| \textit{Upper left panel:} curvature profile~$K_\mathrm{peak}r^2_t$ at initial conditions, on super-horizon scales, for different values of the shape parameter~$\alpha$. We use $\mathcal{A}_\mathrm{peak}r_t^2=5.18,\ 2.03,\ 0.99$ for $\alpha=0.5,\ 1.0,\ 30$, respectively. While the peak amplitude~$\mathcal{A}_\mathrm{peak}$ changes when the typical scale~$r_t$ varies, the quantity $\mathcal{A}_\mathrm{peak}r_t^2$ is constant. Initial conditions are set up super-horizon, so that the typical scale of the perturbation~$r_t$ is much larger than the coming horizon at initial time, i.e.,~$a_\mathrm{ini}H_\mathrm{ini}r_t\gg 1$. \textit{Upper right panel:} Curvature profiles~$\zeta_\mathrm{peak}$, corresponding to the $K$-curvature peaks of the upper left panel, at initial time~$t_\mathrm{ini}$ for different values of the parameter~$\alpha$. Also in this case the typical scale of the perturbation is~$r_t$. \textit{Lower panel:} Corresponding overdensity profiles at initial time~$t_\mathrm{ini}$. |