Measurement of Triboson Production and aQGCs with the ATLAS detector

Multi-Boson Interactions 2019

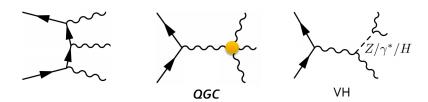
MBI 2019 - Thessaloniki August 27th, 2019

Andrea Sciandra

Santa Cruz Institute for Particle Physics On behalf of the ATLAS Collaboration

• Introduction to Standard Model triboson processes

 ATLAS triboson measurements and limits on anomalous quartic gauge couplings (aQGCs)

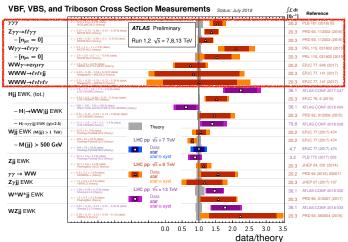

• Evidence for the production of three massive vector bosons

Prospects

Why Triboson Measurements at the LHC?

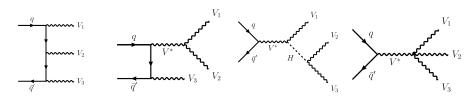
- Triboson measurements: stringent tests of SM predictions in the EW sector
 - High luminosity and centre-of-mass energy allow unprecedented sensitivity
- Sensitivity to BSM via anomalous gauge couplings and narrow resonances
 - aQGC: fully neutral couplings forbidden within the SM at tree-level
 - Triboson BSM resonances: new era to be explored at the LHC
 - Connecting EW to the Higgs sector: accessible via $VH(\to VV)$, where V=W/Z
- Non-negligible source of irreducible background for Higgs/BSM/SM searches and measurements

Triboson Production at the LHC



- ATLAS Presented σ yields 1.6 \times σ_{SM} , significant (> 2σ) discrepancy
- $V\gamma\gamma$: first triboson observation in $Z\gamma\gamma$ and limits on $ZZ\gamma/Z\gamma\gamma$, couplings (Phys. Rev. D93 (2016) 112002)
 - ullet Evidence for $W\gamma\gamma$ (JHEP 10 (2017) 072 & Phys. Rev. Lett. 115 (2015) 031802)
- $WV\gamma$: first attempt by CMS (Phys. Rev. D90 (2014) 032008) in the semileptonic final states
 - Observed limit 3.4 times larger than SM prediction and no evidence for anomalous WWγγ and WWZγ couplings

Triboson Production with ATLAS Detector

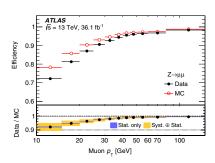

- \bullet Triboson processes, apart from pure $\gamma(Z)\gamma\gamma$, among the least precisely measured!
- Most triboson measurements still dominated by statistical uncertainties
 - Hot prospects with increasing luminosity
- WWW needs improvement, WWZ, WZZ and ZZZ never attempted before

Production of WVV at the LHC

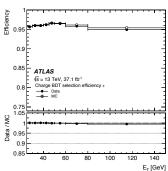
- ullet Goal: search for the production of ${\it WVV}$ (${\it V}={\it W}/{\it Z}$) in ${\it pp}$ collisions
- \bullet Production of WVV is sensitive to both triple (TGC) and quartic gauge couplings (QGC)
- ullet Off-shell production via $V\!H$ treated as part of the signal definition
- Possibility to probe anomalous quartic gauge couplings (aQGCs)
 - Limits on aQGC are not evaluated for this paper, focus on cross-section measurement

- \bullet NLO corrections: QCD $\sim 100\%$ and EW $\sim 1-10\%\,^{(\star)}$
 - NLO QCD corrections are mandatory
 - NLO EW corrections small as compared to actual sensitivity, rise in boosted regime
- (*) JHEP 06 (2008) 082, JHEP 12 (2013) 096, JHEP 07 (2018) 076

Overview of WWW and WVZ Analyses

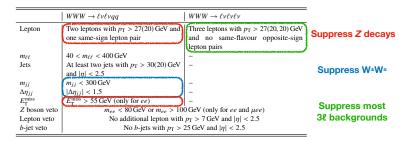


- Focused on the search for the production of WWW, WWZ and WZZ
 - ullet ZZZ has smaller cross section imes branching ratio ullet not yet sensitive
- \bullet Looking into two-, three- and four-light-lepton ($\ell=e,\mu)$ final states
 - ullet **WWW**: semileptonic (2 ℓ SS) and fully leptonic channels (3 ℓ)
 - ullet WVZ: semileptonic and fully leptonic channels (3 ℓ and 4 ℓ)
- Shape analysis to enhance sensitivity to signal processes
 - Constrain normalisation of relevant irreducible background processes
- WWW cut-based, WVZ MVA-based
 - WWW: accurate estimation of reducible backgrounds
 - WVZ: phase space split according to kinematic properties and MVA discriminants developed
 - Complementarity ensured by vetoing (requiring) a $Z \to \ell^+ \ell^-$ candidate in WWW (WVZ)
- Combined profile likelihood fit of discriminating shapes, single bins and a dedicated control region (CR)


Lepton Reconstruction & Selection

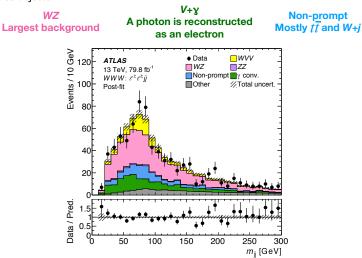
- More stringent definition of leptons in the WWW analysis, affected by a larger contamination from mis-reconstructed and non-prompt leptons
- In order to suppress reducible backgrounds all leptons in *WWW* and some of them (see later) in *WVZ* are required to fulfil:
 - Nonprompt lepton BDT requirement: reject leptons originating from heavy-flavour decays combining b-tagging related observables
 - Charge-flip tagger BDT requirement: reject electrons with misidentified electric charge

Phys. Rev. D 97 (2018) 072003



CERN-EP-2018-273

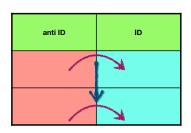
WWW - Event Selection


- Main analysis strategy: avoid (SF)OS leptons in 2ℓ SS (3ℓ)
- $WWW \to \ell \nu \ell \nu qq$: two same-sign leptons $(\ell^{\pm}\ell'^{\pm})$, missing transverse momentum $(E_{\rm T}^{\rm miss})$ and two jets with an invariant mass close to 80 GeV
 - At least 2 jets with b-jet veto
 - Specific $\Delta \eta_{ii}$ and m_{ii} cuts to reduce $W^{\pm}W^{\pm}$ contamination
 - ullet Split phase space according to lepton flavour (ee, e μ , μ e, $\mu\mu$)
- WWW $\rightarrow \ell \nu \ell \nu \ell \nu$: three leptons and E_{τ}^{miss}
 - 0 SFOS requirement suppresses majority of backgrounds
 - ullet b-jet veto is additionally applied to suppress $tar{t}$ events

WWW - Background Composition

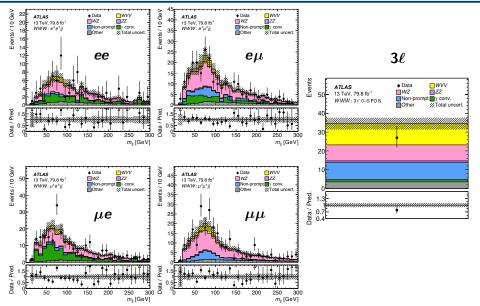
- Few SM processes can mimic these final states
- A large fraction of background processes is due to mis-reconstructed or mis-identified physics objects

WWW - Non-Prompt Lepton Estimation



- \bullet $t\bar{t}$ dominates non-prompt sources in channels with μ
- Non-isolated anti-ID electrons and muons used to estimate the non-prompt background
- Non-prompt rates from regions similar to the $2\ell SS$ and 3ℓ SRs: the only difference is requiring exactly 1 b-tagged jet
- The non-prompt rate is determined by simultaneously fitting the following formula across all channels

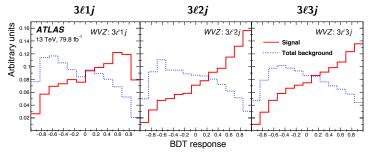
$$\begin{split} \textit{N}_{\rm anti\;ID,\;ID,\;(ID)} &= \textit{Data}_{\rm anti\;ID,\;ID,\;(ID)} - \sum_{i} \textit{BG}_{\rm anti\;ID,\;ID,\;(ID)}^{i} \\ \textit{N}_{\rm ID,\;ID,\;(ID)} &= \textit{Data}_{\rm ID,\;ID,\;(ID)} - \sum_{i} \textit{BG}_{\rm ID,\;ID,\;(ID)}^{i} \\ &\qquad \qquad \textbf{1} \textit{ b-tag} \end{split}$$


$$\mathsf{Rate}_{\mathsf{non-prompt}} = \frac{N_{\mathsf{ID},\;\mathsf{ID},\;\mathsf{(ID)}}}{N_{\mathsf{anti\;ID},\;\mathsf{ID},\;\mathsf{(ID)}}}$$

0 b-tag

WWW - Pre-Fit Inputs

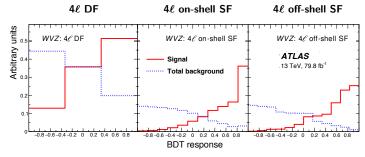
WVZ - Event Selection



- $Z \to \ell^+ \ell^-$ candidate required: naturally orthogonal to WWW analysis
- Common selection
- $WVZ \rightarrow \ell \nu qq\ell\ell$
 - · At least one reconstructed jet
 - Scalar sum of lepton and jet $p_T(H_T)$ above 200 GeV \rightarrow suppress most of Z + jets
 - Phase space split according to number of jets: 1 (3 ℓ 1j), 2 (3 ℓ 2j) and \geq 3 (3 ℓ 3j)
- $WWZ \rightarrow \ell \nu \ell \nu \ell \ell$ and $WZZ \rightarrow qq\ell\ell\ell\ell$
 - ullet 3rd and 4th $p_{
 m T}$ leading ℓ fulfilling Nonprompt and charge-flip reqs o suppress Z + jets
 - Categorising events according to whether the no- $Z \to \ell^+ \ell^-$ lepton pair is same flavour (SF) or different flavour (4 ℓ DF)
 - SF region further split into on-shell (4ℓ on-shell SF) and off-shell (4ℓ off-shell SF)

	$WVZ \rightarrow \ell \nu q q \ell \ell$	$\ \ \ WVZ \to \ell\nu\ell\nu\ell\ell/qq\ell\ell\ell\ell$	
Z boson Low mass resonance veto	1 1	with $ m_{\ell\ell} - m_Z < 10 \text{GeV}$ any OS lepton pair	
<i>b</i> -jet veto	No <i>b</i> -jets with $p_T > 25$ GeV and $ \eta < 2.5$		
Leptons	One additional nominal lepton	One additional OS lepton pair; third and fourth lepton nominal	
$H_{ m T}$	$H_{\rm T} > 200{\rm GeV}$	Business de commence de de commence de commence de la commence del la commence de la commence del la commence de la commence d	

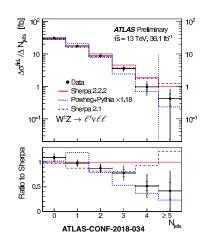
- Prompt processes dominate background sources in WVZ channels
- WZ and ZZ dominate 3ℓ and 4ℓ channels, respectively
 - Train a Boosted Decision Tree (BDT) in each of the six regions
 - Combine background- and signal-like regions in a fully shape analysis
- ullet Built several variables to separate $WVZ
 ightarrow \ell
 u qq \ell \ell$ from WZ+j
 - ullet Invariant masses for combinations of $W o \ell
 u$, V o jj and $Z o \ell \ell$ candidates
- Most discriminating variables in $3\ell 1j$, $3\ell 2j$ and $3\ell 3j$:
 - ullet total invariant mass of the system (leptons, jet and $E_{\mathrm{T}}^{\mathrm{miss}}$)
 - di-jet invariant mass
 - ullet invariant mass of best W
 ightarrow jj candidate



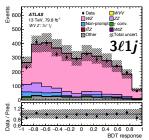
Strategy:

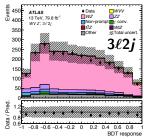
- \bullet 4 ℓ DF region rich in WVZ , very sensitive to signal
- \bullet Half of $WWZ \to 4\ell$ and most of $WZZ \to 4\ell qq'$ expected in SF region
 - ullet Dominated by ZZ, main 4ℓ background, this region allows constraint on its normalisation
- \bullet SF split in 4ℓ on-shell SF and 4ℓ off-shell SF to gain in sensitivity
 - Based on whether the invariant mass of the no- $Z o \ell^+ \ell^-$ lepton pair is within 10 GeV of the Z

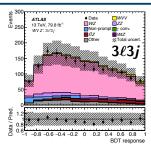
Top-ranked MVA input variables in DF, on-shell SF and off-shell SF regions:

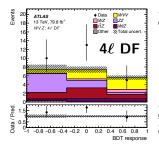

- \bullet no- $\!Z \to \ell^+ \ell^-$ lepton pair invariant mass
- multiplicity of reconstructed jets
- E_Tmiss

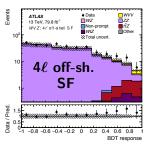
WVZ - NJet-based Reweighting

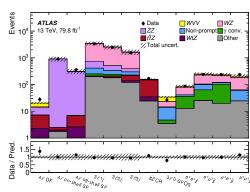



- Nice modelling of all relevant kinematic observables in 3ℓ and 4ℓ regions, but... jet multiplicity
 - Trend already observed by latest WZ
 (ATLAS-CONF-2018-034) and ZZ
 (Phys. Rev. D97 (2018) 032005) measurements
- Assumption: the poor description of the distributions is mainly due to WZ and ZZ, as they are dominating by far the regions at issue
- Two principles are underlying the reweighting procedure:
 - it is shape-only: WZ (ZZ) overall normalisation is unchanged with respect to the Sherpa prediction in 3ℓ (4ℓ);
 - it is combined in the two channels (ZZ contamination in the 3ℓ channel is non-negligible).
- A scale factor is extracted in each of the jet-multiplicity bins (0-1, 2, \geqslant 3 jets)
- Significant improvement in the description of jet-related kinematical properties and no degradation in the modelling of observables related to leptons

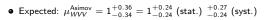



WVZ - Pre-Fit Inputs



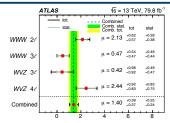


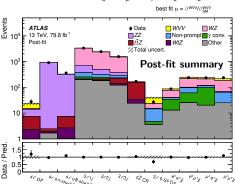
WVV Combination - Overview and Fit Model SANTA CRU


- Define one common signal strength μ_{WVV} for WWW and WVZ processes
- Inputs to the WVV combined fit
 - 2ℓSS: m_{ii} distribution in each region $(4 \times 30 \text{ bins})$
 - 3ℓ: 1 bin from the WWW region, 12 + 13 + 13 bins from the WVZ regions and 1 bin from a dedicated $t\bar{t}Z$ CR (\geqslant 4 jets & \geqslant 2 *b*-tagged)
 - 4ℓ : 3 + 12 + 11 = 26 bins
 - → grand total of 186 bins entering the combined fit
- Correlated systematics
 - experimental uncertainties
 - irreducible background (theory)
- Uncorrelated systematics
 - reducible background: data-driven in WWW, pure simulation in WVZ

Pre-fit summary

WVV Combination - Fit Results

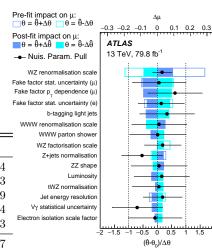




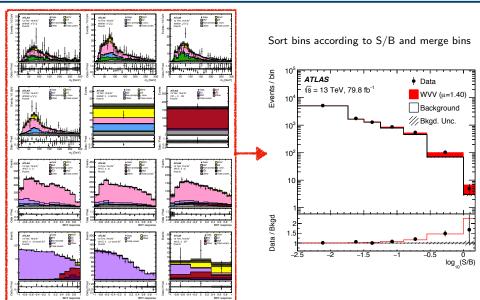
$$\bullet \ \, \text{Observed:} \ \, \mu_{WWV}^{\text{Data}} = 1.40^{+0.39}_{-0.37} = 1.40^{+0.25}_{-0.24} \, \, \text{(stat.)} \, \, {}^{+0.30}_{-0.27} \, \, \text{(syst.)}$$

- Exclusion of background-only hypothesis: evidence
 - WVV (expected and observed)
 - $WWW \rightarrow 2\ell$ and $WVZ \rightarrow 4\ell$ (observed)

Decay channel	Significance			
Decay channel	Observed	Expected		
WWW combined	3.2σ	2.4σ		
$WWW \rightarrow \ell \nu \ell \nu qq$	4.0σ	1.7σ		
$WWW \to \ell \nu \ell \nu \ell \nu$	1.0σ	2.0σ		
WVZ combined	3.2σ	2.0σ		
$WVZ ightarrow \ell u qq \ell \ell$	0.5σ	1.0σ		
$WVZ \rightarrow \ell \nu \ell \nu \ell \ell / qq\ell\ell\ell\ell$	3.5σ	1.8σ		
WVV combined	4.1σ	3.1σ		

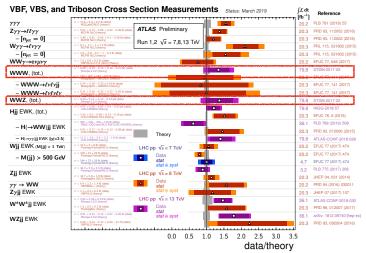


WVV Combination - Impact of NPs


- Constraints and pulls compatible with WWW and WVZ standalone fits
- Largest impact from data-driven estimation and theory uncertainties

Uncertainty source	$\Delta \mu_{WVV}$	
Data-driven	+0.14	-0.14
Theory	+0.15	-0.13
Instrumental	+0.12	-0.09
MC stat. uncertainty	+0.06	-0.04
Generators	+0.04	-0.03
Total systematic uncertainty	+0.30	-0.27

WVV Combination - Post-Fit Plots


Extraction of Cross Sections

• Extract: σ_{WWW} and σ_{WWZ}

 \bullet Limited sensitivity to $\textit{WZZ} \rightarrow \text{fixed to SM}$ prediction

• Results: $\sigma_{WWW} = 0.65^{+0.23}_{-0.21}$ pb and $\sigma_{WWZ} = 0.55^{+0.21}_{-0.19}$ pb

Summary

- Expected evidence combining four WVV channels:

 - $WWW \rightarrow 2\ell$: 1.7σ • $WVZ \rightarrow 3\ell$: 1.0σ
 - \rightarrow WVV : 3.1σ
- ullet Best-fit $\mu_{WVV}=1.40^{+0.25}_{-0.24}$ (stat.) $^{+0.30}_{-0.27}$ (syst.)
 - ullet Observed significance above 3σ in $WVV({\bf 4.1}\sigma),~WWW
 ightarrow 2\ell$ and $WVZ
 ightarrow 4\ell$
- Cross-section measurement
 - $\sigma_{WWW} = 0.65^{+0.23}_{-0.21} \text{ pb}$
 - $\sigma_{WWZ} = 0.55^{+0.21}_{-0.19} \text{ pb}$
- Evidence for the Standard Model production of three massive vector bosons
- ullet Road to 5σ : improvements in data-driven estimation and VV theory uncertainties

BACKUP

Loose Leptons, Jets and Triggers

Loose muons

- Medium (loose) ID in WWW (WVZ)
- Gradient (FixedCutLoose) isolation in WWW (WVZ)
- $|\eta| < 2.5$
- $p_T > 20(15)$ GeV in WWW (WVZ)
- $|z_0 \sin \theta| < 0.5 \text{ mm}$
- $d_0/\sigma_{d_0} < 3$

Loose electrons

- Tight (loose) ID in WWW (WVZ)
- FixedCutLoose isolation
- $|\eta| < 2.47$
- \bullet crack region: $|\eta| < 1.37$ or $|\eta| > 1.52$
- $p_T > 20(15)$ GeV in WWW (WVZ)
- $|z_0 \sin \theta| < 0.5 \text{ mm}$
- $d_0/\sigma_{d_0} < 5$

Jets

- AntiKt4TopoEM collection
- $p_T > 25$ GeV and JVT cut
- $|\eta| < 2.5$

Triggers

• Lowest ATLAS unprescaled single-lepton triggers

Overlap removal

Keep	Remove	Cone size (ΔR) or track
electron	electron (lower p_T)	shared track
electron	CT muon	shared track
muon	electron	shared track
electron	jet	0.2
jet	electron	0.4
muon	jet	0.2
jet	muon	0.4

All Lepton Definitions

Lepton defintion	Quality	$\begin{array}{c} {\rm Minimum} \\ p_{\rm T} \end{array}$	Isolation	$\begin{array}{c} {\rm Maximum} \\ d_0 /\sigma_{d_0} \end{array}$	$\begin{array}{c} \text{Maximum} \\ z_0 \sin \theta \end{array}$	n.p.l. BDT	ch.mis. BDT
Nominal e Nominal μ WWW Nominal μ WVZ	Tight Medium Loose	$15\mathrm{GeV}$	Fix (Loose) Gradient FixCutLoose	5 3 3	0.5 mm	yes	yes - -
Loose e Loose μ	Loose	$15\mathrm{GeV}$	no	5 3	$0.5\mathrm{mm}$	no	no –
Veto e Veto μ	Loose Loose and $ \eta < 2.7$	$7\mathrm{GeV}$	no	no	no	no	no –
Fake e Fake μ	Medium not Tight Not nominal WWW	$15\mathrm{GeV}$	no	5 10	0.5 mm	no	no –
Photon-like e Defined as for nominal, but no hit in first pixel layer					no	no	

Logical OR of five single-lepton triggers per data period

Trigger	2015	2016	2017
HLT_e24_lhmedium_L1EM20VH	×		
HLT_e60_lhmedium	×		
HLT_e120_lhloose	×		
HLT_mu20_iloose_L1MU15	×		
HLT_mu50	×	\times	\times
HLT_mu26_ivarmedium		\times	\times
$HLT_e26_Ihtight_nod0_ivarloose$		\times	\times
HLT_e60_lhmedium_nod0		\times	\times
HLT_e140_lhloose_nod0		×	×

WWW - Non-Prompt Lepton Estimation

- ullet In channels with μ the non-prompt background, dominated by $t\bar{t}$, is the second largest background
- Usage of non-isolated anti-ID electron and muon definitions to estimate the non-prompt background
- Non-prompt rates from regions similar to the 2 ℓ SS and 3 ℓ SRs: the only difference is requiring exactly 1 b-tagged jet
- The non-prompt rate is determined by simultaneously fitting the following formula across all channels

$$\begin{split} \textit{N}_{\text{anti ID, ID, (ID)}} &= \textit{Data}_{\text{anti ID, ID, (ID)}} - \sum_{i} \textit{BG}_{\text{anti ID, ID, (ID)}}^{i} \\ \textit{N}_{\text{ID, ID, (ID)}} &= \textit{Data}_{\text{ID, ID, (ID)}} - \sum_{i} \textit{BG}_{\text{ID, ID, (ID)}}^{i} \\ \text{Rate}_{\text{non-prompt}} &= \frac{\textit{N}_{\text{ID, ID, (ID)}}}{\textit{N}_{\text{anti ID, ID, (ID)}}} \end{split}$$

 Closure test shows that ID lepton shapes are well modelled by anti-ID leptons

BTag CR 3I

We require exactly 3 leptons

Lepton Pt 27,20,20

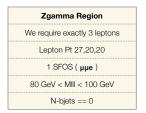
Same Flavor Opposite Sign
 Lepton Pairs

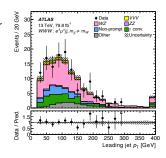
Exactly 1 B-tagged Jet

BTag CR 2I

Exactly 2 same-sign leptons

Lepton Pt > 20 (27) Jet Pt > 20 (30) 40 GeV<MI<400 GeV


| MII - 90 | > 10 GeV (ee Only) Mij <300 GeV


|DEtaJJ | <1.5 MET > 55 GeV (ee Only)

WWW - $V + \gamma$ Estimation

- \bullet The $V+\gamma$ (mostly V=W) background is an important background in the 2 ℓ SS channels with electrons
- Poor MC available statistics and modelling: data-driven estimation, similar to non-prompt background one
- Perform estimation in a region where a Z peak with 3 leptons is reconstructed: $Z(\rightarrow \mu\mu) + \gamma$
- "Photon-like electron": no hit found in the innermost layer of the pixel detector, and the Nonprompt lepton and charge-flip tagger BDT requirements are not applied
- ullet Use photon-like (instead of anti-ID) electrons to define an orthogonal region of data enriched in $\gamma o e$
- Well-behaved data-driven estimations of non-prompt and fake leptons

Input Variable	3 <i>ℓ</i> -1j	3 <i>ℓ</i> -2j	3 <i>ℓ</i> -3j
$m_{3\ell}$	5	4	5
$m_{\ell_0\ell_1}$	7	9	
$m_{\ell_0\ell_2}$	8	8	
$m_{\ell_1\ell_2}$	10	10	
leading jet p_{T}	12	14	
$p_{\mathrm{T}}^{\ell_0} \ p_{\mathrm{T}}^{\ell_1} \ p_{\mathrm{T}}^{\ell_2}$	3	3	
$p_{ m T}^{\ell_1}$	6	5	8
$p_{\mathrm{T}}^{ ilde{\ell}_2}$	9	12	9
$E_{ m T}^{ m miss}$		6	11
$\Sigma p_{ m T}(\ell)$	2	2	4
$\Sigma p_{\mathrm{T}}(j)$			2
$H_{ m T}$	4	7	
total lepton charge	13	15	12
invariant mass of all leptons, jets and $E_{\mathrm{T}}^{\mathrm{miss}}$	1		7
invariant mass of the best $Z \to \ell\ell$ and leading jet	11		
sub-leading jet $p_{\rm T}$		11	3
m_{ij} for the two leading $p_{\rm T}$ jets		1	
$m_{\mathrm{T}}^{W ightarrow\ell u}$		13	
number of reconstructed jets			10
$m_{jj}^{\mathrm{best}\;W}$			1
smallest m_{ij}			6

Input Variable	DF	on-shell SF	off-shell SF
number of reconstructed jets	6	4	6
$m_{4\ell}$	3	6	4
$m_{4\ell} \ E_{ m T}^{ m miss}$	4	1	1
$H_{ m T}^{ m lep}$	1		
$H_{ m T}^{ m ar{h}ad}$	5		
$m_{\ell\ell}^{ m second\ best\ pair}$	2	3	2
$m_{\ell\ell}^{ m best}$ Z		5	5
$H_{ m T}$		2	3

Stability of the Combined fit

Performed WVV combined fit with four alternative configurations:

- without applying the jet-multiplicity based reweighting in WVZ
- treating the diboson scale uncertainties uncorrelated across regions
- letting diboson background free to float (instead of 20% prior)
- treating signal theory uncertainties (Sherpa's renormalisation and factorisation scales) correlated between the WVZ and WWW processes

All results are compatible with the nominal configuration; e.g.:

- diboson floating: $\mu_{WVV} = 1.40^{+0.39}_{-0.37}$ and $\mu_{WZ} = 0.96 \pm 0.05$, $\mu_{ZZ} = 1.02 \pm 0.05$
- signal scales correlated: $1.39^{+0.39}_{-0.37}$ (vs. nominal: $1.40^{+0.39}_{-0.37}$)