note that the numerators of the Coulomb-
branch theory need not obey the same identities.

• Masses need to be matched on both gauge-theory factors. For gaugings that uplift to five
dimensions, the Higgs mechanism requires that the Coulomb-branch theory masses be pro-
portional to a preferredU(1) gauge generator (given by the direction of the VEV). Imposing
CK duality results in demanding than the masses in the explicitly-broken massive-scalar
theory also be proportional to a preferred U(1) global generator (in our example, the U(1)
acting as a phase rotation on the complex scalars).

• In general, the symmetry-breaking pattern (number of factors in the gauge group, number
of matter representation, existence of Clebsch–Gordan coefficients corresponding to a given
triplet of representations) from the Coulomb-branch gauge theory matches both that of the
explicitly-broken theory and that of the supergravity theory.

• Identification of the supergravity relies on the unbroken limit (setting all masses to zero), as
well as on the symmetry breaking information encoded in the trilinear scalar couplings.

A list of constructions for Higgsed supergravities with various amounts of supersymmetry can
be found in table 11.

Exercise 5.12. What would happen if we attempted to double copy two Coulomb-branch
theories realized both in terms of compact momenta? Find out as much information as possible
on the resulting gravity theory.

5.3.8. Gauged supergravities. In this subsection, we consider an important variant of the
construction for Higgsed supergravities. In a sense, the construction outlined in the previous
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Table 12. Fields in gauge-theory factors for a simple example of a double-copy con-
struction for N = 2 gauged supergravities.

Fields Representation Mass

(Aµ, ϕ̄
a) G 0

(Wµ,φ
s) R m

(Wµ,φ
s) R −m

Fields Representation Mass

(Aµ,φ
α) G 0

χ R m
χ R −m

subsection can be regarded as the simplest double-copy prescription which produces a grav-
ity with massive vector fields. Various details of the construction can then be traced back to
the requirement that such massive vectors obey the relevant Ward identities corresponding to
spontaneous symmetry breaking.

Along similar lines, we might want to consider double copies leading to massive spin-3/2
fields. It turns out that the construction will lead to gauged supergravities—supergravities in
which a subgroup of the R symmetry is promoted to a gauge symmetry under which gravitini
are charged. In a gauged supergravity with a Minkowski vacuum, minimal coupling between
gravitini and gauge vector produces a nonzero amplitude of the form

M3
(
1ψi ,2ψj,3A

a
)
= igRt

a
ijv̄

µ
1 ��ε3v2µ +O

(
(gR)

0
)
. (226)

gR is the coupling constant and vlµ (l= 1,2) are the gravitini’s polarization spinor-vectors. The
matrices taij generate the gauged R-symmetry subgroup acting nontrivially on the gravitini. The
above amplitude does not vanish with the replacement

vlµ → vlµ + klµϵ , ��klϵ= 0 . (227)

Since this replacement correspond to an linearized supersymmetry transformation, the pres-
ence of a nonzero amplitude of the form (226) signifies that supersymmetry is spontaneously
broken. Indeed, R-symmetry gauging and spontaneous supersymmetry breaking go hand in
hand for supergravities which admit Minkowski vacua. In turn, the fact that supersymmetry is
spontaneously broken results in (some) massive gravitini. This can be understood by compar-
ing the number of physical polarizations of our gravitini; because some of the supersymmetry
generators are broken, they cannot be used to eliminate components of gravitini. Some of the
gravitini will have four physical polarizations and must therefore become massive.

This observation provides a hint on how to find a double-copy construction for amplitudes
of gauged supergravities with Minkowski vacua. In analogy with the previous subsection, we
start by seeking a construction that has the following two properties:

(i) contains massive spin-3/2 fields, realized as the double copies of a massive W bosons in
one gauge theory with massive fermions in the other;

(ii) reduces to the construction of the corresponding ungauged supergravity in the massless
limit.

The simplest realization with these properties has the schematic form

(Gauged Supergravity) = (Coulomb-branch YM)⊗
(
s��uper YM

)
, (228)

where the second factor stands for a theory with explicit supersymmetry breaking and massive
fermions.

Next, we discuss the two gauge theories separately, focusing on the particular case ofN = 2
supersymmetry and using the toolbox introduced in sections 5.2.2 and 5.2.3. Unlike the case
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of Higgsed YME theories, the Coulomb-branch theory is non-supersymmetric; we will take
it to be a pure YM theory coupled with n scalars, obtained from dimensional reduction from
D= (n+ 4) dimensions. The corresponding VEV will be parameterized by a n-dimensional
vector which we will denote as Va. The theory with supersymmetry explicitly broken by fer-
mion masses is obtained by starting with four-dimensional SU(N+M) N = 2 SYM theory
and spontaneously breaking the gauge group to G= SU(N)× SU(M)×U(1) by introducing
a VEV

〈φα〉= Ṽα ×Diag

(
1
N
IN,−

1
M
IM

)
. (229)

We then orbifold the theory by a Z2 generated by γ = diag(IN,−IM):
Aµ 7→ γAµγ

−1 , χ 7→ −γχγ−1 , φ 7→ γφγ−1 . (230)

Note that, as explained in section 5.2.2, this operation preserves CK duality. The VEVs in
both theories are chosen to have the same magnitude (Va)2 = (Ṽα)

2, so that the two theories
have common mass spectra. The explicitly-broken theory has Lagrangian

LN��=2=
1
g2

Tr

[
−1
4
FµνF

µν− 1
2
DµφαD

µφα+
1
4
[φα,φβ ]

2+
i
2
χΓµDµχ +

1
2
χΓα [φα + ⟨φα⟩,χ]

]
,

(231)

where χ is a six-dimensional Weyl fermion and α,β = 5,6. The fields in the gauge-theory
factors are listed in table 12. Denoting with ξµ the massive gravitino field on the supergravity
side, the fermionic states have the following double-copy origin:

ξµ =Wµ ⊗χ − Wν ⊗
(
γµ
3

− ipµ
3m

)
γνχ ,

ξ =Wν ⊗ γνχ, (Uλ)s = φs⊗χ . (232)

The combination on the first line is manifestly transverse and γ-traceless.U is a unitary matrix
diagonalizing the spin-1/2 mass terms. Last, the U(1)R gauge vector is:

A
U(1)R
+ = −A+ ⊗φ6 ± ϕ2 ⊗A+ . (233)

We note that the massless limit leads an ungauged theory belonging to the Generic Jordan fam-
ily discussed in section 5.3.2. The freedom of choosing theU(1)R gauge group corresponds to
the choice of VEVs in the two gauge theories entering the construction. As for Higgsed super-
gravities, this is the simplest example of the double-copy construction. However, it is immedi-
ate to generalize the construction reviewed here toU(1)R gaugings ofN = 4,6,8 supergravity
by adjusting the supersymmetry of the gauge-theory factors.

Exercise 5.13. Introduce massive spinor-helicity notation by splitting massive momenta as
pi = p⊥i − m2

2pi ·qq. Here q is a reference momentum and p⊥i ,q are both massless. Write massive

spinor polarizations as vt+ =
(
|i⊥], m|q〉/〈i⊥q〉

)
and vt− =

(
m|q]/[i⊥q], |i⊥〉

)
. Show that an

amplitudes involving massive gravitini with ± polarizations and the A−1 vector field can be
written as

Mtree
3

(
1ξ̄+,2ξ−,3A

−1
+

)
=−

√
2im Ω

〈2⊥q〉
〈1⊥q〉

, Ω=

[
3⊥1⊥

]3
[1⊥2⊥] [2⊥3⊥]

. (234)

The construction outlined above can be generalized to allow gauging of nonabelian sub-
groups of the R symmetry. To do so, we need to consider double copies that [284]:
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(i) contain massive spin-3/2 fields;
(ii) give the suitable ungauged supergravity in the massless limit;
(iii) involve gauge theories with trilinear scalar couplings.

The first two requirements parallel the abelian example discussed at the beginning of this
section, while the last property reflects the fact that cubic couplings involving gauge-theory
scalars result in nonabelian interactions in the theory from the double copy, as seen in the
example of the construction for YME theories. As before, the gauge theories entering the
double copy are obtained from higher dimension with a combination of Higgsing and orbi-
folding. We specialize to the case of gaugings ofN = 8 supergravity and start by writing both
copies ofN = 4 SYMas the dimensional reduction of SYM theories in ten dimensions. For the
left gauge-theory factor, we choose undeformed N = 4 SYM theory on the Coulomb branch.
In the right gauge-theory factor, we introduce a massive deformation which involves trilinear
scalar couplings,

L=−1
4

(
F â
µν

)2
+

1
2

(
Dµϕ

âI
)2− 1

2
m2
IJϕ

âIϕ âJ− g2

4
f âb̂êf ĉd̂êϕ âIϕb̂Jϕ ĉIϕ d̂J− gλ

3!
f âb̂ĉFIJKϕ âIϕb̂Jϕ ĉK

+
i
2
ψ̄��Dψ − 1

2
ψ̄Mψ +

g
2
ϕ âIψ̄ΓIt âRψ . (235)

CK duality of the two-scalar-two-fermion four-point amplitude demands that the fermionic
mass matrix M obey the relation[

ΓI,
{
ΓJ,M

}]
+ iλFIJKΓK = 0 , (236)

where ΓI are the Dirac matrices in higher dimensions and FIJK are related to the structure con-
stants of the supergravity gauge group. The right gauge theory is then Higgsed and orbifolded,
following the same strategy outlined in the N = 2 example. Double copies involving theories
obtained with this prescription need however to satisfy additional consistency requirements.

Referring to the literature for the general construction [284], we consider the action (235)
with an SU(3N) gauge group and the deformation

M= i
g
4
Γ789 , λF789 = g . (237)

This deformation breaks ten-dimensional Lorentz invariance to SO(3)× SO(6,1) and can be
uplifted to seven dimensions. Starting from D= 7, we take a Z5 orbifold which acts as

ψ → e
2π
5 Γ56g†ψg , ϕI → RIJ

(
4π
5

)
g†ϕJg, g= diag

(
IN,e

i 2π5 IN,e
i 4π5 IN

)
(238)

where I,J= 5,6 and R56 generates a rotation in the 5–6 plane. We also take the scalar mass-
matrix to be

m55 = m= m66 , mIJ = 0 otherwise . (239)

After the projection, the fields of the theory are organized schematically as: Aµ,ϕ
i ψr ϕ+

ψ̃r
′

Aµ,ϕ
i ψr

ϕ− ψ̃r
′

Aµ,ϕ
i

 , (240)

where i = 4,7,8,9, r= 1,2, r ′ = 3,4, and ϕ± = ϕ5 ± iϕ6. In the above equation, we represent
the fields surviving the projection as entries the in 3N× 3Nmatrices originating from the parent
theory; each entry is anN×N block. To obtain a number of states that reproduces the spectrum
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Table 13. Fields and mass spectra for gauging of N = 8 supergravity with N = 4
residual supersymmetry [284].

Rep. R L Supergravity fields mass2

G V0
N=4 Aµ ⊕ϕi HN=4 ⊕ 4V0

N=4 0
R1 Vm

N=4 ψr 2Ψm
N=4 u21

R̄1 Vm
N=4 ψ̃r′ 2Ψm

N=4 u21
R2 Vm

N=4 ϕ+ Vm
N=4 4u21

R̄2 Vm
N=4 ϕ− Vm

N=4 4u21

ofN = 8 supergravity, we need to combine the representations (N, N̄,1)with (1,N, N̄) and the
representation (N̄,N,1)with (1, N̄,N) into a (reducible) representationwhich is denoted asR1.
This can be realized by rewriting the Lagrangian in a way that only representation matrices
for R1 appear explicitly.

In the left theory, we take a a VEV of the form

〈ϕ4〉= diag(u1IN,u2IN,u3IN) , u1 + u2 + u3 = 0 . (241)

Since the two irreducible representations that have been combined into R1 need to have the
same mass, we get a condition involving the VEV parameters,

u1 − u2 = u2 − u3 → u2 =
u1 + u3

2
= 0 . (242)

In addition, we get the following conditions by matching the mass spectra of the two theories:

M2 =−u21, m2 = 4u21 . (243)

We list the fields from the double copy with their respective mass spectra in table 13.
The vacuum of this theory has an unbroken SU(2)×U(1) gauge group which is reflected

by the FIJK tensors in (237). N = 4 unbroken supersymmetry is inherited from the Coulomb-
branch gauge-theory factor. Many additional examples can be worked out along similar lines.
A complete classification of double-copy-constructible gaugings is currently an open problem.

5.3.9. Conformal supergravity. A double-copy construction for conformal gravity was set
forth in [152] and further investigated in [153]. Before we get into the details of that construc-
tion, let us review some general properties of conformal gravity. The simplest model is that of
Weyl gravity, which has the four-derivative action

S=− 1
κ2

ˆ
d4x

√
−g (Wµνρσ)

2
, (244)

where Wµνρσ is the Weyl curvature tensor, and κ is a dimensionless coupling. The action
is invariant under local rescaling of the metric, gµν → Ω(x)gµν ; more generally the theory
possesses local conformal symmetry at the classical level. The symmetry can be extended to
local superconformal symmetry by considering supergravity formulations of the Weyl theory.
It is believed that N = 4 is the maximum allowed supersymmetry. In contrast to expectations
from SYM and ordinary two-derivative supergravity, the maximally supersymmetric theory is
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not unique, in fact it has an infinite number of free parameters [349]. The free parameters are
encoded in a free holomorphic function that multiplies the square of the Weyl tensor44,

− κ2

√
−g

LN=4 = f(τ)
(
W +

µνρσ

)2
+ f(τ)

(
W −

µνρσ

)2
+ . . . , (245)

where W±
µνρσ =Wµνρσ/2± (i

√
−g/4)W λκ

µν ϵλκρσ is the (anti-)selfdual Weyl tensor and the
complex scalar τ = i e−ϕ +χ is the dilaton-axion field. The ellipsis denotes additional terms
that are fully constrained by the superconformal symmetry. The choice f(τ) = 1 corresponds
to the supersymmetrization of the Weyl theory, and it is usually called minimal conformal
supergravity. When f(τ) is not constant, the theory corresponds to non-minimal conformal
supergravity. The double-copy constructions that we will consider corresponds to the two
cases [153]:

f(τ) = − iτ (N = 4 Berkovits-Witten theory) ,

f(τ) = 1 (N = 4 minimal conformal supergravity) . (246)

These two cases are special. The Berkovits-Witten theory [350] corresponds to the unique
conformal supergravity theory that has an uplift to 10 dimensions [145, 152, 153, 351]. At tree
level, the minimal theory has the same SU(1,1) electromagnetic duality symmetry as N = 4
supergravity, and certain all-multiplicity tree-level amplitudes are the same as in that theory.
AllN = 4 conformal supergravities are expected to be anomalous at loop level unless they are
coupled to four vector multiplets [352, 353].

For reasons of conciseness, we will restrict the discussion in this section to scattering amp-
litudeswhere the external states are planewaves. As is well known, the four-derivative action of
conformal gravity also permits other types of asymptotic states, see e.g. [153, 354] for further
details. The double copy that gives amplitudes in the Berkovits–Witten conformal supergravity
theory has the schematic form

(Berkovits–Witten CSG) = (SYM)⊗
(
(DF)2−theory

)
, (247)

where SYM is the maximally supersymmetric YM theory, and the (DF)2 theory is a bosonic
gauge theory with dimension-six operators which has the following Lagrangian [152]:

L(DF)2 =
1
2
(DµF

aµν)
2 − g

3
F 3 +

1
2
(Dµφ

α)
2
+
g
2
CαabφαF a

µνF
bµν +

g
3!
dαβγφαφβφγ .

The vector Aaµ transforms in the adjoint representation of a gauge group G with indices a,b,c.
φα are additional scalars transforming in a real representation for which Cα a b and dαβγ are
invariant tensors. We have used the short-hand notation F 3 = f abcFaνµ F

bλ
ν Fcµλ . It should be

noted that Cαab,TaR and dαβγ are implicitly defined through the two relations:

CαabCαcd = f acef edb+ f adef ecb ,

Cαabdαβγ = (TaR)
βα (TbR)αγ +CβacCγcb+(a↔ b) , (248)

which are sufficient relations for expressing tree-level gluon amplitudes in terms only f abc

tensors.

44 Note that compared to [152] we are using a convention where we have swapped iτ̄ with−iτ . This changes the sign
of the axion field, which is physically unobservable.
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A massive deformation of this theory was also introduced in [152] and is defined by the
Lagrangian:

L(DF)2+YM =
1
2
(DµF

aµν)
2 − g

3
F 3 +

1
2
(Dµφ

α)
2
+
g
2
CαabφαF a

µνF
bµν +

g
3!
dαβγφαφβφγ

− 1
2
m2 (φα)

2 − 1
4
m2 (F a

µν)
2
. (249)

This theory interpolates between the (DF)2 theory and a pure YM theory and has the mass as a
free parameter. Along similar lines, the theory (249) can be further augmented by introducing
adjoint scalars ϕaA which are also charged under a global group and appear in trilinear coup-
lings which are analogous to the ones introduced for YME theories and nonabelian gauged
supergravities:

L(DF)2+YM+ϕ3 =
1
2

(
DµF

aµν)2 − g
3
F3 +

1
2

(
Dµφ

α)2 + g
2
CαabφαF a

µνF
bµν +

g
3!
dαβγφαφβφγ

− 1
2
m2 (φα)2 − 1

4
m2 (Fa

µν
)2

+
1
2

(
Dµϕ

aA
)2

+
g
2
CαabφαϕaAϕbA

+
gλ
3!
f abcFABCϕaAϕbBϕcC . (250)

These deformations of the (DF)2 theory will also play an important role for double-copy con-
structions involving various string theories, which are reviewed in the next subsections. We
also note that the (DF)2 theory is just a representative of a large class of gauge theories with
higher-dimension operators. An investigation of their amplitudes in the general case is an open
problem; we refer the reader to [296] for a similar construction of supergravities with higher-
dimension operators and to [145] for a study of the (DF)2 theory from the point of view of
ambitwistor strings.

Exercise 5.14. Show that three- and four-gluon color-ordered amplitudes in the (DF)2 theories
have the expressions

A(DF)2 (1,2,3) =−4(ε1 · p2)(ε2 · p3)(ε3 · p1) ,

A(DF)2 (1,2,3,4) = 4
s212s

2
23

s13

(
p4·ε1
s14

−p2·ε1
s12

)(
p1·ε2
s12

−p3·ε2
s23

)(
p2·ε3
s23

−p4·ε3
s12

)
×
(
p3·ε4
s12

−p1·ε4
s23

)
, (251)

and that they obey color-kinematics duality. Note that the products between polarization vec-
tors, εi · εj, always cancel out (this is a special property of the (DF)2 theory).

Finally, we will consider amplitudes in the minimal N = 4 conformal supergravity theory.
For external plane waves at tree level, the relation is

(minimal CSG) = (SYM)⊗
(
minimal (DF)2 -theory

)
, (252)

where we have truncated the bosonic gauge theory to a ‘minimal’ version,

Lmin.(DF)2 =
1
2
(DµF

aµν)
2
. (253)
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However, as the reader may confirm, the all tree-level plane-wave amplitudes in this theory
vanish—a property that is also true of minimal conformal supergravity. In order to have some-
thing nonvanishing to compare with, we must deform the two theories by a mass term,

Lmin.(DF)2+YM =
1
2
(DµF

aµν)
2 − 1

4
m2 (F a

µν)
2
. (254)

The resulting double copy

(mass-deformed minimal CSG) = (SYM)⊗
(
minimal (DF)2 +YM

)
, (255)

gives amplitudes in a mass-deformed minimalN = 4 theory that interpolates between (Weyl)2

and a Ricci scalar term

−κ2√−g−1LN=4 = (Wµνρσ)
2 − 2m2R+ . . . (256)

where the ellipsis are additional terms fixed by supersymmetry. The tree amplitudes, for
external plane waves, in the mass-deformed theories, are proportional to the corresponding
amplitudes in ordinary YM and supergravity [153],

Amin.(DF)2+YM = m2AYM ,

Mmass−def.min.CSG = m2MSG . (257)

In addition to considering N = 4 conformal supergravity, the corresponding theories with
reduced supersymmetry N = 0,1,2 can be obtained by replacing the N = 4 SYM factor in
the double copies (247), (252) and (255) by N = 0,1,2 (S)YM. The N = 0,1,2 conformal
(super)gravity theories will not be pure, as they will inherit a dilaton-axion multiplet from the
N = 4 theory, in close analogy to the case of ordinary two-derivative supergravity theories.

5.3.10. Perturbative string theories. In references [109, 355], disk integrals that appear in
open-string amplitudes were organized in terms of building blocks

Zσ (ρ(1,2, . . . ,n)) = (2α ′)
n−3

ˆ

σ{−∞⩽z1⩽z2⩽...⩽zn⩽∞}

dz1 dz2 . . . dzn
vol(SL(2,R))

∏n
i<j |zij|α

′sij

ρ {z12z23 · · ·zn−1,nzn,1}
. (258)

Here we use the notation zij = zi− zj and vol(SL(2,R)) refers to fixing three punctures on
the disk to zi,zj,zk → (0,1,∞) while introducing a Jacobian |zijzikzjk|. Such building blocks
depend on two permutations σ,ρ ∈ Sn and obey field-theory BCJ relations with respect to ρ,

n−1∑
j=2

(p1 · p23...j)Zσ (2,3, . . . , j,1, j+ 1, . . . ,n) = 0 , (259)

and string-theory monodromy relations [104, 105] with respect to σ,
n−1∑
j=1

e2iπα ′p1·p23...jZ(2,3,...,j,1,j+1,...,n) (ρ) = 0 . (260)

One may therefore think of Zσ(1,ρ(2, . . . ,n− 2),n− 1,n) as partial amplitudes ordered with
respect to two symmetry groups. One of them corresponds to dressing Z with traces built out
of Chan–Paton factors following the permutation σ and the other corresponds to dressing it
with trace color factors, unrelated to the Chan–Paton factors, following the permutation ρ.

With these building blocks, the open-superstring amplitudes with massless external states
color-ordered, with respect to the Chan–Paton factors, can be expressed directly in terms of
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YM scattering amplitudes [109], and written in terms of a field theoretic double-copy factor-
ization in [355],

Atree
OS (σ (1,2,3, . . . ,n)) =

∑
τ,ρ∈Sn−3(2,...,n−2)

Zσ (1, τ,n,n−1)S [τ |ρ]ASYM (1,ρ,n−1,n) , (261)

where the (n− 3)!× (n− 3)! matrix S[τ |ρ] = S[τ(2, . . . ,n−2)|ρ(2, . . . ,n−2)] is the field-
theory KLT kernel45 introduced in section 2.3.1. It is fascinating to note that a suggestive
hint of this type of field-theoretic double-copy factorization was identified in [357].

Rather than focusing on the partially-ordered open string amplitudes (261), consider instead
the content of the full Chan–Paton-dressed open supersymmetric string amplitude. Dressing
Zσ with all relevant (n− 1)! traces built out of Chan–Paton factors, yields a singly ordered
function,

Ztree (1, . . .,n) ≡
∑

σ∈Sn−1(2,...,n)

Tr [Ta1Taσ(2) · · ·Taσ(n−1)Taσ(n) ]
∑

ρ∈Sn−3

Zσ (1,ρ,n− 1,n) , (262)

which obeys only the field-theory amplitude relations (i.e. equation (259) with the replacement
Zσ → Ztree). The full Chan–Paton-dressed open superstring amplitude,

AOS =
∑

σ∈Sn−1

Tr [Ta1Taσ(2) · · ·Taσ(n−1)Taσ(n) ]Atree
OS (1,σ) , (263)

can also be written entirely as a field-theory double copy

AOS =
∑

τ,ρ∈Sn−3

Ztree (1, τ,n,n− 1)S [τ |ρ]ASYM (1,ρ,n−1,n) . (264)

An interesting open problem is the physical interpretation of the above building blocks.
Given the adjoint field-theory relations obeyed by the ordered Z(ρ), it is natural to consider
the orderless-functions resulting by dressing the ρ orderingwith adjoint f abc structure constants
as per a DDM basis. This yields a fully dressed function that can be expressed in terms of cubic
graphs dressed with two factors that both satisfy Jacobi identities and antisymmetry:

Z =
∑
i

zi ci
Di

=
∑

ρ∈Sn−2

c1|ρ|nZ
tree (1,ρ,2) , (265)

such that:

Ztree (1,ρ(2) , . . .ρ(m− 1) ,m) =−i
∑

i∈planar

bi ρ
zi
Di
, (266)

where zi are Jacobi satisfying functions of both higher-derivative scalar kinematics and string
Chan–Paton factors, Di are the propagators of the graph, and bi ρ ∈ {0,±1} are integer coeffi-
cients that depend on the ordering ρ. BothZ and Z can be derived as the tree-level amplitudes,
color-dressed and ordered respectively, of an effective field theory of double-colored scalar
fields in which the scalars obey an equation of motion of the schematic form [171]

□Φ = Φ2 +α ′2ζ2
(
∂2Φ3 +Φ4

)
+α ′3ζ3

(
∂4Φ3 + ∂2Φ4 +Φ5

)
+O

(
α ′4
)
. (267)

This theory was named Z-theory in references [169, 171, 310]. It is worth noting that the color
structure of the leading term in the equation of motion is the same as the bi-adjoint ϕ3 theory.

45 Note that theα ′-dependent KLT kernel, given in [24] (and its inverse in [356]), needs not feature in the factorization
of tree-level string amplitudes, cf equation (270).
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The entire tower of higher derivative operators relevant to the open-string are encoded in
this effective scalar theory, whose double copy with the supersymmetric gauge theory yields
the supersymmetric open string. Schematically, the formula (264) can be rewritten with the
short-hand notation

(massless open superstring) = (Z-theory)⊗ (SYM) . (268)

The simplest set of Z-theory amplitudes arise when one trivializes the string Chan-Paton
factors, taking all the generators to be the identity, corresponding to a U(1) group. This opera-
tion on the Chan-Paton dressed open string results in a symmetrization over all orders referred
to as the abelian or photonic open-string whose low-energy limit yields amplitudes in maxim-
ally supersymmetric DBI theory, where the fermionic sector is of Volkov–Akulov type [302–
305, 358–362]. Abelian Z amplitudes yield in the low-energy limit NLSM amplitudes46 in
the α ′ → 0 [169]. This is consistent with the realization that the NLSM double-copies with
N = 4 SYM in four dimensions to generate DBI-VA amplitudes [125, 307].

A closed-string version of the Z-theory amplitudes involves integrals over the moduli space
of punctured Riemann spheres [155, 363–365]

svZ(τ |σ) =
(
2α ′

π

)n−3̂ d2z1 d2z2 . . . d2zn
vol(SL(2,C))

∏n
i<j |zij|2α

′sij

τ {z̄12z̄23 · · · z̄n−1,nz̄n,1}σ {z12z23 · · ·zn−1,nzn,1}
.

(269)

The notation svZ refers to the so-called single-valued projection of multiple zeta values
(MZVs), which can be regarded as a formal operation acting on the building blocks which
arise in the construction for tree amplitudes of massless open-superstring states in the low-
energy expansion [366, 367]. Here, we use (269) as the definition of svZ(τ |σ). Amplitudes in
the Z-theory, together with their closed-string counterparts svZ(τ |σ), enter a particular class of
tree-level double-copy constructions which combine the amplitudes of a string theory with the
amplitudes of a gauge theory. For example, amplitudes in the closed superstring with massless
asymptotic states can be obtained with the construction [368, 369]

(closed superstring) = (SYM)⊗ sv(open superstring) . (270)

Remarkably, various incarnations of the (DF)2 theory introduced in the previous subsec-
tion in a completely different context enter these double-copy constructions for string amp-
litudes [370]:

(open bosonic string) =(Z− theory)⊗
(
(DF)2 +YM

)
, (271)

(closed bosonic string) =
(
(DF)2 +YM

)
⊗ sv(open bosonic string) , (272)

(heterotic string) =
(
(DF)2 +YM+ϕ3

)
⊗ sv(open superstring) . (273)

We should note that these constructions are of the generic form (261), i.e. they involve the field-
theory KLT kernel, and apply at tree level and with massless external states. Remarkably, the
free mass parameter in the (DF)2+YM theory is related to the inverse string tension α ′ as

m2 =− 1
α ′ . (274)

46 See equation (115) for one representation of the action.
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Table 14. Various known double-copy constructions of string amplitudes [370]. The
single-valued projection sv(•) converts disk to sphere integrals.

string⊗QFT SYM (DF)2 +YM (DF)2 +YM+ϕ3

Z− theory open superstring open bosonic string
compactified open
bosonic string

sv(open superstring) closed superstring heterotic (gravity) heterotic(gauge/gravity)

sv(openbosonicstring) heterotic(gravity) closedbosonicstring
compactified closed
bosonic string

Various relations between Z-theory and string amplitudes are summarized in table 14. Some
extensions to loop level can be found in references [371–377]. Additionally, a double-copy
construction for string amplitude in terms of field-theory amplitudes in the CHY formalism
was obtained in [378, 379].

5.3.11. Other theories. We conclude the section by listing further examples of double-copy
constructions.

• The non-gravitational (supersymmetric) DBI theory was constructed in [125] using the scat-
tering Equation formalism (see also [285, 301]). It can be regarded as the double copy of
(S)YM theory and the NLSM. It should be noted that the NLSM can be obtained in the
α ′ → 0 limit of abelian Z-theory [169]. A further interesting feature of the NLSM is that it
admits a Lagrangian in which the duality between color and kinematics is manifest [309].

• Similarly, the (supersymmetric) DBI theory coupled to (S)YM theory can be constructed as
a double copy involving (S)YM theory and the NLSM coupled to bi-adjoint ϕ3 theory [306].
The latter gauge-theory factor can be obtained from theα ′ → 0 limit of partially-Abelianized
Z-theory [310].

• The DBI theory coupled to the NLSM can be constructed as a double copy involving YM
coupled to bi-adjoint ϕ3 theory and the NLSM [156].

• Volkov–Akulov theory has tree-level amplitudes that can be obtained from supersymmetric
DBI by restricting the external states to be fermions. Since DBI only has nonvanishing even-
point amplitudes, and internal bosons would require tree-level factorization with an odd
number of particles (2×fermions+ 1 boson), this restriction gives a consistent truncation of
the theory. The double copy for Volkov–Akulov theory can thus be inferred to be a product
between NLSM and SYM with only external fermions.

• Two copies of the NLSM give the so-called special-Galileon theory [125, 301].
• In three dimensions, two copies of the BLG theory [245, 246] yield an alternative con-

struction for maximal three-dimensional supergravity [119, 243, 244, 297, 380]. The three-
dimensional version of CK duality relevant to this construction is based on a so-called three-
algebra. The three-algebra for BLG theory is introduced formally using a totally antisym-
metric triple product [X,Y,Z]. Using a basis of generators the triple product can be expressed
using rank-four structure constants,[

Ta,Tb,Tc
]
= f abcdT

d . (275)

Consistency of the algebra requires that the structure constants satisfy the four-term identity

0= f abcl f
dleg+ f bael f

dlcg+ f cebl f
dalg+ f ecal f

dblg , (276)
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which plays the same role as the standard Jacobi identity for a Lie two-algebra. It turns out
that the only nontrivial compact three-algebra is SO(4) [381], where f abcd = ϵabcd. However,
for color-kinematics duality to work, it is sufficient to impose the four-term identity, whereas
identities specific to SO(4) should be ignored. Finally, we may note that the closely-related
ABJM theory [382] appears to not have similarly nice properties under color-kinematics
duality. While the tree-level ABJM amplitudes up to six points obey the duality and their
double copy gives three-dimensional maximal supergravity, at eight points the double copy
does not reproduce the corresponding amplitude in maximal supergravity [243, 244]. Since
there is no dynamical graviton in three dimension, this mismatch is not forbidden by the
diffeomorphism symmetry argument in section 2.5.

Additional theories for which a double-copy construction has been proposed involve massive
higher-spinN = 7 W-supergravity theories [383, 384]; this amount of supersymmetry has not
been accessible through different constructions. Chiral higher-spin theories have been shown
to obey generalized BCJ relations in [385]. Theories with gravitationally-coupled fermions
have been discussed in [386]. A construction of the free spectrum of D= 3 supergravities in
terms of SYM theories with fields valued in the four division algebras was given in [387].
Further examples of constructions in higher dimensions include half-maximal supergravity in
six dimensions [388] and the so-called (4, 0) theory in six dimensions [268, 389], which can
be seen as the double copy of two (2, 0) theories, at least at the level of the free spectrum
[390, 391].

6. BCJ duality at loop level

In this section, we describe loop-level examples of BCJ duality and the associated double-
copy construction. Whenever a gauge-theory integrand can be found in a form that manifests
the duality between color and kinematics, corresponding gravity integrands can be immedi-
ately written down via the double-copy procedure. This procedure enormously simplifies the
construction of gravity loop integrands and has been successful for carrying out a variety of
loop-level studies in perturbative quantum gravity theories (see e.g. [15, 17, 18, 23, 31–33,
36, 292, 293]). As explained in section 5, the precise gravity theory to which the integrands
belong depends on the choice of input gauge theories. We start by briefly recalling the defini-
tion and the main points of the duality and of the double-copy construction, discussed at length
in section 2. With the appropriate separation of diagrams’ symmetry factors and judicious
choice of loop momenta, they are essentially the same as at tree level.

Similarly to tree-level amplitudes, loop-level amplitudes in a gauge theory coupled to mat-
ter fields can be organized as a sum over diagrams with only cubic (trivalent) vertices by mul-
tiplying and dividing by appropriate propagators to absorb contact diagrams into diagrams
with only cubic vertices. If all fields are in the adjoint representation of the gauge group, this
rearrangement puts the amplitude in a form equivalent to equation (35),

AL-loop
m = iL−1gm−2+2L

∑
Sm

∑
j

ˆ L∏
l=1

dDℓl

(2π)D
1
Sj

cjnj (ℓ)
Dj

, (277)

where the ci are color factors obtained by assigning structure constant factors f̃ abc = i
√
2f abc

to each cubic vertex. The first sum runs over the set Sm ofm! permutations of the external legs.
The second sum runs over the distinct L-loop m-point diagrams with only cubic vertices. As
at tree level, by multiplying and dividing by propagators, it is trivial to absorb contribution
from higher-than-three-point vertices into numerators of diagrams with only cubic vertices.
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Figure 20. ABCJ kinematic numerator relation at one loop. When the external particles
are gluons this holds just as well for adjoint or fundamental representation particles
circulating in the loop. The shaded (red) line differs between the diagrams, but the others
are identical.

The symmetry factor Sj counts the number of automorphisms of the labeled diagram j from
both the permutation sum and from any internal automorphism symmetries47. This symmetry
factor should not be included in the kinematic numerator.

The nontrivial conjecture is that, as at tree level, for every loop-level color Jacobi identity
there is a matching kinematic numerator identity (41).

ci − cj = ck ⇔ ni (ℓ)− nj (ℓ) = nk (ℓ) . (278)

However, unlike at tree level, one has to be cautious with the treatment of degrees of freedom
that are not fixed by the external states. This includes proper accounting of the loop momenta
of the numerators, generically called ℓ, as well as being careful to not set to zero color factors
that vanish when summing over internal indices.

We can change the signs of the color factors using the antisymmetry of the f abcs, but any
relative signs between color factors in the Jacobi relation are then inherited by the correspond-
ing relation between the kinematic numerator factors. A simple example of such loop-level
relations is illustrated in figure 20 for the case of a one-loop amplitude. At loop-level, the
duality between color and kinematics (41) remains a conjecture [2], although evidence in its
favor continues to accumulate [4–6, 9–23, 156].

Just as for tree-level numerators, once gauge-theory numerator factors which satisfy the
duality are available, replacing the color factors by the corresponding numerator factors, ci →
ni yields the double-copy form of gravity loop integrands (45),

ML-loop
m = iL−1

(κ
2

)m−2+2L∑
Sm

∑
j

ˆ L∏
l=1

dDℓl

(2π)D
1
Sj

ñj (ℓ)nj (ℓ)
Dj

, (279)

where ñj and nj are gauge-theory numerator factors, which can come from distinct gauge the-
ories and κ is the gravitational coupling defined below equation (5). The duality needs to be
manifest in only one of the two gauge-theory amplitudes for the double-copy formula to hold.

6.1. One-loop examples of BCJ duality: N = 4 SYM theory

The simplest example that illustrates CK duality at loop level is the one-loop four-point super-
amplitude ofN = 4 SYM theory. These amplitudes are remarkably simple, making them very
useful for this purpose.

47 Note that this symmetry factor is different from the symmetry factor in equation (35), where Sj counts the auto-
morphisms of graphs with fixed external legs.
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Figure 21. A one-loop box integral, I4(s, t), appearing in the one-loop four-pointN = 4
SYM andN = 8 supergravity amplitudes. The three independent relabelings of external
legs appear in the amplitudes.

The Jacobi identity obeyed by the structure constants of any Lie algebra guarantees that, in
any gauge theory with all fields in the adjoint representation of the gauge group, any one-loop
four-point amplitude can be organized as

A1−loop
4 (1,2,3,4)

= g4
(
c1234A

1−loop
4 (1,2,3,4)+ c1243A

1−loop
4 (1,2,3,4)+ c1423A

1−loop
4 (1,2,3,4)

)
,

(280)

where the color factor c1234 in equation (280) corresponds to the one of the box diagram in
figure 21 and is given by dressing each three-point vertex with an f abc structure constant, and
summing over all repeated indices,

c1234 = 4f ba1cf ca2df da3ef ea4b . (281)

The other two color factors are obtained by relabeling andwe normalized c1234 following stand-
ard conventions [88]. Passing to a trace basis for the color factors identifies A1−loop(1,2,3,4)
with the one-loop four-point color-ordered amplitudes. The form (280) can be obtained by
applying the color Jacobi identity to the color factors of any valid representation (e.g. Feynman
diagrams) of the amplitude to trade other color factors in favor of the three box ones [180].
Similar manipulations, together with use of the defining commutation relations of the Lie
algebra, can be used to map the color factors of all one-loop four-point amplitudes in a theory
with fields in any representation to the color factors of a box diagram; in this subsection we
will however restrict ourselves to theories with fields in the adjoint representation.

Exercise 6.1. Prove equation (280) by starting from standard Feynman diagrams and then
applying color Jacobi identities to express all color factors in terms of the color factors of the
box diagrams.

Consider now the one-loop four-point superamplitude of N = 4 SYM theory. Each color-
ordered superamplitude in equation (280) is especially simple and given by [392]

A1−loop
N=4 (1,2,3,4) = i stAtree

N=4 (1,2,3,4) I4(s, t) , (282)

where I4(s, t) is the box integral illustrated in figure 21, s= (p1 + p2)2 and t= (p2 + p3)2

are the usual Mandelstam invariants and Atree
N=4(1,2,3,4), standing for the n= 4 case of

equation (465), is the color-ordered four-point tree superamplitude.
Since the diagram structure of the kinematic propagators in the three color-ordered amp-

litudes entering equation (280) matches that of their color factors, the kinematic numerators
of the representation (277) of the one-loop amplitude can be straightforwardly identified. The
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combination stAtree
N=4(1,2,3,4) is fully crossing-symmetric, as a consequence of the BCJ four-

point tree-level amplitude relations (28), so all three numerators are the same,

n1234 = n1243 = n1423 = i stAtree
N=4 (1,2,3,4) =

[12] [34]
〈12〉〈34〉

δ(8)

(
4∑

i=1

λi η
I
i

)
, (283)

where we have specialized to four-dimensional external kinematics in the last equality.
Because triangle and bubble diagrams do not appear in the N = 4 SYM amplitude (282)

(or, alternatively, they enter with vanishing numerators), it is straightforward to check, using
equation (283), that the BCJ duality relation illustrated in figure 20 holds. The remaining kin-
ematic Jacobi relations are also satisfied for similar reasons.

The corresponding N = 8 supergravity amplitude follows immediately from the basic
double-copy substitution (44), replacing color factors by numerators and compensating for
the change in coupling. This gives

M1−loop
N=8 (1,2,3,4) =−i stuMtree

N=8 (1,2,3,4)(I4(s, t)+ I4(s,u)+ I4(t,u)) , (284)

where we used (4),(κ
2

)4 (
stAtree

N=4SYM (1,2,3,4)
)2

= stuMtree
N=8 (1,2,3,4) , (285)

to replace the square of theN = 4 SYM four-point tree-level amplitude with theN = 8 super-
gravity four-point tree-level amplitude. This is a consequence of the KLT relations (31) and the
BCJ amplitude relation (28). The amplitude in equation (284) reproduces the known N = 8
supergravity four-point tree-level amplitude [194, 392].

The explicit value of the massless scalar box integral I4(s, t) appearing in both the N = 4
SYM and N = 8 supergravity one-loop four-point amplitudes is

I4(s, t) =
ˆ

dDℓ

(2π)D
1

ℓ2 (ℓ− p1)
2
(ℓ− p1 − p2)

2
(ℓ+ p4)

2 , (286)

where the pi’s are the external momenta and the Feynman iε prescription, not included expli-
citly, is used to define the propagators. In dimensional regularization, we takeD= 4− 2ϵwith
ϵ small. The explicit functional form of I4(s, t) is (see e.g. [393, 394])

I4 (s, t) = i
cΓ
st

[
2
ϵ2

(
(−s)−ϵ

+(−t)−ϵ
)
− ln2

(
−s
−t

)
−π2

]
+O (ϵ) , (287)

with

cΓ =
(4π)ϵ

16π2

Γ(1+ ϵ)Γ(1− ϵ)
2

Γ(1− 2ϵ)
. (288)

The other box integrals can be obtained from this one by relabeling. Using these explicit
expressions one can verify general properties of (super)gravity amplitudes, such as existence
of only soft infrared (IR) divergences.

We can use equation (280), together with theN = 4 SYMnumerators (283), to immediately
obtain the four-point amplitudes of any 4⩽N ⩽ 8 supergravity after integration. Because the
duality satisfying N = 4 four-point SYM kinematic numerators (283) are independent of the
loop momentum, they come out of the integral as in equation (284) and behave essentially the
same way as color factors. Thus, to obtain results for N ⩾ 4 supergravity, we can start with
equation (280) evaluated forN ⩽ 4 (S)YM theory and replace the color factors with theN = 4
SYM numerators in equation (283). This gives us a general representation of the four-point
amplitudes of all N ⩾ 4 supergravities:
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M1−loop
N+4 susy (1,2,3,4)

=
(κ
2

)4
i stAtree

4 (1,2,3,4)
(
A1−loop
N susy (1,2,3,4)+A1−loop

N susy (1,2,4,3)+A1−loop
N susy (1,4,2,3)

)
.

(289)

As explained above, A1-loop
N susy are one-loop color-ordered gauge-theory amplitudes after loop

integration for a theory with N (including zero) supersymmetries (cf equation (280)). This
expression applies just as well for externalmattermultiplets inN = 4 supergravity. The needed
integrated gauge-theory amplitudes may be found in [270, 393].

The double copy of amplitudes of gauge theories with N < 4 supersymmetry is less
straightforward because the required gauge-theory numerators are in general not independent
of loop momenta. Because of this, although the double-copy construction holds at the integ-
rand level, one cannot simply carry over the integrated results from gauge to gravity theories.
It is nevertheless remarkable that there is such a simple relation between these two different
theories.

To illustrate CK duality and the double-copy construction at one loop, we consider the one-
loop identical-helicity four-gluon amplitude in QCD with N f quark flavors in the fundamental
representation, originally constructed in [270]. It is48

A1−loop
QCD

(
1+,2+,3+,4+

)
= 2g4

[12] [34]
〈12〉〈34〉

((
c1234 −Nf c

f
1234

)
I4(s, t)

[
µ4
]

+
(
c1243 −Nf c

f
1234

)
I4(s,u)

[
µ4
]
+
(
c1423 −Nf c

f
1234

)
I4(t,u)

[
µ4
])
, (290)

where the color factor associated with the quark loop is

c f1234 = Tr [Ta1Ta2Ta3Ta4 ] + Tr [Ta4Ta3Ta2Ta1 ] . (291)

For simplicity, we have assumed that the quarks are massless. Here µ is the (−2ϵ)-dimensional
component of loop momentum, so

ℓ= ℓ(4) +µ, ℓ2 =
(
ℓ(4)
)2

−µ2 , (292)

and I4(s, t)[µ4] is the integral corresponding to the diagram in figure 21 with a µ4 numerator
factor. As required by Bose symmetry, the prefactor is fully cross symmetric, i.e.

[12] [34]
〈12〉〈34〉

=
[23] [41]
〈23〉〈41〉

=
[13] [24]
〈13〉〈24〉

, (293)

and, up to the supermomentum conservation delta function, it is the same as in equation (283).

Exercise 6.2. Show the prefactor in equation (293) is crossing symmetric. Spinor properties
may be found in appendix B and in various reviews [88, 89, 91].

It is not difficult to check that the amplitude in equation (290) obeys CK duality. Consider
the duality relation in figure 20: because the triangle diagrams have vanishing numerators in
equation (290), the duality requires the different box integrals to have an identical numerator,
which follows from equation (293) and the integrals’ numerators being crossing symmetric.

48 It may also be obtained via the dimension-shifting relation [395] from the four-gluon superamplitude in N = 4
SYM theory (280),(282).

102



J. Phys. A: Math. Theor. 57 (2024) 333002 Topical Review

Exercise 6.3. Make the quarks massive. For the identical helicity case, the integral numerator
is obtained with the replacement µ4 → (µ2 +mq)

2 [270] while the loop propagators become
massive with mass mq. Do the BCJ relations hold? What does the double-copy theory corres-
pond to?

Consider now the double-copy construction with one of the two amplitude factors being
equation (290) with Nf = 0. Taking the second amplitude to be the four-gluon superamplitude
of N = 4 SYM theory given in equations (280),(282) leads to an anomalous superamplitude
in N = 4 supergravity [260]:

M1−loop (1,2,3,4)N=4 = 2
(κ
2

)4
(

[12] [34]
〈12〉〈34〉

)2

δ(8)

(
4∑

i=1

λiη
I
i

)
×
(
I4(s, t)

[
µ4
]
+ I4(s,u)

[
µ4
]
+ I4(t,u)

[
µ4
])
. (294)

As outlined in section 4, this amplitude breaks the U(1) duality symmetry of this theory [260]
and is the amplitude-level manifestation of the duality anomaly identified in [263] from a
Lagrangian perspective.

Another example is the double copy in which both amplitudes are given by equation (290).
In D dimensions, the double copy of a gluon has a total for (D− 2)2 states, corresponding to a
graviton (D(D− 3)/2 states), antisymmetric tensor ((D− 2)(D− 3)/2 states) and dilaton (1
state). Taking both amplitudes in the double copy to be given by equation (290) with Nf = 0
leads to the four-graviton amplitude in a theory with a dilaton and antisymmetric tensor,

M1−loop
(
1+,2+,3+,4+

)
= 4

(κ
2

)4
(

[12] [34]
〈12〉〈34〉

)2(
I4(s, t)

[
µ8
]

+ I4(s,u)
[
µ8
]
+ I4(t,u)

[
µ8
])
. (295)

The polarization vectors in the spinor-helicity basis used in equation (290) project out the
dilaton and antisymmetric tensor asymptotic states from this amplitude. BCJ duality and the
double copy for general helicity have been described in [12, 396]. For a theory with only
gravitons and no anti-symmetric tensor or dilaton, the result for the identical helicity four-
graviton amplitude is the same as in equation (295), except that the overall factor of 4 becomes
a factor of 2. This can be proven by inserting graviton physical-state projectors into the unitarity
cuts, as described in appendix C.

The integrals in the gauge-theory and gravity amplitudes in equations (290), (294)
and (295),

I4(s, t)
[
µ4k
]
=

ˆ
dDℓ

(2π)D
µ4k

ℓ2 (ℓ− p1)
2
(ℓ− p1 − p2)

2
(ℓ+ p4)

2 , (296)

evaluate to

I4(s, t)
[
µ4
]
=− i

(4π)2
1
6
+O (ϵ) , I4(s, t)

[
µ8
]
=− i

(4π)2
1

840

(
2s2 + 2t2 + st

)
. (297)

Their finite values arise due to a cancellation of the O(ϵ) numerator factors and O(ϵ−1) IR
divergences. From this perspective, the nonvanishing amplitude (290) may be interpreted as
a self-duality anomaly [264]. The integrals (296) may also be interpreted in terms of higher-
dimensional integrals [395].
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Figure 22. Pentagon and box integrals appearing in the N = 4 SYM five-point one-
loop amplitudes. The complete set of such integrals is generated by permuting external
legs and removing overcounts.

Exercise 6.4. Consider the double copy of amplitudes in QCDwithNf > 0 flavors of quarks in
the adjoint representation. Write down the spectrum of the resulting gravity theory. Construct
the corresponding four-graviton amplitude. Would you expect that this theory is consistent
quantum mechanically for any value of Nf? Answer the same questions if the Nf > 0 flavors of
quarks are in the fundamental representation.

As a more sophisticated example, consider the one-loop five-gluon amplitude. We will
eventually restrict to the N = 4 SYM theory, but for now the discussion is quite general. We
only need to discuss the maximally-helicity-violating (MHV) amplitude, as the only other
nonvanishing one, the MHV amplitude, can be obtained by hermitian conjugation. Five-point
amplitudes with other external states can be obtained through a suitable sequence of super-
symmetry transformations. This amplitude was constructed in [163, 397] in a color-trace basis.
Here we rearrange it slightly and write it in the structure-constant basis,

A1−loop
5 (1,2,3,4,5) = g5

∑
S5/(Z5×Z2)

c12345A
1−loop
5 (1,2,3,4,5) , (298)

where A1−loop
5 on the right-hand side are the five-point color-ordered partial amplitudes. The

sum runs over the distinct permutations of the external legs: this is the set of all 5! permutations,
S5, but with cyclic, Z5, and reflection symmetries, Z2, removed, leaving 12 distinct permuta-
tions. The color factor c12345 is the one obtained from the pentagon diagram shown in figure 22,
with legs following the cyclic ordering, by dressing each vertex with an f̃abc. This color decom-
position holds for any gauge-theory amplitude with only adjoint-representation particles and
can be reached by starting from a generic color decomposition in terms of products of struc-
ture constants and repeatedly using the Jacobi identity to favor structure constants with a single
external color index.

Exercise 6.5. By starting from Feynman diagrams, apply color Jacobi identities to express all
color factors in terms of those of pentagon diagrams.What is the generalization for an arbitrary
number of external legs? (Feynman diagrams can helpful proving various properties, even if
not useful for high-multiplicity explicit calculations.)

Exercise 6.6. Generalize equation (298) to include quarks in the fundamental representation
in the loop. (See equation (290) at four points).
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ForN = 4 SYM theory, the color-ordered one-loop five-point amplitudes in equation (298)
are [163, 397],

A1−loop
N=4 (1,2,3,4,5) =

1
2
Atree
5 (1,2,3,4,5)

(
s34s45I

(12)345
4 + s45s15I

1(23)45
4

+s12s15I
12(34)5
4 + s12s23I

123(45)
4 + s23s34I

234(51)
4

)
+O (ϵ) , (299)

where Atree
5 (1,2,3,4,5) is the color-ordered MHV tree-level amplitude. We may obtain the

entire one-loop five-point MHV superamplitude by replacing Atree
5 (1,2,3,4,5) with the five-

point tree-level MHV superamplitude in equation (465). The external kinematic invariants are
sij = (pi + pj)2. The I

abc(de)
4 are scalar box integrals where the legs in parenthesis connect to

the same vertex, e.g. I(12)3454 is the box diagram in figure 22. This representation (299) of the
amplitude does not manifestly satisfy the duality. An alternative representation of the MHV
superamplitude, which manifests the duality between color and kinematics, is [4]:

A1−loop
N=4 (1,2,3,4,5)

= g5

 ∑
S5/(Z5×Z2)

c12345n12345I
12345
5 +

∑
S5/Z2

2

c[12]345n[12]345
1
s12

I(12)3454

 . (300)

Each of the two sums runs over the distinct permutations of the external legs of the integ-
rals. For I123455 , the set S5/(Z5 ×Z2) denotes all permutations but with cyclic and reflection

symmetries removed, leaving 12 distinct permutations. For I(12)3454 the set S5/Z2
2 denotes all

permutations but with the two symmetries of the one-mass box removed, leaving 30 distinct
permutations. The pentagon numerator for this representation of the superamplitude is

n12345 =−δ(8) (Q) [12] [23] [34] [45] [51]
4iϵ(1,2,3,4)

, (301)

where 4iϵ(1,2,3,4) = 4iϵµνρσk
µ
1 k

ν
2 k

ρ
3k

σ
4 = [12]〈23〉[34]〈41〉− 〈12〉[23]〈34〉[41]. With this

pentagon numerator, the box numerators that manifest the kinematic Jacobi relations illus-
trated in figure 23 are

n[12]345 = n12345 − n21345 . (302)

Other box numerators are obtained by relabeling. It is not difficult to see that the diagrams
with triangle or bubble integrals have vanishing numerators. For example, the numerator of
the triangle diagram with momenta p1 + p2 at one vertex and p4 + p5 at another is

n[12]345 − n[12]354 = n12345 − n21345 − n12354 + n21354

=− δ(8) (Q)
4iϵ(1,2,3,4)

{[12] [23] [34] [45] [51] + [21] [13] [34] [45] [52]

+[12] [23] [35] [54] [41] + [21] [13] [35] [54] [42]} , (303)

where we used momentum conservation to relate all Levi-Civita symbols contracted with four
external momenta. Upon use of the Schouten identities,

[51] [23]− [52] [13] = [12] [35] , [23] [41]− [12] [34] = [13] [42] , (304)

the term in brackets in equation (303) vanishes, so

n[12]345 − n[12]354 = n12345 − n21345 − n12354 + n21354 = 0 . (305)
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Figure 23. A BCJ kinematic numerator relation between a diagram containing a box
integral and two pentagon diagrams. The shaded (red) line differs between the diagrams,
but the others are identical.

The first of the identities (304) is used to combine the first two terms in equation (303) and the
second identity shows that the remaining term cancel.

Exercise 6.7. Show that all kinematic numerator relations hold for the amplitude given in
equation (300).

A nice feature of this representation is that the numerator factors of both the pentagon and
box integrals do not depend on loop momentum. This greatly simplifies the construction of
the corresponding supergravity amplitudes.

Given that the duality holds for the representation (300) of the five-point one-loop MHV
N = 4 SYM superamplitude, we can immediately obtain the correspondingN = 8 amplitude.
We replace the color factors with a numerator factor (44),

c12345 → n12345 , c[12]345 → n[12]345 , (306)

as well as the gauge coupling with the gravitational one. The resulting five-graviton one-loop
MHV superamplitude in N = 8 supergravity reads (45)

M1-loop
N=8 (1,2,3,4,5) =

(κ
2

)5

 ∑
S5/(Z5×Z2)

(n12345)
2 I123455 +

∑
S5/Z2

2

(
n[12]345

)2 1
s12

I(12)3454

 , (307)

where the sums run over the same permutations as in equation (300) and, as discussed in
section 4, the δ(16)(Q) should be understood as containing eight different η parameters for
each external particle.

The scalar pentagon integral and the one external-mass box integral have been computed
in [394]. We include them here for convenience:

I(12)3454 =− 2icΓ
s34s45

{
− 1
ϵ2

[
(−s34)−ϵ

+(−s45)−ϵ −
(
−s212

)−ϵ
]

+Li2

(
1− s12

s34

)
+Li2

(
1− s12

s45

)
+

1
2
ln2
(
s34
s45

)
+
π2

6

}
+O (ϵ) , (308)

I123455 =
∑
Z5

−icΓ (−s51)ϵ (−s12)ϵ

(−s23)1+ϵ (−s34)1+ϵ (−s45)1+ϵ

[
1
ϵ2

+ 2Li2

(
1− s23

s51

)
+ 2Li2

(
1− s45

s12

)
− π2

6

]
+O (ϵ) , (309)

where Li2(x) is the dilogarithm function and cΓ is defined in equation (288).
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Exercise 6.8. Show that the double copy of the one-loop five-point amplitude where one copy
is of an MHV amplitude and the second an MHV amplitude vanishes. The MHV amplitude is
obtained from the MHV one by parity which amounts to replacing 〈ab〉 ↔ [ab] and flipping
the overall sign of the amplitude. Do you expect a similar property to hold at n points or at
higher loops?

As discussed above, the double-copy construction works even if the duality is manifest in
only one gauge-theory factor. Starting with the color decomposition in equation (298) and
using the fact that for the one-loop five-pointN = 4 SYM amplitude the pentagon numerators
are independent of loop momentum, we immediately obtain five-point superamplitudes for
(N + 4)-extended supergravities. By taking the second copy to be any pure SYM theory, with
color-ordered one-loop five-point amplitudes A1−loop

N (1,2,3,4,5), we find

M1−loop
N (1,2,3,4,5) =

(κ
2

)5 ∑
S5/(Z5×Z2)

n12345A
1−loop
N (1,2,3,4,5) . (310)

Here n12345 is given in equation (301) and the sums run, as in the case of the N = 4 amp-
litude, over all the permutations which are not related to each other by cyclic permutations or
reflections.

6.2. One-loop examples of BCJ duality: SYM theories with reduced supersymmetry

Gauge theories with reduced supersymmetry provide an opportunity to discuss the construc-
tion of duality-satisfying (loop-level) scattering amplitudes with fields in representations other
than the adjoint. A simple example, which we will review here in some detail, is the one-loop
four-matter-field superamplitude inN = 2 SYM theory with a single hypermultiplet in a com-
plex representation R [30, 294]. The color factors cj in equation (277) are now constructed
by dressing every vertex of every diagram with a gauge-group generator in the appropriate
representation. This more complicated color structure is a consequence of reduced supersym-
metry, which allows for matter fields in non-adjoint representations. To keep supersymmetry
manifest, we organize the hypermultiplet asymptotic states as on-shell superfields and their
CPT-conjugates, which are treated as distinct:

ΦN=2α̂ = χ+α̂ + ηiφi α̂ + η1η2χ̃−α̂ ΦN=2
α̂ = χ̃α̂

+ + ηiφα̂
i + η1η2χα̂

−. (311)

The lower and upper α̂ is the R and R̄ representation indices, respectively. As outlined in
section 5.2.2, such superfields with reduced supersymmetry can in principle be obtained from
the ones of N = 4 SYM theory by an orbifold truncation.

At one loop, a duality-satisfying representation of the four-hypermultiplet superamplitude
can be constructed in terms of two master numerators, which can be chosen to belong to two
box diagrams. Adopting the standard notation for theories with matter (super)fields, we denote
the adjoint vector multiplet with a curly line and the complex-representation hypermultiplet
with a solid line with an arrow. The master numerator factors and the corresponding diagrams
are [30, 294]:
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where δ(4)
(
Q
)
= δ(4)

(∑
n η

i
nλn
)
. The other box integrals can then be obtained by permutation,

keeping in mind that the overall superamplitude possesses a Z2 ×Z2 Fermi symmetry under
the exchange of hypermultiplet superfields. For example, a third box-integral numerator is

Numerators for the triangle and bubble diagrams can be obtained via the kinematic numer-
ator relations. They can be organized in two distinct sets: (1) those that mirror relations between
color factors which are a consequence of the defining commutation relations of the color Lie
algebra and (2) those that corresponding to color relations that hold only for certain groups
and representations but are nonetheless required for the consistency of the double copy of a
hypermultiplet with a vector multiplet. An example of numerator relations from the first group
is

From the double-copy perspective, following the argument presented in section 2.5, these
relations are required for obtaining gravity amplitudes invariant under linearized diffeomorph-
isms. An example of color relations that hold only for certain groups and representations is

T â γ̂
α̂ T â δ̂

β̂
= T â δ̂

α̂ T â γ̂

β̂
. (315)

The corresponding numerator relations include, for example,

While these color relations are satisfied only for certain choices of gauge group and rep-
resentations, the fact that the form (276) is independent of such choices suggests that one
may choose, as we do here, to always impose the corresponding numerator relations. One
may easily convince oneself that these numerator relations are required by consistency of the
double-copy construction in case the hypermultiplet fields are combined with spin one fields in
the conjugate matter representation. In other cases they may be regarded as ‘bonus’ relations;
it is not clear a priori that there exist solutions to the numerator relations in the second group
even when solutions to the numerator relations in the first group do.

In section 5.3.3, we have reviewed the double-copy construction for homogeneous super-
gravities, and showed that it reproduces the existing classification of such theories. An import-
ant ingredient of the construction are matter fields in pseudo-real representations. It is therefore
instructive to see how our one-loop numerators described above are modified in this case. To
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enforce the pseudo-reality of the gauge group representation (i.e. the equivalence of the upper
and lower α̂ indices in equation (310)), the on-shell superfields ΦN=2 and ΦN=2 are identi-
fied. Consequently, the superamplitude needs to acquire a complete Fermi symmetry for all of
its external legs. Drawing from this observation, the numerators for a theory with pseudo-real
half-hypermultiplets can be obtained as the unique set of numerators which are both invariant
under the permutation of all external legs and reduce to the numerators for the complex case
whenever the corresponding color factors are nonzero. More concretely, in the pseudo-real
case we have only one master numerator:

and all the other numerators are obtained either from permutation symmetry or from the numer-
ator relations (313) and (315). For half-hypermultiplets in pseudo-real representations, solid
lines no longer carry an arrow since the matter half-hypermultiplets are CPT-self-conjugate.

Exercise 6.9. Given the master numerator (316), use numerator relations to generate all
nonzero numerators (up to permutation symmetry).

We emphasize that, as in the case of the one-loop four- and five-point superamplitudes
of N = 4 SYM theory, the duality-satisfying kinematic numerators of the superamplitude
reviewed here are independent of the loop momentum. Consequently, the physical proper-
ties of the double-copy supergravity theory can be directly related to properties of the other
gauge theory entering the construction. Consider, for example, the construction for homogen-
eous Maxwell-Einstein supergravities explained in section 5.3.3. We can relate the one-loop
divergences of supergravity amplitudes with four vector superfields constructed as hypermul-
tiplet × fermion to a linear combination of various parts of the one-loop beta function of the
non-supersymmetric gauge theory,

M1-loop
∣∣∣
div
=

−i
(4π)2

s δ(4) (Q)
〈12〉〈34〉

(κ
2

)4
{
sAtree

s,ϕ

(
βϕ
∣∣
T(G)

− βϕ
2

∣∣∣
T(R)

)
+sAtree

s,A

(
βA
∣∣
T(G)

− βA
2

∣∣∣
T(R)

)}
1
ϵ
+ perms . (318)

Here βϕ,βA are the beta-functions for the gauge coupling and the Yukawa interactions. We use
the notation β

∣∣
T(G),T(R)

to label the parts of the relevant beta functions that are proportional

to the index of the adjoint, T(G),and pseudo-real, T(R), matter representations. Atree
s,A and Atree

s,ϕ
are, respectively, the s-channel gluon and scalar exchange parts of the gauge theory tree-level
amplitudes. Finally, it should be noted that compact expressions for two-loop amplitudes for
N = 2 gauge theories with matter can be found in [398].

Exercise 6.10. Use the result of Exercise 7.9 to verify equation (318).

6.3. Two-loop examples

If the duality between color and kinematics holds at tree-level in D dimensions, then it also
holds on all D-dimensional generalized cuts that decompose a loop amplitude into a sum of
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Figure 24. Diagrams for the two-loop integrals appearing in the two-loop four-point
N = 4 and N = 8 supergravity amplitudes.

products of tree amplitudes. Thus, barring anomalies, it is expected to hold beyond one-loop
level. As an illustrative example, consider the two-loop four-point amplitude of N = 4 SYM
theory. This amplitude, originally constructed in [194, 399], is

A2−loop
4 (1,2,3,4) =−g6stAtree

4 (1,2,3,4)
(
cP1234 s I

2−loop,P
4 (s, t)+ cP3421 s I

2−loop,P
4 (s,u)

+cNP
1234 s I

2−loop,NP
4 (s, t)+ cNP

3421 s I
2−loop,NP
4 (s,u)+ cyclic

)
, (319)

where ‘+ cyclic’ indicates that one should add the two cyclic permutations of (2,3,4).
The integrals correspond to the scalar planar and nonplanar double-box diagrams shown in
figure 24. As at one loop, the color factor of each diagram is obtained by dressing each cubic
vertex with an f̃abc factor.

As the diagrams appearing in the amplitude are already cubic, we can read off the kinematic
numerators for each diagram. They are:

nP1234 = nNP
1234 = i s2tAtree

4 (1,2,3,4) , nP3412 = nNP
3412 = i s2tAtree

4 (1,2,3,4) ,

nP1342 = nNP
1342 = iustAtree

4 (1,2,3,4) , nP4213 = nNP
4213 = iustAtree

4 (1,2,3,4) ,

nP1423 = nNP
1423 = i st2Atree

4 (1,2,3,4) , nP2314 = nNP
2314 = i st2Atree

4 (1,2,3,4) . (320)

The factor stAtree
4 (1,2,3,4), being crossing symmetric, remains as overall factor for the com-

plete amplitude, after all cyclic permutations of (2,3,4) are added.
Because of the limited set of nonvanishing diagrams, it is straightforward to check that this

amplitude satisfies all duality relations. Three of them are shown in figure 25. The complete
set may be obtained by starting with the diagrams in figure 24 and systematically generating
the duality relations.

Following the double-copy prescription (44), we obtain the corresponding N = 8 super-
gravity amplitude by replacing the color factor with a numerator factor,

cP1234 → i s2tAtree (1,2,3,4) , cNP
1234 → i s2tAtree (1,2,3,4) , (321)

including relabelings and then swapping the gauge coupling for the gravitational one. Indeed,
this gives the correctN = 8 supergravity amplitude, as first noted in [194] which also verified
it against the direct construction from unitarity cuts.

As mentioned in section 2, generalized gauge invariance implies that only one of the two
copies must be in a form manifestly satisfying the duality (41); for the second copy, such a
form should exist but its use is not required. The color Jacobi identity allows us to express any
four-point color factor of an adjoint representation in terms of the ones in figure 24 [180]. If the
duality and double-copy properties hold and because of the independence of the momentum of
theN = 4 SYM numerator factors (320), it is possible to obtain integratedN ⩾ 4 supergravity
amplitudes starting from N ⩽ 4 SYM theory and applying the replacement rule (321) [32].
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Figure 25. Examples of BCJ kinematic numerator relations at two loops.

A further interesting and nontrivial example is the five-point amplitude inN = 4 SYM [4].
Due to the high degree of supersymmetry, one can express the amplitude in terms of only
six contributing diagrams shown in figure 26. To be concise, we will only quote the duality-
satisfying numerator of diagram (a); it is

n(a)12345 (p,q) =
1
4
(γ12 (2s45 − s12 + τ2p− τ1p)+ γ23 (s45 + 2s12 − τ2p+ τ3p)

+2γ45 (τ5p− τ4p)+ γ13 (s12 + s45 − τ1p+ τ3p)) , (322)

where the two independent loop momenta are called p and q. The Lorentz invariants are τip =
2pi · p, τiq = 2pi · q and sij = (pi+ pj)2. The external state dependence for the MHV amplitude
is captured by the γij, where

γ12 ≡ n[12]345 = δ(8) (Q)
[12]2 [34] [45] [53]
4iϵ(1,2,3,4)

(323)

is the one-loop box numerator given in equation (302), and the other γij are given by S5 per-
mutations of this expression. Note that the γij satisfy the relations

γij =−γji ,
5∑

i=1

γij = 0 , (324)

from which it follows that there are only six independent variables of this type. The diagram
numerators of the MHV amplitude are obtained by replacing γij by their CPT conjugates.

Exercise 6.11. Show that the kinematic numerators corresponding to diagrams (b)–(f) in
figure 26 can be obtained from n(a)12345(p,q) using kinematic Jacobi relations. Which numer-
ators happens to be independent of loop momenta? Which numerators are identical to each
other (due to the Jacobi relation collapsing to a two-term identity)?
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Figure 26. The six nonzero diagrams that contribute to two-loop five-point amplitude
in N = 4 SYM and N = 8 supergravity.

The two-loop N = 4 SYM amplitude is given by the sum over the six diagrams (a)–(f) in
figure 26, together with the sum over the S5 permutations over the external legs,

A2−loop
5 = ig7

∑
S5

∑
j∈{a,...f}

ˆ
dDpdDq

(2π)2D
1
Sj

c( j)12345n
( j)
12345 (p,q)∏
αj
p2αj

. (325)

The correspondingN = 8 supergravity amplitude is obtained by the double-copy replacements
c( j)12345 → n( j)12345(p,q) and g→ κ/2.

Exercise 6.12. By inspecting the diagrams in figure 26, compute the symmetry factors Sj that
appear in equation (325).

The two-loop five-point amplitudes of both N = 4 SYM and N = 8 supergravity, as
presented above, were integrated in D= 4− 2ϵ dimensions in references [327, 400–402].

6.4. Three-loop example

So far, we illustrated various one- and two-loop amplitudes that manifest the color-kinematics
duality. To be more concrete, in this subsection we go through in detail how to construct
duality-satisfying amplitudes when the system of numerators is quite large. As a sophistic-
ated example—though still quite manageable—consider the three-loop four-point amplitude
of the N = 4 SYM and N = 8 supergravity theories [2].

Apart from the duality and unitarity constraints, it is beneficial to systematically impose
various other constraints which become more important as the complexity of the problem
increases. Although not required, such auxiliary constraints, when appropriately chosen, can
greatly facilitate the construction. If a constraint is too strong and leads to an inconsistency
with unitarity, then one may relax or modify it as needed. This strategy is especially effective
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for theories with high degrees of supersymmetry, because of their restricted power counting.
For the three-loop four-pointN = 4 SYM amplitudes, a natural set of constraints is as follows.

(i) One-loop tadpole, bubble and triangle subdiagrams do not appear in any diagram [222,
403, 404].

(ii) A one-loop n-gon subdiagram carries no more than n− 4 powers of loop momentum for
that loop.

(iii) After extracting an overall factor of stAtree
4 , the numerators are polynomials in D-

dimensional Lorentz scalar products of the independent loop and external momenta.
(iv) Numerators carry the same relabeling symmetries as the diagrams (cf discussion in

section 3).

In general, the choice of auxiliary constraints depends on the problem at hand. For example,
the third constraint above is specific to the four-point amplitude, and should be modified
for higher-point amplitudes because of their more complicated external-state structure. As
described in the previous subsection, a relatively simple generalization has been found for the
five-point (super)amplitude [4], involving prefactors that are proportional [161, 405, 406] to
linear combinations of five-point color-ordered tree-amplitudes. For amplitudes in less super-
symmetric theories, all but the fourth condition must also be relaxed, because their power
counting is such that one-loop triangle and bubble subdiagrams do appear; this is related to
e.g. the running of their couplings. The above constraints also work well for the four-loop
four-point amplitudes of N = 4 SYM [6], but fail at five loops. A procedure which works for
this case is described in section 8.

Because the duality imposes stringent relations between diagrams’ numerators, a remark-
ably small subset of generalized unitarity cuts is then sufficient to completely determine the
integrand. Of course, to confirm that it is correct, it is necessary to verify that it reproduces
correctly a spanning set of unitarity cuts that fully determine the amplitude. Quite generally,
one expects that a problem with a generalized cut can be addressed by relaxing some of the
auxiliary constraints.

Let us return now to the three-loop four-point amplitudes of N = 4 SYM theory and illus-
trate these ideas. A straightforward enumeration shows that there are 17 distinct cubic diagrams
with three loops and four external legs, which do not have one-loop triangle, bubble or tadpole
subdiagrams. It turns out that the twelve diagrams shown in figure 27 are sufficient for finding
a solution to the duality and unitarity cut constraints, as shown in [2]. Had we kept all 17 dia-
grams, the construction would be slightly more involved, with the result that the numerators
of the additional diagrams vanish identically.

The four-point amplitudes of N = 4 SYM theory are special. Applying the third condition
above we write the numerator as

n(x) =−i stAtree
4 (1,2,3,4) N(x) , (326)

where (x) refers to the label for each diagram in figure 27 and N(x) are scalar functions which
depend on three independent external momenta, labeled by p1,p2,p3, and on (at most) three
independent loop momenta, labeled by ℓ5, ℓ6, ℓ7,

N(x) ≡ N(x) (p1,p2,p3, ℓ5, ℓ6, ℓ7) . (327)

The coefficient stAtree
4 (1,2,3,4) is fully crossing symmetric, as noted in equation (283).

Next, consider the duality relations. We need to discuss first those that allow us to express
the complete set of numerators N(x) in terms of a small subset—the master numerators. Some
of them are shown in figure 28. The remaining relations are subsequently verified once the
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Figure 27. The diagrams for constructing the N = 4 SYM and N = 8 supergravity
three-loop four-point amplitudes. The shaded (red) lines indicate the application of the
duality relation. The external momenta are outgoing and the arrows indicate the direc-
tions of the labeled loop momenta. Diagram (e) is the master diagram.

former are solved together with the constraints imposed by the unitarity cuts. For the three-
loop four-pointN = 4 SYM amplitude, a simple restricted set of duality relations is [6, 196]:

N(a) = N(b) (p1,p2,p3, ℓ5, ℓ6, ℓ7) ,

N(b) = N(d) (p1,p2,p3, ℓ5, ℓ6, ℓ7) ,

N(c) = N(a) (p1,p2,p3, ℓ5, ℓ6, ℓ7) ,

N(d) = N(h) (p3,p1,p2, ℓ7, ℓ6,p1,3 − ℓ5 + ℓ6 − ℓ7)

+N(h) (p3,p2,p1, ℓ7, ℓ6,p2,3 + ℓ5 − ℓ7) ,

N(f) = N(e) (p1,p2,p3, ℓ5, ℓ6, ℓ7) ,

N(g) = N(e) (p1,p2,p3, ℓ5, ℓ6, ℓ7) ,
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Figure 28. Examples of a BCJ kinematic numerator relation at three loops for N = 4
SYM theory. In the two term relations one of the three numerators in a Jacobi triplet of
diagrams vanishes.

N(h) =−N(g) (p1,p2,p3, ℓ5, ℓ6,p1,2 − ℓ5 − ℓ7)

−N(i)(p4,p3,p2, ℓ6 − ℓ5, ℓ5 − ℓ6 + ℓ7 − p1,2, ℓ6) ,

N(i) = N(e)(p1,p2,p3, ℓ5, ℓ7, ℓ6)−N(e)(p3,p2,p1,−p4 − ℓ5 − ℓ6,−ℓ6 − ℓ7, ℓ6) ,

N(j) = N(e)(p1,p2,p3, ℓ5, ℓ6, ℓ7)−N(e)(p2,p1,p3, ℓ5, ℓ6, ℓ7) ,

N(k) = N(f)(p1,p2,p3, ℓ5, ℓ6, ℓ7)−N(f)(p2,p1,p3, ℓ5, ℓ6, ℓ7) ,

N(l) = N(g)(p1,p2,p3, ℓ5, ℓ6, ℓ7)−N(g)(p2,p1,p3, ℓ5, ℓ6, ℓ7) , (328)

where pi,j ≡ pi + pj. To simplify the notation, we have suppressed the canonical arguments
(p1,p2,p3, ℓ5, ℓ6, ℓ7) of the numerators on the left-hand side of the equation (328). Each relation
specifying an N(x) is generated by considering the kinematic Jacobi relations dual to the color
Jacobi relations corresponding to the shaded (red) line and labeled Jx in figure 27. In general,
duality relations relate triplets of numerators; if however one of the diagrams is not present
in figure 27, e.g. because it has a one-loop triangle subdiagram, then we obtain a two-term
relation. Five of the equations above are of this type and they result in pairs of numerators
being equal.

The system (328) can be used to express any kinematic numerator factor as a combination
of the numerator N(e) with various different arguments. Thus, diagram (e) can be taken as the
sole master diagram. This is a convenient choice, but not the only possible one; for example,
either diagram (f) or (g) can also be used as a single master diagram. None of the remaining
nine diagrams, however, can act alone as a master diagram.

The numerator factor of diagram (e) is constructed such that the unitarity cuts are satisfied
simultaneously with the duality constraints. An expression that satisfies the maximal cuts is
given by the so-called ‘rung-rule’ numerator [399],

N(e)
rr = s(ℓ5 + p4)

2
, (329)

which follows from the general features of iterated two-particle cuts.
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We wish to find a modification N(e)
rr → N(e) such that all the other numerators determined

from it via equation (328) are consistent with the unitarity cuts. We start by requiring that the
maximal-cut of diagram (e) is correct (see appendix C.3 for a description of the maximal cuts),
and that the auxiliary constraints above are satisfied. That is, the departure from N(e)

rr vanishes
on the maximal cut, the numerator N(e) has mass dimension four and possesses the symmetry
of the diagram; no loop momentum for any box subdiagram in (e) appears in it (ruling out ℓ6
and ℓ7), and N(e) is at most quadratic in the pentagon loop momenta ℓ5. The last condition is
a little weaker than the second auxiliary condition listed earlier, which demands linearity in
ℓ5; we relax it slightly to make it easier to find deformations that vanish on maximal cuts, and
impose later that the ℓ25 terms cancel out. The symmetry condition implies that N(e) is invariant
under

{p1 ↔ p2, p3 ↔ p4, ℓ5 → p1 + p2 − ℓ5} . (330)

The most general polynomial consistent with these constraints is

N(e) = s(ℓ5 + p4)
2
+(αs+βt)ℓ25 +(γs+ δt)(ℓ5 − p1)

2

+(αs+βt)(ℓ5 − p1 − p2)
2
, (331)

where the four parameters α,β,γ,δ are to be determined by further constraints. All added
terms are proportional to inverse propagators and therefore vanish on the maximal cut. Thus,
given that equation (329) is consistent with the maximal cuts, so is equation (331).

The second auxiliary constraint above demands that the numerator of a pentagon subdia-
gram be at most linear in the corresponding loop momentum, ℓ5, not quadratic as assumed
above. Therefore we impose that the coefficient of ℓ25 in equation (331) vanishes. This yields
the relation γ =−1− 2α and δ =−2β, which simplifies equation (331) to

N(e) = s(τ45 + τ15)+ (αs+βt)(s+ τ15 − τ25) , (332)

where we use the notation,

τij ≡ 2pi · ℓj , (i ⩽ 4, j ⩾ 5) . (333)

We are therefore left with two undetermined parameters, α and β.
We determine the remaining parameters by imposing that the numerators of other diagrams

determined through equation (328) are consistent with the auxiliary constraints and unitarity
cuts. A convenient starting point is the numerator of diagram (j), N( j), which is determined in
terms of N(e) by the 9th duality constraint in equation (328). Inserting equation (332) into this
relation leads to

N(j) = s(1+ 2α−β)(τ15 − τ25)+βs(t− u) . (334)

Because the smallest loop in diagram (j) carrying ℓ5 is a box subdiagram, our auxiliary con-
straints require that this momentum be absent fromN(e). Setting the first term in equation (334)
to zero implies that β = 1+ 2α, which in turn leads to

N(e) = s(τ45 + τ15)+ (α(t− u)+ t)(s+ τ15 − τ25) , (335)

N( j) = (1+ 2α)(t− u)s , (336)

leaving undetermined a single parameter α.
To obtain the value of the final parameter we use the numerator of diagram (a) expressed in

terms ofN(e) by equation (328). Because every loop in diagram (a) is part of a box, the auxiliary
constraint that a one-loop box subdiagram cannot carry loop momentum then implies that N(a)
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cannot contain loop momentum. By solving the duality relations (328), the numerator N(a) is
given by

N(a) =N(e) (p1,p2,p4,−p3 + ℓ5 − ℓ6 + ℓ7, ℓ5 − ℓ6,−ℓ5)
+N(e) (p2,p1,p4,−p3 − ℓ5 + ℓ7,−ℓ5, ℓ5 − ℓ6)

−N(e) (p4,p1,p2, ℓ6 − ℓ7, ℓ6, ℓ5 − ℓ6)−N(e) (p4,p2,p1, ℓ6 − ℓ7, ℓ6,−ℓ5)
−N(e) (p3,p1,p2, ℓ7, ℓ6, ℓ5 − ℓ6)−N(e) (p3,p2,p1, ℓ7, ℓ6,−ℓ5) . (337)

Plugging in the value of the numerator factorN(e) in equation (335), and simplifying we obtain

N(a) = s2 +(1+ 3α)
(
(τ16 − τ46)s− 2(τ17 + τ37)s

+(τ16 − 2τ17 − τ26 + 2τ27) t+ 4ut
)
. (338)

Demanding that this expression is independent of loop momenta, fixes the final parameter to
be α=−1/3 and completely determines the numerator of diagram (e) to be

N(e) = s(τ45 + τ15)+
1
3
(t− s)(s+ τ15 − τ25) . (339)

With a proposed expression for N(e) in hand, equation (328) then determines all other
numerators and thus the complete amplitude. The resulting numerators are collected in
table 15. To confirm that this is indeed the correct amplitude, it is necessary to verify a complete
set of unitarity cuts. The three-loop four-gluon amplitude inN = 4 SYM theory is determined
only by its maximal and next-to-maximal cuts, so it is relatively straightforward to check them
all. As a highly-nontrivial test, one can also check the next-to-next-to-maximal cuts. The result-
ing cuts match those of previous expressions of the amplitude [407, 408] on allD-dimensional
unitarity cuts. Thus, the amplitude is complete. We stress again that it is highly-nontrivial that
there exists a solution to all duality relations which is consistent with all unitarity cuts and
exhibits all the diagram symmetries.

Squaring the numerators n(x) = stAtree
4 (1,2,3,4)n(x), using equation (279), yields the

numerators for the three-loop four-point N = 8 supergravity superamplitude. This form has
been confirmed against previous expressions [407, 408] on a spanning set of D-dimensional
unitarity cuts [2]. Using as the second copy the three-loop four-point numerator factors of
N < 4 SYM theories yields the three-loop four-graviton amplitudes in (4+N )-extended
supergravity theories. The case N = 0 was discussed at length in [33, 36, 37], where it was
used to explore the UV properties of half-maximal supergravities and demonstrate the absence
of UV divergences at this loop order in four dimensions.

Exercise 6.13. Work through the entries in table 15 to explicitly confirm that they do indeed
satisfy BCJ duality.

The strategy followed above generalizes straightforwardly to the four-loop four-point [6]
and two-loop five-point amplitudes of N = 4 SYM and supergravity. It has also been tested
in a variety of other cases, including the one- and two-loop amplitudes in various theories
with fewer supersymmetries [241], and nonsupersymmetric gauge and gravity theories [12,
396] as well as to the construction of form factors in N = 4 SYM through five loops [9, 17].
While the application of the double-copy construction to gauge-theory form factors yields
quantities consistent with the linearized diffeomorphism invariance of a gravity theory, their
precise physical interpretation is currently an open question.
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Table 15. The numerator factors for diagrams in figure 27 [2]. The first column labels
the diagram, the second column the relative numerator factor for N = 4 SYM theory.
The square of this is the relative numerator factor forN = 8 supergravity. The momenta
are labeled as in figure 27 and the τ ij are defined equation (333).

diagram N = 4 SYM (
√

N = 8 supergravity) numerator

(a)–(d) s2

(e)–(g)
(
s(−τ35 + τ45 + t)− t(τ25 + τ45)+ u(τ25 + τ35)− s2

)
/3

(h)
(
s(2τ15 − τ16 + 2τ26 − τ27 + 2τ35 + τ36 + τ37 − u)

+t(τ16 + τ26 − τ37 + 2τ36 − 2τ15 − 2τ27 − 2τ35 − 3τ17)+ s2
)
/3

(i)
(
s(−τ25 − τ26 − τ35 + τ36 + τ45 + 2t)

+t(τ26 + τ35 + 2τ36 + 2τ45 + 3τ46)+ uτ25 + s2
)
/3

(j)–(l) s(t− u)/3

6.5. Other examples

The examples described above are but a sample of the many loop-level amplitudes that have
representations that manifest the duality between color and kinematics. Among them are vari-
ous examples of supersymmetric [4, 6–8, 11, 14, 16, 19, 20, 398] and nonsupersymmetric [10,
12, 15, 156, 348] gauge-theory amplitudes, form factors [9, 17, 18, 22, 23], string theory amp-
litudes, and their field theory limits [13, 371, 409–411]. Additionally, a systematic method to
determine BCJ numerators for one-loop amplitudes which makes use of the global constraints
on the loop-momentum dependence of the numerators imposed by the kinematic Jacobi iden-
tities was introduced in reference [11].

It has moreover been shown that the leading and subleading [5, 412] factorization theorems
of gauge and gravity theories are consistent with the double-copy procedure to all orders in per-
turbation theory, thus providing some all-loop-levels evidence for this conjecture. In another
interesting example, the duality has been applied to QCD scattering amplitudes, in order to
find hidden relations between coefficients of loop integrals [413, 414].

Themultitude of nontrivial examples suggests that the duality between color and kinematics
does extend to loop amplitudes, even though no proof exists as yet. Finding a proofwould likely
provide a guide towards more systematic constructions of representations of amplitudes that
manifest the duality.

Even when they are expected to exist, the construction of duality-satisfying amplitudes rep-
resentations is not always straightforward. An alternative, discussed and illustrated on the two-
loop four-point all-plus pure-YM amplitude in [415], is to relax the demand that the duality be
manifest off shell and impose instead that it be manifest only on a spanning set of generalized
unitarity cut. The double-copy construction then yields an expression which coincides with
the corresponding supergravity amplitude on a spanning set of cuts; the two must therefore be
the same.

It has proven difficult to find representations of the five-loop four-point N = 4 SYM amp-
litude for which the duality between color and kinematics is manifest. In particular, the expec-
ted power-counting constraints suggested by supersymmetry appear to not be compatible
with duality and D-dimensional unitarity cuts. To find the corresponding N = 8 supergrav-
ity amplitude the generalized double-copy construction provides an efficient approach, as it
uses gauge-theory amplitudes’ representations that should exhibit the duality but do not mani-
fest it; we review it in the next Section. The success of the generalized double copy, using
the five-loop amplitudes’ representations constructed in [38, 218, 416], strongly suggests that
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it should be possible to manifest the duality for the five-loop four-point N = 4 SYM amp-
litude. Presumably, this will require integrands that relax some the simplifying assumptions,
such as locality or manifest relabeling symmetry of the diagrams. Using string theory to define
global diagram labels in the field-theory limit, there has been some very interesting progress
on finding integrands that manifest CK duality [417].

7. Generalized double copy

Whenever gauge-theory amplitudes are available in a form that manifests the duality between
color and kinematics, the BCJ double-copy construction provides the most efficient means for
obtaining the corresponding gravity integrands. However, in some cases, such as the five-loop
four-point amplitude of N = 8 supergravity, it has proven difficult to find such representa-
tions. In other cases, such as the all-plus two-loop five-gluon amplitude in pure-YM theory,
the BCJ form of the amplitude has a superficial power-count much worse than that of Feynman
diagrams [15] and thus an analysis of UV properties of its double copy is cumbersome at best.
It can therefore be advantageous to have a double-copy method for converting generic rep-
resentations of gauge-theory amplitude to gravity ones, without first constructing BCJ repres-
entations for them. Such a procedure has been developed in [416] and applied in [38, 218]
to construct the five-loop four-point integrand of N = 8 supergravity and to extract its UV
properties after integration49.

If we start with a generic representation of a gauge-theory amplitude where BCJ duality is
not manifest and apply the double-copy substitution rule (44), in general, we do not obtain a
correct gravity amplitude. Nevertheless, this ‘naive double copy’ can be systematically correc-
ted to give the desired amplitude. As we summarize below, the correction terms have a regular
pattern reminiscent of the KLT tree-level amplitudes relations [86], allowing us to obtain the
most complicated corrections directly from gauge theory.

7.1. Generalities

To start the generalized double-copy construction we first need to reorganize slightly the two
(possibly distinct) gauge-theory amplitudes that comprise the two sides of the double copy.
Starting with any local representations of the amplitudes, which may include four- or higher-
point contact terms, we reorganize them into a format that has only three-point vertices and
the maximum number of propagators. If a given term has fewer propagators we multiply
and divide by the propagators needed to form diagrams with only cubic vertices that cor-
respond to the color factor of the given term. Once the gauge-theory amplitudes are written
in this format the next step is to apply the double-copy substitution (44) to these amplitudes,
despite neither gauge theory manifesting the BCJ duality between color and kinematics. As
already mentioned, this so-constructed naive double-copy expression is, in general, not a cor-
rect (super)gravity amplitude. Nonetheless, it is a good starting point for obtaining the full
gravity amplitude as, by construction, it reproduces the maximal and next-to-maximal cuts of
the desired (super)gravity amplitude. (See appendix C for a description of the method of max-
imal cuts.) In maximal cuts, where all propagators are cut, the amplitude is reduced to a sum of

49 Another possible method, proposed in [415] and illustrated on the two-loop four-point pure-YM amplitude in D
dimensions, is to demand that the duality between color and kinematics holds only on unitarity cuts. This provides a
straightforward construction of the generalized unitarity cuts of the double-copy theory, which need to be subsequently
assembled into the complete gravity amplitude.
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products of gauge-theory three-point tree amplitudes. Because on-shell gravity three-vertices
are products of gauge-theory ones, maximal cuts trivially satisfy the double-copy property for
any representation of the single copy amplitudes. The next to maximal cuts, where one of the
propagators are left uncut, also automatically give the correct gravity expressions because,
if present, the duality between color and kinematics is automatic for on-shell four-point tree
amplitudes [1].

Beyond the next-to-maximal cuts, the naive double copywill generally not give correct unit-
arity cuts, and nontrivial corrections are necessary. These required corrections can be organ-
ized into contact terms via the method of maximal cuts described in appendix C. However, for
complicated problems, such asN = 8 supergravity [218] at five-loops it becomes cumbersome
to use the method of maximal cuts to obtain the missing terms.

Instead, it turns out that it is possible to construct general formulae that relate the necessary
cut-correction terms to the violations of the kinematic Jacobi relations (41) in the gauge-theory
amplitudes. The derivation of such formulae relies only on the existence of duality-satisfying
representations for all tree-level amplitudes.

Indeed, the existence of BCJ representations at tree level implies that such representations
should also exist for all cuts of gauge-theory amplitudes that decompose the loop integrand into
products of tree amplitudes. This further implies that the corresponding generalized unitarity
cuts of the gravity amplitude can be expressed in double-copy form,

CGR =
∑
i1,...,iq

nBCJ
i1,i2,...iq ñ

BCJ
i1,i2,...iq

D(1)
i1 . . .D(q)

iq

, (340)

where the nBCJ and ñBCJ are the BCJ numerators associated with each of the two single-copy
parent theories. In this expression the cut conditions are understood as being imposed on the
numerators. Each sum runs over the diagrams of each tree amplitude composing the gener-
alized cut and D(m)

im are the products of the uncut propagators associated to each diagram of
mth tree amplitude. This notation is illustrated in figure 29 for an N2MC at three loops. In
this figure, each of the two four-point blobs is expanded into three diagrams, giving a total of
nine diagrams. For example, the combination of indices i1 = 1 and i2 = 1 refers to the three-
loop diagram obtained by taking the first diagram from each blob and connecting it to the
three-point vertices; the result, in the ordering of diagrams chosen for each of the two four-
point amplitude, is the first cubic diagram on the first line of figure 29. The denominators in
equation (340) correspond to the thick (colored) lines in the diagrams.

The BCJ numerators in equation (340) are related [2, 41] to those of an arbitrary representa-
tion by a generalized gauge transformationwhich shifts the numerators subject to the constraint
that the amplitude is unchanged; the shift parameters follow the same labeling scheme as the
numerators themselves,

ni1,i2,...iq = nBCJ
i1,i2,...iq +∆i1,i2,...iq . (341)

The shifts ∆i1,i2,...iq are constrained to leave the corresponding cuts of the gauge-theory amp-
litude unchanged. Using such transformations we can reorganize a gravity cut in terms of cuts
of a naive double copy and an additional contribution,

CGR =
∑
i1,...,iq

ni1,i2,...iq ñi1,i2,...iq

D(1)
i1 . . .D(q)

iq

+ EGR (∆) , (342)

where the cut conditions are imposed on the numerators. Rather than expressing the correction
EGR in terms of the generalized-gauge-shift parameters, it is useful to re-express the correction
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Figure 29. An example illustrating the notation in equation (340). Expanding each of
the two four-point blob gives a total of nine diagrams. The ni,j correspond to labels used
in the generalized unitarity cut. The shaded thick (blue and red) lines are the propagators
around which BCJ discrepancy functions are defined.

terms as bilinears in the violations of the kinematic Jacobi relations (41) by the generic gauge-
theory amplitude numerators. These violations are referred to as BCJ discrepancy functions.

As an example, the generalized unitarity cut in figure 29 is composed of two four-point tree
amplitudes and the rest are three-point amplitudes. For any cut of this structure, two four-point
trees connected to any number of three-point trees, the correction has a simple expression,

E4×4
GR =− 1

d(1,1)1 d(2,1)1

(
J•1,1J̃1,•2 + J1,•2J̃•1,1

)
, (343)

where d(b,p)i is the pth propagator of the ith diagram inside the bth amplitude factor50 and

J•1,i2 ≡
3∑

i1=1

ni1i2 , Ji1,•2 ≡
3∑

i2=1

ni1i2 , J̃•1,i2 ≡
3∑

i1=1

ñi1i2 , J̃i1,•2 ≡
3∑

i2=1

ñi1i2 , (344)

are BCJ discrepancy functions51. Our notation is to label the type of cut by m1 ×m2 × ·· ·mk

where each mi specifies the number of legs on each tree amplitude with mi ⩾ 4 composing
the cut. These discrepancy functions vanish whenever the numerators involved satisfy the BCJ
relations, even if the representation as a whole does not satisfy them. Such expressions are

50 We will sometimes omit the second argument, p, when an amplitude factor has a single propagator.
51 We will sometimes denote the BCJ discrepancy function with either • in the position i or by {i,1} when the ith
amplitude factor has a single propagator (i.e. it is a four-point amplitude).
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Table 16. A non-BCJ form of the three-loop four-point N = 4 SYM diagram
numerators from [408]. We define τij = 2pi · pj, s= (p1 + p2)

2, t= (p2 + p3)
2 and

u= (p1 + p3)
2.

Diagram N = 4 SYM numerators.

(a)–(d) s2

(e)–(g) s(p25 + τ45)
(h) s(τ26 + τ36)− t(τ17 + τ27)+ st
(i) s(p25 + τ45)− t(p25 + τ56 + p26)− (s− t)p26/3

not unique and can be rearranged using various relations between discrepancy functions [218,
416, 418–420]. For example, a more symmetric version, equivalent to equation (343), is

E4×4
GR =−1

9

3∑
i1,i2=1

1

d(1,1)i1 d(2,1)i2

(
J•1,i2 J̃i1,•2 + Ji1,•2J̃•1,i2

)
. (345)

Similarly, a cut with a single five-point tree amplitude and the rest three-point tree amp-
litudes is given by

C5
GR =

15∑
i=1

niñi

d(1,1)i d(1,2)i

+ E5
GR with E5

GR =−1
6

15∑
i=1

J{i,1}J̃{i,2} + J{i,2}J̃{i,1}

d(1,1)i d(1,2)i

, (346)

where J{i,1} and J{i,2} are BCJ discrepancy functions associated with the first and second
propagator of the ith diagram. (See [218] for further details.)

As the cut level k increases, the formulae relating the amplitudes’ cuts with the cuts of
the naive double copy become more intricate, but the basic building blocks remain the BCJ
discrepancy functions. Formulas like (345), (346) and their generalizations can enormously
streamline the computation of the contact term corrections and are especially helpful at five
loops at the N2MC and N3MC level, where calculating the contact terms via the maximal-cut
method can be rather involved. Beyond this level, the contact terms become much simpler due
to a restricted dependence on loop momenta and are better dealt with using the method of
maximal cuts and KLT relations [86], as described in [218].

7.2. Three-loop example

To illustrate the discussion above, we now present a relatively simple though nontrivial con-
struction of the three-loop four-point amplitude of N = 8 supergravity, which was studied in
several other different approaches [2, 6, 407, 408]. As described in section 6 the most effi-
cient way to construct it is to first obtain a BCJ representation of corresponding N = 4 SYM
amplitude and then apply the double-copy construction. Instead, we construct it here through
the generalized double copy, from a non-BCJ form of the N = 4 SYM amplitude of [408]
whose numerators are included in table 16 with the momentum labeling in figures 27(a)–(i),
corresponding to the one of [2]. An overall factor of stAtree

4 is not included in table 16.
Following the generalized double-copy construction, the N = 8 supergravity numerators

of diagrams (a)–(i) are squares of the corresponding N = 4 SYM ones:

NN=8
(x) = n2(x) , (347)

where x ∈ {a, . . . , i}. This defines the naive double copy. This is not the complete supergrav-
ity amplitude given that the gauge-theory numerators do not satisfy the BCJ relations (41),
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Figure 30. Nonvanishing contact terms appearing in the generalized double copy con-
struction of the three-loop four-point amplitude of N = 8 supergravity.

Figure 31. The three diagrams whose kinematic numerators contribute to J{1,1},1. The
thick shaded (red) line marks the off-shell legs participating in the dual Jacobi relation.
The shaded (red) dot indicates the off-shell leg of the second amplitude factor.

as can be confirmed by checking its generalized unitarity cuts. To complete the supergravity
amplitude we need to find the missing contact terms.

Given that the N1MC-level contact terms are automatically accounted for in the naive
double copy, contact terms first appear at the N2MC level. There are a total of 62 possible
independent such contact diagram, corresponding to diagrams obtained by starting from the
first nine diagrams in figure 27 and collapsing all pairs of propagators. Of these, all but the
four diagrams (j)–(m) in figure 30 vanish.

As an example, consider the contact diagram in 30(l), composed of two four-point vertices.
We obtain it from equation (343). First, we identify the nine cubic diagrams that contribute to
it (some are vanishing) and pick one whose numerator we label as n1,1; we choose diagram
(c) in figure 27. The two J-functions are calculated by relabeling the appropriate numerators
to the labels of figure 31. For example, J{u1,1},1 is obtained from the N = 4 SYM numerators
of the three diagrams shown in figure 31,

n1,1 = s2, n2,1 = s(t+ τ26 + τ36) , n3,1 = s(u− τ36) , (348)

corresponding to relabeling of diagrams (c) and (g) in figure 27. Summing and applying
momentum conservation gives J{1,1},1 = sτ26. Similarly, J1,{1,1} = sτ37. With these labels, the
two off-shell inverse propagators are τ 26 and τ 37, so that from equation (343) theN = 8 super-
gravity contact term numerator for diagram (l) is

NN=8
(l) =−2

J{1,1},1J1,{1,1}
τ26τ37

=−2s2 . (349)
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The other three independent contact terms corresponding to diagrams (j), (k) and (m), can
similarly be obtained from equation (346), with the result

NN=8
( j) =− 1

9 (s− t)2 , NN=8
(k) = NN=8

(m) =−2s2. (350)

All other nonvanishing contact terms are relabelings of these.

7.3. Towards general formulae

This generalized double-copy procedure has been systematically used to obtain the five-loop
four-point integrand of N = 8 supergravity [218], which was then used to analyze the UV
properties of this theory at five loops [38]. In this case, it was sufficient to work out formulae
for the extra corrections up to the N3MCs, because beyond this the missing contact terms are
simple enough to straightforwardly obtain by numerical analysis.

As discussed before, equations (343) and (346) can be used for all N2MCs in any double-
copy theory. These are sufficient to determine the three-loop four-point amplitude in N = 8
supergravity, because of its low power count. Beyond this order the corresponding formulae
for E depend on the detailed labeling of the corresponding cut. We include here E4×4×4

GR and
E5×4
GR and comment on E6

GR given as an ancillary file in [218].
The additional terms that promote a cut composed of three four-point amplitude factors

of the naive double copy to the cut of the corresponding double-copy theory [218, 416] are
obtained by following the steps detailed in section 7.1. It is convenient to organize then into
the contribution of single- and double-discrepancy functions:

E4×4×4
GR = T1 +T2 . (351)

They are

T1 =−
3∑

i3=1

J•1,1,i3 J̃1,•2,i3
d(1)1 d(2)1 d(3)i3

−
3∑

i2=1

J•1,i2,1J̃1,i2,•3

d(1)1 d(2)i2 d(3)1

−
3∑

i1=1

Ji1,•2,1J̃i1,1,•3

d(1)i1 d(2)1 d(3)1

+
{
J↔ J̃

}
,

T2 =
J•1,1,1J̃1,•2,•3

d(1)1 d(2)1 d(3)1

+
J1,•2,1J̃•1,1,•3

d(1)1 d(2)1 d(3)1

+
J1,1,•3J̃•1,•2,1

d(1)1 d(2)1 d(3)1

+
{
J↔ J̃

}
, (352)

where e.g. J̃1,•2,•3 is defined as

J̃i1,•2,•3 =
3∑

i2=1

3∑
i3=1

ñi1,i2,i3 , (353)

with ni1,i2,i3 being the numerators of the cut of the naive double copy. As mentioned earlier,

we dropped the second upper label in d(b,p)i defined below equation (343) because four-point
diagrams have only a single propagator, so b= 1 for all terms in equation (352).

To simplify T2 we used the relations

J1,•2,•3

d(1)1

=
J2,•2,•3

d(1)2

=
J3,•2,•3

d(1)3

,
J•1,1,•3

d(2)1

=
J•1,2,•3

d(2)2

=
J•1,3,•3

d(2)3

,

J•1,•2,1

d(3)1

=
J•1,•2,2

d(3)2

=
J•1,•2,3

d(3)3

, (354)

which identify various double-discrepancy functions.
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The additional terms that promote a cut composed of one five-point and one four-point
amplitude factors of the naive double copy to the cut of the corresponding double-copy theory
can be organized as

E5×4
GR =

15∑
i=1

3∑
j=1

1

d(1,1)i d(1,2)i d(2,1)j

[
−1

6
J{i,1},jJ̃{i,2},j−

(
−1

3

)
× 1

6

(
J{i,1},jJ̃{i,2},•2 + J{i,2},jJ̃{i,1},•2

)

−1
5
J{i,1},jJ̃i,•2 −

1
5
J{i,2},jJ̃i,•2 +

1
30

∑
k∈Ji

σk,iJ{k,1},jJ̃i ,•2 +
1
30

∑
k∈Ji

σk,iJ{k,2},jJ̃i,•2

+
{
J↔ J̃

}
,

(355)

where Ji is the set of five diagrams connected to diagram i through Jacobi relations on the two
propagators, including diagram i which appears once, and σk,i are the signs with which their
color factors enter in the color Jacobi relations, with the normalization that σi,i = 152. While
equation (354) is quite different from the corresponding E5×4

GR in [218], the two expressions
are in fact equivalent, as can be shown by reducing to a basis of BCJ discrepancy functions,
or by directly evaluating the additional terms for a choice of representation of the five-point
amplitude. The essential advantage of equation (354) is that it does not make reference either
to a specific ordering of the diagrams of the five-point amplitude or to a specific choice of order
of propagators for each diagram. These features may be the key to extending equation (354)
to cuts with higher-point tree-level amplitude factors.

Similarly to E4×4
GR and E5

GR, both E4×4×4
GR and E5×4

GR are not local. To extract their corres-
ponding contact terms it is necessary to subtract the contribution of the 4× 4- and 5-contact
terms which contribute to the 4× 4× 4 and 5× 4 cuts. The strategy discussed in the previous
section applies here as well, so we will not repeat it.

Expressions for the extra terms that promote cuts with higher-point tree-level factors of
the naive double copy to the corresponding cuts of the double-copy theory can be obtained
following the discussion in section 7.1. For example, the additional terms for a cut with a
single six-point factor are included in the ancillary file ExtraJ_6pt.m of [218]. Unlike E4×4

GR ,
E5
GR, E

4×4×4
GR and E5×4

GR above however, E6
GR is presented in terms of a basis of independent

discrepancy functions, obtained by solving the constraints they obey due to their definition in
terms of the cut kinematic numerators of the single-copy parent theories. The expression is
also not manifestly organized in terms of the kinematic denominators of the 105 diagrams of
the six-point tree-level diagram. While, for these reasons, the available E6

GR is not manifestly
crossing symmetric, it is sufficient for greatly simplifying the analytic structure of N3MCwith
a single six-point tree amplitude, compared to the direct construction of such cuts via e.g. the
KLT relations.

A feature of the nonsymmetric correction terms EGR expressed in terms of the some basis of
BCJ discrepancy functions is that, when evaluated on a cut, they may lead to terms that behave
as 0/0. These are harmless when the 0 in the numerator is manifest, since it corresponds to an
absent diagram. Sometimes, however, the 0 in the numerator is not manifest and arises due to
a cancellation between distinct terms, that can leave behind a nontrivial finite piece. When this

52 That is, the color factors of the corresponding diagrams obey the relation

ci +
∑
k∈Ji

σk,ick = 0 ,

which is just the sum of the two Jacobi relations on the two propagators of diagram i.
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occurs, the simplest strategy is to take advantage of the asymmetry in the formula, to relabel
it to avoid such problematic cases.

Generalized double-copy formulae such as those reviewed here, give the cuts of any double-
copy theory in terms of generic representations of the amplitudes of the single-copy par-
ent theories. It is therefore an interesting problem to find similar general formulae for more
complicated—perhaps all—cuts at any loop order. We can argue based on the gauge invari-
ance of the single-copy theories that the correction terms must be linear in the BCJ discrepancy
functions of each of the single-copy theories [218]. That is,

E =
∑
i,j

MijJiJ̃j , (356)

for some appropriate matrixMij whose entries are rational functions of the kinematic invariants
of the cut. This structure is compatible with the fact that the corrections should all vanish
if the duality between color and kinematics were manifest in either one of the two single
copies [41]. A further heuristic argument for the general form (356) of the correction terms
E relies on an understanding of the structure of the terms that need to be added to cuts of
the naive double copy in order to restore the linearized diffeomorphism invariance expected
of the cuts of amplitudes of a gravitational theory. As we saw in sections 1 and 2, a gauge
transformation of tree-level amplitudes—and thus also of the cuts of a loop amplitude—is
given by a sum of terms each of which is proportional to some linear combination of color
Jacobi relations. Consequently, a linearized diffeomorphism transformation of the naive double
copy yields a sum of terms each containing a BCJ discrepancy function from either one of the
two single copies. To restore diffeomorphism invariance these terms must be cancelled by the
transformation of further terms that are added to the cuts of the naive double copy. Assuming
that the structure of these terms is the same for all double copy theories, they must be of the
form (356). See [218] for more details.

While the generalized double-copy method has already been successful for the highly non-
trivial case ofN = 8 supergravity at five loops [218, 416], its development is only at the begin-
ning. Having a general tool for converting gauge-theory amplitudes in any representation to
gravity ones is clearly useful and important. A good starting point would be to derive general
formulae for tree-level amplitudes [218, 418–420] in terms of a naive double copy, plus cor-
rections in terms of the BCJ discrepancy functions. At present such formulae are known only
through six points. If an elegant solution to the tree-level problem can be found, it should be
immediately applicable to finding a general solution to the loop-level one. One obvious applic-
ation would be towards a definitive resolution of the UV behavior of extended supergravity
theories. This would require calculations beyond those that have already been carried out (see
e.g. [38, 292]), and would likely need a version of the generalized double copy to be practical.
N = 5 supergravity at five loops is an especially interesting case for future study, given that
at four loops it exhibits an enhanced cancellation of UV divergences [292]. It is important to
know whether this continues at higher loops.

8. Classical double copy

As we have seen at length, the duality between color and kinematics and the double-copy con-
struction are essential tools in the construction of gauge and (super)gravity scattering amp-
litudes at higher-loop orders and/or at higher multiplicity. In close analogy with tree-level
scattering amplitudes, the perturbative construction of solutions of the classical equations of
motion of a field theory (perhaps in the presence of sources) also exhibits an expansion in
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tree-level diagrams. One may consequently expect that, with an appropriate definition, some
version of double-copy construction may lead to a construction of solutions of Einstein’s
equations (perhaps also in the presence of other fields) in terms of solutions of YM equations
of motion (perhaps also in the presence of other fields). If one could turn the double copy into
a systematic tool for analyzing classical solutions one could hope for new advances analogous
to the ones that have occurred for scattering amplitudes.

As we shall discuss below, such a relation between classical solutions is not without sub-
tleties and comes with quantifiable differences from the case of flat-space scattering amp-
litudes. Flat-space scattering amplitudes carry an inherent simplicity in that they are com-
pletely independent of gauge and field variable choices. However, in contrast to scattering
amplitudes, generic classical solutions change nontrivially under gauge transformations and,
moreover, they are sensitive to the nonlinear terms in the gauge transformations. Thus, to
relate gauge and gravity solutions it is necessary to make correlated gauge choices in the two
theories; the principles for making such choices are unclear. Related to this, the form of the
equations of motion depends strongly on the choice of field variables. Thus, any naive exten-
sion of the scattering-amplitudes’ double copy of fields can be completely obscured by non-
linear coupling-dependent terms that depend on some a priori chosen form of the equations
of motion.

As yet, no coherent set of rules for the construction of double copies for generic classical
solutions in gravity theories has been formulated, though a variety of nontrivial tantalizing
examples have been found. (See e.g. [50–77].) Ideally, any such rules should smoothly gener-
alize those of scattering amplitudes and reduce to them in the appropriate limits. The classes
of examples that have been constructed and analyzed emphasize both the similarities and the
differences between classical solutions and scattering amplitudes, and expose the subtleties
that need to be addressed in order to formulate a general framework. Their existence, how-
ever, suggests that it may be possible to find generic solutions of a gravity theory in terms
of solutions of the two gauge theories that give its scattering amplitudes. The most obvious
application of these ideas are towards improving calculations of as well as calculations in post-
Newtonian expansion of gravitational interaction potentials as well as calculations potentially
relevant to gravitational-wave detection. These type of calculations can be phrased in terms
of scattering amplitudes [78, 79, 421–426] and therefore are likely to lead to useful new res-
ults, such as the computation of the third post-Minkowskian contribution to the conservative
two-body potential [80, 82].

In this section we describe the known constructions of gravity classical solutions in terms
of gauge-theory solutions, commonly referred to as ‘classical double copies’. We outline their
relation and similarities with the double copy of scattering amplitudes and summarize the
examples that have been discussed in this framework. We start with a description of perturb-
ative solutions in gravity before turning to complete double copies.

8.1. Perturbative classical solutions vs. tree-level amplitudes

There is a close relation between solutions of classical equations of motion of some field theory
and the Green’s functions of that theory. The classical field generated by an arbitrary source is
the generating functional for the tree-level connected Green’s functions. Given a field theory
of some field ϕ with Lagrangian L, a solution of the equation of motion with general sources,

δL
δϕ

= ζ , (357)
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is given in terms of the generating functional of connected tree-level Green’s functions by
[427]

ϕ [x, ζ] =
δW [ζ]

tree

δζ
, (358)

and moreover

W [ζ] =

ˆ
dDx (L [ϕ [x, ζ]]− ζϕ [x, ζ]) . (359)

The relation between Green’s functions and scattering amplitudes given by the LSZ reduction
implies in turn that, by amputating the sources, W becomes the generating functional of tree-
level S-matrix elements. This may be realized by taking the source to be the quadratic operator
acting on an on-shell wave solution of the free equation of motion. The solution (358) with
such sources is the generating function of Berends-Giele currents—i.e. Green’s functions of
fundamental fields with exactly one leg off shell53; it therefore may also be interpreted as a
solution of the Berends-Giele off-shell recursion relation [430]. This idea was used in [431,
432] to construct an implicit representation (referred to as the ‘perturbiner’) of gluon scattering
amplitudes in four-dimensional YM theory and the gravitational dressing of certain classes of
such amplitudes. Tree-level amplitudes of higher-dimensional and supersymmetric YM theor-
ies have been constructed using this method in [114, 433] and in certain effective field theories
and deformations of YM theories in [172, 434]. It was also was used in [43] to construct the
kinematic algebra dual to the color algebra in self-dual YM theory. Solutions for the super-
symmetric versions of Berends-Giele current that manifest CK duality were given in [435].

Thus, equations (357) and (358) allow us to construct perturbative approximations of
solutions with the appropriate source in terms of the scattering amplitudes of the theory.
Moreover, should it be possible to resum the scattering amplitudes into a generating func-
tional, equation (358) provides an exact solution of the equation of motion with the appropri-
ate sources. Depending on the chosen sources, the construction can be carried out either in
momentum space (if the sources are momentum eigenstates) or in position space.

Introducing sources in gauge and gravity theories can be confusing for at least two reasons.
First, fixed sources coupling to vector fields or with the graviton may break gauge invariance.
A resolution of this would-be problem is the gauge-fixing that is necessary for any (tree-level)
computation, which already breaks gauge invariance. One then adds sources in the gauge-fixed
theory, in which the question of gauge invariance should not arise. Second, related, nonabelian
vector fields and gravitons self-interact and consequently they can self-source. Examples are
all solutions of vacuum Einstein’s equations as well as solutions of classical YM equations
such as the instanton. For a stable configuration the matter stress tensor should be covariantly
constant with respect to the metric that it sources; thus, it has some knowledge of the solution.
This implies that the perturbative construction of such solutions requires a judicious choice of
source which may itself receive corrections order by order in perturbation theory. Examples
were discussed in e.g. [436] and [437] for the Schwarzschild and Reissner-Nordström black
holes, respectively.

Unlike scattering amplitudes, solutions of the classical field Equations can be changed
by (1) field redefinitions (2) coordinate changes and (3) gauge transformations (if gauge

53 Green’s functions with two legs off shell have been constructed in gauge theories coupled to fundamental matter
in [428, 429].
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symmetries are present)54. 55 As yet, Lagrangians that manifest CK duality are known to only
a few perturbative orders [41, 42, 150, 151]. It is natural to expect that, if one had such a com-
plete Lagrangian, classical solutions constructed through a classical double copy would solve
its equations of motion. It is natural to expect that nontrivial field redefinitions and coordinate
transformations are necessary to map such a solution to the field variables of a more standard
Lagrangian. In fact, the perturbative Lagrangians manifesting the double-copy properties of
gravity require this as well as elimination of auxiliary fields.

To illustrate the perturbative construction of solutions of supergravity equations of motion
we outline here the derivation of the first terms [437] of the Reissner-Nordström solution—a
charged black hole of (super)gravity coupled with a vector field Aµ of field strength Fµν . The
vanishing-charge limit leads to the corresponding (first) term(s) in the Schwarzschild solution,
discussed in [436]. The relevant action is

S= SG+ SEM+ Sgauge fixing + Sζ ,

LG =
1
κ2

√
−ggµνRµν , LEM =

1
16π

√
−ggµρgνσFµνFρσ ,

Lζ =
1
2
gµν

(
ζMµν + ζEMµν

)
+Aµζ

µ ≡ 1
2

√
−ggµν

(
TMµν +TEMµν

)
+
√
−gAµj

µ ,

Lgauge fixing =− 1
2π

(∂µAµ)
2
+

1
2

(
∂µ
(√

−ggµν
))2

. (360)

To construct a perturbative solution around Minkowski space the metric is assumed of the
form56

gµν = ηµν +κhµν . (361)

There are several sources that lead to the desired solution. Onemay choose, for example, the
stress tensor of a charged point particle. Alternatively, one may choose an extended source—a
sphere of radius ϵ of uniform mass density ρ and uniform charge density σ. The general form
of the stress tensor is

Tν
µ = (ρ+ p)uνu

µ + pδν
µ, gµνu

µuν = 1 , (362)

where ρ is the mass density function and p the (potentially phenomenological) pressure. In the
case of a ‘ball of dust’ with uniform mass and charge densities, the components of the source
turn out to be (after choosing u= (1,0,0,0) and imposing covariant constancy of the stress
tensor) [437]

ζM00 = ρθ (ϵ− r) =
3m
4πϵ3

θ (ϵ− r) , ζMij = p(0)ηij =
3Q2

8πϵ6
(
r2 − ϵ2

)
δijθ (ϵ− r) ,

ζµ = σδ0µθ (ϵ− r) =
3Q
4π ϵ3

θ (ϵ− r)δ0µ , (363)

54 Symmetries of the equations of motion which are not symmetries of the action, such as parts of the U-duality
symmetry of four-dimensional supergravity theories, may be used to generate inequivalent solutions from known
ones. See e.g. [438] for a review.
55 The same choices also affect Feynman rules; however, when Feynman rules are combined into a scattering amp-
litude there is no dependence upon these choices, although solutions of the classical equations of motion (and also
Green’s functions) depend on them.
56 Note that this choice is different form the one typically used for perturbative S-matrix calculations and in later
subsections, but it is useful here as it avoids nonlinear terms involving the metric fluctuation and the sources.
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Figure 32. The first few terms in the expansion of a classical solution in terms of sources.
Each heavy dot represents a source ζ. The free end is at position x. The weight of each
vertex is not specified and may contain derivatives acting on the propagators connecting
it to other vertices, sources or the point x.

where m and Q are the total mass and charge, respectively. The pressure p(0) is chosen such
that this configuration of mass and charge densities is static under Newtonian gravitational
attraction and Coulomb repulsion. As the metric receives κn corrections, so will the pressure
function (hence the upper label ‘(0)’ in ζMij above).

The first correction to the flat space metric and the electromagnetic field due to the
sources (363), given by the first two diagrams in figure 32, is

〈Aµ (x)〉ζ =
ˆ
ddy∆µν (x− y)ζν (y)+ . . . ,

κ〈hµν (x)〉ζ =
κ2

2

ˆ
ddy∆µν,ρσ (x− y)ζMρσ (y)

+κ2
ˆ
ddy ddx1d

dx2∆
µν,ρσ (x− y)γρσ,ητ (∂y)〈Aη (y)〉〈Aτ (y)〉 . (364)

Here ∆µν,ρσ is the graviton propagator in the chosen de-Donder gauge (cf Lgauge fixing), ∆µν

is the photon propagator in Lorentz gauge and γρσ,ητ (∂y) describes the graviton-photon three-
point interaction. We note that, due to the κ dependence in expansion of the metric (361), the
trilinear graviton-photon vertex contributes before the three-graviton vertex.

The extended nature of the source implies that the vector potential is different for r< ϵ and
r> ϵ. Denoting by tilde the Fourier-transform of the source,

〈Aµ (y)〉= δµ0

ˆ
d3p

ei p·x

−p2
ζ̃0 (p) = δµ0

(
Q
r
θ (r− ϵ)+

(
3Q
2ϵ

− Qr2

2ϵ3

)
θ (ϵ− r)

)
≡ δµ0 U , (365)

which is just the Coulomb potential of the assumed charge distribution. Defining similarly the
Newtonian potential of the given mass distribution,

W≡
ˆ
d3p

ei p·x

−p2
ζ̃M00 (p) =

ρ

4π r
θ (r− ϵ)+

(
3ρ
8πϵ

− ρr2

8πϵ3

)
θ (ϵ− r) , (366)

and the action of the inverse Laplace operator on a time-independent function F(x) as

1
∇2

F(x)≡ 1
4π

ˆ
d3y

F(y)
|x− y|

, (367)

the components of the metric fluctuations around flat Minkowski space are
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κ〈h00〉ζ = 8πG

(
W+ 3

1
∇2

p(0) − ηkl
4π

1
∇2

∂kU∂lU

)
,

κ〈hij〉ζ = 8πG

(
W− 1

∇2
p(0) − ηkl

4π
1
∇2

∂kU∂lU

)
δij− 4G

1
∇2

∂iU∂jU ,

κ〈hi0〉ζ = 0 . (368)

Evaluating the integrals and defining the physical mass

M= m+
3
5
Q2

ϵ
, (369)

it follows [437] that for r> ϵ the metric components are

g00 = 1+
2MG
r

− Q2G
r2

+O
(
G2
)
,

gij =−
(
1− 2MG

r

)
δij+

Q2G
r4

xi xj+O
(
G2
)
,

gi0 = 0 . (370)

This matches the Reissner–Nordström solution in Cartesian coordinates and de Donder
gauge [437]57:

ds2 =
r2 +Q2G−M2G2

(r+MG)2
dt2 −

(
1+

MG
r

)2 (
dxi
)2

+

(
Q2G−M2G2

)
(r+MG)2

r4 (r2 +Q2G−M2G2)

(
xi dx

i
)2
. (371)

We note that the Q→ 0 limit yields the Schwarzschild solution [436] as well as that the size
of the mass and charge distribution do not affect the exterior solution, in agreement with
Birkhoff’s theorem, which states that any spherically symmetric solution of the vacuum field
equations must be static and asymptotically flat. The size of the distribution enters however
the definition (369) of the physical mass M for nonvanishing electric charge. We also note
that equation (369) is a reflection of the field backreaction on sources. In fact, the redefini-
tion (369) is necessary for the solution to have a smooth limit to a point source. The relation
between the physical mass M and the ‘free mass’ m receives further corrections as higher
orders are included.

8.2. Perturbative spacetimes and the double copy

The double-copy formulation of classical gravity calculations has the potential to streamline
calculations such as those outlined in the previous subsection by exploiting the close relation
between the tree expansion in figure 32 and that of tree-level S-matrix elements. Given that
we do not as yet have a general framework for applying the double copy to perturbative solu-
tions, detailed analyses of specific examples, as we do below, help identify the correct physical
extension of the amplitudes double-copy rules to this setting. Before we proceed to summar-
ize the various options and illustrate their application to this problem, we begin with several

57 While this is different from the standard form of the Reissner-Nordström solution, it can be mapped to it by a
coordinate transformation and field redefinition.
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comments which connect it to some of the calculations above and alert the reader to points
that will arise.

As noted in section 2, the double-copy spectrum naturally contains a dilaton and a two-
index antisymmetric tensor (or equivalently a pseudo-scalar in four dimensions). As for tree-
level scattering amplitudes where these unwanted states can be projected out at tree level by a
suitable choice of asymptotic states, solutions of Einstein’s Equation may be found by choos-
ing gauge-theory sources such that their double copy does not source the dilaton and/or the
anti-symmetric tensor [57, 58]. Choosing gauge-theory sources that are then used in the double
copy appears to bypass the need for a judicious choice a matter stress tensor as source for the
gravity solution; however, prescribed properties of supergravity solutions and their corres-
ponding sources undoubtedly translate into properties of gauge-theory sources. At the time of
this writing, a complete dictionary has not yet been formulated.

CK duality as defined for scattering amplitudes in section 2, requires that external lines
are on the free mass shell. Thus, in the tree expansion in figure 32 the duality can be expec-
ted to hold only up to terms that vanish if the sources obeyed free-field equations of motion.
The discussion in section 2 then implies that such a feature leads to breaking of linearized
gauge (diffeomorphism) invariance in the double-copy theory due to the presence of sources.
This may be interpreted as the double-copy realization of the fact that gravity sources break
diffeomorphism invariance. For the same reason, gravity field equations can be satisfied by a
double-copy field configuration only up to terms proportional to the free equations of motion of
the sources. Thus, for a comparison with a direct solution of supergravity equations of motion,
such terms must be eliminated by field, coordinate and source redefinitions. This mirrors the
backreaction of gravitational field on its source, illustrated in the previous subsection. It is
not a priori obvious that gauge-theory classical solutions which differ by gauge transforma-
tions lead through the double copy to gravity solutions that differ by field redefinitions and
coordinate transformations.

Perturbative spacetimes and their relation to perturbative solutions of the YM equations of
motion were discussed in [58]. Below we outline their construction. As in the calculation of
scattering amplitudes, we begin with the YM action (see equation (5)), whose equations of
motion in the presence of sources are

∂µF a
µν + g f abcAbµF c

µν = ζaµ , (372)

where g is the coupling constant and the field-strength tensor F a
µν is

F a
µν = ∂µA

a
ν − ∂νA

a
µ + g f abcAbµA

c
ν . (373)

It is straightforward to include matter fields. Apart from their equations of motion, inclusion
of the matter fields also gives specific expressions for the sources ζ. We will not discuss this
possibility any further, choosing ζ to be non-dynamical and focusing on the gauge sector. The
goal, following [58], is to solve perturbatively equation (372),

Aaµ = A(0)a
µ + gA(1)a

µ + g2A(2)a
µ + · · · , (374)

and construct from it a solution of the double-copy theory.
The action for Einstein gravity coupled with a dilaton and an antisymmetric tensor, which

is the double copy of two pure D-dimensional gauge theories, is given in equation (81). For
the construction of a perturbative solution of its equations of motion, the fields are expanded
as
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hµν = h(0)µν +
κ

2
h(1)µν +

(κ
2

)2
h(2)µν + · · · ,

Bµν = B(0)
µν +

κ

2
B(1)
µν +

(κ
2

)2
B(2)
µν + · · · ,

ϕµν = ϕ(0)µν +
κ

2
ϕ(1)µν +

(κ
2

)2
ϕ(2)µν + · · · . (375)

We can combine these different fields into a single field H. Since the asymptotic values of
these fields are all obtained by projection from the tensor product of the two asymptotic gauge
fields, it is convenient to have the field H which has this property at every order in κ. That is,
in its expansion in κ,

Hµν = H(0)
µν +

κ

2
H(1)

µν +
(κ
2

)2
H(2)

µν + · · · , (376)

H(n) is the double copy of the nth order term in the expansion of the gauge-theory field. There
are no cross terms between different orders in the vector field expansion (374). This is a con-
sequence of the fact that different orders are given by different tree configurations in figure 32
and thus do not mix in the double copy.

On shell, at the linearized level and in the appropriate gauges58 it is possible [58] to formu-
late the equations of motion in terms of a linear combination of the three fields:

H(0)
µν = h(0)µν +B(0)

µν +Pqµνϕ
(0) . (377)

In the absence of sources they are

∂ρ∂ρH
(0)
µν = 0 . (378)

A source modifies the right-hand side appropriately and must have the transversality and trace
properties of H(0)

µν . The field (376) has been referred to in [58] as the ‘fat graviton’, in contrast
with the ‘skinny graviton’, hµν . In equation (377) Pqµν is a projector, which depends on a fixed
null vector q, defining the physical dilaton. In position space it is

Pqµν =
1

D− 2

(
ηµν −

qµ∂ν + qν∂µ
q · ∂

)
. (379)

Conversely, the three physical fields can be extracted from H(0) by projection:

ϕ(0) = ηµνH(0)
µν , B(0)

µν =
1
2

(
H(0)

µν −H(0)
νµ

)
,

h(0)µν =
1
2

(
H(0)

µν +H(0)
νµ

)
−PqµνH

(0)ρ
ρ . (380)

8.2.1. Linearized solution. Following [58], to solve the YM equation (372) we choose the
Lorenz gauge, ∂µAaµ = 0, and to leading order in the coupling the equation becomes

∂2A(0)a
µ = ζaµ . (381)

Consistency with the gauge condition requires that ζ be transverse. To start instead with a
scattering state it suffices to replace ζaµ → εµca∂ν∂ν exp(ip · x) where ca is some color wave

58 The de Donder gauge for the graviton and the Lorentz gauge for the tensor field.
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function and take the limit p2 → 0 at the end of calculations. To cover both options simultan-
eously one may denote the solution to this equation by A(0)a

µ while not using its specific form,
though in specific examples it may be necessary to be more specific.

Wave solutions of the YM free-field equations,

A(0)a
µ =

∑
j

caj ε
j
µ (p)e

ip·x , (382)

with little-group indices j, p · εj = 0= q · εj and caj color wave functions, can be straightfor-
wardly double-copied to wave solutions of the free field equation of the action (81). In the
absence of sources this is just a reorganization of the usual double copy of scattering states.
The gravity solution,

H(0)
µν (x) = hijε

i
µ (p)ε

j
ν (p)e

ip·x , (383)

can be decomposed into the graviton, B-field and dilaton using (380). The constant factor hij
is arbitrary and can be chosen such that the gravity and gauge-theory asymptotic waves have
the same normalization. It can also be used to project out the B-field and dilaton and obtain a
linearized solution of Einstein’s equations, e.g.

caj = caaj , hij = ai aj , a · a= 0 , (384)

where ai are ‘kinematic gauge-theory wave functions’.
In general, whether or not the B-field and dilaton can be turned off depends on the gauge-

theory sources and on their relation to gravity sources. The relevant solutions of the (381), in
position and momentum space, for an arbitrary source is

A(0)a
µ (x)∝

ˆ
dDy

ζaµ (y)

|x− y|D−2
, F

[
A(0)a
µ

]
(p) =

F
[
ζaµ
]
(p)

p2
, (385)

where F is the Fourier-transform operator. The rules for constructing the corresponding lin-
earized gravity solution and sources are yet to be completely clarified. Here we attempt to
formalize several possibilities, while leaving others for future development.

In identifying suitable relations between gauge and gravity sources it is important that the
result can be interpreted as the linearized stress tensor of some field theory and thus that it
conforms with energy conditions expected of such a stress tensor [53]. Not every possible
construction has this property; indeed, it was shown in [53] that, while the source for Kerr–
Schild solutions (whose linearized approximation is exact and will be discussed in some detail
in section 8.3) can be obtained by specifying the charge distribution sourcing the corresponding
gauge-theory solutions and imposing ∇µTµν = 0, they do not obey simultaneously the weak
and strong energy conditions. While discussions of energy conditions have appeared in the
literature (see below for references), a thorough analysis is currently absent and we will refrain
from attempting one here. We emphasize that the classical double copy is best defined so that it
yields a solution of (378); moreover, its sources should be constructed out of the gauge-theory
sources such that they do not have any unphysical features. In general, it is necessary to verify
whether the resulting source obey reasonable energy conditions before attempting to promote
it from a non-dynamical source to a dynamical one, realized in terms of the fundamental fields
of a quantum theory. These requirements may be used to identify some of the rules of the
construction.

We begin with a source of the type

ζaµ = caζµ , (386)
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with constant color factor ca and transverse ζµ. Even though ca need not have any particular
algebraic properties, it is natural to take at face value the fact that the solution (385) is given by
the first Feynman diagram in figure 32 and apply the usual double-copy rules: ca → ζ̃µ. Even
though nonlinear corrections to a YM solution with this source vanish because f abccbcc = 0,
nonlinear corrections to its gravity counterpart may be present; we shall see this explicitly in
section 8.2.2. Similarly to scattering-amplitudes double copy, it is very important to not discard
color factors that vanish due to the summation over the color indices. (Examples where this is
crucial are found in [6, 69].)

Gauge-theory sources may exhibit a less transparent separation of color and kinemat-
ics, e.g.

ζ (x)aµ =
∑
i

cai ζ (x)
i
µ , (387)

with several distinct independent color factors cai and transverse (position-dependent) ζ iµ.
Similarly to the case of asymptotic scattering states, we may still apply the (color factor) →
(kinematic factor) replacement in momentum space with the same twist as in that case (and in
the case of a wave solution) of allowing for a constant relative rotation of sources. Formally∑

i

cai F
[
ζ iµ
]
(p)−→

∑
i,j

hijF
[
ζ iµ
]
(p)F

[
ζ̃ iµ

]
(p) , (388)

where F is the Fourier-transform operator. In general it may be possible to allow hij to be a
function of momentum; Lorentz invariance demands that it should be a function of p2 and thus
it can only lead to shifts of H(0)

µν by local functions. From this perspective, hij → h(p2)ij should
be equivalent to field and/or coordinate redefinition in the gravity theory.

In both this case and in the simpler previous case (which may be obtained by taking the
indices i and j to take a single value), the resulting space linearized solution is

H(0)
µν (p) =

∑
ij h
(
p2
)
ij
F
[
ζ iµ
]
(p)F

[
ζ̃ jν

]
(p)

p2
. (389)

Comparing this the general solution of equation (378) with a source, we identify the numerator
as the Fourier-transform of that source. Transforming back to position space, it follows that
the gravity source is given by the convolution of the two YM sources with a kernel defined by
the matrix hij:

ζµν (x) =
ˆ
dDy dDzF [hij] (|x− y− z|) ζ iµ (y) ζ̃ jµ (z) . (390)

Such a relation between gauge and gravity sources was discussed in [54] and is reminiscent of
the off-shell definition of the linearized fat graviton in equation (138).

Gauge transformations, whose linearized form isAaµ → Aaµ + ∂µχ
a, canmap a solution such

as (385) into one that has less straightforward identification of a momentum space ‘kinematic
numerator’. To explore this possibility let us assume that Aaµ(x) has the general form59

A(0)a
µ (x) =

1
x2
∑
i

cai n
i
µ (x) , (391)

59 Time-independent vector potentials, of the form Aaµ (⃗x) =
∑

i c
a
i µ

i (⃗x)/|⃗x|, can be treated similarly. The appar-
ent difference in the engineering dimension between the expression of Aaµ (⃗x) here and that in equation (391) stems
from the difference in the dimension of the measure of the three-dimensional and four-dimensional (inverse) Fourier-
transform operator.
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where n(x) may contain terms that either eliminate the overall factor or introduce stronger
singularities. The Fourier transform of this vector potential can be defined formally as

F
[
A(0)a
µ

]
(p) =

∑
i

cai n̂
i
µ(i∂/∂p)F

[
1
x2

]
(p) , (392)

where the operators n̂iµ(i∂/∂p) are obtained from niµ(x) by the formal replacement xµ 7→
i∂/∂pµ. This operation is to be understood in the sense of distributions, i.e. the Fourier trans-
form is taken in the presence of a test function that falls off sufficiently fast so integration by
parts does not yield any boundary terms. Interpreting the operators niµ(i∂/∂p) as the kinematic
numerators, the linearized double copy may be defined as60

F
[
H(0)

µν

]
(p) =

∑
ij

hij n̂
i
µ(i∂/∂p) ˆ̃n

j
ν(i∂/∂p) F

[
1
x2

]
(p) . (393)

The commutation properties of the operators n̂ and ˆ̃n together with the properties of hij determ-
ine whether or not this double copy yields a purely gravitational solution or the solution also
contains nontrivial dilaton and/or anti-symmetric tensor. Fourier-transforming back to posi-
tion space for a constant matrix hij suggests a (linearized) gravitational source (in de Donder
gauge)

ζµν (x) =
∑
ij

hijn
i (x) ñj (x) . (394)

See [54] for a further discussion on the relation of gauge and gravity sources in a time-
dependent setting and [63] for examples where symmetries help identify the appropriate
sources. The above construction is related to the position-space replacement rules of [51, 63].

A non-dynamical source can also be interpreted in the spirit of a (spontaneous) breaking of
the gauge group and thus apply the corresponding double-copy rules discussed in section 5
together with the fact that the linearized solution (385) is given by the first Feynman diagram
in figure 32. That is, the source is decomposed in irreducible representations of the unbroken
(global part of the) gauge group and the double copy amounts to constructing gauge-invariant
bilinears. This interpretation should also be subject to the consistency conditions discussed in
section 5 regarding the spectrum of the double-copy theory.

Ultimately gravitational sources should be dynamical (we shall review this in section 8.4);
as a step in this direction while eschewing the full dynamics of matter fields one may demand,
as was done in [57], that the gauge-theory source obeys covariant current conservation,

Dµζaµ = 0 . (395)

Imposing it anticipates that ζaµ can be realized in terms of some other fields, in a gauge invariant
Lagrangian without settling on a specific realization.

The previous discussion and examples above refer to cases in which the sources of at least
one of the two gauge theories are smooth functions, perhaps with compact support. If both
momentum-space sources contain singular distributions their product requires a careful defin-
ition, especially if their product is ill-defined, such as a product of Dirac δ-functions. A phys-
ical perspective together with the expectation that there exists a Lagrangian that manifests the
double-copy properties of equation (81) suggests a natural prescription. Because the momenta
of the two gauge theories are identified through the double copy, it is natural that constraints

60 This construction may in principle be generalized to n̂= n̂(p, i∂/∂p). We leave this to the readers who read this
footnote.
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on it be imposed only once. Thus, if overlapping constraints are imposed by the gauge-theory
sources, they should be included only once in the double copy of the source. It is perhaps
interesting that this prescription yields identical (linearized) gravity solutions from distinct
(linearized) gauge-theory solutions—e.g. two point-like sources present for all times vs. one
point-like source present for all time and one instantaneous source.

To illustrate this, let us consider the field of a static point-like charge. The four-current is
proportional to u= (1,0,0,0) and the vector potential is [58]

A(0)a
µ (x) = gcauµ

1
4π r

, A(0)a
µ (p) = gcauµ

δ(1)
(
p0
)

p2
. (396)

Consequently, H(0)µν is

H(0)µν (p) =
κ

2
Muµuν

δ(1)
(
p0
)

p2
, (397)

which can be easily Fourier-transformed to position space. In writing this expression we made
certain identifications between the gauge coupling and constants in the gravity theory. Since
H(0)µν is symmetric, bµν = 0; it is not traceless, so there is a nontrivial dilaton

ϕ = H(0)µ
µ =+

κ

2
M
4π r

. (398)

Using equation (380) and the projector (379), the correction to the metric is

hµν =
κ

2
M
4π r

(
uµuν +

1
2
(ηµν − qµlν − qν lµ)

)
, with l=

1
r+ z

(0,x,y,r+ z) . (399)

Running a similar construction in the opposite direction, shock-wave solutions of Einstein’s
equations which are also solutions of linearized Einstein’s equations were shown in [50] to be
related, through a double-copy procedure, to certain wave solutions of YM theory. The relev-
ant gravitational source ζµν is identified such that the scattering of some particle off a high-
energy graviton is equivalent to all orders in perturbation theory to the scattering off ζµν ; the
gravitational shock wave, given by the Aichelberg-Sexl [439], is the solution of (linearized)
Einstein’s equation with this source. The corresponding gauge-theory source ζaµ was similarly
constructed, i.e. such that the scattering of some particle off a high energy gluon is equivalent
to all orders in perturbation theory to the scattering off ζaµ. The source turned out to be of the
type (386) and the gauge-theory shock wave is the solution of (linearized) YM equations with
this source. The two waves are related by the usual color→kinematics replacement. By con-
struction, scattering off the gravitational wave can also be obtained through this replacement
from scattering off the gauge-theory wave, to all orders in perturbation theory.

8.2.2. Nonlinear corrections. With a linearized solution in hand, nonlinear corrections can be
computed directly, by evaluating increasingly higher orders in the tree expansion in figure 32.
The goal however it to explore the realization of nonlinear corrections to the gravity solutions
as a double copy of the nonlinear corrections to the YM solutions. We will review this here,
loosely following [58]. As we shall see, this comparison will emphasize the importance of the
choice of fields, a feature that will be further discussed for complete solutions.

Nonlinear corrections to a linearized solution are expressed, through the tree expansion in
figure 32, as convolutions of the linearized solution with kernels given by Feynman vertices.
Since however, the gravity source depends on the metric it sources, one may either include
explicitly such modifications (asO(κn⩾2) corrections to the source) or ignore them and obtain
a solution for a choice of fields such that source changes are absent. These two perspectives
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have an analog in the two YM theories, where sources may either be corrected order by order
in perturbation around the trivial solution such that they are e.g. covariantly constant,D · ζ = 0,
or they are fixed, respectively.

The first nonlinear correction to some solution A(0)c
µ follows easily in terms of the standard

three-point vertex. To utilize the same rules as for amplitudes double copy, it is convenient to
present it in momentum space:

A(1)aµ (−p1) =
i

2p21
f abc
ˆ

dDp2

(2π)D
dDp3

(2π)D
(2π)D δ (p1 + p2 + p3)

×
[
(p1 − p2)

γ
ηµβ +(p2 − p3)

µ
ηβγ +(p3 − p1)

β
ηγµ
]
A(0)b
β (p2)A

(0)c
γ (p3) .

(400)

The factor in the square parenthesis is the usual kinematic part of the off-shell three-gluon
vertex and has the same antisymmetry properties as the color factor. While this expression
may be simplified somewhat by making use of the transversality of A(0)aµ, we will choose not
to do so.

Taking two configurations like (400) and replacing the color factors of onewith the kinemat-
ics of the other while leaving the propagators untouched (which, apart from using the same
double-copy rules for amplitudes also includes the application of the results of the previous
subsection A(0)a

µ (p)Ã(0)b
ν (p)→ H(0)

µν (p)) leads to

H(1)µµ ′
(−p1) =

1
4p21

ˆ
dDp2
(2π)D

dDp3
(2π)D

(2π)D δ (p1 + p2 + p3)

×
[
(p1 − p2)

γ ηµβ +(p2 − p3)
µ ηβγ +(p3 − p1)

β ηγµ
]

×
[
(p1 − p2)

γ ′
ηµ

′β ′
+(p2 − p3)

µ ′
ηβ

′γ ′
+(p3 − p1)

β ′
ηγ

′µ ′]
H(0)

ββ ′ (p2)H
(0)
γγ ′ (p3) .

(401)

This expression has the same structure as the first nonlinear correction to the solutions of the
equations of motion of the action (81) except that the trilinear interaction of gravitons, B fields
and dilatons was replaced by the factorized integrand kernel above. This factorization is the
same as that of the three-point amplitudes from equation (81). It can be seen explicitly by
starting from the complete three-point vertices and using transversality and the on-shell con-
dition for the external states. While H(0)

γγ ′ is transverse by construction, it obeys, in general, a

free-field equation with a source. Thus, H(1)µµ ′
(−p1) given above represents the first correc-

tion to a gravity solution for the choice of a fluctuations such that the trilinear vertex is free of
terms that vanish on the free mass shell. This vertex is related to the one following from the
expansion of the Lagrangian by a field redefinition.

There exists further freedom in the relation between H(1)µµ ′
(−p1) and the fluctuations of

the metric, B field and dilaton. At the linearized level the later are given by the decompos-
ition (377). For higher-order corrections however this decomposition may be modified. As
discussed in the beginning of this section, the amplitudes double copy guarantees only that
the asymptotic states—or linearized solutions—double copy. At higher orders in κ there may
exists further terms in the relation between gauge-theory and gravity fields which are projected
out when the LSZ reduction is applied to a Green’s function. At the first nonlinear order this
is

H(1)
µν = h(1)µν +B(1)

µν +Pqµνϕ
(1) + T (1)

µν

(
h(0),b(0),ϕ(0)

)
, (402)
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and at arbitrary order

H(n)
µν = h(n)µν +B(n)

µν +Pqµνϕ
(n) + T (n)

µν

(
h(m),b(m),ϕ(m),m< n

)
. (403)

Such terms may be interpreted as field redefinitions connecting the initial choice of gravity
fields (375) to the ones ‘chosen’ by the double copy. They also capture various choices that
can be made during the calculation, such as gauge choices and—highlighted by their appear-
ance in the first nonlinear correction—use of the free/lower order equations of motion in the
definition of vertices. Terms of this type may be eliminated by nontrivial choices of the kernel
in equation (389). These ‘transformation functions’ [58] may be determined by comparing the
perturbative solution of the equations of motion of the action (81) with the result of the double
copy. The main physical information they contain is that they provide the connection between
the fields natural from a double-copy perspective and the natural fluctuations in the gravity
Lagrangian. In the special case of the self-dual theory, it is known how to choose a paramet-
rization of the metric perturbation such that the double copy is manifest [43]. For these field
variables Tµν = 0 to all orders in the tree diagram expansion of self-dual spacetimes.

An example illustrating this discussion and dramatically emphasizing the relevance of
the choice of field variables was given in [58] using the linearized gravity solution in
equation (397) and its gauge-theory counterpart in equation (396). This example also emphas-
izes the importance of not dropping terms whose color factors vanish after summation over
color indices. The first nonlinear correction H(1) to equation (397) was obtained in [58]; it is

H(1)
µν (x) =−

(κ
2

)2 M2

4(4π r)2
r̂µr̂ν , (404)

where r̂µ = (0,x/r). It turns out that a nontrivial transformation function is necessary to turn
H= η+κH(0) +κ2H(1) into a solution of the equations of motion to O(κ2) in the vari-
ables (375). It is given by [58]

T (1)µν(−p1)=
ˆ

dDp2
(2π)D

dDp3
(2π)D

(2π)Dδ(p1+p2+p3)
4p21

{H(0)
2αβH

(0)αβ
3 pµ1 p

ν
1 + 8pα2 H

(0)
3αβH

(0)β(µ
2 pν)1

+ 8p2 · p3H(0)µα
2 H(0)ν

3 α − 2ηµνp2 · p3H(0)
2αβH

(0)αβ
3 + 4ηµνpα2 H

(0)
3αβH

(0)βγ
2 p3γ

+Pµν
q [2(D− 6)p2 · p3H(0)

2αβH
(0)αβ
3 − 4(D− 2)pα2 H

(0)
3αβH

(0)βγ
2 p3γ ]} , (405)

where we used the shorthand notation

H(0)
iµν ≡ H(0)

µν (pi) , and p(µqν) ≡ 1
2
(pµqν + pνqµ) . (406)

This first transformation function T (1)µν holds for all cases that have symmetric and transverse
H(0)

µν and h(0)µν .
Since equation (396) is an exact solution of the YM equations of motion, one may wonder

whether it is possible that it has some other, physically equivalent form which can be double-
copied to an exact solution of dilaton-axion-gravity in some field variables. To this end, it is
necessary that the first correction to this equivalent form of equation (396) vanishes before
summation over color indices. We shall see in section 8.3 that this is indeed possible.

Proceeding to higher orders is in principle straightforward, but quite tedious in practice.
The new features compared to the discussion above relates to the need of a representation of
the corrections to the YM equations which manifest CK duality up to terms that are projected
out by the LSZ reduction. Since the only difference between the asymptotic states of scattering
amplitudes and Aa(0)µ is that the latter obey an on-shell condition with sources, CK duality can
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be satisfied only up to such terms. Similarly to scattering amplitudes, a generic perturbative
classical solution is related to one that exhibits the duality (in this restricted sense) by general-
ized gauge transformations. As in that case, such transformations are not always easy to find.
As in that case, a Lagrangian whose Feynman rules lead to manifestly CK-dual representation
or the use of the generalized double-copy construction can alleviate this issue.

To quintic order in fields, the Lagrangian in [41] provides the requisite Feynman rules to
obtain the gauge-theory perturbative classical solution in a form that can be double copied
directly. This was exploited in [58], where the second nonlinear correction was discussed. As
explained there, the quartic YM vertex does not contribute to a symmetric double copy and
the second term in the perturbative solution of YM equations is given entirely in terms of the
three-point vertex:

A(2)aµ (−p1) =
i
p21
f abc
ˆ

dDp2
(2π)D

dDp3
(2π)D

(2π)D δ (p1 + p2 + p3)

×
[
(p1 − p2)

γ ηµβ +(p2 − p3)
µ ηβγ +(p3 − p1)

β ηγµ
]
A(0)b
β (p2)A

(1)c
γ (p3) . (407)

It leads to the second correction H(2) in the gravitational solution

H(2)µµ ′
(−p1) =

1
2p21

ˆ
dDp2
(2π)D

dDp3
(2π)D

(2π)D δ (p1 + p2 + p3)

×
[
(p1 − p2)

γ ηµβ +(p2 − p3)
µ ηβγ +(p3 − p1)

β ηγµ
]

×
[
(p1 − p2)

γ ′
ηµ

′β ′
+(p2 − p3)

µ ′
ηβ

′γ ′
+(p3 − p1)

β ′
ηγ

′µ ′]
H(0)

ββ ′ (p2)H
(1)
γγ ′ (p3) .

(408)

The graviton, antisymmetric tensor and dilaton components can be easily extracted using the
projectors; to connect this general expression to a solution with specific sources in specific
coordinates T (2) must be computed as well. We refer to [58] for details.

Exercise 8.1. Explore the possibility of using a quasi-classical solution obtained by folding
scattering amplitudes in BCJ representation against external sources to construct solutions for
the gravity field equations. This is equivalent to removing terms proportional to the free-field
equations from Green’s functions and using the result to construct an ansatz for a classical
solution. The resulting double-copy field configuration should be correct—for some choice
of field variables—up to terms that are proportional to the free field equations, i.e. up to field
redefinitions.

Steps towards the double copy of nonlinear classical solutions beyond second order were
taken in [172, 434] for the special case of perturbiners or Berends-Giele currents. Starting from
the perturbiners of certain effective field theories [434] and F3 and F4-deformed YM theory,
perturbiners of the corresponding gravity theories were constructed using the KLT relations.
Because only one leg of the Berends-Giele current is off shell, the relation between the objects
thus constructed and the ‘true’ gravitational perturbiner is simpler than in the most general
case: it consists only of a gauge transformation and involves no field redefinition.

The need for a Lagrangian yielding CK-satisfying Feynman rules or, more generally, of
Green’s functions manifesting CK duality on all of their internal lines may be circumven-
ted through the generalized double-copy construction discussed in section 7. Generalizing
slightly to Green’s functions, the starting point is any general perturbative expressions for the
gauge-theory solutions expressed in terms of cubic diagrams; quartic vertices, if present, are
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resolved in the usual way. Because of lack of manifest CK duality, their double copy does
not yield solutions of the equations of (81) up to field redefinitions. The formulae discussed
in section 7 provide the correction terms. As in the examples discussed earlier in this section,
transformation functions are probably necessary to relate the result of the generalized double
copy to a solution in some chosen coordinates. It remains an open problem to have an a pri-
ori understanding of the choice of fields in the gravitational theory that set all transformation
functions to zero.

8.3. Complete solutions; Kerr–Schild coordinates

In the discussion of perturbative construction of gravity solutions in section 8.2 we
encountered, following [58], linearized solutions which are exact solutions of YM equations—
such as that in equation (396)—which double copy to linearized solutions of gravity which
receive higher-order corrections. While, as emphasized there, this can be understood as a con-
sequence of the special properties of the color factors of the YM solution, it is important to
understand whether there exists a choice of field variables for which these contributions to not
arise at all and consequently the transformation functions vanish identically to all orders in
classical perturbation theory. The general expectation is that if a gauge-theory solution does
not receive corrections beyond nth order in perturbation theory, then its corresponding gravity
solution will also be exact beyond that order.

As pointed out in [51], following [440], a particular ansatz for the metric linearizes the
source-free Einstein’s equations and thus can potentially give these metrics as double copies
of solutions of YM Equations which do not receive nonlinear corrections. They are known
as Kerr–Schild metrics; the ansatz is given in terms of a scalar function ϕ (which is not the
dilaton) and a vector k which is null and geodesic with respect to the background metric ḡµν :

gµν = ḡµν +κhµν ≡ ḡµν +κϕkµ kν , ḡµν k
µ kν = 0 ,

(
k · ∇̄

)
kµ = 0 . (409)

The background (or fiducial) metric ḡµν is also used to raise and lower indices on the metric
fluctuation h and ∇̄µ is the corresponding background-covariant derivative. One component
of k can be set to unity, thus absorbing its dynamics in ϕ. The Kerr–Schild form is special in
that the metric perturbation—or the graviton—explicitly decomposes into a direct product of
the vector kµ with itself. The remarkable property of this ansatz is that it linearizes the Ricci
tensor and reduces Einstein’s equations to a single nontrivial relation between the function ϕ
and the source. The components of the Ricci tensor are

Rµ
ν = R̄µ

ν +κ

[
−hµρR̄

ρ
ν +

1
2
∇̄ρ

(
∇̄νh

µρ + ∇̄µhρν −∇̄ρhµν

)]
, (410)

where R̄µ
ν is the Ricci tensor associated with the background metric ḡµν . We emphasize that

the linear dependence on the metric fluctuation h in equation (409) holds only for the index
positions in equation (410).

A simple choice of background metric is ḡµν = ηµν (with a mostly-minus signature), used
at length in this context in [51]. For this choice the background-covariant derivatives become
regular derivatives. Further choosing k0 = 1, the components of the Ricci tensor are

R0
0 =

1
2
∂i∂iϕ ,

Ri0 =−1
2
∂j
[
∂i
(
ϕkj
)
− ∂j

(
ϕki
)]
,

Rij =
1
2
∂l
[
∂i
(
ϕklkj

)
+ ∂j

(
ϕklki

)
− ∂l

(
ϕki kj

)]
,

R= ∂i∂j
(
ϕki kj

)
. (411)
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All Latin indices run over the space-like directions. Thus, the scalar function ϕ is determined
by a Poisson-type equation.

A generalization of the Kerr–Schild ansatz in equation (409) is the double-Kerr–Schild
ansatz [441], which is given in terms of two scalar functions and two null, geodesic and mutu-
ally orthogonal vectors:

gµν = ḡµν +κhµν = ḡµν +κ(ϕkµ kν +ψ lµ lν) ,

k2 = l2 = k · l= 0 ,
(
k · ∇̄

)
kµ = 0 ,

(
l · ∇̄

)
lµ = 0 , (412)

where as before ḡµν is a background metric and is used in all index contractions and
background-covariant derivatives ∇̄. For these field variables the Ricci tensor is

Rµ
ν = R̄µ

ν +κ

[
−hµρ R̄ρ

ν +
1
2
∇̄ρ

(
∇̄νh

µρ + ∇̄µhρν −∇̄ρhµν

)]
+Rµ

ν,non−lin. , (413)

Rµ
ν,non−lin. =−κ

2

2
[
1
2
∇̄µh(k)ρδ∇̄νh(l)

δ
ρ + h(l)µδ∇̄ρ∇̄νh(k)

ρ
δ

+ ∇̄ρ(h(l)
ρδ∇̄δh(k)

µ
ν + 2h(l)ρδ∇̄(νh(k)

µ)
δ − 2h(l)µδ∇̄[ρh(k)δ]ν)]+ (k↔ l),

(414)

where

h(k)µν = ϕkµkν , h(l)µν = ψ lµlν . (415)

The linearity of Einstein’s equations in Kerr–Schild variables implies that any single Kerr–
Schild metric can also be thought of as a double Kerr–Schild metric.

In higher dimensions further generalizations are possible, involving up to D− 2 null,
geodesic and mutually orthogonal vectors with the same properties as k and l. Additionally, it
was argued in [441] that in the so-called Plebansky coordinates, the nonlinear part of the Ricci
tensor, Rµ

ν,non−lin., vanishes identically and solutions of the linearized Einstein’s equations are
also exact solutions.

8.3.1. Kerr–Schild exact solutions. In this section we shall review the double-copy interpret-
ation of the Schwarzschild solution, emphasizing its realization vis-à-vis the discussion in the
previous section. We will then summarize and comment on generalizations of this approach
to other spacetimes.

The Kerr–Schild form of the Schwarzschild solution is (see e.g. [442])

gµν = ηµν +
κ2

8π
M
r
kµkν , (416)

whereM is positive and the null four-vector k is chosen such that the line element is rotationally
invariant:

kµ =
(
1,xi/r

)
, r2 =

3∑
i=1

xi xi . (417)

The double-copy form of this solution was discussed at length in [51].With the definition of the
linearized double copy for singular sources discussed in section 8.2.1 and up to identification
of parameters, it can be seen that the departure of the metric (416) from Minkowski space is
given by the double copy of

Aaµ =
gcakµ
4π r

. (418)
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It can be straightforwardly verified that Aaµ satisfies Maxwell’s equations with a point-like
source at the origin. Equation (418), however, is not the standard potential of such a source.
Rather, as shown in [51], it is related to the standard potential of a point-like charge (418) by
a gauge transformation with parameter Λa:

Aaµ = A ′a
µ + ∂µΛ

a ,

A ′a
µ =

gcauµ
4π r

, uµ = (1,0,0,0) , Λa =
gca

8π
logr2 ,

jaµ =−gcauµδ(3) (x) . (419)

It is interesting to contrast the two gauge-equivalent vector potentials Aaµ and A ′a
µ. Both are

proportional to a single color vector ca and because of this they both are formally exact solu-
tions of the nonlinear YM equations. For the latter one, A′, the vanishing color factors of the
corrections are multiplied by nontrivial kinematic dependence and thus, as discussed in section
8.2.2, there are nonlinear corrections that should be included which are crucial for transform-
ing its double copy into a solution of the full Einstein’s equations. For the former, A, one can
check that the vanishing color factors come together with vanishing kinematic dependence.
Therefore, the corrections to the double copy of two A vectors also vanish and thus the linear-
ized double copy does not receive nonlinear corrections. This underscores the importance of
the gauge choice for the gauge-theory solutions that participate in the classical double copy.

To recover the Schwarzschild solution the parameters of the two theories are replaced as
κ

2
↔ g , M↔ |c| . (420)

We note that the norm of the color vector ca, which may be identified as the charge of the
source under the sole Cartan generator of the gauge group that is nontrivial, corresponds to the
mass of the Schwarzschild black hole. This seems to suggest a relation between the uniqueness
of the Coulomb-like solution and Birkhoff’s theorem.

It is interesting and important to note that, despite the gauge-theory solutions being sourced
by the same charge distributions and being gauge-equivalent, their classical double copies
as defined here are inequivalent. Indeed, while the solution constructed in this section has
only a nontrivial metric, the one constructed perturbatively in section 8.2.2 stating from
equation (396) also has a nontrivial dilaton which cannot be removed while preserving a
nontrivial metric. With the current understanding of the classical double copy, the fact that
gauge-equivalent gauge-field configurations lead to inequivalent gravitational field configur-
ations appears to be an unavoidable feature. At this juncture, it seems best to start with valid
gravitational solutions and work backwards to gauge theory.

Considerations similar to the ones outlined above have been used to give a double-copy
interpretation to the Kerr back hole, black brane solutions, shock-wave and plane-wave solu-
tions [51] and to the (anti) de Sitter spaces in [52]. In the latter cases the cosmological constant
is related to the charge density of a uniform charge distribution. Gravity solutions with addi-
tional matter fields turned on, such as the Taub-NUT space, have a double Kerr–Schild form
and, as argued in [52], have a double-copy interpretation (in the same sense as discussed above)
in terms of a dyon solution whose electric and magnetic charges are related to the mass and
the NUT charge.

Kerr–Schild solutions with time-dependent sources, describing accelerating black holes,
have been discussed in [54] where a relation was constructed between the electromagnetic
radiation of an accelerating charge and the gravitational radiation of an accelerating point
mass and thus represents an effective description of the complete vacuum solution. The con-
traction of the corresponding sources with gluon and graviton polarization vector/tensor gives
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the amplitude for the Bremsstrahlung process. Other gravitational wave solutions, including
vacuum solutions, which are of the double-Kerr–Schild type, were discussed in [74].

All YM solutions that appeared in the constructions reviewed here are also solutions of
Maxwell’s equations. Using the fact, discussed in section 5, that YM theory can be interpreted
as a double copy of itself with a theory of a bi-adjoint scalar field, more complicated solutions
can be constructed by taking the double copy of e.g. a Maxwell solution with a solution of
the bi-adjoint scalar theory. This observation was explored in [52, 62], while solutions of bi-
adjoint scalar theory were constructed in [55, 73] and [61]. The details pertaining to the relation
between the sources of various solutions remain to be fully worked out. This perspective also
makes contact with the off-shell Lagrangian double copy of [56, 255].

Following [53], the gravitational stress tensor of certain double-copy Kerr–Schild solutions
was expressed linearly in terms of the current sourcing the gauge-theory solution. With this
relation, in most cases they are not stress-energy tensor of a perfect fluid and contains shear
stresses and, moreover, they do not obey the weak-energy condition. It is possible that other
choices of coordinates and field variables display double-copy behavior that simultaneously
map YM solutions to gravitational ones and satisfy the energy conditions.

Further generalizations, involving a nontrivial fiducial metric ḡ in the Kerr–Schild ansatz,
were discussed in [52, 62, 63]. As discussed in [52, 62], if the fiducial metric is of Kerr–Schild
type, then every such solution can also be interpreted as a (multiple) Kerr–Schild metric with
Minkowski space as fiducial metric (referred to as Type A constructions in [62]). Among the
examples discussed are the de Sitter and anti de Sitter generalizations of the Schwarzschild
black hole.

Solutions with a non-Kerr–Schild background metric have been discussed in [62] (referred
to there as Type B constructions) and in [63]. They are realized in terms of solutions of gauge
theory on a spacewith the fiducial metric. The classical scale invariance of YM theories implies
that, for a fiducial metric is conformallyMinkowski, the gauge theory is effectively in flat space
(up to a curvature-dependent scalar mass term). Examples of this type were discussed in [62].
Apart from black holes in asymptotically maximally-symmetric spaces which are also treated
in this framework, [63] also gives double-copy interpretations to black strings, black branes,
and various types of gravitational waves. The corresponding localized sources for the YM
and scalar theories, for both stationary and time-dependent examples, are also identified and
examples are given in terms of Kerr–Schild vectors k.

While a coherent picture for the classical double copy of exact gauge-theory solutions to
exact (matter-coupled) gravity solutions is still to be formulated, the examples discussed in the
literature and summarized here give hope that such a relation may be generically possible.

8.3.2. Good and bad coordinates: charged black holes from higher dimensions. To further
illustrate the importance of the choice of field variables for the interpretation of the result of
classical double-copy constructions as exact solutions of Einstein’s equations (perhaps coupled
to additional matter) let us briefly discuss the charged black hole solution in the presence of an
additional scalar field. (See also [62] for a discussion of charged black holes). The equations
of motion are standard61

61 The corresponding action is in the string frame, and may be mapped to the Einstein frame by a rescaling of the
five-dimensional metric.
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Rµν −
1
2
gµνR=

1
2
ϕ2

(
gαβFµαFνβ −

1
4
gµνF ·F

)
+

1
ϕ
(∇µ∇νϕ − gµν∇·∇ϕ) ,

∇·∇ϕ =
1
4
ϕ3F ·F ,

∇αFαµ =−3
∇αϕ

ϕ
Fαµ , (421)

and can be obtained by Kaluza–Klein reduction from Einstein’s equations in five dimensions
through the usual ansatz

g5 =

(
g4 +ϕ2A⊗A ϕ2A

ϕ2A ϕ2

)
. (422)

Aswe shall see, in these field variables the charged black hole solution does not a clear classical
double-copy interpretation; we will identify the field variables in which it does, paralleling the
smooth relation of double copy between theories related by dimensional reduction.

The four-dimensional charged black hole can be obtained via Kaluza–Klein reduction from
a five-dimensional black string. In Kerr–Schild form, it is

g= η+φ k̂⊗ k̂ , ηµν k̂µk̂ν = 0 , φ =
M
r3
, (423)

where r3 is the radial coordinate in the three coordinates transverse to the string. A suitable
solution of the constraints constants defining k̂ is that it is a boost of the vector (1, r̂3,0) where
r̂3 is the unit vector in three dimensions orthogonal to the string:

k̂= (γ, r̂3,βγ)≡ (k,βγ) , γ2 =
1

1−β2
. (424)

Using the reduction ansatz in equation (422), the four-dimensional fields are:

g4 = η+
φ

1+β2γ2φ
k⊗ k , k= (γ, r̂3) , k2 = 1− γ2 =− β2

1−β2
,

ϕ =
√

1+β2γ2φ, A=
βγφ

1+β2γ2φ
k . (425)

It is not difficult to check that this field configuration is a solution of equation (421).
It is also not difficult to see that this field configuration departs from the Kerr–Schild ansatz

in that the vector k defining the departure of the metric from Minkowski space is time-like
rather than null. Moreover, the dependence onφ suggests that all fields are given by a nontrivial
resummation of tree diagrams.

Another choice of field variables,

g5 =

(
g̃4 Ã
Ã 1+ ϕ̃

)
, (426)

which is closely related to the dimensional reduction of asymptotic states of scattering
amplitudes, is more suitable for a classical double-copy interpretation. Indeed, the four-
dimensional fields are

g̃4 = η+φk⊗ k , k= (γ, r̂3) , k2 = 1− γ2 =− β2

1−β2
,

ϕ̃ = β2γ2φ, Ã= φk , (427)
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which are related in the sense described in section 8.2.1 to the following solution of gauge
theory coupled to a scalar field:

AaYM = φkca , ϕaYM =Nφ ca , (428)

where ca is some color vector.
We note that the field configuration (427) is not a solution of equation (421), but it is a solu-

tions of the equations obtained from them through the field redefinition mapping the fields in
equation (422) to those in equation (426). Moreover, while structurally similar to the Kerr–
Schild ansatz, it is not of the same type because the vector k is time-like. The violation of the
null condition is compensated by the contribution of the vector and scalar fields.While the rela-
tion between (428) and (427) is linear, the fact that k is not null allows in principle for a nonvan-
ishing kinematic part in the nonlinear corrections to (428) and thus to potential nonlinear cor-
rections to their double copy, cf section 8.2.2. The fact that (427) is an exact solution suggests
absence of the nonlinear corrections to the scalar and vector fields in equation (428). These
features may allow further generalization of the classical double-copy interpretation of solu-
tions of Kerr–Schild type. An alternative construction of the charged dilatonic black hole solu-
tion discussed here, which uses the standard four-dimensional equations of motion (421) and
a generalization of the double-Kerr–Schild ansatz (412) which also includes certain internal
dimensions, was discussed in [443].

Exercise 8.2. Show that the first nonlinear correction to (427) vanishes by evaluating it in
terms of the kinematic factors of the corrections to the gauge-theory solution (428).

8.4. Radiation

Earlier in this section we have reviewed and illustrated various possible definitions of the
double copy of classical solutions gauge theories to solutions of Einstein’s equations coupled
perhaps with additional matter and summarized the existing results. One of the fundamental
results of general relativity (and, in fact, of any gravity theory) is the emission of gravita-
tional waves—classical gravitational radiation emitted in processes involving massive astro-
physical bodies such as neutron stars or black holes, perhaps with macroscopic intrinsic angu-
lar momentum.

From the perspective of general relativity such calculations have a long history, with numer-
ical and perturbative results in various approximation schemes, which we will not review here;
see [129, 130, 444] for reviews. They have been stunningly confirmed through the direct exper-
imental detection of gravitational waves by the LIGO and Virgo collaborations [127]. We
expect that the double-copy approach to such calculations will lead to important technical
simplifications and bring new insight into these problems.

The first nontrivial contribution to the radiation process involves five particles: the two
incoming and outgoing massive bodies and the outgoing graviton. To evaluate this, it is neces-
sary to fix a model for the massive bodies that can be included in the double-copy construction.
In [57] they were represented in terms of gauge fields, effectively as the linearized solutions
in equation (396). The classical double copy then (effectively) yields a gravity solution whose
linearized form is (397) and thus the massive objects being scattered source both gravitons and
dilatons. It moreover appears that the double-copy rules used in [57] assume that a Lagrangian
that manifests CK duality is available. Indeed, the gauge-group generators are replaced with
the kinematic dependence of the off-shell three-point vertex, thus assuming that the latter have
the same algebraic properties as the former. While for a Lagrangian that manifests CK dual-
ity this replacement is, of course, equivalent to the usual rules in section 2, for a general
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Figure 33. The five cubic diagrams for inelastic scalar scattering with gluon production
in gauge theory. The legs carrying momenta p1 and p2 are incoming and the remaining
ones are outgoing.

Lagrangian, however, further terms may be necessary. Nevertheless, the result reproduces
direct calculations [57, 59] in dilaton-coupled gravity. Similar techniques have been used to
obtain the corresponding results in Einstein-YM theory [445].

In a different approach, suggested in [424] based on earlier ideas of [446, 447], incoming
and outgoing spinless massive bodies are represented as double copies of minimally-coupled
massive scalar Φ. The Lagrangian is

L=−1
2
TrFµνFµν +

∑
i

[
(DµΦi)

†
(DµΦi)−m2

i |Φ|2
]
, (429)

with the scalar field in some (complex) representation of the gauge group and Dµ the corres-
ponding covariant derivative. Then, a certain classical limit is taken to ensure that, as for clas-
sical particles, masses are parametrically larger than their spatial momenta. In this approach
one can choose the couplings of these particles such that, on the one hand, CK duality is
present and on the other their double copy does not yield a dilaton source. Due to Birkhoff’s
theorem, this model is sufficient describe the gravitational wave emission far from the hori-
zon of black holes, where the large (classical) masses ensures that the linearized emission is
captured accurately. We outline the relevant calculation, following [424].

The five diagrams contributing to the scattering process ΦiΦj → ΦiΦjhµν are shown in
figure 33 and the corresponding amplitude is

A=−i
(
naca
Da

+
nbcb
Db

+
nccc
Dc

+
ndcd
Dd

+
nece
De

)
. (430)

The denominators Da, . . . ,De and the color factors ca, . . . ,ce are easily read from the dia-
grams in figure 33, taking into account that the scalar Φi is in some complex representa-
tion Ri with generators TaRi . The kinematic numerators follow from the Feynman rules of the
Lagrangian (429)62. They are:

62 We note that, as discussed in previous sections, a quartic scalar term is not necessary for CK duality because the
scalar fields are taken in a complex representation of the gauge group.
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na = (2p1 + q2) · (2p2 − q2) ε · (2p1 + 2q2)−
(
2p1 · q2 + q22

)
ε · (2p2 − q2) ,

nb = (2p1 − k− q1) · (2p2 − q2) 2ε · p1 + 2p1 · k ε · (2p2 − q2) ,

nc = (2p1 − q1)
µ
(2p2 − q2)

ρ
[
(k+ q2)µ ηνρ +(q1 − q2)ν ηρµ − (k+ q1)ρ ηµν

]
εν ,

nd = (2p1 − q1) · (2p2 + q1) ε · (2p2 + 2q1)−
(
2p2 · q1 + q21

)
ε · (2p1 − q1) ,

ne = (2p1 − q1) · (2p2 − k− q2) 2ε · p2 + 2p2 · k ε · (2p1 − q1) , (431)

where ε is the gluon polarization vector. The color identities that are important for the gauge
invariance of A in equation (430) are

ca − cb = cc cd − ce = cc . (432)

It can be easily checked that the numerators (431) obey the corresponding kinematic relations.
The double-copy amplitude follows from the usual rules, see section 2:

M=−i
(
nana
Da

+
nbnb
Db

+
ncnc
Dc

+
ndnd
Dd

+
nene
De

)
. (433)

The tensor product of the two outgoing gluon polarization vectors can be projected onto a
graviton state. For internal lines a more involved projection is necessary [188]. We shall return
to it shortly.

To relate the amplitude just constructed to the classical scattering of massive bodies it is
necessary to focus on the classical kinematic regime. There exists many ‘classical limits’ of
a field theory and all of them involve the limit of vanishing Planck’s constant, which must
therefore be restored (on dimensional grounds) in the field theory expressions. The limit we
are interested in is also the one in which masses and other quantum numbers, such as external
momenta and charges, are parametrically large compared to the momenta exchanged between
particles. Thus, the classical limit is equivalent with a large mass expansion63 [421]:

mi →
mi

~
, g→ g

~
, ~→ 0 , pµi → mi v

µ
i , v2i = 1 . (434)

Because the coupling (charges) and masses are scaled simultaneously, this limit makes parts of
tree-level and loop-level diagrams of the same order and consequently all such contributions
enter nontrivially in this classical limit [421].

The limit (434) must be taken while enforcing the exact on-shell condition for all external
particles. In particular

(pi − qi)
2
= m2

i − 2mi vi · qi + q2i = m2
i ⇒ 2mi vi · qi = q2i . (435)

Thus, if external momenta are parametrically larger than the exchanged ones, this equation
can be satisfied only if

vi · qi ∼O
(
m−1
i

)
. (436)

This condition must be enforced when taking the classical limit of equation (433). Defining
the variables

Pµ
12 ≡ k · v1 vµ2 − k · v2 vµ1 ,

Qµ
12 ≡ (q1 − q2)

µ − q21
k · v1

vµ1 +
q22
k · v2

vµ2 , (437)

63 Other formulations of the classical limit, leading to the same result but with a different physical reasoning, were
discussed in [78, 80, 82].
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this classical limit of the amplitude (433) is

Mcl =−16im2
1m

2
2 εµν

[
4
Pµ
12P

ν
12

q21q
2
2

+ 2
v1 · v2
q21q

2
2

(Qµ
12P

ν
12 +Qν

12P
µ
12)

+(v1 · v2)2
(
Qµ

12Q
ν
12

q21q
2
2

− Pµ
12P

ν
12

(k · v1)2 (k · v2)2

)]
, (438)

where εµν ≡ εµεν . As pointed out in [424], there is a close relation between this amplitude and
themetric perturbation (i.e. radiation field) constructed in [57]. Themetric perturbation is given
by the Fourier transform to position space ofMcl with respect to the incoming scalar momenta,
subject to the constraints imposed by the on-shell conditions for all external momenta. We
note that the mass of the particles enters only as an overall factor in the amplitude (438) and,
consequently, in the associated metric perturbation. This property, implying that the features
of the metric are essentially independent of a (spinless) source, may be interpreted physically
as a reflection of Birkhoff’s theorem.

To obtain the analogous results in Einstein’s gravity theory it is necessary to project out the
dilaton and antisymmetric tensor field from all diagrams. As reviewed in section 5 following
[188], this can be done by introducing further ‘ghost’ fields whose couplings are adjusted
such that they remove the (un)desired degrees of freedom64. For the case at hand the relevant
Lagrangian is [424]

L=−1
2
TrFµνF

µν +TrDµχDµχ

+
∑
i

[
(DµΦi)

†DµΦi −m2
iΦ

†
i Φi − 2XmiΦ

†
i χΦi

]
, (439)

where Dµ is the gauge-covariant derivative, χ is the adjoint ghost, X is its coupling to be
determined. The mass factors are included such that the ghost field has canonical dimension
and X is dimensionless. While in the adjoint representation, the ghost field is allowed to double
copy only with itself.

The unknown coupling X can be determined by comparing the 2→ 2massive scalar scatter-
ing obtained through double copy from the Lagrangian (439) with the massive scalar scattering
in scalar-coupled general relativity. The result is

X4 =
1

D− 2
, (440)

where D is the spacetime dimension. The Lagrangian (439) can then be used to evaluate the
additional Feynman diagrams that remove the dilaton and axion contribution to equation (438).
The complete amplitude in scalar-coupled pure gravity is

MGR =−16im2
1m

2
2 εµν

[
4
Pµ
12P

ν
12

q21q
2
2

+ 2
v1 · v2
q21q

2
2

(Qµ
12P

ν
12 +Qν

12P
µ
12)

+

(
(v1 · v2)2 −

1
D− 2

)(
Qµ

12Q
ν
12

q21q
2
2

− Pµ
12P

ν
12

(k · v1)2 (k · v2)2

)]
, (441)

64 An alternative possibility is to carry out the double copy while keeping track of the helicity of internal fields and
making sure that only graviton modes appear on all internal lines of diagrams [80, 82].
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where the polarization tensor εµν now includes only graviton degrees of freedom. As shown
in [424], this reproduces the result of the (far more complicated) direct computation in general
relativity coupled to point particles.

It is interesting to note that, repeating the calculation in [57, 59] such that the sources corres-
pond tomassive spinless bodies and removing the dilaton and axion contribution through a pro-
cedure similar to the one described above appears to lead [424] to a different result than (441).
While the origin of the difference is not clear, it is possible that they are due to the unusual
double-copy rules employed in [57, 59].

Exercise 8.3. Evaluate the amplitude for the graviton production in the scattering of massive
charged spinless bodies YME theory and compare the result with that of [445].

8.5. Further comments

The close relation between Green’s functions and scattering amplitudes of QFTs suggests that
relations between scattering amplitudes of different theories may translate, in particular gauges
and for special choices of field variables, into relations between classical solutions of the cor-
responding equations of motion. In this section we reviewed at length examples in which this
expectation is realized and certain solutions of gauge theories can be used to construct, through
a classical double copy, certain solutions of gravity theories. Important points—such as the
relation between the gauge choice for the gauge-theory solution and the properties of the
corresponding gravity solution, or the identification of the best choice of gravity field vari-
ables such that no transformation functions are present—remain to be fully understood and
the complete rules of the classical double-copy construction to be spelled out. The examples
we discussed, as well as the additional ones that may be found in the literature, show that
such an approach can have useful applications to current problems in gravitational physics.
Chief among them is precision predictions of gravitational waves; as we saw in section 8.4,
the (classical) double-copy construction may help streamline the evaluation of the expected
signal from the relevant astronomical events.

Further applications of the double copy to gravitational wave physics, which we did not
discuss in detail, relate to the calculation of gravitational interaction potential in the post-
Newtonian expansion. While standard methods, using the gravitation Lagrangian, are well-
developed and results through fourth post-Newtonian order are available [448–451], double-
copy calculations such as in [452–454] may bring a novel perspective to this problem.
Indeed, advances based on the double copy and new developments [78] in the effective field
approach [422, 455] resulted in a new state of the art result at the third order in Newton’s
constant [80].

A common feature of the classical solutions constructed to date through such methods is
that, in the appropriate field variables, Einstein’s equations become linear. This includes the
case of the Kerr black hole which was shown in [456] to be related to a certain complex
deformation of the Coulomb potential. It is also shown that the change in momentum in a
scattering event, known as ‘the impulse’, can be described via a double copy of a point charge.
Progress towards further understanding some of the rules of the classical double copy may
follow from finding examples where nonlinear contributions are nonvanishing. Perhaps the
easiest approach to exploring such cases is the analysis of a Kerr–Schild solution for another
choice of field variables; an example would be to repeat the calculations in [436, 437] using
modern approaches.

The construction of a gravitational Lagrangian whose fields are explicitly constructed in
terms of those of the two single-copy gauge theories may also lead to new ways of relating
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the solutions of the two theories. The linearized Lagrangians of certain N = 2 supergravities
have been organized in this fashion in [56, 255].

Another (notoriously difficult) problem which may benefit from the existence of a system-
atic classical double copy is gravitational perturbation theory around a curved ground state
such as the (anti) de Sitter space, or the Schwarzschild black hole. The double copy will
likely relate it to gauge-theory perturbation theory around a nontrivial classical solution of YM
equations of motion. Attempts in this direction have been discussed in [60] and [72] where,
respectively, the three- and four-point amplitudes of gravitons around a gravitational plane
wave were expressed in terms of three- and four-gluon amplitudes around a particular gauge-
theory plane wave. While developing general methods for such calculations is an interesting
problem in its own right, it is likely that their main applications will be to gauge/string duality.

The study of the classical double copy is in its infancy and many avenues remain to be
explored; we expect that the resulting methods will yield important new progress in gravita-
tional physics, especially on the problem of gravitational radiation.

9. Conclusions

The duality between color and kinematics and the double-copy construction offer a radically-
different perspective on gravity theories compared to traditional Lagrangian or Hamiltonian
approaches. For the well-studied case of scattering amplitudes, the duality provides powerful
means for converting results in gauge theory to those of gravity. This has led to progress in
studying the behavior of various gravitational theories at high perturbative orders, such as the
UV behavior of extended supergravity at four and five loops [38, 291–293] and the third post-
Minkowskian corrections to the classical Hamiltonian for compact binaries [80, 82]. At present
there are no other means to evaluate such high orders.

Remarkably, the idea of CK duality and of the double-copy structure extends to theories
with no obvious connection to gauge or gravity theories, as reviewed in section 5. The fact
that the scattering amplitudes of theories whose Lagrangians seem to have little to do with
each other contain the same kinematical objects is rather striking and points to new nontrivial
constraints shared by consistent theories. Additionally, by now the duality and double copy
have been established for a large number of examples of classical solutions [50–77].

There are several areas where further progress would be welcomed. For example, it is not
at the moment clear how far the notion of CK duality and the double copy can be carried bey-
ond scattering amplitudes. Many of the examples of classical solutions that display the duality
make use of special properties, such as the existence of Kerr–Schild forms of the metric. It
would be very important to find more general examples. Classical solutions are inherently
more difficult to study because they depend on coordinate and gauge choices and, without
the appropriate choices, the double-copy structure is obscured. This may be contrasted with
scattering amplitudes, which are independent of the choice of gauge and, to a large extent,
field variables, making it much easier to formulate double-copy relations. To avoid carrying
out complicated case-by-case analyses, a key step is to find underlying principles for choosing
gauges and field variables in both single- and double-copy theories that make it more straight-
forward to identify relations between off-shell quantities. It would also be interesting to see if
the more invariant color-trace-based formulation of the duality [48, 157–161] might shed light
on extensions of CK duality beyond scattering amplitudes.

A possible path to unraveling the principles for choosing gauges and field variables may be
the study of correlation functions. The computation of correlation functions of gauge-invariant
operators in gauge theories may be approached through generalized unitarity [457], which
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relates it to the construction of tree-level scattering amplitudes and form factors of the same
gauge-invariant operators. In this respect, CK duality has been formulated and used for the
form factors of certain operators in four- and five-loop calculations in N = 4 SYM theory [9,
17, 18, 22]. Therefore, it seems plausible to extend CK duality to the correlation functions
of these operators. However, a puzzle arises if one considers the natural step of constructing
the double copy of such correlation functions. Since correlation functions of gauge-invariant
operators in gauge theories are gauge invariant, one may conclude following the discussion
in sections 2 and 4 that the corresponding gravitational correlation functions are automatic-
ally diffeomorphism-invariant. It is well-known however that local diffeomorphism-invariant
operators do not exist in gravitational theories. Since correlators of gauge-dependent operat-
ors depend on choices of field variables, it appears that the gravitational correlation functions
obtained though the double copy should be understood as being given for a particular choice
of field variables and perhaps also for particular choice of gauge. A further puzzle origin-
ates from contrasting the results of the double copy for conformal gauge theories that admit
a string-theory dual to the results of the corresponding string theory in anti-de-Sitter space.
On the one hand, gauge-theory correlation functions are given by string-theory correlators
with prescribed boundary conditions in anti-de-Sitter space; on the other, the gauge-theory
correlators can be used to construct correlators in a gravitational theory (not a string theory)
in a Minkowski vacuum and with the same amount of supersymmetry as the AdS one. While
technically difficult, it would clearly be interesting to understand the implications of such a
relation.

Apart from formal developments such as the ones described above, perturbative calculations
in curved spacetime are playing an increasingly-important role in the current development of
our understanding of the Universe. Initial attempts to use the double-copy construction in this
context, involving calculations in certain plane wave spacetimes, have been discussed in [60,
62, 72, 458, 459]. As in flat space, the double-copy construction may help by relating such cal-
culations with simpler ones in gauge theory, especially for spacetimes which are themselves
classical double copies. It is obviously nontrivial to extend the insights of flat-spacetime scat-
tering to the many conceptual and technical challenges posed by cosmological correlators in
de Sitter, yet there is already a developing program [460–465] leveraging the identification of
S-matrix elements emerging as residues of well-defined singularities of such quantities.

While CK duality and the associated double copy have been crucial for uncovering the
UV properties of various supergravities [33, 34, 36, 38, 218, 293] and for identifying a new
set of nontrivial enhanced UV cancellations [292], to move forward it is essential to gain a
thorough grasp on the structures or symmetries that are responsible for the appearance of the
latter. Progress in this direction has been reported in [34, 40, 466], but much more remains to
be done to have a satisfactory understanding. Presumably, the duality and double copy play a
key role in these cancellations.

Another important topic is to expand the web of theories related by the duality and double-
copy construction. As illustrated in figure 17 of section 5, theories that may appear to be
unrelated are bound together by double-copy relations. In many of these cases, the connec-
tion is rather obscure from a Lagrangian perspective, e.g. that DBI theory has a relation to the
special Galileon theory, by sharing the NLSM as a composite theory via the double copy. A
crucial open question is whether it is possible to get a complete classification of all double-
copy-constructible theories. An equally important question is whether all supergravity theories
can be expressed in a double-copy format [121, 240]. In this review, we discuss a large number
of examples, which are collected in tables 4 and 5. It is a surprising fact that the only known
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unitary UV completions of gravity and higher-dimensional YM, the closed and open super-
string, require their constituent effective field theories to be compatible with the field-theory
adjoint double-copy to all orders of α ′ at tree-level [169, 171, 310, 355].

Another basic research direction is to find the underlying algebra behind the duality between
color and kinematics. A natural expectation is that the kinematic Jacobi identities are due to an
infinite-dimensional Lie algebra [43, 45, 47, 49]. Indeed, for the case of self-dual field config-
urations, corresponding to amplitudes with identical helicity, the algebra has been identified as
that of the area-preserving diffeomorphisms in one lightcone and one transverse direction [43].
However, extending this observation to general helicity or field configurations has proven to
be challenging.

Constructing a Lagrangian that automatically generates Feynman rules that manifest the
duality would greatly help with finding double-copy relations between classical solutions.
However, at present, only perturbative order-by-order constructions of such Lagrangians are
known [41, 42, 150, 151]. From the perspective of gravity theories, Lagrangians that display
the required factorization of Lorentz indices [94] have been obtained to all orders [95, 467].
However, as yet, it is unclear which all-orders gauge-theory Lagrangians can reproduce them
though double copy. One difficulty is that such Lagrangians would likely contain an infinite
number of auxiliary fields to make them local.

To further streamline higher-loop computationswould be particularly desirable.While there
has been enormous progress in carrying out such computations to relatively high orders (see
e.g. [6, 38, 293, 468] for four and five-loop calculations) we should always strive to go further.
At high orders, it can be nontrivial to find representations of loop integrands that manifest CK
duality [15, 415]. As described in section 7, these difficulties can be bypassed via a gener-
alized double copy [218, 416] that can be used to convert any representation of gauge-theory
amplitudes to corresponding gravity ones, relying only on the proven existence of the duality
at tree level. Finding generalizations of this procedure for any number of loops or legs would
be important.

Strengthening connections between the double copy and other advances in scattering amp-
litudes would also be advantageous. In particular, the amplituhedron [469] gives novel geo-
metric descriptions of amplitudes. A detailed formulation has been given for the planar sector
ofN = 4 SYM theory. Making contact with CK duality requires extending these results to the
nonplanar sector. Evidence suggests that this may be possible [195, 470].

The double copy seems to hint at some kind of interpretation of gravitons as composed
of spin-1 particles. Of course, these cannot be any kind of naive bound states, which are for-
bidden by the Witten-Weinberg theorem [471]. Still, the double copy strongly suggests that
gravitons and gluons ultimately belong together, presumably along the lines realized by string
theory. (See [472–474] for steps in this direction.) Understanding any fundamental physical
implications of the way gauge and gravity theories are intertwined by the double copy is a key
problem that deserves further attention.

The application of the double copy to gravitational-wave physics [127] is currently the
subject of intense investigation, specifically regarding the post-Newtonian [475] and post-
Minkowskian [476, 477] approaches to the inspiral phase of binary mergers (see the following
reviews for details and [129–132]). A nontrivial application of CK duality to the study of grav-
itational radiation has been discussed with a worldline formulation in [57], where the duality
has been established through next-to-leading order [69]. Related progress was also reported in
[59, 64, 65, 445]. Other investigations related to gravitation-wave physics that directly draw
from scattering-amplitudes methods can be found in [54, 79, 422–426, 478–481]. A systematic
and scalable approach for obtaining high-order corrections to conservative two-body potentials
in the post-Minkowskian framework was presented in [78]. This has been successfully used
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to find the third post-Minkowskian corrections [80, 82], starting from two-loop amplitudes
obtained via the double copy. It is noteworthy that this is one order beyond previous calcula-
tions [423, 482, 483]. While their impact on improving templates for LIGO/Virgo is currently
under study [81], these results should also offer new insights into the general structure of high-
order two-body Hamiltonians.
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Appendix A. Notation and list of acronyms

In this appendix, we summarize our notation and conventions for the reader’s convenience.
Throughout the review, we denote with An(1, · · · ,n) gauge-theory color-dressed amp-

litudes, while An(1, · · · ,n) is used to indicate color-stripped partial amplitudes. In some
sections, where theories containing different fields are discussed, it is convenient to adopt
the notation

An (1Φ1, . . . ,nΦn) , (442)

which makes explicit which field is associated to each external leg of the amplitude.
Superamplitudes are denoted with the same symbol as the corresponding amplitudes, i.e. it
should be clear from the context whether An(1, · · · ,n) andAn(1, · · · ,n) refer to an amplitude or
to the corresponding superamplitude. Writing the S-matrix as S= 1+ iT, our amplitudes cor-
respond to the iT term, i.e. they give the output of the Feynman-diagram calculation. Amplitude
in a gravitational theory are denoted as Mn(1, · · · ,n). For notational simplicity, we set κ= 2
in most formulas, where κ is the gravitational coupling constant.
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Our conventions for the phase in the BCJ representation of gauge-theory and gravity amp-
litudes follows the one in [156] and departs from the original BCJ papers [1, 2]. With this
choice, YM numerators are real when written in terms of polarization vectors.

Calculations presented in this review involve a spacetime metric of mostly-minus signature.
Our spinor-helicity conventions are obtained from the ones of [91] by the minimal replacement

(ηµν)E&H →−(ηµν)our . (443)

In particular, angle and square brackets are the same as in [91].
Gauge-group fundamental fields are represented with high indices and anti-fundamental

fields are represented with low indices. For example, the generator for the fundamental rep-
resentation is written as

(ta) ji ≡ tai ȷ̄ . (444)

Generators are normalized as

Tr
(
tatb
)
=
δab

2
, (445)

and obey commutation relations of the form

[
ta, tb

]
= i f abctc . (446)

In amplitude calculations it is convenient to rescale the group-theory generators and structure
constants as

Ta ≡
√
2ta , f̃abc ≡ i

√
2f abc , (447)

so that we have the identity

Tr
(
TaTb

)
= δab . (448)

In particular, color factors entering the formula (35) are written in terms of Tas and f̃abcs, i.e. are
written in terms of hermitian objects carrying a factor of

√
2 with respect to the Feynman-rule

normalization. When we encounter fields in a matter (non-fundamental) representationR, we
denote the corresponding generators as taR. In some sections of this review, for example in
section 5, we frequently use hatted indices for gauge-group indices of the gauge theories
entering the double-copy construction to differentiate them from global indices.

Finally, we conclude this appendix with a list of acronyms commonly used throughout the
review:
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UV Ultraviolet
IR Infrared
KLT Kawai–Lewellen–Tye (formula/relations)
CK duality Color/kinematics duality
BCJ Bern–Carrasco–Johansson (duality/relations)
YM Yang–Mills
SYM Super-Yang-Mills
NLSM Nonlinear Sigma model
DDM Del Duca–Dixon–Maltoni (amplitude representation)
POP Partially-ordered permutations
BCFW Britto–Cachazo–Feng–Witten (relations/recursion in field theory)
KK Kleiss–Kuijf (amplitude relations)
QCD Quantum chromodynamics
CPT Charge-Parity-Time reversal (transformations)
MHV Maximally-helicity-violating (amplitudes)
LSZ Lehmann–Symanzik–Zimmermann (reduction)
1PI One particle irreducible (effective action)
BMS Bondi-Metzner-Sachs (transformations)
SUSY Supersymmetry (tables and figures only)
CSG Conformal supergravity
BLG Bagger–Lambert–Gustavsson (theory)
ABJM Aharony–Bergman–Jafferis–Maldacena (theory)
VEV Vacuum expectation value
YMDR Yang-M-ills-scalar theory from dimensional reduction
YME Yang–Mills–Einstein (theory)
DBI Dirac–Born–Infeld (theories)
CHY Cachazo–He–Yuan (formalism, also known as scattering equations)
SG Supergravity (tables and figures only)
MZVs Multiple zeta values
QFT Quantum field theory
LIGO Laser interferometer gravitational-wave observatory

Appendix B. Spinor helicity and on-shell superspaces

In explicit expressions for amplitudes, such as those in section 6 or appendix C, it is very con-
venient to adopt a helicity (circular polarization) basis for the asymptotic states of gluons or
gravitons. In this appendix, we summarize the spinor-helicity formalism [88, 89, 484–488],
which offers a convenient Lorentz covariant formalism for describing helicity, leading to
remarkably compact expressions for scattering amplitudes. The resulting states fit naturally
into on-shell supermultiplets [489].

B.1. Basics of spinor helicity

The spinor-helicity formalism expresses the positive- and negative-helicity polarizations of
gluons (vectors) in terms of massless Weyl spinors

ε+µ (k;q) =
〈q|σµ|k]√

2〈qk〉
, ε−µ (k;q) =

[q|σµ|k〉√
2[kq]

, (449)
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where q is an arbitrary null ‘reference’ momentum which can be chosen independently for
each external state of amplitudes and, because of gauge invariance65, drops out of the final
expressions. We use the compact notation

〈ij〉 ≡ 1
2
ū(ki)(1+ γ5)u(kj) , [ij]≡ 1

2
ū(ki)(1− γ5)u(kj) ,

〈q|σµ|k]≡
1
2
ū(q)γµ (1− γ5)u(k) , [q|σµ|k〉 ≡

1
2
ū(q)γµ (1+ γ5)u(k) , (450)

with u(k) following the standard textbook notation for solutions of the Dirac equation [100].
The spinors |i〉 and |i] transform in the (1,2) and (2,1) representations of the four-dimensional
Lorentz group, respectively. The spinor products (450) are antisymmetric in their arguments.
An important identity is the Schouten identity:

〈i j〉〈kl〉= 〈i l〉〈kj〉+ 〈i k〉〈j l〉 , (451)

which is a consequence of the vanishing of all three-index antisymmetric tensor with each
index taking two values. The spinor products (450) are related to the usual scalar products by

〈i j〉[j i] = 2ki · kj = sij , (452)

where the ki are null four momenta. The Fierz identity is in our conventions is

〈i |σµ|j ]〈k|σµ|l] = 2〈i k〉[l j] . (453)

Helicity amplitudes (that is, amplitudes with polarization vectors or tensors in helicity nota-
tion) can be given a manifestly crossing symmetric representation. To this end it is neces-
sary to assign all momenta to have the same orientation, either all outgoing or all incoming.
When switching between the two different orientations the helicity label is reversed. This is,
of course, natural: since the helicity measures the projection of the spin on the momentum,
changing the orientation of the momentum reverses the helicity. Using spinor helicity we can
obtain exceptionally compact expressions for gauge-theory scattering amplitudes [88].

The physical graviton polarization tensors in helicity notation are direct products of the
gluon ones,

ε+µν (k;q) = ε+ν (k;q)ε+ν (k;q) , ε+µν (k;q) = ε+ν (k;q)ε+ν (k;q) . (454)

Their tracelessness , ε+µ
µ = 0, follows from the Fierz identity (453) with the appropriate choice

of spinors:

〈q|σµ|k]2 = 0 , [q|σµ|k〉2 = 0 . (455)

The relation (454) between graviton and gluon polarizations is the simplest manifestation of
the double copy. Of course, the double copy holds for the full nonlinear theory, not just for
polarization tensors.

Loop calculations require regularization; wewill not discuss details of this issue here except
to note that to maximize the benefits of the spinor-helicity formalism, which is intrinsically
four-dimensional, it is necessary to choose a compatible version of dimensional regulariza-
tion [391, 490].

65 Linearized gauge transformations, εµ(p)→ εµ(p)+ f(p)pµ, is realized as shifts of the spinors associated to the
reference vector, |q⟩ → |q⟩+ f(p)|p⟩, etc.
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Exercise B.1. Starting with equations (10)–(13) apply equation (449) to obtain four-gluon
amplitudes for the various helicity configurations. How clean can you make these expressions?
See, for example, [88].

B.1.1. Massive spinor helicity. As some of the theories described in this review involve
massive fields, we will briefly outline how to adapt the spinor-helicity formalism to this case.
A first possibility is to write a massive momentum k in terms of two massless momenta [491]:

k= k⊥ +
m2

2k · q
q , (456)

where k⊥ is massless and we have also introduced a massless reference momentum q.
Polarizations for massive vectors are then written as

εµ+(k;q) =
〈q|σµ|k⊥]√

2〈qk⊥〉
, εµ−(k;q) =

[q|σµ|k⊥〉√
2[k⊥ q]

, εµ0 (k;q) =
1
m

(
kµ⊥ − qµ

2k · q

)
, (457)

where the first two physical polarizations reproduce (449) in the massless limit and εµ0 (k;q)
gives the longitudinal polarization. While this formalism allows us to find relatively com-
pact expressions for amplitudes with massive fields, the reference momentum q does not drop
out from the final expressions. This is to be expected: for a massive particle helicity is not a
Lorentz-invariant quantity, so the decomposition (457) depends on the frame.

A more elegant approach involves a doublet of spinors λaα, λ̃
a
β̇

which transform covari-

antly under the SO(3)∼= SU(2) little group appropriate for describing massive particles in
four dimensions. Massive momenta are then written as [492]:

kαβ̇ = kµσ
µ

αβ̇
= ϵab|ka〉α[kb|β̇ = ϵabλ

a
αλ̃

b
β̇
, (458)

where a,b are little group SU(2) indices and α, β̇ are four-dimensional Weyl spinor indices.
Massive vector polarizations are written n terms of the spinors λaα, λ̃

a
β̇
as

εabµ (k) =
〈k(a|σµ|kb)]√

2m
, (459)

where the little group indices are symmetrized. This formalism can be straightforwardly exten-
ded to construct polarization tensors for higher-spin massive fields [492] and presents close
analogies with massless spinor-helicity in six dimensions [493].

B.2. On-shell superamplitudes

For supersymmetric amplitudes, on-shell superspace provides a convenient organization of
amplitudes according to their physical helicity states which also tracks the relationships
between the different component amplitudes. The power of such an on-shell superspace fol-
lows from the fact that, for generic momentum configurations, scattering amplitudes are
insensitive to the nonlinear parts of (super)symmetry transformations (see section 4 for
more details.). This greatly simplifies the evaluation of state sums in both the on-shell recur-
sion [162] and generalized unitarity [163, 164, 166] by allowing that all physical states be
treated simultaneously.

To illustrate the ideas we use N = 4 SYM theory [489] as an example. Similar con-
structions exist in cases with less than maximal supersymmetry [494] as well as supergrav-
ity theories [495]. These superspaces are obtained by extending the usual momentum space
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Table 17. The states of N = 8 supergravity organized via the double copy. The SU(8)
representations are decomposed in representations of the SU(4)× SU(4) subgroup
which is manifest in the construction. For gauge theory (g+,λ+,ϕ,λ−,g−) carry heli-
city (+1, 12 ,0,−

1
2 ,−1), while the helicity of the supergravity states are the sum of

gauge-theory helicities. The ± decorating the entries represent the sign of the helicity
of the corresponding state. The double-copy states can be reorganized into the standard
N = 8 multiplet containing 256 physical states, cf equation (461).

gR+ fR
+

Ĩ
ϕRĨJ fR

−
Ĩ̃JK̃

gR
−
Ĩ̃JK̃L̃

gL+ h+ ψ+

Ĩ
A+

Ĩ̃J
χ+

Ĩ̃JK̃
ϕ Ĩ̃JK̃L̃

fL
+
I ψ+

I A+

I Ĩ
χ+

I Ĩ̃J
ϕI Ĩ̃JK̃ χ−

I Ĩ̃JK̃L̃
ϕLIJ A+

IJ χ+

IJ Ĩ
ϕIJ Ĩ̃J χ−

IJ Ĩ̃JK̃
A−
IJ Ĩ̃JK̃L̃

fL
−
IJKL χ+

IJKL ϕIJKL Ĩ χ−
IJKL Ĩ̃J

A−
IJKL Ĩ̃JK̃

ψ−
IJKL Ĩ̃JK̃L̃

gL
−
IJKL ϕIJKL χ−

IJKL Ĩ
A−
IJKL Ĩ̃J

ψ−
IJKL Ĩ̃JK̃

h−
IJKL Ĩ̃JK̃L̃

(parametrized in terms of spinor variables) with unconstrained Grassmann variables, ηI with
I= 1, . . . ,N , which transform in the fundamental representation of the R-symmetry group and
carry unit little group weight. The bosonic spinor variables carry kinematic information, while
the Grassmann variables carry information on the helicity and R-symmetry representation of
the external states. On-shell superfields—i.e. fields defined on these superspaces—have a finite
expansion in the fermionic variables, with each coefficient being a component fields of definite
helicity and R-symmetry representation.N = 4 SYM has a simple structure because all states
can be assembled into a single CPT-self-conjugate on-shell superfield:

Φ(η) = g+ + ηIf +I +
1
2
ηIηJϕIJ+

1
3!
ηIηJηKf −IJK+

1
4!
ηIηJηKηLg−IJKL , (460)

where g+ is the positive helicity gluon, f+I four positive helicity Majorana fermions, ϕIJ six
real scalars, f I− ≡ 1

3!ϵ
IJKLf−JKL four negative helicity Majorana fermions and g− is the negative

helicity gluons, for a total of 8+ 8 physical states (not including color degrees of freedom).
The case of N = 8 supergravity is similar, with a four-dimensional CPT-self-conjugate on-
shell superfield containing fields up to helicity ±2:

Φ(η) =h+ + ηIψ+
I +

1
2
ηIηJAIJ+

1
3!
ηIηJηKχ+

IJK+
1
4!
ηIηJηKηLϕIJKL

+
1
5!
ηIηJηKηLηMχ−

IJKLM+
1
6!
ηIηJηKηLηMηNA−

IJKLMN

+
1
7!
ηIηJηKηLηMηNηOψ−

IJKLMNO+
1
8!
ηIηJηKηLηMηNηOηPh−IJKLMNOP . (461)

Each supergravity state is a double copy of the gauge-theory states66. The 256 physical states
of N = 8 supergravity correspond to the 16× 16 direct product of states of two N = 4 SYM
theories, as shown in table 17.

Supersymmetry transformations act on on-shell superfields (i.e. single-particle supersym-
metry transformations) as

Qα̇
I = λ̃α̇

∂

∂ηI
, QI

α̇ = ηI
∂

∂λ̃α̇
, QαI = λαηI , QαI =

∂2

∂λα∂ηI
; (462)

66 As we discussed in section 5, supergravity states can more generally be understood as being in one-to-one corres-
pondence with gauge-invariant bilinears of gauge-theory states.
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the (linearized) supersymmetry transformations of component fields are extracted by acting
on superfields with these generators and reading off the coefficient of the desired combination
of Grassmann variables η. Multi-particle supersymmetry generators are obtained by summing
the single-particle ones over all the particles; for example, Qα̇

I acts on a product of n distinct
fields as

Qα̇
I =

n∑
i=1

Qi
α̇
I =

n∑
i=1

λ̃α̇i
∂

∂ηIi
. (463)

For supersymmetry algebras with less-than-maximal supersymmetry not all multiplets are
CPT-self-conjugate; in such cases the fields of the theory form (perhaps several) CPT-
conjugate pairs.

Scattering amplitudes in supersymmetric field theories can be combined into superamp-
litudes, defined as polynomials in Grassmann variables such that the coefficient of each
monomial is a component amplitude whose helicity configuration is dictated by the η factors
that multiply it and the structure of the superfields of the theory. The details depend on the
amount of supersymmetry; as above, we illustrate these ideas forN = 4 SYM theory. See [91,
494] for less supersymmetric cases. On-shell supersymmetryWard identities, relating compon-
ent amplitudes with different external field configurations, can be derived by demanding that
superamplitudes are annihilated by the multi-particle supersymmetry generators. A detailed
descriptions may be found in [91, 495–497]. The unconstrained nature of the Grassmann vari-
ables makes it straightforward to translate summations of on-shell states needed in unitarity
cuts or on-shell recursion into Grassmann integrations, which take care of the state bookkeep-
ing. See [498, 499] for details. This procedure ensures that all generalized cuts are manifestly
supersymmetric.

The minimum number of Grassmann variables in superamplitudes enforces the conser-
vation of the polynomial supercharge Qα I in equation (462), sometimes referred to as the
‘supermomentum’:

δ(8) (Q)≡ δ(8)

 n∑
j=1

λαj η
I
j

=
4∏
I=1

n∑
i<j

〈ij〉ηIiηIj . (464)

The superamplitude with this minimal number of Grassmann variables are referred to as
maximally-helicity-violating (MHV) superamplitude and the corresponding component amp-
litudes are referred to in a similar manner. The name reflects the fact that these amplitudes,
with all incoming particles, exhibit the maximum imbalance between positive and negative
helicities67. The n-point maximally-helicity-violating (MHV) tree amplitudes ofN = 4 SYM
theory are [489]

AMHV
n (1,2, · · · ,n) = i∏n

j=1〈j( j+ 1)〉
δ(8)

 n∑
j=1

λαj η
I
j

 , (465)

where leg n+ 1 is to be identified with leg 1. The coefficient of the supermomentum-
conserving δ-function is cyclically symmetric and can also be identified as the ratio

Atree
n

(
1−,2−,3+, · · · ,n+

)
/〈12〉4 . (466)

67 At loop level, in non-supersymmetric theories the imbalance can be even larger, as the all-plus and single-minus
gluon amplitudes and their conjugates are nonvanishing [264].
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General n-point N = 4 SYM superamplitudes can be written as

An =AMHV
n

(
P(0)
n +P(1)

n + · · ·+P(n−4)
n

)
, (467)

where P(k)
n is a polynomial of degree 4k in Grassmann variables and P(0)

n = 1. Through
kmid = [(n− 4)/2], the component amplitudes captured by these terms have a smaller dif-
ference between the number of external states with positive and negative helicity and are
referred to as (next-to)k-MHV amplitudes (or, generically, non-MHV amplitudes). The com-
ponent amplitudes with k> kmid can be obtained from those with k< kmid by conjugation68.
We note that, while all component amplitudes of an MHV superamplitude are related to each
other by supersymmetry transformations, several non-MHV component amplitudes are needed
to generate entire superamplitude. The polynomials P(k⩾1)

n are expressed in terms of the R-
invariants [501, 502] which manifest the dual superconformal invariance of tree-level amp-
litudes of N = 4 SYM theory. This symmetry led to the derivation [502] of an explicit form
of all tree-level amplitudes of this theory and, consequently, also of pure Yang-Mills theory,
as superpartners do not contribute at tree level.

The MHV superamplitudes ofN = 8 supergravity have a form similar to the one ofN = 4
SYM theory and are given by

MMHV
n =

Mn (1−,2−,3+, · · · ,n+)
〈12〉8

δ(16)

 n∑
j=1

λαj η
I
j

 , (468)

whereMn(1−,2−,3+, · · · ,n+) is a tree-level MHV pure-graviton amplitude. The simplicity of
this result follows from the fact that, for MHV superamplitudes, the entire superspace content
is contained in an overall supermomentum-conserving δ-function. The supergravity one is the
double-copy of the gauge theory one and it evaluates to

δ(16)

 n∑
j=1

λαj η
a
j

=
8∏
I=1

n∑
i<j

〈ij〉ηIiηIj . (469)

For more general amplitudes the results are more complicated, but follow directly by applying
the KLT or BCJ double copy to gauge-theory superamplitudes to obtain superamplitudes in
supergravity; the manifestly-supersymmetric KLT relations were discussed in [503]. Since
each gauge-theory amplitude exhibits a factor of the supermomentum-conserving δ-function,
which is symmetric under permutation of the external lines, the supergravity amplitude inherits
the complete supersymmetry of both gauge-theory factors. Thus, the supergravity R-symmetry
group is SU(NL+NR)—see section 4 for more details. Moreover, as we discuss in section 4,
double-copy supergravity exhibits an emergent U(1) symmetry, which is part of its U-duality
group. Among its implications is the vanishing of the double-copy of (super)amplitudes in
different NkMHV sectors.

As discussed in [499], we can obtain superamplitudes in theories with fewer supersym-
metries by appropriately grouping R-symmetry indices. This can be realized by truncating the
supermultiplets (460) and (461) such that a certain subset of the η-variables always appear
together; the corresponding component amplitudes are obtained from those of the maximally-
supersymmetric theory by restricting them to the combinations of Grassmann variables that

68 Conjugation of superamplitudes exchanges η with their conjugates and thus also changes the type of on-shell
superspace. The transformation to the original superspace is given by the fermionic Fourier transform of all conjugate
η variables.. For a discussion of various superspaces see [500].

161



J. Phys. A: Math. Theor. 57 (2024) 333002 Topical Review

are allowed to appear for each external state. The simplest example is that the tree amplitudes
of pure non-supersymmetric Yang-Mills theory are just the pure-gluon amplitudes of N = 4
SYM theory, only for these amplitudes the η variables appear in the combination η1η2η3η4;
all other states contain a subset of their corresponding Grassmann variables and thus decouple
from these amplitudes. In fact, using appropriate projections, one can even obtain QCD tree-
level amplitudes with quarks from N = 4 tree amplitudes [504], leading to compact forms of
QCD amplitudes69.

As an example, theMHV tree amplitudes for external gauge supermultiplets inN -extended
SYM theory are given by [499]

AMHV
n (1,2, . . . ,n) =

∏N
I=1 δ

(2)
(
QI
)∏n

j=1〈j ( j+ 1)〉

 n∑
i<j

〈i j〉4−N
4∏

I=N+1

ηIiη
I
j

 , (470)

with N counting the number of supersymmetries, QI =
∑n

i=1λi η
I
i , and n⩾ 3.

Using supersymmetric versions of MHV amplitudes [505] and on-shell recursion [162],
general tree superamplitudes in gauge and gravity theories have been systematically construc-
ted (see e.g. [222, 502, 504, 506]). As we briefly review in appendix C, they can be used as
input building blocks to construct the integrands of loop superamplitudes. The cases ofN < 4
superamplitudes, have been analyzed in [494] in some detail.

Exercise B.2. Using the supersymmetry generators (462) and the on-shell superfield (460),
construct the linearized supersymmetry transformations of the component fields of N = 4
SYM theory. Derive the corresponding relations between the component MHV amplitudes.

Appendix C. Generalized unitarity

In this appendix we give a brief summary of the modern generalized unitary method [163–166,
194, 217] used in multiloop calculations, focusing on their applications in double-copy con-
structions. This provides some of the necessary background for our review of the generalized
double-copy construction in section 7. We will present several examples illustrating the basic
ideas and refer the reader to other reviews for further details [90, 196, 507, 508].

The generalized-unitary method systematically builds complete loop-level integrands using
as input only on-shell tree-level amplitudes. A central feature is that simplifications and fea-
tures of the latter are directly imported into the former. In particular, with this method we can
use tree-level double-copy relations to construct gravity loop integrands.We also briefly review
a variant of generalized unitarity, known as the maximal-cut method [217], which meshes
well with the generalized double copy [416] discussed in section 7. A reorganization of the
generalized-unitarity method that has various advantages is found in [509].

Traditionally, unitarity of the scattering matrix is implemented at the integrated level via
dispersion relations [510]. For our purposes, however, it is much more useful to use it at the
integrand level. We introduce the concept of a generalized cut that reduces an integrand to a
sum of products of tree amplitudes Atree

( j) ,∑
states

Atree
(1)A

tree
(2)A

tree
(3) · · ·A

tree
(m) . (471)

69 The necessary change in the color factor reflecting the change in gauge-group representation can easily be accounted
for in tree-level amplitudes though a multiplicative factor.
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Figure 34. The (a) s and (b) t channel two-particle cuts of a one-loop four-point amp-
litude. The exposed lines are all on-shell and the blobs represent tree amplitudes.

Figure 35. Examples of generalized cuts for a three-loop four-point amplitude. The
exposed lines are all on-shell and the blobs represent tree amplitudes.

Each cut propagator is replaced with a delta function enforcing on-shell constraint for the cor-
responding momentum. The sum runs over all intermediate physical states that can contribute
given the external states of the amplitude being constructed. Some generalized cuts of the one-
loop four-point amplitude are shown in figure 34 and of the three-loop four-point amplitude
in figure 35. In these Figures the exposed lines are all on-shell delta functions and the blobs
represent on-shell tree amplitudes.

Loop integrands are determined by spanning set of generalized cuts, i.e. a set of cuts which
receive contributions from all the terms that could possibly be generated by the Feynman
graphs of the theory. Loop integrands are constructed by finding a single function whose cuts
match all the products of tree amplitudes, summed over states corresponding to such a span-
ning set. Regardless of which set of cuts one uses to construct an integrand, one must always
verify it on a minimal spanning set (i.e. a spanning set that contains the minimal number of
cuts). To illustrate these ideas in practice we turn to a few simple unitarity cuts.

C.1. One-loop example of unitarity cuts

To illustrate the generalized unitarity method and how it meshes with double-copy ideas con-
sider the two-particle cuts of a one-loop four-point color-ordered gauge-theory amplitude. In
these amplitudes the color factors are stripped away and the external legs follow a cyclic order-
ing [88, 89]. The two-particle cuts of a one-loop four-point amplitude are obtained by putting
two intermediate lines on shell, as illustrated in figure 34. For example, the s-channel cut in
figure 34(a) is given by

Cgauge
s =

∑
states

Atree
4 (−ℓ1,1,2, ℓ3) Atree

4 (−ℓ3,3,4, ℓ1) , (472)
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Figure 36. The one-loop box integral and loop momentum labels used in the cut
construction.

where the sum runs over all physical states in the theory. The cuts are evaluated using momenta
that place all cut-line momenta on shell, i.e. ℓ2i = 0 if the theory is massless.

A particularly simple example is the color-ordered one-loop four-point amplitude inN = 4
SYM theory, which is useful for illustrating how gauge-theory unitarity cuts can be converted
to gravity ones. For this theory, after summing over all physical states that cross the two-particle
cut, the result takes a remarkably compact form [399],

Cgauge
s ==−istAtree

4 (1,2,3,4)
1

(ℓ1 − p1)
2

1

(ℓ3 − p3)
2 . (473)

All momenta are on shell. This expression is valid for any external states of the theory; the
cut depends on them only through the overall factor Atree

4 (1,2,3,4). The t-channel cut in
figure 34(b) is obtained by relabeling equation (473).

The most straightforward way to verify these equations is by using four-dimensional heli-
city states and on-shell superspace, but they hold in D⩽ 10 dimensions as well (where max-
imal supersymmetric Yang-Mills theory is defined). Details may be found in [194].

Putting back the cut propagators and loop integration we find a function with the correct
s-channel cut,

i stAtree
4 (1,2,3,4) I4(s, t)

∣∣∣
s-cut

, (474)

where I4(s, t) is the scalar box integral shown in figure 36 and given in equations (286)
and (287). By the cut operation in the s channel in equation (474) we mean to remove the
integration and to replace the two propagators 1/ℓ2 and 1/(ℓ− p1 − p2)2 with on-shell con-
ditions, recovering equation (473) after identifying ℓ= ℓ1 and applying momentum conserva-
tion. Similar considerations show that the t channel cut can be written as

i stAtree
4 (1,2,3,4) I4(s, t)

∣∣∣
t-cut

. (475)

Once unitarity cuts are written in this way, as the cuts of a single function, it is easy to see
that the one-loop four-point amplitude, with no cut conditions, is obtained simply by removing
the cut conditions,

A1−loop
N=4

(
1−,2−,3+,4+

)
= i stAtree

4 (1,2,3,4) I4(s, t) , (476)

matching the result in equation (282).
These basic ideas generalize to any massless gauge theory and underpin many theoretical

studies, including those for collider physics (see e.g. [165, 511, 512]).
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C.2. Converting gauge-theory unitarity cuts to gravity ones

As discussed in section 2, the BCJ forms of loop-level gauge-theory integrands can be dir-
ectly converted to gravity ones. Because the unitarity-based construction uses tree amplitudes
as input, we can also straightforwardly apply the KLT relations (79) to convert gravity unit-
arity cuts to sums of products of gauge-theory cuts. The BCJ form of the gauge-theory tree
amplitudes (50) may also be used to apply the double copy to convert gauge-theory cuts to the
corresponding gravity ones. The KLT form is especially useful when working with compact
helicity amplitudes, while the BCJ form is helpful in D dimensions (i.e. when using dimen-
sional regularization) with formal polarization vectors.

Consider first the two-particle cut of a one-loop four-point amplitude show in figure 34(a)
in a gravity theory. Using the KLT form of the double copy, it is given by

CGR =
∑
gauge
states

Mtree
4 (−ℓ1,1,2, ℓ3)×Mtree

4 (−ℓ3,3,4, ℓ1)

=−s2
∑

gauge
states

Atree
4 (−ℓ1,1,2, ℓ3)×Atree

4 (−ℓ3,3,4, ℓ1)


×

∑
gauge
states

Atree
4 (ℓ3,1,2,−ℓ1)×Atree

4 (ℓ1,3,4,−ℓ3)

 , (477)

where we applied the KLT relation (31) to rewrite each gravity tree amplitude in terms of a
product of two gauge-theory amplitudes. In this expression we have assumed that the grav-
ity theory of interest arises as a simple double copy, as it does for N = 8 supergravity. This
allows us to decompose each state in the gravity theory into a ‘left’ and a ‘right’ gauge-theory
state. For the case of N = 8 supergravity, summing over the states in the N = 8 multiplet
is equivalent to summing independently over the left and right N = 4 SYM gauge-theory
multiplets. For theories which are not simple double copies, such as pure gravity, one must
remove unwanted states (i.e. dilaton and antisymmetric tensor) by inserting explicit physical-
state projectors into the cuts. These projectors have been used effectively at two-loops to study
ultraviolet properties of various theories, including pure gravity [338] as well as for computing
the third post-Minkowskian correction to the conservative two-body Hamiltonian [80, 82]. In
some cases, it is sufficient to evaluate the generalized unitarity cuts in four dimensions, where
we can simplify the input gauge-theory amplitudes enormously by using helicity states. In
this case, a simple way to control which particles circulate in the loops, is by correlating the
state sum of the two gauge theories, For example, if we want only gravitons to cross the cuts,
then for each term we should have identical helicity for the corresponding gluons in the state
sum [80, 82]. A similar procedure works well for supergravity theories which are obtained
as orbifolds of e.g. N = 8 supergravity where the orbifold action cannot be decomposed into
independent actions on the left and right N = 4 SYM gauge theories [30].

The one-loop four-point amplitude in N = 8 supergravity is an instructive illustration of
how we can recycle gauge-theory unitarity cuts into gravity ones. For this case, equation (477)
immediately collapses because, up to relabeling, each gauge-theory state sum is the N = 4
SYM state sum in equation (473). Inserting the simplified N = 4 SYM cut (473) into (477)
results in an equivalent relation for N = 8 supergravity,
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CGR = s2 (st)2
[
Atree
4 (1,2,3,4)

]2 1

(ℓ1 − p1)
2
(ℓ3 − p3)

2
(ℓ3 + p1)

2
(ℓ1 + p3)

2

= s2
[
stAtree

4 (1,2,3,4)
]2 1

(ℓ1 − p1)
2
(ℓ3 − p3)

2
(ℓ1 − p2)

2
(ℓ3 − p4)

2

= i stuMtree
4 (1,2,3,4)

[
1

(ℓ1 − p1)
2 +

1

(ℓ1 − p2)
2

][
1

(ℓ3 − p3)
2 +

1

(ℓ3 − p4)
2

]
. (478)

To obtain this we partial fractioned the product of propagators and used the KLT relations (30)
and the BCJ amplitude relations (28). As for gauge-theory cuts, the ℓ1 and ℓ3 are on shell. The
t- and u-channel formulae are obtained by relabeling the external legs in equation (478).

Following the same strategy as for the reconstruction of the one-loop four-point N = 4
SYM amplitude, it is then straightforward to obtain theN = 8 one-loop four-point amplitude,

M1−loop
4 (1,2,3,4) =−i

(κ
2

)4
stuMtree

4 (1,2,3,4)(I4(s, t)+ I4(s,u)+ I4(t,u)) . (479)

Here I4(s, t) is the box integrals defined in equation (286), while I4(s,u) and I4(t,u) are
obtained by appropriate relabeling of external legs. This agrees with the form obtained using
the BCJ double copy in section 6 and agrees with the result first obtained by Brink, Green,
Schwarz [392] in the field-theory limit of superstring theory.

One can also use the BCJ double copy (45) for the component tree amplitudes of the grav-
ity unitarity cuts. This is especially efficient when working in D dimensions (e.g. when using
dimensional regularization), because compact helicity-based expressions for tree-level amp-
litudes are no longer available and, consequently, the result of the KLT relations will be cum-
bersome to use. InD dimensions, the BCJ form is a more natural form because it preserves the
diagram structure when converting from gauge theory to gravity. For example, the two-particle
cut (a) in figure 34, can be evaluated using the form of the double copy in equation (18),

C(a)
GR =

∑
pols.

Mtree
4 (−ℓ1,1,2, ℓ3)×Mtree

4 (−ℓ3,3,4, ℓ1) , (480)

where the graviton tree amplitudes in the cut are obtained from the double copy form in
equation (18) by simple relabelings. The sum over polarizations gives the physical-state pro-
jector. For gravitons in D dimensions the projector is

Pµνρσ (p,q) =
∑
pols.

εµν (−p)ερσ (p) = 1
2
(PµρPνσ +PµσPνρ)− 1

Ds− 2
PµνPρσ , (481)

where Pµν is the gluon physical-state projector

Pµν (p,q) =
∑
pols.

εµ (−p)εν (p) = ηµν − qµpν + pµqν

q · p
, (482)

with momentum p and a null reference momentum q. In some cases, terms that vanish on-shell
can be added to tree amplitudes so that the dependence on the reference momentum disappears
because of the on-shell Ward identity for the gauge symmetry [80, 82, 513].

C.3. Method of maximal cuts

A refinement of the unitarity method [163, 164], which is especially helpful at higher loop
orders, is the method of maximal cuts [217]. This method is not only a basic tool for checking
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and building double-copy gravity integrands, but it also plays a central role in the generalized-
double-copy construction described in section 7. This construction was central to a computa-
tion determining the ultraviolet properties of N = 8 supergravity at five loops [38, 218, 416].

In the method of maximal cuts, the unitarity cuts are clustered in levels according to the
number k of internal propagators allowed to remain off shell,

CNkMC =
∑
states

Atree
m(1) · · ·A

tree
m(p) , (483)

where Atree
m(i) are tree-level m(i)-multiplicity amplitudes corresponding to the blobs, illustrated

for various cuts of a three-loop four-point amplitude illustrated in figure 35. The level k is
related to the multiplicity of the various factors by

k=
p∑

i=1

(m(i)− 3) . (484)

The cuts (483) can be applied to either gauge or gravity amplitudes. As illustrated in the first
diagram in figure 35, at the maximal cut (MC) level the maximum number of propagators
are replaced by on-shell conditions and all tree amplitudes appearing in equation (483) are
three-point amplitudes. At the next-to-maximal-cut (NMC) level, illustrated in the second cut
of figure 35, a single propagator is placed off shell and so forth.

With this organization of generalized cuts, the integrands for L-loop amplitudes are obtained
by first establishing an integrand whose maximal cuts are correct, then adding to it terms
so that NMCs are all correct and systematically proceeding through the nextk maximal cuts
(NkMCs), until no further contributions are found. Where this process completes is dictated by
the power counting of the theory and by choices made at each level. For example, if minimal
power counting is assigned to each contribution, for N = 4 SYM four-point amplitudes, cuts
through NMCs, N2MCs and N3MCs are sufficient at three [2], four [6] and five loops [514],
respectively.

Most calculations (see e.g. [6, 9, 15, 17, 292, 293, 407, 408]) find it convenient to organize
the integrands in terms of diagrams with purely cubic vertices, such as the three-loop ones
illustrated in figure 27. Representations with only cubic diagrams have certain advantages:
they are useful for establishing minimal power counting in each diagram, and the number of
diagrams used to describe the result proliferate minimally with the loop order and multiplicity.
A disadvantage is that ansätze are required for imposing various properties on each diagram,
including the desired power counting, symmetry, and the multiple unitarity cuts to which a
given diagram contributes. As the loop order increases, it becomes cumbersome to solve the
requisite system of equations that imposes these constraints. We can avoid this in the general-
ized double-copy construction if we instead assign any new information obtained in a NkMC
to a contact diagram, as discussed in section 7 and illustrated in figure 37. This is necessarily
local because the nonlocal contributions are accounted for at previous levels.

C.3.1. Sewing superamplitudes. We now briefly comment on the use of the on-shell super-
space described in appendix B for the evaluation of the sums over the states crossing a unitarity
cut. It turns out [498, 499, 515] that it can be conveniently expressed as an integration over the
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Figure 37. New contribution found via the method of maximal cuts can be assigned dir-
ectly to contact terms. In these diagrams all the exposed lines are on-shell, and propag-
ators within a blob remain off shell.

Grassmann parameters of the cut legs. The generalized supercut in N -extended SYM theory
is then given by70

C =

ˆ [ k∏
i=1

dN ηi

]
Atree

(1)A
tree
(2)A

tree
(3) · · ·A

tree
(m) , (485)

where Atree
( j) are the tree-level superamplitudes connected by k on-shell cut legs. For each cut

leg, the integral over η selects all possible states on that leg and sums up their contribution to
the cut. These supercuts are functions on the on-shell superspace. For four and higher points
the tree amplitudes Atree

( j) are always proportional to a supermomentum delta function. Using
the simple identity δ(A)δ(B) = δ(A+B)δ(B), this implies that all such cuts are proportional
to an overall supermomentum δ-function [498]. It turns out that such supercuts are sufficient
for determining massless superamplitudes. This then implies that the four-dimensional cuts of
any loop amplitude with four or more external legs must be proportional to an overall super-
momentum conservation δ-function. Barring supersymmetry anomalies, this will also be the
case for the corresponding superamplitudes.

Fermionic integration provides one of the several different methods for the evaluation of
supersums in unitarity cuts [222, 498, 499, 515]. There are twomain approaches for organizing
the integration over the η parameters. In the first way, the fermionic δ-functions can be used to
localize the integration, so that the evaluation of the supersum amounts to solving a system of
linear equations [498, 499]. In a second complementary approach, ‘index diagrams’ are used
to track the various contributions to the sum over states [499]. This approach leads to a simple
algorithm for reading off the contribution of the entire supermultiplet from the purely gluonic
ones and for reducing the number of supersymmetries. It was used in the construction of the
complete four-loop four-point amplitude of N = 4 SYM theory [3].

The overall supermomentum-conserving δ-function has consequences on the ultraviolet
properties of the theory akin to those of off-shell superspaces. In particular, in a theory with
N -extended supersymmetry, it implies that at least N powers of momenta in the numerators
of each diagram are external momenta. In turn, this implies that the superficial degree of diver-
gence of each diagram is improved byN compared to that of the non-supersymmetric theory.
For N = 4 SYM theory, this simple power counting implies the well known [516–518] ultra-
violet finiteness of all of its superamplitudes [499]. For N = 8 supergravity the BCJ double
copy appears to imply that individual diagrams generally have a poor power count, because
the kinematic numerators are products of corresponding gauge-theory ones. However, it is dif-
ficult to draw any conclusions based on this observation because of the existence of ‘enhanced

70 In this formulation CPT-conjugate multiplets are both interpreted as being embedded in an N = 4 multiplet. This
is equivalent to the formulation of [494] up to Grassmann Fourier-transform with respect to four η variables.
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cancellations’ which are nontrivial (and not yet fully understood) cancellations between dia-
grams [292].
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