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Abstract The extension of the Standard Model by right-
handed neutrinos can not only explain the active neutrino
masses via the seesaw mechanism, it is also able solve a
number of long standing problems in cosmology. Especially,
masses below the TeV scale are of particular interest as they
can lead to a plethora of signatures in experimental searches.
We present the first full frequentist analysis of the extension
of the Standard Model by three right-handed neutrinos, with
masses between 60 MeV and 500 GeV, using the Global
and Modular BSM (beyond the Standard Model) Inference
Tool GAMBIT. Our analysis is based on the Casas-Ibarra
parametrisation and includes a large range of experimental
constraints: active neutrino mixing, indirect constraints from,
e.g., electroweak precision observables and lepton univer-
sality, and numerous direct searches for right-handed neutri-
nos. To study their overall effect, we derive combined pro-
file likelihood results for the phenomenologically most rele-
vant parameter projections. Furthermore, we discuss the role
of (marginally) statistically preferred regions in the param-
eter space. Finally, we explore the flavour mixing pattern of
the three right-handed neutrinos for different values of the
lightest neutrino mass. Our results comprise the most com-
prehensive assessment of the model with three right-handed
neutrinos model below the TeV scale so far, and provide a
robust ground for exploring the impact of future constraints
or detections.
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1 Introduction

1.1 Motivation

The observation of neutrino flavour oscillations is one of the
strongest hints for the existence of particle physics beyond
the Standard Model (SM). The oscillations imply that neu-
trinos have small masses, while the minimal SM predicts
that they are massless. At the same time neutrinos are the
only elementary fermions that are only known to exist with
left handed chirality νL . If right handed neutrinos νR exist,
one could immediately add a Dirac mass term ν̄LMDνR to
the SM Lagrangian in analogy to all other known fermions.
The fact that the νR have not been seen yet could easily be
explained because they are “sterile”, i.e., not charged under
any known gauge interactions. The same property also makes
it possible for them to have a Majorana mass term ν̄RMMνcR
in addition to the Dirac mass. For eigenvalues of MM that
are much larger than the observed light neutrino masses, the
smallness of the neutrino masses can be explained via the
seesaw mechanism [1–5]. Neutrino oscillation data is, how-
ever, not sufficient to pin down the value of MM , known as
seesaw scale, because it is primarily sensitive to the combi-
nation MDM

−1
M MT

D . The range of allowed values spans from

a few eV [6] up to the scale of Grand Unification [7]. For spe-
cific choices of their Majorana mass the νR could in addition
solve a number of long standing problems in cosmology. For
instance, they could explain the baryon asymmetry of our
Universe via leptogenesis during the decay [8] or produc-
tion [9,10] of the heavy neutrinos or provide a viable dark
matter candidate [11,12]. An overview of the cosmological
implications of different choices of MM can e.g. be found in
Ref. [13].

Experiments can directly search for heavy neutrinos if
MM is below the TeV scale. Such searches have been per-
formed in various different facilities, including high energy
colliders and fixed target experiments. This is the mass range
we consider in the present article. In addition, the νR would
indirectly affect precision observables or searches for rare
processes. A summary of different existing constraints can
be found in the reviews [13–17]. For the future a wide range
of different searches have been proposed, an overview can
be found in Refs. [18–20]. In order to decide about the
best possible search strategy is it important to understand
which parameter region is already ruled out by past experi-
ments. This is in fact a non-trivial question because differ-
ent observables are correlated in the seesaw model, and the
requirement to simultaneously respect all known experimen-
tal results imposes stronger constrains on the model parame-
ter space than superimposing individual bounds. Such global
constraints can only be derived within a given model. An
important quantity in this context is the unknown number n
of right handed neutrino flavours. The minimal number that is
required to explain the light neutrino oscillation data isn = 2,
which would necessarily require the lightest SM neutrino to
be massless. The minimal number that is required to generate
masses for all three SM neutrinos is n = 3. This choice is
also somewhat appealing in view of the fact that there are
three fermion generations in the SM, and it is mandatory for
anomaly freedom in many gauge extensions of the SM. The
goal of the present work is to impose global constraints on
the parameter space of the model with n = 3, based on the
combination of direct, indirect and cosmological constraints
summarised in Sect. 3.

Several authors have previously imposed global con-
straints on the properties of right handed neutrinos. Here
we exclusively focus on models in which the right handed
neutrinos can explain the light neutrino oscillation data.1

This e.g. excludes most sterile neutrino Dark Matter models
because the feeble coupling of such particles that is required
to ensure their longevity implies that its contribution to the

1 The authors of Ref. [21] considered a single heavy neutrino, but made
the conservative assumption that this particle may predominantly decay
into a dark sector via new interactions.
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light neutrino mass generation can be neglected [22].2 One
of the most complete studies of indirect constraints on the
parameter space for n = 2 in the last few years was presented
in Ref. [25], where multiple electroweak precision observ-
ables and flavour-violating decays were included, along with
tests of lepton universality and the unitarity of the CKM
matrix. Loop corrections to some of these relations were
considered in Ref. [26]. The authors of [27] included direct
search constraints and those from big bang nucleosynthesis.
The model with n = 3 is much less studied. Recent analyses
of indirect constraints include Refs. [28,29], direct search
constraints and BBN have been added to this in Ref. [30].

1.2 Main improvements compared to previous studies

In this paper, we present the first full frequentist analysis
of the n = 3 right-handed neutrino (RHN) extension of
the SM, for a wide range of RHN masses from about 60
MeV to 500 GeV. We opted for a frequentist analysis rather
than a Bayesian analysis since this is best suited to fully
explore the valid parameter space while avoiding prior depen-
dence and volume effects of the parameter space (however,
we emphasize that we do not perform a full sampling-based
goodness-of-fit analysis and instead resort for practical rea-
sons to an approximate treatment of likelihood and their sam-
pling statistics). We improve on different aspects of earlier
analyses by combining all the strongest limits exerted by
experiments as well as indirect signatures in a statistically
consistent manner. Previous studies that examined the param-
eter space for n = 3 either used a subset of the constraints
included here [28,29] or used less rigorous statistical meth-
ods [30] and focused on specific regions of the parameter
space [31].

– While most previous studies fixed the mixing angles and
mass differences in the active neutrino sector to the best
fit values as presented in [32], we take into account like-
lihoods for the active neutrino observables.

– Electroweak observables require precise calculations for
its comparison with the extremely accurate measure-
ments. We therefore use the calculation of the SM pre-
diction for sin θ

e f f
w up to two-loop order [33].

– Most studies of lepton flavour violation in neutrino mod-
els focus exclusively on the most constraining processes,
such as μ → eγ and μ → eee [25,30]. In this work we
include all lepton flavour violating processes, in particu-
lar all leptonic τ decays, for which we use the most recent
average of experimental results provided by HFLAV [34],
as well as μ − e conversion in nuclei (Pb, Au and Ti).

2 We refer the reader to Refs. [23,24] for recent reviews on sterile
neutrino Dark Matter.

– For neutrinoless double-beta decay, in comparison with
[30], we opt to carry out our analysis conservatively; in
addition, the upper limit on the effective Majorana mass
and hence the mixing is encoded in the form of a (one-
sided) Gaussian likelihood, not as a strict cut.

– Lepton universality tests are often centered on leptonic
decays of mesons, K and π , τ -leptons and W -bosons
[25]. We supplement these tests of universality with the
recently observed semileptonic decays of B-mesons [35–
37].

– We improve the treatment of CKM unitarity with respect
to the discussion in Ref. [30].

– Concerning direct searches, previous studies have used
only a subset of the experiments considered here [21,38],
or chose to place a hard cut at the upper limits pre-
sented in the individual papers [27,30]. We implement
the strongest constraints over the mass range as likeli-
hoods. The statistical combination of these likelihoods
also leads to more accurate profile likelihood contours in
comparison to simply overlaying individual limits.

– We study in detail the flavour mixing pattern of the three
RHN, for different values of the lightest neutrino mass.
We discuss the limit where the lightest neutrino is mass-
less and the connection to the n = 2 case.

We use here the open-source software package GAMBIT
[39]. It includes an interface to Diver [40], a differential
evolution-based scanner that provides efficient sampling per-
formance for frequentist scans.

This paper is organised as follows. In Sect. 2, the model,
parametrisation used and essential quantities are defined. All
the observables and experiments that are considered are sub-
sequently discussed in detail in Sect. 3. Our scanning strat-
egy, parameter ranges and applied priors are mentioned in
Sect. 4. The results are presented in Sect. 5 and we dis-
cuss the implications of the combined constraints for future
searches in Sect. 6. In Appendix A we comment on the
details of the implementation in GAMBIT, in Appendix B
we explicitly give the expressions for the different observ-
ables, in Appendix C we provide details on how we interpret
our results in view of the criterion of technical naturalness,
and in Appendix D we show the different partial likelihoods.

2 Right-handed neutrino physics

2.1 Basic definitions

The addition of three RHNs to the particle content of the
Standard Model introduces in total 18 new parameters. In
this section we summarise basic relations in the seesaw model
and define our notation, following Ref. [30].
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The most general renormalisable Lagrangian that can be
constructed from SM fields and the νR has the following
form:

L = LSM + iνR /∂νR − �̄L FνRΦ̃ − Φ̃†ν̄RF
†�L

− 1

2

(
ν̄cRMMνR + ν̄RM

†
MνcR

)
. (1)

Hereby, �L = (νL , eL)T indicate the left-handed leptons3 of
the SM and Φ is the Higgs doublet with Φ̃ = εΦ∗ and ε being
the Levi-Civita tensor. MM is the Majorana mass matrix for
νR and F is the Yukawa coupling matrix. We work in a flavour
basis where MM = diag(M1, M2, M3).

After electroweak symmetry breaking (EWSB), the com-
plete neutrino mass term reads

1

2
(ν̄L ν̄cR)M

(
νcL
νR

)
, (2)

with

M =
(

δm1loop
ν MD

MT
D MM + δM1loop

N

)
, (3)

where MD = Fv, v being the Higgs vacuum expectation
value (v = 174 GeV in the ground state). We include the one
loop corrections δm1loop

ν and δM1loop
N as we aim for perform-

ing an analysis to be consistent at second order in the Yukawa
couplings F . The mass matrix (3) can be diagonalised by a
matrix of the form [26]

U =
(

cos(θ) sin(θ)

− sin(θ†) cos(θ†)

)(
Uν

U∗
N

)
(4)

with

cos(θ) =
∞∑
n=0

(−θθ†)n

(2n)! (5)

sin(θ) =
∞∑
n=0

(−θθ†)nθ

(2n + 1)! . (6)

Hereby, θ indicates the matrix that mediates the mixing
between the active neutrinos νL and the sterile neutrinos νR .
We can generally write

U†MU∗ =
(
mdiag

ν

Mdiag
N

)
(7)

3 Throughout this article we use four component spinor notation, where
the chiral spinors νR and �L have only two non-zero components
(PRνR = νR and PL�L = �L ). As a result, no explicit chiral projectors
are necessary in the weak interaction term (21).

with

Mdiag
N = UT

N MNUN = diag(M1, M2, M3) (8)

mdiag
ν = U †

νmνU
∗
ν = diag(m1,m2,m3). (9)

The additional complex conjugation of UN ensures that the
relation among mass and flavour eigenstates will be analo-
gous for left-handed neutrinos (LHNs) and RHNs within the
notation. In the second relation in Eq. (8) we have neglected
the difference between the eigenvalues of MM and MN ,
which is of second order in θ . This is justified for the present
purpose because of the experimental constraints on the mag-
nitude of the elements θα I , which we discuss further below.

2.2 The seesaw limit

The limit of small θα I is usually referred to as the seesaw
limit, it corresponds to MD � MM (in terms of eigenvalues).
It allows the approximation

θ = MDM
−1
M = vFM−1

M (10)

and

U =
[ (

I − 1
2θθ† θ

−θ†
I − 1

2θ†θ

)
+ O(θ3)

] (
Uν

U∗
N

)
, (11)

leading to

mν = mtree
ν + δm1loop

ν (12)

with

mtree
ν = −MDM

−1
M MT

D = −θMMθT = −v2FM−1
M FT

and

MN = MM + 1

2

(
θ†θMM + MT

MθT θ∗) + δM1loop
N . (13)

The loop correction to the light neutrino mixing matrix is
given by [41]:

(
δm1loop

ν

)
αβ

=
∑
I

Fα I MI F
T
Iβl(MI ) , (14)

where l(MI ) is a loop function given by

l(MI ) = 1

(4π)2

[(
3ln[(MI /mZ )2]
(MI /mZ )2 − 1

)

+
(

ln[(MI /mH )2]
(MI /mH )2 − 1

)]
. (15)
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The light and heavy neutrino mass eigenstates are described
by the flavour vectors

ν = V †
ν νL −U †

ν θνcR + V T
ν νcL −UT

ν θ∗νR (16)

and

N = V †
NνR + ΘT νcL + V T

N νcR + Θ†νL , (17)

respectively. We can define the matrices Vν and VN that rep-
resent the mixing between mass and interaction eigenstates
in the respective sectors as

Vν ≡
(
I − 1

2
θθ†

)
Uν (18)

VN ≡
(
I − 1

2
θT θ∗

)
UN , (19)

while mixing between the two sectors is encoded in the matrix

Θ = θU∗
N . (20)

This quantity is of primary interest because it controls the
interactions of the heavy neutrinos with the physical Higgs
field h and the gauge bosons W and Z ,

− g√
2
N IΘ

†
Iαγ μeLαW

+
μ

− g√
2
eLαγ μΘα I NIW

−
μ

− g

2 cos θW
NIΘ

†
Iαγ μνLαZμ − g

2 cos θW
νLαγ μΘα I Ni Zμ

− g√
2

MI

mW
Θαi hνLαNI − g√

2

MI

mW
Θ

†
IαhNI νLα (21)

Here g is the weak gauge coupling constant and θW the Wein-
berg angle. For convenience, we introduce the notation

U 2
α I ≡ |Θα I |2 (22)

U 2
I ≡ U 2

eI +U 2
μI +U 2

τ I (23)

U 2
α ≡

∑
I

U 2
α I . (24)

From the relations (3) and (7) it is straightforward to derive
the relation

(δm1loop
ν )αα =

∑
i

mi (Vν)
2
αi +

∑
I

MIΘ
2
α I . (25)

2.3 The role of the matrix UN

In our numerical scan we approximate UN by unity.4 For
generic parameter choices this can be justified because we
work in a basis where MN is diagonal, and the physical
mass matrix (13) is also diagonal up to corrections of second
order in θ . These corrections can lead to a large deviation
of UN from unity only if the eigenvalues of MM are quasi-
degenerate, so that the O[θ2] terms in the matrix (13) are
relevant.

If a degeneracy between only two of the RHNs is caused
by a symmetry, cf. Sect. 2.5, then it can be shown that the
effect of UN on the U 2

α I is small even if individual entries
of UN are larger than the U 2

α I [42]. This means that the pro-
duction cross sections for heavy neutrinos are not affected.
However, the branching ratio between lepton number vio-
lating (LNV) and lepton number conserving heavy neutrino
decays is affected by UN [43]. This has no big effect on our
scan because constraints from searches for LNV are sub-
dominant in almost the entire mass range that we consider,
but it may have important implications for future searches.

UN can have a big impact on the individual mixingsU 2
α I of

each heavy neutrino if all three Majorana masses are degen-
erate. This can be accommodated in technically natural sce-
narios discussed in the following Sect. 2.5, cf. in particular
footnote 6. The practical impact on experimental searches
is, however, limited because most experiments are not able
to kinematically resolve small mass splittings and therefore
only probeU 2

α in this regime (rather than the couplingsU 2
α I of

individual heavy neutrino flavours). Also in this case observ-
ables that are sensitive to LNV are the only ones that are
likely to be affected.

Finally, if the degeneracy between the heavy neutrino
masses is accidental, then the proof in Ref. [42] does not
apply, and UN can have a significant effect on the U 2

α I even
if only two heavy neutrinos have degenerate masses. Our
results contain a significant number of points of this kind
because we performed several scans with “agnostic” param-
eter ranges that do not suppress fine-tuned points, cf. Table 5.
However, the fact that experiments are unlikely to resolve the
individual resonances in this case implies that they are only
sensitive to the quantities U 2

a , where the summation is to
be taken over the mass degenerate heavy neutrino flavours
only. As in the previous two cases, the effect of UN on the
total production rate is minor because the matrix mainly re-
distributes coupling between the mass degenerate states. The
main affect would again be on LNV observables.

In summary, if any heavy neutrinos are discovered in the
future, a comparison between the branching ratios of lep-
ton number violating and lepton number conserving decays

4 Note that the approximation UN = I also allows to neglect δM1loop
N

because it only amounts to a change in the matrix UN [42].
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will give important insight into the mechanism of neutrino
mass generation and will be crucial to identify any underlying
symmetries.

2.4 Casas-Ibarra parametrisation

In the current work, we use the Casas-Ibarra (C-I) parametri-
sation [44], generalised to include the 1-loop correction to
the left-handed neutrino mass matrix [45]. This provides a
simple way to impose constraints from light neutrino oscil-
lation data in our scan. This parametrisation is based on the
observation that mν in Eq. (12) can be expressed as

mν = −θ M̃θT (26)

with

M̃ =
[

1 − 1

v2 MMMdiag
N l(Mdiag

N )

]
MM . (27)

Since the loop function is smooth we can neglect the differ-
ence in the eigenvalues of MM and MN ,

M̃I J � M̃diag
I J = MI δI J

(
1 − M2

I

v2 l(MI )

)
. (28)

In this scheme the sterile neutrino mixing matrix, i.e. the
matrix encoding the mixing among LHNs and RHNs (20)
can be written as

Θ = iUν

√
mdiag

ν R
√
M̃diag

−1
, (29)

where Uν is the PMNS matrix introduced above, mdiag
ν is

the diagonalised, one-loop-corrected LHN mass matrix and
M̃diag is the analogous RHN mass matrix, given by (28).
Furthermore, R is a complex, orthogonal matrix that is
parametrised by complex angles ωi j

R = R23R13R12 , (30)

where Ri j has the non-zero elements

Ri j
i i = Ri j

j j = cos ωi j , (31)

Ri j
i j = −Ri j

j i = sin ωi j , (32)

Ri j
kk = 1; k 	= i, j . (33)

Since we work in the flavour basis in which the Yukawa
couplings of the charged leptons are diagonal, Uν can be
parametrised as

Uν = V 23UδV
13U−δV

12diag(eiα1/2, eiα2/2, 1) , (34)

where U±δ = diag(e∓iδ/2, 1, e±iδ/2) and V i j , parametrised
by the LHN mixing angles θi j , has non-zero elements analo-
gous toR. Furthermore, α1, α2 and δ are CP-violating phases.

The C-I parametrisation scheme generates by construction
Yukawa couplings and mixing angles Θ that are consistent
with light neutrino oscillation data up to second order in θ .
This has two disadvantages. First, one may find it unsat-
isfactory that we treat light neutrino oscillation data dif-
ferently from other constraints. Second, the C-I is a “bot-
tom up” parametrisation. There is usually no simple relation
between the C-I parameters and parameters that may be well-
motivated from a model building viewpoint, and any theory-
motivated prior on the RHNs’ mixings and masses would
acquire a rather convoluted form in the C-I parametrisation.
In particular, there is no simple way to distinguish “natural”
from “fine tuned” parameter choices. Hence, we refrain from
performing Bayesian scans in the current work, and instead
concentrate on a likelihood-based frequentist treatment. In
view of the high dimensionality of the parameter space and
the complicated functional form of the different constraints,
the disadvantages of the C-I parametrisation are, however,
compensated for by the numerical advantage that one gains.

2.5 The symmetry protected scenario

The smallness of the light neutrino masses mi can be
explained in different ways by the seesaw relation (26). One
possibility is that the NI are very heavy, i.e., MI � v, in
which case the smallness of mi is due to the smallness of
the ratio v/MI . This choice for the mass scale(s) MI is well-
motivated by Grand Unified Theories,5 but raises the ques-
tion of radiative corrections to the Higgs potential from the
Yukawa couplings of the RHNs [48].

This “hierarchy problem” can be avoided in low scale
seesaw scenarios. Low values of MI are natural because in
the limit MI → 0 the B− L symmetry in the SM is restored.
In this case, however, the smallness of mi can no longer
be explained efficiently by the suppression of v/MI , as it
typically requires couplings

Θα I � i(Uν)α I

√
mi

MI
, Fα I � i(Uν)α I

√
miMI

v
(35)

that are very small, in particular for seesaw scales as low as
100 MeV.

Such small values for fundamental parameters are consid-
ered ’unnatural’ by many theorists [49], though some pos-
sible explanations have been proposed [50]. However, this
estimate relies on the underlying assumption that there are
no cancellations (accidental or otherwise) in the seesaw rela-

5 See [46,47] for a review on neutrino masses in the context of Grand
Unified Theories.
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tion (26), which would allow for much larger U 2
α I = |Θα I |2

than the naive estimate (35) suggests while keeping the eigen-
values m2

i of m†
νmν small.

Hence, a technically natural [51] way to obtain small neu-
trino masses mi can be realised if the Lagrangian (1) approx-
imately respects a B − L̄ symmetry [52,53] (cf. also [54]),
where L̄ is a generalised lepton number under which com-
binations of the νRi are charged. Such B − L̄ symmetry is
exact if the Yukawa coupling and mass matrix take the form
[55]

MB−L̄
M =

⎛
⎝
M̄ 0 0
0 M̄ 0
0 0 M ′

⎞
⎠ FB−L̄ =

⎛
⎝

Fe i Fe 0
Fμ i Fμ 0
Fτ i Fτ 0

⎞
⎠ , (36)

in which case the light neutrinos are exactly massless mi =
0. In order to generate non-zero light neutrino masses this
symmetry has to be slightly broken, i.e.,

MM = MB−L̄
M (1 + μ) , F = FB−L̄(1 + ε), (37)

where the entries of the matrices μ and ε are small symmetry
breaking parameters.

If the symmetry is not exact MM can have off-diagonal
elements, see for example Ref. [56]. Throughout this work
we use a basis in which MM is diagonal. The diagonalisation
affects the form of the Yukawa matrix F , but as long as the
off diagonal elements of μ are small, this only leads to a
small modification of the flavour structure. For the following
discussion we will therefore adapt the simpler form [57]6

MM =
⎛
⎝
M̄(1 − μ) 0 0

0 M̄(1 + μ) 0
0 0 M ′

⎞
⎠ ,

F =
⎛
⎝

Fe(1 + εe) i Fe(1 − εe) Feε′
e

Fμ(1 + εμ) i Fμ(1 − εμ) Fμε′
μ

Fτ (1 + ετ ) i Fτ (1 − ετ ) Fτ ε
′
τ

⎞
⎠ , (38)

with ε′
α, εα, μ,� 1 being small symmetry breaking param-

eters and Fα being of the order of one. This means that
one heavy neutrino practically decouples while the other two
approximately form a Dirac spinor with mass M̄ .

In this symmetry protected scenario there is no upper limit
on U 2

α I from neutrino oscillation data. In the mass range

6 An important exception is the case μ � 1, M̄ ′ � M̄ . In that situation
even small off-diagonal elements μi j can lead to a comparably large
misalignment between the basis in which F has the form (38) and the
heavy neutrino mass basis, which means which that all heavy neutrinos
have unsuppressed Yukawa couplings ∼ Fa in spite of the fact that
ε′
a � 1, cf. Ref. [43] for a discussion. However, in this case all three

mass eigenstate NI have approximately the same mass M̄ and cannot
be distinguished kinematically. In this case the experimentally relevant
mixing is U2

a , the magnitude of which is controlled by the large entries
Fa . Heavy neutrino oscillations in the detector [58–67] could provide an
indirect way to access the small mass splitting and phenomenologically
study this specific case.

considered here the upper limit comes from the experimen-
tal constraints, while for larger masses there is a theoretical
bound U 2

α I < 4π(n − 1)(v/M̄)2 from the requirement that
the Yukawa couplings remain perturbative [7]. This provides
a theoretical motivation for a low scale seesaw with exper-
imentally accessible mixings U 2

α I . Specific examples that
motivate this limit include “inverse seesaw” [68–71], “linear
seesaw” [72,73], scale invariant [74] and some technicolour-
type models [75,76] and also the νMSM [10,52].

2.6 Connection to the model with n = 2

The parametrisation (38) suggests that the B − L̄ symmetric
limit for the model with n = 3 should contain the model with
n = 2, as the third heavy neutrino decouples for ε′

a → 0.
This is, for example, observed in the νMSM. However, some
care is required when taking this limit if one wants to be
consistent with neutrino oscillation data.

First, it is clear that not all seven symmetry breaking
parameters εa, ε

′
a, μ can be set to zero because this would

give exactly massless light neutrinos. Which of these param-
eters are non-zero and how small they are with respect to each
other depends on the way how the symmetry is broken and
thus on the particle physics model in which the Lagrangian
(1) is embedded. It is not possible to make a model indepen-
dent statement about the relative size of the ε′

a in relation to
other model parameters.

Second, the parametrisation (38) is not the most general
one: If we allow for small off diagonal elements in the gen-
eral form (37), then all three heavy neutrinos can have unsup-
pressed interactions if M̄ ′ � M̄ , cf. footnote 6. Hence, if M̄ ′
is degenerate with M̄ , one cannot expect to recover the n = 2
model even if εα � 1.

Finally, as discussed in more detail in Appendix C, there
are Casas-Ibarra parameter choices that yield small values of
mν0 , but correspond to highly fine-tuned scenarios where this
smallness is due to accidental cancellations. These solutions
can imitate the symmetry protected scenario and can also
circumvent the seesaw upper limit and thus reach high values
of U 2

α I .

3 Observables, experiments and likelihoods

Models with heavy right-handed neutrinos, as described
above, will alter the SM predictions for different observ-
ables that are already significantly constrained by experi-
mental results. In this analysis, we implemented all rele-
vant constraints such as active neutrino likelihoods (3.1)
and direct detection experiments which currently exert the
strongest bounds over the considered mass range (3.3); these
include beam dump and peak search experiments, which
looked for RHNs in meson, tau and gauge boson decays.
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Besides, we similarly include the most relevant indirect con-
straints: electroweak precision observables (3.2.1), lepton
flavour violating processes (3.2.2), lepton universality con-
straints (3.2.3), BBN (3.2.6), neutrinoless double-beta decay
(3.2.5) and CKM unitarity (3.2.4).

In this section, we will focus on the physics and statis-
tics aspects of our likelihood functions. The corresponding
implementation of GAMBIT capabilities and module func-
tions associated with the various observables are discussed
in detail in Appendix A.

3.1 Active neutrino mixing

In contrast to previous studies, we include likelihoods for
the active neutrino mixing observables in our analysis: the
three mixing angles θ12, θ13, θ23, the mass splittings Δm2

21
and Δm2

3� with � = 1 for normal ordering and � = 2 for
inverted ordering, as well as the CP-phase δCP. We use the
most recent publically available results of the global analysis
of solar, atmospheric, reactor and accelerator neutrino data in
the framework of three neutrino oscillations provided by the
NuFIT collaboration (as of January 2018) [32,77], including

– the solar neutrino experiments Homestake chlorine [78],
Gallex/GNO [79] and SAGE [80], SNO [81], the four
phases of Super-Kamiokande [82–84] and two phases of
Borexino [85–87],

– the atmospheric experiments IceCube/DeepCore [88],
– the reactor experiments KamLAND [89], Double-Chooz

[90], Daya-Bay [91] and Reno [92],
– the accelerator experiments MINOS [93,94], T2K [95]

and NOνA [96],
– the cosmic microwave background measurement Planck

[97]

For our global fit, we take the provided one-dimensional Δχ2

tables for both orderings of the NuFIT collaboration [77].
For more detailed information, we refer to [32] and refer-
ences therein. We emphasize that using higher dimensional
tables that account for correlations would in general lead to
(slightly) more stringent results on the RHN parameter space,
hence our treatment can be considered as conservative.

3.2 Indirect constraints

3.2.1 Electroweak precision observables

The leptonic charge currents are modified by the RHNs,
and hence the value of Gμ that is measured via the muon
decay will differ from the actual Fermi constant GF which
is defined in terms of the fine structure constant and mass of

the Z boson. The correction can be written as [30]

G2
μ = G2

F (1 − (θθ†)μμ − (θθ†)ee) (39)

and is caused by the non-unitarity of the flavour mixing
matrix Vν , see Eq. (18), which leads to a slight suppression
of the muon decay.

Both the weak mixing angle θw and the mass of the W
boson mW depend on Gμ at one loop, which means they
also get a correction from the active-sterile mixing matrix
Θ , which is given by [25]

s2
w = [s2

w]SM
√

1 − (θθ†)μμ − (θθ†)ee,

m2
W

[m2
W ]SM

= [s2
w]SM
s2
w

√
1 − (θθ†)μμ − (θθ†)ee , (40)

where s2
w = sin2 θw. Since experiments typically measure

the effective Weinberg angle s2
e f f , and assuming the QCD

corrections factorize from the leptonic corrections [98], we
use for the SM prediction the highly accurate calculation,
including corrections up to two-loops, from [33]

[s2
e f f ]SM = 0.23152 ± 0.00010,

[mW ]SM = 80.361 ± 0.010 GeV. (41)

Other electroweak precision observables affected by the pres-
ence of the heavy neutrinos are the decays of the Z and W
bosons, in particular the invisible decay width of the Z boson,
Γinv, and the leptonic decays of W . Under the assumption
that the radiative corrections factorize from the heavy neu-
trino contribution, at least up to order θ2 [26,98], one can
write the invisible decay width of the Z as [99]

Γinv =
∑
i, j

|ΓZ→νiν j |SM
(

|V †
ν Vν |2i j

+ |V †
ν Θ|2i j

(
1 −

m2
N j

m2
Z

)2 (
1 + 1

2

m2
N j

m2
Z

))
, (42)

where we have neglected the contribution from Z → Ni N j

due to being of order θ4, and for the SM decay Z → νiν j

we use the 2-loop calculation from [100].
The contribution of heavy neutrinos to theW decay widths

to leptons can be written as [25]

ΓW→lαν̄ = Gμm3
W

6
√

2π

(1 − 1
2θθ†)αα)(1 − xα)2(1 + xα)√
1 − (θθ†)μμ − (θθ†)ee)

,

(43)

where we defined xα ≡ m2
lα

/m2
W .
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Table 1 Electroweak precision observables measurements and uncer-
tainties, taken from Ref. [101]

Observable Value

Input parameters

Gμ [GeV−2] 1.1663787(6) × 10−5

mZ [GeV] 91.1875(21)

Constraints

mW [GeV] 80.385(15)

s2
e f f 0.23155 ± 0.00005

Γinv [MeV] 499.0 ± 1.6

ΓW→eν̄e [MeV] 223 ± 6

ΓW→μν̄μ [MeV] 222 ± 5

ΓW→τ ν̄τ [MeV] 237 ± 6

We construct Gaussian likelihoods for these observables
using the experimental measurements and uncertainties dis-
played in Table 1. All these observables depend on Gμ

(Eq. (39)) either directly or through another observable (sw
ormW ). Since the experimental measurements of these quan-
tities are independent of each other, we assume them to be
uncorrelated.

3.2.2 Lepton flavour violation

Flavour changing neutral processes, such as lepton flavour
violation (LFV), are strongly suppressed in the Standard
Model at one loop due to the GIM mechanism [102]. Hence,
any non-trivial contribution to these processes from physics
beyond the Standard Model would dominate over the SM
contribution, which in turn makes the experimental determi-
nation of these observables a smoking gun of new physics.
Several experiments have attempted to measure LFV pro-
cesses with outstanding precision and they have imposed a
set of upper limits on their branching fractions. In Table 2
we list the most significant of these observables, along with
the experimental upper bound on their branching ratios and
the experiment that provided it.

The experimental upper bounds for LFV μ and τ decays
in Table 2 are given as branching fractions with respect to
the total decay width of the respective lepton [101,114],

Γμ = (2.995984 ± 0.000003) × 10−19 ,

Γτ = (2.2670 ± 0.0039) × 10−12 . (44)

In the model with three heavy neutrinos the leading con-
tributions to these observables arise from dipole and box dia-
grams with mixing between the active and sterile neutrinos,
given by the active-sterile mixing matrix Θ . The relevant
LFV processes containing these diagrams are of the form

Table 2 Experimental upper bounds on LFV processes, along with the
experiments that provided that bound. When more than one experiment
is cited, the HFLAV average is used [34]. All upper bounds are given
at the 90% CL

Process Branch. Frac. References

LFV decay

μ− → e−γ 4.2 × 10−13 MEG [103]

τ− → e−γ 5.4 × 10−8 BaBar [104], Belle [105]

τ− → μ−γ 5.0 × 10−8 BaBar [104], Belle [105]

μ− → e−e−e+ 1.0 × 10−12 SINDRUM [106]

τ− → e−e−e+ 1.4 × 10−8 BaBar [107], Belle [108]

τ− → μ−μ−μ+ 1.2 × 10−8 ATLAS [109], BaBar [107]

Belle [108], LHCb [110]

τ− → μ−e−e+ 1.1 × 10−8 BaBar [107], Belle [108]

τ− → e−e−μ+ 0.84 × 10−8 BaBar [107], Belle [108]

τ− → e−μ−μ+ 1.6 × 10−8 BaBar [107], Belle [108]

τ− → μ−μ−e+ 0.98 × 10−8 BaBar [107], Belle [108]

LFV conversion

μ − e (Ti) 4.3 × 10−12 SINDRUM II [111]

μ − e (Au) 7 × 10−13 SINDRUM II [112]

μ − e (Pb) 4.6 × 10−11 SINDRUM II [113]

l−α → l−β γ , l−α → l−β l
−
β l

+
β , l−α → l−β l−γ l+γ and l−α → l−γ l−γ l+β .

The associated decay widths can be found in Appendix B.1.
Lastly, LFV processes can result in a neutrinoless μ − e

conversion inside a nucleus. Muons captured by a nucleus
typically decay in orbit providing a continuous spectrum of
energy for the electron in the final state. In coherent flavour
violating conversion, μ−N → e−N , final state electrons
have a discrete energy spectrum, corresponding to the mass
of the decaying muon. Consequently experiments measure
the rate at which this conversion happens, with respect to the
rate of capture by the nucleus,

Rμ−e = Γconv/Γcapt. (45)

The corresponding expressions for the conversion ratio, as
well as the nuclear parameters for the two nuclei studied,
Ti48

22, Au197
79 and Pb208

82 , can be found in Appendix B.1.
The likelihoods for these LFV observables are all Gaus-

sian upper limit likelihoods. They are computed as

lnL =
{

− 1
2 log(2πσ 2), x < x0

− 1
2 log(2πσ 2) − 1

2
(x−x0)

2

σ 2 , x > x0
, (46)

using the experimental data from Table 2. More specifically,
we assume a measured value of x0 for all observables,7 and

7 In the cases where the experiments do not provide a measured value
we take x0 = 0.
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set σ = v/1.64 for full Gaussians and σ = v/1.28 for one-
sided Gaussians, where v is the quoted upper 90% CL limit.

3.2.3 Lepton universality

Recent measurements of meson decays [35–37] have put into
question the flavour-independence of leptonic charged cur-
rents, as predicted by the SM. Previous tests of lepton univer-
sality performed by LEP and SLC, using lifetime measure-
ments of the tau and muon as well as the partial decay widths
of the Z boson, showed no such deviation. This has lead to
the formulation of many BSM theories attempting to explain
the deviation shown in meson decays with sterile neutrinos
[99,115,116].

The presence of right-handed neutrinos modifies the lep-
tonic currents and thus triggers a contribution to processes
testing lepton universality such as in the fully leptonic decays
of charged mesons, X+ → l+ν, or the semileptonic decays
of B mesons B0/± → X0/±l+l−.

In order to cancel the considerable hadronic uncertain-
ties present in the decays of pseudoscalar mesons, lepton
universality tests are best formulated using ratios between
lepton species. For fully leptonic and semileptonic decays of
mesons, these ratios are expressed as

RX
αβ = Γ (X+ → l+α να)

Γ (X+ → l+β νβ)
, (47)

RX = Γ (B0/± → X0/±l+α l−α )

Γ (B0/± → X0/±l+β l
−
β )

, (48)

respectively.
In case of fully leptonic decays, one can express the test

of lepton universality in terms of deviations from the SM
prediction as

RX
αβ = RX

αβ,SM (1 + Δr Xαβ) , (49)

where the sterile neutrino contribution can be calculated from
the active-sterile mixing matrix Θ as [30,117]

Δr Xαβ = 1 + ∑
I |Θα I |2[Gα I − 1]

1 + ∑
I |Θβ I |2[Gβ I − 1] − 1 , (50)

where we used

Gα I = ϑ(mX − mlα − MI )
rα + rI + (rα − rI )2

rα(1 − rα)2

·
√

1 − 2(rα + rI ) + (rα − rI )2 , (51)

with ϑ being the Heaviside step function, rα ≡ m2
lα

/m2
X

and rI ≡ M2
I /m

2
X . The SM predictions used in Eq. (49)

for the tests of lepton universality for pions and kaons are

Rπ
eμ,SM = 1.2354 × 10−4 and RK

eμ,SM = 2.477 × 10−5,
respectively [118].

The contribution from heavy right-handed neutrinos to
the semileptonic decays of B mesons is much less signif-
icant than to the leptonic decays. As argued in Ref. [99],
the effect on B decays to charmed mesons, B± → Dlν, is
completely negligible. Semileptonic decays to K mesons are
more affected, particularly the decays B+ → K+l+l− and
B0 → K ∗0l+l−. Assuming that ml � mK (∗) and that the
Wilson coefficient C7 � C9,C10, one can approximate the
ratios RK and RK ∗ as [119]

RK (∗) = Γ (B±/0 → K±/∗0μ+μ−)

Γ (B±/0 → K±/∗0e+e−)

≈ |CSM
10 + ΔCμ

10|2 + |CSM
9 + ΔCμ

9 |2
|CSM

10 + ΔCe
10|2 + |CSM

9 + ΔCe
9|2

, (52)

and the BSM contributions to the Wilson coefficients ΔCα
9

and ΔCα
10 can be expressed as [120]

ΔCα
9 = −ΔCα

10 = − 1

4s2
w

∑
I

|Θα I |2E(xt , xI ) , (53)

with xt = m2
t /m

2
W , xI = M2

I /m
2
W and the loop function

E(x, y) = xy

{
− 3

4

1

(1 − x)(1 − y)

+
(1

4
− 3

2(x − 1)
− 3

4(x − 1)2

) log x

x − y

+
(1

4
− 3

2(y − 1)
− 3

4(y − 1)2

) log y

y − x

}
. (54)

NNL calculations for the Standard Model contribution to
the Wilson coefficients C9 and C10 used in Eq. (52) gives
CSM

9 = 4.211 and CSM
10 = −4.103 [121,122].

In addition to meson decays, other common tests of lepton
universality include the decays of the W boson to leptons as
well as τ decays. The ratio of decay widths of W to charged
leptons lα and lβ can be written as [25]

RW
αβ = Γ (W+ → l+α να)

Γ (W+ → l+β νβ)
=

√
1 − (θθ†)αα

1 − (θθ†)ββ

. (55)

Deviations from the SM for the lepton universality test in
τ decays follow the same form as in Eq. (50) and the SM
prediction is Rτ

μe,SM = 0.973 [123].
These tests of lepton universality are implemented as

Gaussian likelihoods centered on the experimentally mea-
sured value. The experimental measurements, with their cor-
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Table 3 Experimental measurements for all tests of lepton universality

Obs. Measured

Rπ
eμ (1.2327 ± 0.0023) × 10−4 [124]

RK
eμ (2.488 ± 0.010) × 10−5 [125]

Rτ
μe 0.9762 ± 0.0028 [34]

RW
μe 0.980 ± 0.018 [126]

RW
τe 1.063 ± 0.027 [127]

RW
τμ 1.070 ± 0.026 [127]

RB
K 0.745 ± 0.089 [35]

RB
K ∗ (1) 0.66 ± 0.09 [37]

RB
K ∗ (2) 0.69 ± 0.10 [37]

responding uncertainties,8 are shown in Table 3. The mea-
surements of Rπ

eμ include subleading decays with γ ’s, hence
the upper limit shown is the PDG average of the ratios of
Γ (π+ → l+α να) + Γ (π+ → l+α ναγ ), based on the mea-
surements in [128–130]. Two experimental measurements
are shown for RK ∗ corresponding to two regions of the dilep-
ton invariant mass 0.045 < q2 < 1.1(GeV2/c4) for (1) and
1.1 < q2 < 6.0(GeV2/c4) for (2).

3.2.4 CKM unitarity

The determination of the CKM matrix elements (V exp
CKM )iab is

usually done under the implicit assumption of a zero active-
sterile mixing matrix, Θ = 0. The measurements of the
(V exp

CKM )iab therefore need to be adjusted to take into account
effects of RHNs.

Firstly, the smallest element of the CKM matrix,
(VCKM )ub, can be neglected in our study as its absolute value
|(VCKM )ub|2 ∼ 10−5 is much smaller than our sensitivity to
the Θ parameter. Hence, under the assumption of the unitary
of the CKM matrix, one can derive the following relation:

|(VCKM )ud |2 + |(VCKM )us |2 = 1. (56)

Thus, we use the various experimental measurements of
(V exp

CKM )us [131–133] and (V exp
CKM )ud [134] to simultane-

ously constrain the true value of |(VCKM )us | and active-
sterile mixing matrix Θ .

Following Refs. [25,30], the experimental measurements
and true value of CKM matrix element (VCKM )us,ud are
related via

|(V exp
CKM )ius,ud |2 = |(VCKM )us,ud |2[1 + f i (Θ)] , (57)

8 The experimental uncertainties for RB
K (∗) are obtained as the sum in

quadrature of the statistical and systematic uncertainties provided by
[35,37].

Table 4 Experimental values of (VCKM )us and the average value of
(VCKM )ud used in the calculation of the CKM likelihood. The factor
f+(0) = 0.959 ± 0.005 is taken from [135]

Parameter Process Value References

|(V exp
CKM)us | f+(0) KL → πeν 0.2163(6)

KL → πμν 0.2166(6)

KS → πeν 0.2155(13) [131,135]

K± → π0eν 0.2160(11)

K± → π0μν 0.2158(14)

|(V exp
CKM)us | BR(τ→Kν)

BR(τ→πν)
0.2262(13)

τ → Kν 0.2214(22) [132,133]

τ → l, τ → s 0.2173(22)

|(V exp
CKM)ud | Average 0.97417(21) [134]

where we defined the functions f i to encode the contri-
bution of RHNs to the process considered in each experi-
ment. The decay processes considered to extract the value of
|(V exp

CKM )us |, and the f (Θ) functions, are given by [25]

KL → π+e−ν̄e : 1 + f 1(Θ) = G2
F

G2
μ

[1 − (θθ†)ee], (58)

KS → π+e−ν̄e : f 2(Θ) = f 1(Θ), (59)

K− → π0e−ν̄e : f 3(Θ) = f 1(Θ), (60)

KL → π+μ−ν̄mu : 1 + f 4(Θ) = G2
F

G2
μ

[1 − (θθ†)μμ], (61)

K− → π0μ−ν̄mu : f 5(Θ) = f 4(Θ), (62)

τ− → K−ντ

τ− → π−ντ

: 1 + f 6(Θ) = 1 + (θθ†)μμ, (63)

τ− → π−ν̄τ :
1 + f 7(Θ) = 1 + (θθ†)ee + (θθ†)μμ − (θθ†)ττ , (64)

τ → s : 1 + f 8(Θ)

= 1 + 0.2(θθ†)ee − 0.9(θθ†)μμ − 0.2(θθ†)ττ . (65)

The situation is simpler in the determination of the
|(V exp

CKM )ud | element as the uncertainty is dominated by the
superallowed 0+ → 0+ nuclear beta transitions measure-
ments, which need to be modified accordingly to:

0+ → 0+ : 1 + f 1(Θ) = G2
F

G2
μ

[1 − (θθ†)ee] (66)

The experimentally measured values of |(V exp
CKM )ius | in

each of the decay processes above are listed in Table 4, and
the value of |(V exp

CKM )ud | = 0.97417±0.00021 is taken from
the world average [134].

We thus construct the likelihood for this constraint from a
chi-squared function, 2 lnL = −χ2, where the discriminant
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measures the deviation of the true value (VCKM )us,ud and
the experimental measurements (V exp

CKM )ius,ud , and is given
by

χ2 =
7∑

i=1

(
(V exp

CKM )ius − (VCKM )us · (1 + f i (Θ)
)2

σ 2
i

+
(
(V exp

CKM )ud − (VCKM )ud · (1 + f 1(Θ)
)2

σ 2 . (67)

Due to the unitarity relation in Eq. (56), the value
(VCKM )ud is obtained from (VCKM )us for every param-
eter point, and thus the only free floating parameters are
the value of (VCKM )us and the active-sterile mixing matrix,
Θ . For simplicity, and since this is the only constraint to
depend strongly on the value of (VCKM )us , we optimise on
its value for each Θ , which removes the necessity of mak-
ing (VCKM )us part of the scanning model. This approach
is similar to the discussion in [30], but we improve upon it
by optimising on the true value (VCKM )us , including the Θ

corrections, for each parameter point, rather than the value
measured experimentally.

3.2.5 Neutrinoless double-beta decay

Double-beta decay refers to the decay of two neutrons into
two protons while emitting two electrons and two anti-
neutrinos. In case of neutrinos having a Majorana nature, lep-
ton number would be violated and neutrinoless double-beta
decay (0νββ) induced. Besides the exchange the light neutri-
nos, the exchange of RHNs is similarly possible and would
alter the expected effective neutrino mass mββ . The effective
mass is constrained by half life measurements of 0νββ decay.
The most stringent limits are currently set by the GERDA
experiment (Germanium) [136] with mββ < 0.15 − 0.33 eV
(90% CL), and KamLAND-Zen (Xenon) [137], mββ <

0.061 − 0.165 eV (90% CL). The effective mass mββ , can
be theoretically evaluated in term of the mixings and masses
of the light and right handed neutrinos [138]

mββ =
∣∣∣∣
∑
i

(Uν)
2
eimi +

∑
I

Θ2
eI MI fA(MI )

∣∣∣∣. (68)

Hereby, the first term denotes the contribution from LHNs,
the second the one from RHNs. With a typical momentum
exchange of around 100 MeV in 0νββ decay, RHNs with
a mass above this threshold participate in the process only
virtually. This suppression is taken into account by the fac-
tor [138]

f A(M) ≈ p2

p2 + M2 . (69)

The typical momentum exchange p2 depends not only on
the specific isotope in consideration but is also subject to the
theoretical model in which the constraints are derived and the
value of the nucleon axial-vector constant. An overview is
given in [139]: For our analysis, we use the “Argonne” model
and the lower of the two values for p2 (quenched), which
yields the most conservative constraints:

√〈p2〉 = 178 MeV
for xenon, and

√〈p2〉 = 159 MeV for germanium. A more
dedicated analysis of the impact of different limits due to
nuclear uncertainties is beyond the scope of this work. Since
we are focusing on profile likelihood for our results, this
approach is largely equivalent to profiling over systematic
uncertainties assuming a flat prior that spans the entire range
of values 〈p2〉 in Ref. [139]. For our analysis we use the
experimental values, as stated above, as one-sided Gaussian
likelihoods, choosing the higher of the two values in order to
remain conservative.

3.2.6 Big Bang Nucleosynthesis

If RHNs decay shortly before or during BBN, the typical
energy of decay products, here ∼ MI ≥ 50 MeV, is signifi-
cantly higher than the plasma temperature at that time, ∼ 100
keV. Therefore, either by dissociating formed nuclei, or by
causing deviations from thermal equilibrium, they will affect
the abundances of primordial elements, which are however
observationally well constrained. The requirement that the
RHN decay happens sufficiently early enough before BBN
implies an upper limit on the lifetime (τI ) of RHNs, or equiv-
alently, a lower bound on the mixing U 2

I [140]. However, in
the presence of multiple RHN species, BBN cannot constrain
individual mixing angles U 2

α I (22) but only the total mixing
U 2

I (23).
We consider leptonic decay channels for all RHNs masses,

when kinematically allowed, as well as hadronic decays to
mesons and leptons. As shown in [141], for low masses the
hadronic decay width is dominated by channels with a single
meson and a lepton, while for masses above the hadronisation
scale, Λhad ∼ 1 GeV, it can be approximated by computing
the decay to free quarks. The decay width for each topology
is listed in Appendix B.2, with expressions and values for
the decay constants taken from [14,141–144], along with a
detailed comparison of the various expressions.

In the current study, we require the lifetime of each RHN
to be less than 0.1 s [145], which is implemented in the likeli-
hood as a step function. In principle, this limit can be weak-
ened if the lightest active neutrino has a mass < O(10−3)

eV, since the RHNs do not necessarily thermalize in this
case [146]. We leave, however, the implementation of refined
BBN constraints inGAMBIT for future work. Note that a life-
time bound that is stronger by a factor of two would lead to
proportionally stronger constraints on the total mixing U 2

I .
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3.3 Direct RHN searches

Different experiments search with various approaches directly
for RHNs. One can distinguish between three types: peak
searches (PIENU), searches at beam dump experiments (PS-
191, CHARM, E949, NuTeV), and searches at e+e− or pp
colliders (DELPHI, ATLAS, CMS).

One possibility to look for RHN, is to search for peaks in
the lepton energy spectrum of a meson decay. If, for example,
a meson of mass mX decays into an RHN of mass MI and
an electron/muon with mass mlα , this peak will be approxi-
mately at

Epeak � m2
X + m2

lα
− M2

I

2mX
. (70)

Even in situations where backgrounds are sizeable, a peak
search can hence be used to impose constraints on the mixing.

In beam dump experiments, the large background signal
that is usually present near the target hinders the detection
of charged particles that are produced along with the RHNs.
On the other hand, RHNs with mass below the D meson
scale can be long-lived enough to travel macroscopic dis-
tances. Looking for their charged decay products some dis-
tance away from the target leads to (almost) background-free
experimental situations.

In collision experiments (e+e− or pp), vector bosons or
mesons get produced that subsequently can decay leptoni-
cally. The bounds on these processes are then able to con-
strain the corresponding active-sterile mixing angles in a cer-
tain mass range.

To implement the direct detection constraints as likeli-
hoods, we follow two different approaches, depending on the
information that is provided in each study. Firstly, some of the
experiments found no signal events and had no background
counts after cuts (DELPHI, CHARM, PS191 and NuTeV).
In this case, since the processes in the experiments are essen-
tially Poissonian, we construct the likelihood (to observe n
events) as a Poisson distribution. The number of expected
counts, μ, is a function of the RHN masses and mixings, i.e.
μ = μ(MI ,U 4

α I ) (assuming the experiment does so as well,
the fourth power takes both production and decay of RHNs
into account). For expected μ events and background b, the
likelihood is:

L(n|μ) = (μ + b)n
e−(μ+b)

n! . (71)

With no reported detections (n = 0) and background cuts
reducing b to approximately zero,

lnL(n = 0|μ) = −μ . (72)

To connect μ with our model parameters, we use the fact
that the expected signal counts are proportional to the LHN-
RHN mixing, μ ∝ U 4

α I . The factor of proportionality is set to
reproduce the results from the experimental papers (assum-
ing that these limits are based on the common Feldman-
Cousins procedure [147], where e.g. a 95% CL upper limit
would correspond to an expected number of signal counts of
μ = 3.09).

On the other hand, for the experiments which either quote
non-zero signal events and/or backgrounds, or if this informa-
tion is ambiguous (CHARM (ντ re-interpretation), PIENU,
ATLAS and E949), we model the constraint likelihood as
Gaussian upper limits, i.e. we model them as half-Gaussians
with zero mean and error set according to the confidence
level at which the results are presented. For example, in the
case of an experiment that presents limits at 90% CL, for a
half Gaussian, this lies within 1.28σ of the mean.

It is worth noting that collider experiments often use sim-
plified model assumptions to compute the confidence level
intervals presented in their results. Since we use these to con-
struct our likelihoods, we are incorporating these assump-
tions as well, in spite of the fact that our confidence intervals
are computed by profiling over the multidimensional param-
eter space. Given that a full collider simulation is beyond
the scope of this study, we employ the provided simplified
model limits as given. We acknowledge, however, that the
true limits may be slightly weaker due to, e.g a reduction of
the production cross-section, and we defer the exploration of
the differences between the collider predictions of simplified
and full models to future work.

3.3.1 PIENU

The PIENU experiment [148] sought to detect RHNs in the
mass range of 68–129 MeV by searching for peaks in the
energy spectrum of the decay process π+ → e+ν. It was,
hence, sensitive to the mixing |ΘeI |2 ≡ U 2

eI and μ in Eq. (72)
is also taken to scale asU 2

eI in our analysis. Although no peaks
were found, exact information on the number of background
events is unavailable. Further, production processes in peak
searches are, in general, unaffected by the Majorana/Dirac
nature of the RHNs; hence, no correction is necessary here.

The constraints onU 2
eI are at 90% CL, so it is implemented

in GAMBIT as a half-Gaussian with zero mean and error set
at 1.28σ .

After our analysis was complete we became aware of the
slightly stronger updated constraints presented in Ref. [149],
which are not included in our scan.

3.3.2 PS-191

This experiment [150] was designed for the purpose of
detecting neutrino decays. RHNs would be produced via
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either of the following mechanisms: π+/K+ → e+νe, or
π+/K+ → μ+νμ, and would then decay via νR → μ−e+ν,
νR → e−μ+ν, νR → e−π+, νR → μ−μ+ν, νR → μ−π+
or νR → e−π+π0. Thus, PS-191 could constrain the quan-
tities U 4

eI and U 4
μI for RHNs with a mass between 20 − 450

MeV.
Having found no signal or background events, it placed

constraints on these quantities at 90% CL. We deviate from
the original analysis in two ways. The first is necessitated
by the fact that in the original analysis, the constraints were
derived under the assumption that the RHNs interact only
through the charged current. In [38], these limits were re-
interpreted with the inclusion of neutral current interactions.
Thus, instead of the signal count being proportional to the
fourth power of the relevant flavour mixing, it is proportional
to U 2

e/μI × ∑
α cαU 2

α I , with the coefficients given by

ce = 1 + 4 sin2 θW + 8 sin4 θW

4
,

cμ, cτ = 1 − 4 sin2 θW + 8 sin4 θW

4
. (73)

We use these revised bounds here. The limits are encoded
in likelihood form as in Eq. (72), with the aforementioned
proportionality factor being 2.44.

3.3.3 CHARM

RHNs were searched for in CHARM [151] using two strate-
gies, one with a neutrino beam from dumping protons on
copper (BD) and another using a wide-band neutrino beam
(WBB) from primary protons.

In BD, the production of RHNs was assumed to occur
through the decay of D mesons. They would then decay via
νR → e+e−νe, νR → μ+μ−νμ or νR → e+μ−νe, μ+e−νμ

(and the anti-particle counterparts) and the decay products
were looked for.

In WBB, RHN production was assumed to occur via
neutrino-nucleus neutral current scattering νμN → νR X .
The subsequent decay νR → μR, R representing hadrons,
was then searched for. The limits from the WBB analysis are,
however, weaker than those exerted by other experiments in
the same mass range, and are not considered here.

The BD analysis yielded no candidate events or back-
ground and hence placed limits on UeI and UμI at 90%
CL. Further, the original analysis assumed the possibility of
RHNs interacting solely via the charged current; we use the
results re-interpreted after the inclusion of neutral current
interactions [38] as discussed in Sect. 3.3.2, i.e. the signal
count is proportional to U 2

e/μI × ∑
α cαU 2

α I and once again
use Eq. (72) to represent the likelihood, with the proportion-
ality factor being 2.44.

In [152], the data from the CHARM experiment was re-
analyzed assuming that RHNs mix solely with tau-flavoured
leptons, and was able to place limits at 90% CL on Uτ I ,
which we implement as a half-Gaussian with zero mean and
error set at 1.28σ .

Dirac RHNs were assumed in both the original and tau-
specific analyses, so the limits presented are also re-scaled
by dividing them by

√
2.

3.3.4 E949

In this experiment [153–155], RHNs were searched for in the
decay of kaons produced in a beam dump: K+ → μ+νR .
Constraints onUμI were placed at 90% CL in the mass range
175 − 300 MeV; we also divide the limits by a factor of

√
2

to account for the Majorana nature of RHNs in our model.
The likelihood is modeled as a half-Gaussian with zero

mean, error set at 1.28σ and μ ∝ U 2
μI .

3.3.5 NuTeV

The NuTeV experiment [156] searched for RHNs through
their decay into the following final states: μeν, μμν, μπ

and μρ. They were assumed to be produced in the decay of
mesons. 90% CL limits on UμI were placed for RHNs with
a mass between 0.25 and 2 GeV.

Information about the assumed Dirac or Majorana nature
of the RHNs is not present, so we take the conservative route
and presume Majorana RHNs were considered in the analy-
sis. No candidate events or background were detected, so the
likelihood is modeled as in Eq. (72), with a proportionality
factor of 2.44 and μ scaling as U 4

α I .

3.3.6 DELPHI

At DELPHI [157], e+e− → Z0 → νR ν̄ was the dominant
RHN production mechanism; the process Z0 → νR ν̄R would
be suppressed due to the additional U 2 factor. The products
of the RHN decaying via the weak and neutral current were
then searched for, according to: νR → νZ∗, Z∗ → νν̄, ll̄,
qq̄ or νR → l ′W ∗, W ∗ → νl̄, qq̄ ′. DELPHI could constrain
ΘeI , ΘμI and Θτ I for RHNs having a mass between 0.5−80
GeV.

Since the RHNs could have existed long enough to travel
macroscopic distances of upto 100 cm, different signatures
had to be considered and the analysis was split to tackle the
short- and long-lived cases separately.

In the short-lived RHN case, depending on the particle
mass, two signatures were looked for. For masses less than
about 30 GeV, due to the large boost received by the RHNs,
the signature would be a monojet. Background coming from
leptonic Z boson decays or γ γ processes were accounted
for. Higher masses open the decay channel into qq̄ (and a
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lepton, depending on the channel), and the signature in this
case would be two acollinear jets which are also acoplanar
with respect to the beam axis. Most of the background in this
scenario came from hadronic Z decays with missing energy;
a neural network was used to remove all of them from the
final data.

Longer-lived RHNs were looked for using displaced ver-
tices and calorimeter clusters. The former was useful in track-
ing RHNs with an intermediate lifetime; however, a cluster
finding algorithm along with vertex reconstruction did not
find any signals. Calorimeter clusters were used to detect the
longest-lived RHNs, whose decay products would interact
with the outermost layers/components of the experimental
setup: the signature would be a cluster of hits in a small angu-
lar region coincident with the beam collision, which could
be traced back to the initial interaction point.

The analysis was carried out assuming Majorana RHNs
and yielded one candidate event and no background events.
In our analysis, this means the proportionality factor is 3.09
and μ scales as U 4

α I .
A caveat must be mentioned here: the DELPHI analy-

sis presented bounds on the mixing in a flavour-independent
manner: the limit on U 2, as presented in the paper, applies
equally toU 2

e ,U 2
μ andU 2

τ , as they mention. In the mass range
under consideration, the mass of the tauon will, of course,
influence the strength of the limit and, as they quote, the pre-
sented bounds become weaker for masses below ∼ 4 GeV.
However, the extent of the kinematic suppression due to the
tauon mass is not quantitatively discussed; we use the limits
as is, noting that it is highly likely that NA62 will subsume
these bounds in the near future [158].

3.3.7 ATLAS

The process relevant for RHN production in ATLAS [159] is
pp → (W±)∗ → l±νR . The RHNs were taken to be heavier
than the W boson, allowing it to decay to a lepton a W boson:
νR → l±W∓; the W boson would then decay predominantly
into a quark–antiquark pair, and the signature of this decay
chain was searched for, with either two electrons or muons in
the final state.9 Hence, in our analysis, μ ∝ U 4

α I , α = e, μ.
The original analysis was carried out under the assumption
of Majorana RHNs, so no additional correction is necessary.

9 There is an ongoing dispute in the literature on whether the rate of
LNV processes at collider experiments are always suppressed by the
small parameters εi and μ in Eq. (38) and therefore unobservably small
(roughly of the order of the “naive seesaw estimate”) [53,55] or whether
coherent flavour oscillations can lead to LNV signatures in spite of the
smallness of these parameters [60,63,64]. In the range of MI below the
electroweak scale under consideration here, the strongest direct search
constraints do not come from experimental signatures that rely on LNV,
and our results are therefore only mildly affected by the outcome of this
discussion.

The analysis placed 95% CL limits on the two mixing
angles in the mass range of 100–500 GeV. Details on the
number of observed/expected events and background is avail-
able and could be cast into a likelihood function combining
Poissonian and Gaussian errors; however, we find that imple-
menting the limits in GAMBIT as a half-Gaussian with zero
mean and error set at 1.64σ reproduces the experimental lim-
its well enough for the purpose of a global fit.

3.3.8 CMS

With the LHC having run with a center-of-mass energy of
13 TeV, the CMS detector searched for different event sig-
natures of the same process as ATLAS. 95% CL limits were
calculated for UeI and UμI for RHNs with mass between 1
GeV and 1.2 TeV [160].

As before, Majorana RHNs were assumed in the analysis,
and our implementation of the limits mirrors that of ATLAS.

Note that updated bounds from ATLAS [161] and CMS
[162,163] have been released, but are not included, since
these papers came out after our scans were completed. How-
ever, the new bounds from ATLAS are comparable to those
from DELPHI, and the newer dilepton search from CMS
only produces stronger bounds for RHN masses above ∼ 500
GeV, which is beyond our range of study.

3.3.9 LHCb

LHCb has performed direct searches for heavy neutrinos.
The most recent results [164] were derived with an inconsis-
tent model and have been corrected in Ref. [165]. They are
subdominant in the mass range considered here. In Ref. [166]
the results of a generic long lived particle search [167] has
been re-interpreted in the context of heavy neutrinos. We do
not include these results here because the conservative inter-
pretation does not yield stronger bounds than the ones we
include.

3.3.10 Other experiments

Further measurements at Borexino [168,169], Bugey [170],
SIN [171], BEBC [172], JINR [173], TRIUMF [128,174],
OKA [175,176], ISTRA [177], NOMAD [178], NA62 [179],
Belle [180], KEK [181,182] and T2K [183] have both pub-
lished constraints on RHNs. We do not indculde them here
because, with the present data, they are subdominant or cover
a different mass range.

4 Scanning strategy and parameter ranges

In this work, we focus on the exploration of the RHN param-
eter space using frequentist statistics. Our main goal is to
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establish the ranges of RHN parameters that are not yet
explored by experiments, and a frequentist approach deliv-
ers a suitable and prior-independent method. We are dealing
with a high dimensional parameter space, which we have to
project into two-dimensional plots. To this end, the central
quantity of interest is the profile likelihood,

lnLprof(θ1, θ2) = max
η

lnL(θ1, θ2, η) . (74)

which is, for fixed parameters of interest θ1 and θ2, the
maximum value of the (log-)likelihood function that can be
obtained when maximizing over the remaining parameters η.

We emphasize that the main goal of this work is to estab-
lish conservative constraints on RHN mixings and masses by
profiling over all relevant parameters. We do not perform a
proper goodness-of-fit analysis to experimental data, which
would require sampling of experimental results; given the
large range of included experimental results and the some-
times limited knowledge about individual experiments this
is beyond the scope of the current work. Instead, likelihoods
are included in a approximate fashion that allows to repro-
duce published experimental results, and we use Wilks’ the-
orem [184] to approximate the sampling statistics of log like-
lihood ratios and estimate confidence contours when neces-
sary.

Our scanning strategy is designed in order to explore the
complex parameter space of the RHN model such that we
obtain reliable results for the projections shown in this work.
To this end, we perform a large set of scans with different set-
tings which we then merge into a single dataset. We study the
normal (NH) and inverted (IH) hierarchy independently, in
order to avoid artificially favouring one over the other due to
the different normalisation of the active neutrino likelihoods
(c.f. Sect. 3.1). Hence, we make independent scans for each
of the neutrino mass hierarchies, normal and inverted, for the
full set of scans described below.

4.1 Parameters and priors

The parameter ranges and priors for the original scans can be
seen in Table 5. We emphasize that ‘priors’ do here not cor-
respond to priors in the Bayesian sense, but rather determine
the efficiency with which different regions of the param-
eter space are explored. For convergent scans, the results
are prior-independent. We have chosen to split the complex
angles ωi j into their real and imaginary parts. The active-
sterile mixings depend strongly on the imaginary parts of ωi j(
Θ2 ∼ exp(2Im(ω))

M

)
and large values of Imω produce mix-

ings that are too large to pass any constraints, so we take a
conservative range Imω ∈ [−15, 15], and also pre-emptively
disallow choices that lead to |Θ|2i j > 1. As discussed in 2.5, a

condition for an approximate B− L̄ symmetry to be realized

Table 5 Parameter ranges adopted for the full model scans, with + (−)
for normal (inverted) hierarchy of the active neutrino masses

Parameter Value/range Prior

Active neutrino parameters

θ12 [rad] [0.547684, 0.628144] Flat

θ23 [rad] [0.670206, 0.925025] Flat

θ13 [rad] [0.139452, 0.155509] Flat

mν0 [eV] [10−7, 0.23] log

Δm2
21 [10−5 eV2] [6, 9] Flat

Δm2
3l [10−3 eV2] [±2,±3] Flat

α1, α2 [rad] [0, 2π ] Flat

Sterile neutrino parameters

δ [rad] [0, 2π ] Flat

Re ωi j [rad] [0, 2π ] Flat

Im ωi j [−15, 15] Flat

MI [GeV] [0.06, 500] log

Rorder [1,6] Flat

Nuisance parameters

mH [GeV] [124.1, 127.3] Flat

is for two RHNs to have almost degenerate masses, which
extends the range of the mixings so that they can be probed
by experiments. This provides motivation for using a loga-
rithmic prior on the RHN masses, also allowing the scanner
to sample better the region close to the limits of the most
constraining experiments/observables.

The C-I parametrisation, as defined in Sect. 2.4, together
with the particular parametrisation choice of R in Eq. (30),
was found to not fully cover the entire parameter space. To
circumvent this and ensure that all possible couplings are
covered by the scans, we introduce an additional parameter
to the scan Rorder with discrete values [1, 6] corresponding
to each of the possible permutations of the definition of R in
terms of Ri j . This allows full coverage of the coupling space
and, since the likelihood is conceptually independent of the
order in R (and confirmed by the data), it ensures an uniform
distribution of values in the parameter Rorder.

Out of the active neutrino parameters, only α1 and α2 are
unconstrained by oscillation data, hence they are allowed
to vary freely from 0 to 2π with flat priors. The ranges
for the other neutrino phases and angles are taken as the
widest of the 3σ ranges, for normal or inverted hierarchy,
from the NuFit collaboration [77], also with flat priors. The
mass of the lightest active neutrino,mν0 , has a definite impact
on the lower bound of U 2

I (23) [30], so we choose a loga-
rithmic prior, which enables us to examine this impact in
greater detail than a flat prior would allow and keeps the
BBN limits relevant [146]. The upper limit on mν0 is cho-
sen as the broad cosmological bound given by Planck [97],
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∑
mν < 0.23 eV.10 In order to better fit the active neu-

trino data, the mass splittings Δm2
21 and Δm2

3l are cho-
sen as scan parameters, where l = 1 and Δm2

3l > 0 for
normal hierarchy and l = 2 and Δm2

3l < 0 for inverted
hierarchy.

Since the construction of the mixing matrix in the C-I
parametrisation depends on mH (1-loop correction), as seen
in 2.4, we take mH as a nuisance parameter with a Gaus-
sian distribution around its averaged measured value [101]
and a flat prior. Other SM parameters are fixed to their PDG
values [101].

4.2 Targeted scans

We encountered a number of challenges while sampling
the full RHN parameter space. One reason is connected
to the behaviour of the likelihood function over the whole
parameter range. The adopted scanning algorithm (Diver,
see below for details) is designed to find regions of max-
imum likelihood across the parameter space. However, as
we will discuss later when we study the effect of each indi-
vidual observable, most constraints have flat contributions
to the likelihood in a large portion of the parameter space.
Hence, the scanner often does not fully explore large regions
with equal or worse likelihood. This happens especially near
the experimental bounds. Furthermore, although high cou-
plings are possible between active and sterile neutrino sec-
tor, they often lie in the symmetry protected regime, as
described in Sect. 2.5 and/or require severe fine-tuning of the
parameters. Again, exploring these regions turned out to be
challenging.

Therefore, we designed and performed a large set of tar-
geted scans to fully saturate the experimental bounds, the
list of which can be found in Table 6. The design strategies
we adopted for these targeted scans can be summarised as
follows.

First, all targeted scans were performed using a differential
RHN model, where the parameter M2 is replaced by ΔM21,
with a logarithmic prior. This allows the exploration of the
symmetry protected region, with near degenerate masses for
two right-handed neutrinos.

Most of the experimental bounds occur at high couplings,
thus in order to encourage the scanner to explore the high
coupling regions, we added an artificial likelihood to the
scan to drive the scan to the unexplored boundaries. To
saturate the experimental bounds for each coupling U 2

α I ,
α = e, μ, τ , different targeted scans were performed using

10 This upper limit is not very conservative in light of Planck data, a
more conservative bound would be

∑
mμ < 0.6 eV [185]. However,

there is no effect of this constraint on our data as most high likelihood
data points lie in the limit mν0 → 0. We have, nevertheless, studied a
subset of cases with the conservative bound and indeed found them to
not be relevant.

this coupling slide likelihood on each of the couplings, of
the form s logU 2

α I + m log MI . Table 6 shows the param-
eter that is optimised in each scan, α, and the coefficients,
(s,m). This contribution was later removed from the data in
the postprocessing stage.

The targeted scans were further split along the MI axis
following the limits of the various experimental constraints
(mostly from direct searches). This ensures that each cou-
pling (with the selection above) saturates the most relevant
experimental upper bound in each mass range. Additionally,
some scans used different values of ΔM21 and/or mν0 to
further force the scan into fine-tuned regions of parameter
space. The ranges used for MI , ΔM21 and mν0 for each scan
are specified in Table 6.

A similar strategy was used to saturate the BBN bound at
low couplings. Three scans were performed for each hierar-
chy, with slide coefficients (s,m) = (−0.5,−0.5) on each
coupling U 2

α I , α = e, μ, τ . To further optimise on low cou-
plings, these scans were performed for fixed mν0 = 10−10

and a narrow range on Imω ∈ [−0.5, 0.5]. With these set-
tings the BBN bound was fully saturated in the explored mass
range.

We found that some of the experimental likelihoods pro-
vide positive contributions to the total likelihood in spe-
cific regions of the parameter space. This forced the scan
towards those regions, leaving others unexplored. Although
this is a rather interesting feature, and will be discussed in
detail later, it prevented a thorough exploration of the full
parameter space. We thus chose to remove the likelihood
contribution of RK

eμ from the total likelihood that drives the
scan, adding it later in postprocessing. Other likelihoods
with positive contributions, Γinv, CKM and Rτ

eμ, tended
to force the scan towards large U 2

τ I couplings. Although
desirable to saturate the limits, this also left regions with
low τ coupling undersampled. Thus, a cut on the cou-
pling U 2

τ I was enforced in some scans to fully sample all
regions.

The adopted strategy for scanning was driven by the need
to fully sample the parameter space. The results from all the
diverse scans were combined into a single dataset after some
postprocessing (see below). This does not pose a problem
for the statistical interpretation, since we are interested in
the profile likelihood, which only becomes more accurately
estimated when adding additional chains.

4.3 Scanning framework

To perform the detailed scans, we make use of the GAM-
BIT framework, as described in Appendix A, and the dif-
ferential evolution scanner Diver, version 1.0.4 [40], which
is a self-adaptive sampler, capable of sampling the profile
likelihood more efficiently than other scanners. We choose
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Table 6 Set of targeted scans performed for normal (N) and inverted (I) hierarchy in addition to the full parameter scans. Parameters not shown in
this table are taken as in Table 5

M1 [GeV] ΔM21 [GeV] mν0 [eV] α (s,m) Hierarchy Other

[0.1, 0.3162] [10−10, 0.1] [10−7, 0.23] (e, μ, τ) (0.5,−0.5) N, I U2
τ I < 10−4

[0.1, 0.4217] [10−10, 0.1] [10−7, 0.23] (e, μ, τ) (0.5,−0.5) N, I U2
τ I < 10−4

[0.3162, 2.0] [10−10, 0.1] [10−7, 0.23] (e, μ, τ) (0.5, 0.5) N, I U2
τ I < 10−4

[2.0, 60] [10−20, 10−10] [10−6, 0.23] (e, μ, τ) (0.5, 0) N, I U2
τ I < 10−4, flat mν0 prior

[2.0, 60] [10−20, 10−10] 10−4, 10−5, 10−6 (e, μ, τ) (0.5, 0) N, I Fixed mν0

[60, 500] [10−20, 10−10] [10−6, 0.23] (e, μ, τ) (0.7, 0.25) N, I U2
τ I < 10−4, flat mν0 prior

[60, 500] [10−20, 10−10] 10−4, 10−5, 10−6 (e, μ, τ) (0.7, 0.25) N, I Fixed mν0

[0.06, 0.14] [10−10, 0.1] [10−7, 0.23] (e, μ) (0.5,−0.5) N, I U2
τ I < 10−4, flat mν0 prior

[60, 500] [10−20, 10−10] [10−6, 0.23] (e, μ) (0.7, 0.25) I Flat mν0 prior

[0.14, 0.2] [10−10, 0.1] [10−7, 0.23] (e) (0.5,−0.5) N,I U2
τ I < 10−4, flat mν0 prior

[0.2, 0.4217] [10−10, 0.1] [10−7, 0.23] (e) (0.5,−0.5) N,I U2
τ I < 10−4, flat mν0 prior

[0.14, 0.3162] [10−10, 0.1] [10−7, 0.23] (μ) (0.5,−0.5) N,I U2
τ I < 10−4, flat mν0 prior

[0.1, 0.3162] [10−10, 0.1] [10−7, 0.23] (τ ) (0.5,−0.5) N, I –

[0.1, 0.4217] [10−10, 0.1] [10−7, 0.23] (τ ) (0.5,−0.5) N, I –

[0.175, 0.3611] [10−20, 10−10] [10−2, 0.23] (τ ) (0.5, 0.5) N, I –

[0.25, 0.3611] [10−20, 10−10] [10−2, 0.23] (τ ) (0.5, 0.5) N, I –

[0.25, 0.4] [10−20, 10−10] [10−2, 0.23] (τ ) (1.0, 0) N, I –

[0.3611, 0.4492] [10−10, 0.1] [10−2, 0.23] (τ ) (0.5,−0.5) N, I –

[0.3611, 0.4492] [10−20, 10−10] [10−2, 0.23] (τ ) (0.5, 0.5) N, I –

[0.4, 0.5] [10−10, 0.1] [10−7, 0.23] (τ ) (0.5,−0.5) N, I –

[0.3162, 2.0] [10−10, 0.1] [10−7, 0.23] (τ ) (0.5, 0.5) N, I –

[0.3162, 1.4] [10−10, 0.1] [0.03, 0.23] (τ ) (0.5, 0.5) I U2
τ I < 10−3

[1.0, 1.5] [10−7, 0.01] [0.03, 0.23] (τ ) (0.5, 0.5) I U2
τ I < 10−3

[1.25, 1.45] [10−20, 10−10] [0.01, 0.23] (τ ) (0.5, 0.5) I –

[1.4, 1.78] [10−7, 0.01] [0.03, 0.23] (τ ) (0.5, 0.5) I U2
τ I < 10−3

[1.65, 1.85] [10−20, 10−10] [0.01, 0.23] (τ ) (0.5, 0.5) I –

[1.25, 1.45] [10−20, 10−10] [0.01, 0.23] (τ ) (0.5, 0.5) I –

[2.0, 60] [10−20, 10−10] [10−6, 0.23] (τ ) (0.5, 0) N, I Flat mν0 prior

[60, 500] [10−20, 10−10] [10−6, 0.23] (τ ) (0.7, 0.25) N, I Flat mν0 prior

a population size of NP = 19200 and a convergence thresh-
old of convthresh = 10−10. After some tests, we have con-
cluded that the aggressive λjDE setting in Diver provides an
improvement on the sampling of the parameter space, since
it is more suited for sampling fine-tuned regions.

These scanner settings, including the very low con-
vergence threshold, together with the scanning strategy
described above, ensure a thorough exploration of the param-
eter space, albeit at the price of CPU time. Despite the fact
that none of the observables used required heavy compu-
tation or simulations, most scans took between 2 and 10
hours of running time on a large number of supercomputer
cores varying between 250 and 780. All tests and scans were
carried out across several supercomputer facilities, includ-
ing the MareNostrum supercluster in Barcelona, Marconi in

Bologna, LISA/Surfsara through the University of Amster-
dam and Prometheus in Krakow.

4.4 Data postprocessing

Upon completion of the scans, a number of postprocessing
tasks were performed on the data to prepare it for plotting. As
previously mentioned, the first of these tasks was to remove
the artificial coupling slide likelihood used to drive the scans
to high couplings.

Due to the large amount of scans performed and the low
convergence threshold used, the size of the samples surpassed
1TB for each hierarchy, rendering them unmanageable for
most plotting routines. We hence performed a few opera-
tions on the scan results prior to combining them. With the
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Fig. 1 Profile likelihood in MI vs U2
eI plane for normal (left) and inverted hierarchy (right). Tables with the 90% and 95% CLs for both hierarchies

can be found in Zenodo [186]

target of showing profile likelihood plots in the MI vs U 2
α I

planes, we hence extracted a subset of the data points opti-
mised in these planes, with a resolution of 10−5. Since most
scans were targeted to saturate the limits for a particular cou-
pling (see Table 6) we perform this reduction of the data
in the respective mass vs coupling two-dimensional planes.
The combined set will hence be optimised for all couplings.
Additionally, and independent reduction of the data is per-
formed on the planes mν0 vs U 2

α I , since we intent to study
the effect of mν0 cuts on the coupling limits.

The flavour label of the heavy neutrinos is arbitrary, and
the experimental constraints on a heavy neutrino with a given
mass cannot depend on the labelling. However, for reasons
explained in more detail in appendix C, the scanning strategy
outlined in Sect. 4.2 introduces a bias that suggests that the
constraints differ for N1, N2 and N3. Hence, to remove this
bias in the labels, after combining the reduced datasets for
all the scans, we conduct a symmetrization procedure over
the combined datasets. We therefore symmetrize over MI as
well as Uα I , which will increase the size of the datasets six
fold.

Lastly, in order to compare with then = 2 case, two further
datasets were obtained, for normal and inverted ordering,
where the data points are required to lie in the symmetry
protected region.

Out of the incalculable amount of data points we collected
through our scanning procedures, a total of 40.7 million valid
data samples were used for plotting. Of which 11M corre-
spond to normal hierarchy and 10M for inverted hierarchy,
optimised on MI vs U 2

α I planes, and 9.9M for normal and
9.7M for inverted hierarchy, optimised onmν0 vsU 2

α I planes.
The datasets with points in the symmetry protected region
have over 71k and 20k valid data samples for normal and
inverted hierarchy, respectively. These samples can be found
in Zenodo [186].

4.5 Capped likelihood

The figures in this article show the so-called capped pro-
file likelihood (unless stated otherwise), which is defined
in each of the scanned point to an equal or worse fit than
the SM: L = min[LSM,LRHN]. It can thus be interpreted
as exclusion-only likelihood. Capped likelihoods have been
used in previous studies, particularly in the context of col-
lider searches [187,188]. The rationale behind the use of this
capped likelihood is the presence of positive (above SM)
contributions to the log likelihood from various observables.
Importantly, these ‘excesses’ would not show up as localized
features in the total profile likelihood, as there is enough of
freedom to add points in the MI − U 2

α I plane to find MJ ,
J 	= I with values that would saturate the excess likelihood.
Thus a very large fraction of the parameter points would have
the maximum allowed likelihood from the combination of all
excesses. This effect forces to separate the exclusion studies
from the possible signal observation. Thus, in most of the
paper, we use the capped likelihood to present parameter
constraints. The excess likelihoods will be discussed sepa-
rately in Sect. 5.4.

5 Results and discussion

5.1 General constraints on the RHN mass and mixing

The constraints are shown in Figs. 1, 2, 3 and 4 for the cou-
plings U 2

α I to the active neutrino flavours α = (e, μ, τ), as
well as their combination U 2

I = ∑
α U

2
α I , as functions of

the heavy neutrino masses MI . Here, the second index can
refer to any of the heavy neutrino flavours I = (1, 2, 3),
because their labelling is not physical. Figures 5, 6 and 7
show the combinations of couplings Uα IUβ I with α 	= β.
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Fig. 2 Profile likelihood in MI vsU2
μI plane for normal (left) and inverted hierarchy (right). Tables with the 90% and 95% CLs for both hierarchies

can be found in Zenodo [186]

Fig. 3 Profile likelihood in MI vsU2
τ I plane for normal (left) and inverted hierarchy (right). Tables with the 90% and 95% CLs for both hierarchies

can be found in Zenodo [186]

Fig. 4 Profile likelihood in MI vs U2
I plane for normal (left) and inverted hierarchy (right). Overlaid are the lowest limits for various values of

mν0 [42]. Tables with the 90% and 95% CLs for both hierarchies can be found in Zenodo [186]
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Fig. 5 Profile likelihood in MI vs |UeIUμI | plane for normal (left) and inverted hierarchy (right). Tables with the 90% and 95% CLs for both
hierarchies can be found in Zenodo [186]

Fig. 6 Profile likelihood in MI vs |UeIUτ I | plane for normal (left) and inverted hierarchy (right). Tables with the 90% and 95% CLs for both
hierarchies can be found in Zenodo [186]

Fig. 7 Profile likelihood in MI vs |UμIUτ I | plane for normal (left) and inverted hierarchy (right). Tables with the 90% and 95% CLs for both
hierarchies can be found in Zenodo [186]
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Table 7 Upper limits on U2
α I and Uα IUβ I within 2σ in the high mass

region MI � 80 GeV, for normal (N) and inverted (I) hierarchy

Hierarchy Coupling Upper limit (2σ )

N U2
eI 4.92 × 10−4

N U2
μI 2.42 × 10−4

N U2
τ I 9.59 × 10−3

N UeIUμI 3.49 × 10−5

N UeIUτ I 1.37 × 10−3

N UμIUτ I 1.25 × 10−3

I U2
eI 8.15 × 10−4

I U2
μI 3.46 × 10−4

I U2
τ I 9.91 × 10−3

I UeIUμI 3.34 × 10−5

I UeIUτ I 2.19 × 10−3

I UμIUτ I 1.43 × 10−3

The allowed profile likelihood regions are flat for most of
the parameter space, in particular for small couplings U 2

α I ,
and drop smoothly at high couplings following the relevant
upper limits. The white lines around the experimental limits
mark the 1σ and 2σ contours, which are estimated assuming
Wilks’ theorem with 2 degrees of freedom.11

The largest values of mixings U 2
α I and Uα IUβ I for all

flavours are allowed for MI above the masses of the weak
gauge bosons. In this regime the direct searches at colliders
are sub-dominant, and the heavy neutrino properties are pri-
marily constrained from above due to electroweak precision
observables, lepton flavour violation and CKM constraints.
The upper limits on the couplings U 2

α I and Uα IUβ I within
2σ of the highest likelihood for each hiearchy and flavour in
the high mass region can be found in Table 7. It can be read-
ily noticed that the upper limits for the τ couplings is much
larger than for the other two flavours, which can be under-
stood because the limits from EWPO and LFV are stronger
for e and μ (see also Sect. 5.4). In particular, the combination
UeIUμI has the smallest of upper limits, as shown as well
in Fig. 5, due to strong constraints from LFV observables,
specifically μ → eγ and μ − e conversion (see Figs. 34 and
35 in Appendix D).

For MI between the masses of the D mesons and the W
boson the limits from direct searches dominate because the
heavy neutrinos can be produced efficiently via the s-channel
exchange of on-shell W bosons. In the range between the
D meson masses and the W boson mass, the limits from
the DELPHI [157] and CMS [160] experiments compete to
impose the strongest bound.

Below the D meson mass the constraints on U 2
eI and U 2

μI
are dominated by direct search constraints from fixed target

11 All profile likelihood plots were created using pippi [189].

experiments, in particular CHARM [151] and NuTeV [156]
above the kaon mass, PS-191 [150] and E949 [155] between
the pion and kaon mass and pion decay experiments at even
lower masses. In this regime the global constraints on U 2

eI
andU 2

μI are in good approximation given by the direct search
constraints, as discussed in Sect. 5.2 and Figs. 8, 9 and 10.
This is in contrast to the model with n = 2, where the
global fits rule out a significant mass range below the kaon
mass that appears to be allowed if one simply superimposes
the direct constraints in the mass-mixing planes [27]. For
U 2

τ I , the direct search constraints are much weaker, the limit
from long-lived particle searches by DELPHI remains the
most significant one in our scans. Figure 3 shows that direct
searches become subdominant for the τ coupling and the
EWPO limit is saturated for a considerable range of masses
below the kaon mass.

For masses below roughly 0.3 GeV the global constraints
are stronger than the sum of their ingredients due to an
interplay of the lower bound from BBN on the mixings,
the upper bounds on U 2

eI and U 2
μI from direct searches and

the constraints on the heavy neutrino flavour mixing pattern
from neutrino oscillation data (discussed further below in
Sect. 5.3). The latter disfavours large hierarchies amongst
the couplings to individual SM flavours, though these con-
straints are weaker than in the model with n = 2 [27,190].
This implies that upper bounds on combinations of U 2

eI and
U 2

μI indirectly constrainU 2
τ I . The BBN constraint on the life-

time does not impose a constraint on any individual coupling
U 2

α I , but requires at least some of them to be sizeable and
practically translates into a lower bound on U 2

I that is visible
in Fig. 4. Both, the BBN constraint and the constraint on the
flavour mixing pattern (that will be discussed in more detail
in Sect. 5.3 and is visible in Fig. 11) leads to the lower and
upper bounds on U 2

τ I that are visible in Fig. 3.
The upper bound on the total mixing U 2

I from the global
constraints can roughly be identified with the bound on Uτ I

across the entire mass range as it is constrained the weakest.
The lower bound is again given by the lifetime constraint
from BBN. In addition, there is a lower bound from the
requirement to explain the light neutrino oscillation data that
depends on mν0 and is therefore only visible if one imposes
a cut on this unknown quantity. Our results agree with the
analytic estimates made in Ref. [42], as will be discussed in
Sect. 5.3, and are illustrated in Fig. 4.

5.2 Discussion of individual bounds

Figures 8 and 9 show explicitly the effect of direct searches
on the upper limits of the e and μ couplings in the mass
range MI ∈ [0.1, 10] GeV. Most of the limits shown are at
90%CL, with the exception of DELPHI at 95%. As expected,
they lie between the 1σ and 2σ contours. Some of the exper-
imental limits, PS-191 and CHARM, do not directly con-
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Fig. 8 Profile likelihood in MI vsU2
eI plane with MI < 10 GeV and overlaid direct detection limits, for normal (left) and inverted hierarchy (right)

Fig. 9 Profile likelihood in MI vsU2
μI plane with MI < 10 GeV and overlaid direct detection limits, for normal (left) and inverted hierarchy (right)

Fig. 10 Profile likelihood in MI vsU2
μI plane with MI < 0.4 GeV and overlaid direct detection limits, for normal (left) and inverted hierarchy (right)

strain an individual coupling, but rather the combination
U 2
e/μI ×∑

α cαU 2
α I (as mentioned in Sects. 3.3.2 and 3.3.3),

with the coefficients cα from Eq. (73). As we profile over

the other two couplings, the strongest limit for the α flavour
for these experiments would correspond to (U exp

I )2/cα , with
(U exp

I )2 being the reported limit by the experiment. Hence the
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Fig. 11 U2
α I /U

2
I (in percent) for different upper limits of mν0 (see legend). Solid (dashed) lines delineate the 1σ (2σ ) contours, for normal (left)

and inverted hierarchy (right). As discussed in footnote 12, these constraints apply to those heavy neutrinos that can be found experimentally

former ratio is what is shown in the figures as the PS-191 and
CHARM limits. As observed, U 2

eI is constrained by PS-191
and CHARM in the lowest and next-to-lowest mass regions,
whereas they are superseded by the limits from E949 and
NuTeV forU 2

μI . In the lowest mass region for the μ coupling
it would appear that the E949 bound is in fact not saturated as
the experimental limit falls below the data. This is however
just an artifact of binning and interpolation in that region and
the fact that the E949 limit is quite jagged. To illustrate this,
we show in Fig. 10 a zoom into the lowest mass region from
Fig. 9, where it can be seen clearly that the profile likelihood
follows the limits of E949.

Neutrino oscillation data imposes very strong constraints
on the parameter space and disfavours vast volumina in the
18 dimensional model parameter space. In the scenario with
n = 2 this has a visible effect on the projections of the global
constraints on the MI -U 2

α I planes [27], in particular for heavy
neutrinos lighter than the kaon, where the interplay between
neutrino oscillation data, BBN and direct searches rules our
most values of MI . This effect strongly depends on the light
neutrino mass ordering, and varying the light neutrino oscil-
lation parameters within their experimentally allowed limits
leads to visible differences [27]. In the present analysis with
n = 3 the impact of neutrino oscillation data on the likeli-
hoods in the MI -U 2

α I planes is much smaller. This is primarily
visible in the third generation and the total mixing, cf. Figs. 3
and 4, where the dependence on the light neutrino mass order-
ing is weak. The reason is that the larger dimensionality of
the parameter space with n = 3 makes it easier to avoid
conflicts with direct or other indirect bounds. With n = 2
neutrino oscillation data also imposes strong constraints on
the flavour mixing pattern [27,190,191]. These are also visi-
ble in the present analysis, cf. Figs. 11, 12 and 13, but can be
avoided by choosing a sufficiently large value for mν0 . The

constraints on the flavour mixing pattern strongly depend
on the light neutrino mass ordering, and varying the light
neutrino oscillation parameters within their experimentally
allowed range has a considerable impact on the predictions.

As mentioned above, EWPO (including Γinv, mW , W -
decays and sw), LFV and CKM constraints become relevant
for very large couplings and are thus the dominant limit in the
high mass region, as well as a small region at small masses for
the τ coupling (Fig. 3). Besides providing constraints, in par-
ticular Γinv and CKM observables are also responsible for the
slight excesses in the total likelihood, which we will discuss
in Sect. 5.4. Other constraints included in the analysis have
little to no effect on the profile likelihoods as shown above.

Among the leptonic decays, only RK
eμ has some impact on

the likelihood, with a negative contribution at masses below
0.45 GeV. Both RK

eμ and Rτ
eμ show minor excesses in total

likelihood, which again will be discussed later. Other lepton
universality constraints have only little effect on the likeli-
hood.

Neutrinoless double beta decay sets strong upper bounds
on U 2

eI for generic parameter choices, which strongly dis-
favours considerable regions of parameter space. However,
in the limit where lepton number is approximately preserved
the expected signal from 0νββ is suppressed. Since many
of our parameter points are in this symmetry protected sce-
nario, particularly at high couplings, the impact of this con-
straint on the likelihoods in the projection on the mass-mixing
plane is minimal. This is consistent with what was found in
Refs. [27,30,192].

The effect of BBN can be seen in the lower limits of Figs. 3
and 4. The lower limit onU 2

I is a direct consequence of BBN,
as lower couplings would mean that right-handed neutrinos
would not decay before BBN and thus affect the abundance
of primordial elements. Although no individual limits are
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Fig. 12 Upper limits on the coupling ratios U2
α I /U

2
I within 2σ as a function of the lightest active neutrino mass mν0 , for normal (left) and inverted

hierarchy (right). As discussed in footnote 12, these constraints apply to those heavy neutrinos that can be found experimentally

Fig. 13 Profile likelihood for U2
α I /U

2
I (in percent) in the limit of n = 2 in the symmetry protected region for normal (left) and inverted (right)

hierarchy. For the detailed cuts we refer to the text

imposed by the BBN constraint on the couplings, the strong
upper limit on the e and μ flavours at low masses has the side
effect of setting a lower limits on U 2

τ I , as seen in Fig. 3.
For a more detailed explanation of the effect of each partial

likelihood, and associated figures, we refer to Appendix D.

5.3 Lightest neutrino mass and flavour mixing

Oscillation data strongly constrains most of the active neu-
trino parameters, in particular the mass splittings Δm2

21 and
Δm2

3l , the mixing angles θi j and CP phase δCP , whereas
the lightest neutrino mass mν0 remains unknown. There are
upper bounds from cosmology on the sum

∑
i mi that depend

on the active neutrino mass hierarchy, the data set used and
the underlying cosmological model. The value quoted by

the Planck collaboration for a standard cosmological model
is

∑
i mi < 0.12 eV [193], a discussion of how this value

changes with different assumptions can e.g. be found in the
Particle Data Group Report [124]. In fact, using the best
fit values for the mass splittings from the NuFit data [77]
and the conservative value

∑
i mi < 0.23 eV, we can infer

the upper limits of mν0 < 7.12 × 10−2 eV for normal and
mν0 < 6.55 × 10−2 eV for inverted hierarchy.

The value of mν0 strongly impacts on the lower limit on
U 2

I . One can obtain a reliable estimate of the lower bounds
on U 2

I by setting R = 1 [42]. This makes the PMNS matrix
unitary, and the lower limit one the smallest mixing can be
estimated as U 2

I � mν0/MI . Using this approximation, we
show in Fig. 4 the lower limits on U 2

I that we obtain in our
scans for different values ofmν0 = (0.05, 10−2, 10−3, 10−4)
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eV. In the case of mν0 = 0 there is no absolute lower limit on
the coupling from the seesaw mechanism, and the residual
lower limit on U 2

I is due to the BBN constraint.
The lightest neutrino mass has an important effect on the

pattern of flavour mixing. In the limit of large mν0 , there is
almost no constraint on the allowed flavour ratios U 2

α I /U
2
I .

This is shown in Fig. 11 by the black solid (dashed) contours,
which indicate the allowed region within 1σ (2σ ) where the
lightest neutrino mass is mν0 < 10 meV (close to the cos-
mological bound stated above). In this case, there is no vis-
ible upper limit on U 2

μI /U
2
I or U 2

τ I /U
2
I for normal hierar-

chy, whereas U 2
eI /U

2
I is constrained � 0.95. Conversely, for

inverted hierarchy there is an upper limit for the μ and τ

flavours, but none for the e flavour. However, for smaller val-
ues of mν0 , the allowed range for the flavour mixing pattern
becomes significantly constrained.12 This is shown by the
lines for mν0 < 1 meV (blue), mν0 < 0.1 meV (green) and
mν0 < 0.01 meV (red). For masses lower than 0.01 meV
the constraints saturate and the size of the ellipse remains
almost constant. This can be also seen in Fig. 12, where the
largest coupling ratio is plotted for each flavour as function
of neutrino mass.

It is instructive to compare our results to the constraints
on the flavour mixing pattern in the scenario with n = 2
that were found in Refs. [27,190,191]. For this purpose it
is not sufficient to simply insert very small values for mν0

in the parameterisation (29) because such values can also be
achieved due to accidental cancellations in the light neutrino
mass matrix (without decoupling of any of the heavy neu-
trinos), cf. Sect. 2.6. To remove such fine tuned points we
impose the following cuts

|M2 − M1|
M2 + M1

< ε,
mν0

μeV
< 1,

|Fα3| < ε,
|Fα1 + i Fα2|
|Fα1| + |Fα2| < ε. (75)

12 When constraining mν0 to very small values, we almost decouple
one right handed neutrinos. The contribution of this feebly coupled
state to the generation of light neutrino masses is negligible, which in
return implies that its properties are almost unconstrained by neutrino
oscillation data, and such is its flavour mixing pattern. Thus extreme
ratios U2

α I /U
2
I can in principle occur for this particular heavy neutrino,

although the absolute values of U2
I remains negligible, and it has no

effect on any near future experiment. Since our focus is primarily on
heavy neutrinos that make a measurable contribution to the generation
of light neutrino masses and/or may be discovered in experiments, we
applied a cut on MIU2

I > 10−10 GeV in Figs. 11 and 12 to remove
artefacts arising from states that are practically decoupled. The value
of the cut is motivated by experimental sensitivities as demonstrated.
The NA62 experiment, for instance, will only be able to probe up to
sensitivities of MIU2

I ≈ O(10−8) [190]; under optinistic assumptions
the LHC may test MIU2

I ≈ O(10−8) [194] and the FCC MIU2
I ≈

O(10−11) [64].

Here ε is an arbitrarily small number, which we choose as
ε = 0.01 for convenience. In addition, we work in the lim-
its as defined by |Imω23| � 1 and Reω13 ∼ π/2 for nor-
mal hierarchy, and |Imω12| � 1 for inverted hierarchy (c.f.
Appendix C). Note that we randomised the order of the matri-
ces Ri j , and hence for normal hierarchy we can only repro-
duce the true symmetry protected regime for the permutation
R = R23R13R12. The inverted hierarchy limit is indepen-
dent of permutations as two of the ωi j are zero. In Fig. 13,
we show the triangle plots with 1σ and 2σ contours for NH
and IH in the symmetry protected region after applying the
aforementioned cuts to remove fine-tuned points. The results
are consistent with what was found in Ref. [190] for n = 2
RHNs. It is worth noting that there is a sharp upper limit on
U 2
eI /U

2
I where the contours do not show. This is due to the

hard upper limit imposed on mν0 in order to reach the n = 2
case and it is, as before, consistent with the results in [190].

5.4 Discussion of excesses likelihoods

In the previous subsections, we have made use of an
exclusion-only ‘capped’ profile likelihood to study the con-
straining effect of the various observables on the parameter
space (for a justification see Sect. 4.5). The total likelihood,
however shows a pattern of excesses in some small regions
of the parameter space. As discussed in Sect. 4.5, experi-
mental results with a preference for specific heavy neutrino
masses and mixings would in general not show up as local-
ized excesses in the total profile likelihood. This is due to the
fact that for each value of MI it would be in general possible
to find a value of MJ (with J 	= I ) and associated couplings
that would maximize the excess likelihood, irrespective of the
values of MI . In order to extract the specific masses and cou-
plings preferred by an excess likelihood, we adopt through
this subsection the following strategy. We only allow one of
the three RHNs (which we take to be I = 1) to acquire the
required masses and couplings, while disallowing the other
two RHNs to enter the preferred region. This is emphasized in
the plots by specifying M1 and |Uα1|2 instead of MI andU 2

α I .
Mind that these results would be identical for M2 and M3.

The invisible width of the Z boson is modified by the
presence of the right-handed neutrinos through their mixing,
as described in Sect. 3.2.1. For very high τ couplings,U 2

τ I >

10−3, the prediction from the RHN model is actually a better
fit to the experimental measurement than the SM, and thus
there is a slight (< 2σ ) excess. A similar effect occurs for the
CKM and Rτ

eμ constraints, where the modified contribution
on the neutrino mixing in the decay products of K -mesons
and τ , enhances the prediction with respect to that of the SM.
Figure 14 shows the excesses on the total profile likelihood
in the M1 vs U 2

τ I plane, zoomed in at high couplings (as
discussed above, we excluded M2 and M3 from entering the
excess regions). Since there are no constraints from direct
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Fig. 14 Profile likelihood in MI vs U2
τ I plane without likelihood cap showing the excesses due to the Γinv , CKM and Rτ constraints, for normal

(left) and inverted hierarchy (right)

Fig. 15 One-dimensional profile likelihood for U2
τ1, Ltotal , and partial likelihoods for ΓZ , CKM and combination of the rest of constraints, L0, in

the low mass region, M1 < 1 GeV, for normal (left) and inverted hierarchy (right)

searches at masses above M1 > 80 GeV or in the range
0.3 < M1 < 0.5 GeV, there is a combined excess shown of
about 2σ .

In order to study the impact of the different partial likeli-
hoods on the total likelihood excess, we show in Figs. 15 and
16 the partial one-dimensional likelihoods for Γinv (blue),
CKM (green) and Rτ

eμ (pink) with respect to the total like-
lihood (red) for M1 < 1 GeV and M1 > 60 GeV, respec-
tively. All likelihoods are normalised so that they show up as a
bump over the combination of all other likelihoodsL0 (grey).
These plots show that the combination of excesses from all
three sources amounts to a deviation of around (high mass)
or above (low mass) 2σ with respect to the background. As
observed in the figures, the effect of Rτ

eμ is rather negligible
compared to the other two relevant likelihoods. Even larger
couplings are severely penalised by the steep drop in the Γinv

likelihood.

The excesses shown in Figs. 14, 15 and 16 in |Uτ1|2, for
both low and high masses, are the most significant excesses
arising in our three RHN scenario, but not the only ones.
At masses around the K -meson resonance, there is an even
dimmer excess in |Ue1|2, arising from the constraint on fully
leptonic decays of K -mesons, RK

eμ. As seen in Fig. 17, for
both normal and inverted hierarchy, there is a ∼ 1σ excess
at M1 ∼ 0.45 GeV. As before, we show in Fig. 18 the one-
dimensional likelihoods for RK

eμ (purple) with respect to the
total likelihood (red), over the background of the combina-
tion of the rest of constraints (grey). Although the RK

eμ like-
lihood keeps increasing for larger values of |Ue1|2, the total
likelihood drops at the limit shown in the figures due to the
constraints from the CHARM experiment (orange).

Although the identified excesses provide interesting hints
towards specific regions of the RHN parameter space,
they should not be over-interpreted, since their significance
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Fig. 16 One-dimensional profile likelihood for U2
τ1, Ltotal , and partial likelihoods for ΓZ , CKM , Rτ and combination of the rest of constraints,

L0, in the high mass region, M1 > 60 GeV, for normal (left) and inverted hierarchy (right)

Fig. 17 Profile likelihood in M1 vs U2
e1 plane without likelihood cap showing the excesses due to the RK constraint, for normal (left) and inverted

hierarchy (right)

remains rather small and probably consistent with statisti-
cal fluctuations. The presence of such excesses was already
observed before, identified in EWPOs [25] (cf. also [195])
and CKM constraints, and particularly in τ → s transi-
tions [30].

6 Conclusions and outlook

We presented here the first frequentist global analysis of the
extension of the Standard Model by three heavy right-handed
Majorana neutrinos for a large range of their masses, from 60
MeV to 500 GeV, and for normal and inverted hierarchy of
the active neutrino masses. As detailed in Sect. 1.2, our anal-
ysis improves on previous studies in numerous ways. Most
notable is the inclusion of a larger number of experimental
constraints than in previous studies, such as EWPOs, all LFV

decay channels, active neutrino mixing and masses, as well
as many direct searches. Furthermore, we have performed
a proper statistical combination of all constraints using a
composite likelihood approach, and studied the overall con-
straints on the parameter space using robust profile likelihood
methods. To this end, we have used the advanced BSM infer-
ence tool GAMBIT [39], which we appropriately extended
with the relevant model specifications and experimental con-
straints.

The results shown in Sect. 5 cover the full studied mass
range for all couplings down to U 2

I ∼ 10−16. The profile
likelihood contours are consistent with the results found in
previous studies. The upper limits on the heavy neutrino
mixing with electron and muon flavour mostly follow the
confidence levels provided by direct search experiments. In
the projection of the likelihoods on the MI -U 2

α I planes the
interplay becomes visible only in the constraints on the third
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Fig. 18 One-dimensional profile likelihood for U2
e1, Ltotal , and partial likelihoods for RK , CHARM and combination of the rest of constraints,

L0, in the low mass region, M1 < 1 GeV, for normal (left) and inverted hierarchy (right)

generation and for masses below a GeV. This is qualita-
tively different from the model with only two heavy neutrinos
(n = 2), where combination of direct, indirect and cosmolog-
ical bounds imposes stronger constraints than each of them
individually on the mixing with all three SM flavours, and this
interplay can rule out a considerable mass region below the
kaon mass [27]. We for the first time studied the global con-
straints on the heavy neutrino flavour mixing pattern, which
strongly depends on the mass of the lightest SM neutrinomν0 .
We explicitly studied the limit of vanishing lightest neutrino
masses, where we have shown that the flavour mixing pattern
becomes significantly constrained for small values of mν0 .
For mν0 < 0.01 meV these constraints become independent
of the precise value of mν0 in both mass hierarchies, which
suggests that one heavy neutrino has effectively decoupled. In
this regime we demonstrated that one can recover the results
that have previously been found in the model with only two
RHN in earlier works.

Furthermore, we identified a few excesses in the profile
likelihood, which are due to the invisible decay width of
the Z -boson, the CKM unitarity constraint and RK

eμ. Our
best fit has a significance (w.r.t. SM) slightly above 2σ .
Although these excesses are not significant enough to favour
the n = 3 right-handed neutrino model in favour of the SM
at the moment, an improvement on the measurements of the
relevant observables will increase/decrease their significance
in the future. Future e+e− colliders, such as the ILC, FCC-
ee or CEPC, might measure EW observables, including the
Z decay width, with higher precision [196] than the current
value from LEP [197]. The NA62 experiment, which targets
kaon decays, might be able to improve the measurements of
the CKM matrix elements Vus and Vud , as well as the lepton
universality ratio RK

eμ through more precise measurement of
the fully leptonic decays of kaons [198].

Since the strongest constraints on the absolute value of
the couplings come from direct searches, it is expected
that the results obtained in this analysis will change sig-
nificantly with the next generation of direct search exper-
iments. An overview of projected sensitivities can e.g. be
found in Refs. [18–20]. Many of these searches can be
performed at existing facilities, including the LHC, NA62,
T2K or the DUNE near detector. The sensitivity of the
LHC will soon be upgraded with the recently approved
FASER experiment [199] and other proposed dedicated
detectors [200–206]. In the more distant future the SHiP
experiment [207,208] can search for heavy neutrinos in the
GeV mass range [209], while future folliders such as FCC
[210] or CEPC [211] can explore larger masses. These experi-
mental perspectives make the study of right handed neutrinos
an exciting topic for the years to come. Additional motiva-
tion for such searches comes from cosmology because the
baryon asymmetry of the universe can be explained by low
scale leptogenesis for all experimentally allowed values of
the mixing angles in the model considered here if the heavy
neutrino masses lie below the electroweak scale [9,57]. If
any heavy neutral leptons are found in experiments then our
results for their properties, such as the flavour mixing pattern
as a function of light neutrino parameters, provide a powerful
test to assess whether these particles are responsible for the
generation of light neutrino masses and/or the baryon asym-
metry of the universe [212], and to distinguish the model with
three heavy neutrinos considered here from the model with
two heavy neutrinos or other extensions of the SM.
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Appendix A: GAMBIT Implementation

GAMBIT13 (the Global and Modular BSM Inference Tool)
[39] is a global fitting software framework that allows for
extensive calculations of observables and likelihoods in par-
ticle and astroparticle physics. It provides, out-of-the-box,
a suite of statistical methods and parameter scanning algo-
rithms, together with a hierarchical model database, a strong
interface to external tools and a host of other utilities that
make it one of the most powerful global fitting tools on the
market.

In a nutshell, the fundamental building blocks of GAM-
BIT are its module functions, which calculate all physical
and mathematical quantities revelant to an analysis. Each
module function provides a capability which, together with
the return type of the function, unequivocally specifies the
quantity calculated.

These module functions are sorted in the different physics
modules, according to their purpose, e.g. functions calculat-
ing dark matter relic density lie in DarkBit [213]. Since most
observables and likelihoods computed for this analysis do not
belong naturally to any of the existing GAMBIT modules,

13 gambit.hepforge.org.

we introduce a new GAMBIT physics module, NeutrinoBit,
which contains all calculations relating to (active and sterile)
neutrino physics. All of the module functions and capabilites
described below are implemented in the new module Neu-
trinoBit, unless otherwise stated.

A.1. Neutrino models

In GAMBIT, models are defined by a set of parameters and
relations to other models [39]. All the SM and active neu-
trino parameters are defined in a model called Standard-
Model_mNudiff, a daughter model of the GAMBIT model
StandardModel_SLHA2, which includes SM parameters
written in the SLHA2 convention [214]. The former contains
the parameters mNu_light, dmNu21 and dmNu3l, which give
the lightest neutrino mass and mass splittings, respectively.
Other parameters in this model that are relevant for this study
and are scanned over, as described in Sect. 4, are alpha1,
alpha2, delta13, theta12, theta23 and theta13.

The right-handed neutrino sector is defined in another
model, RightHandedNeutrinos, which contains the RHN
masses MI and the real and imaginary parts of the ωi j

parameters in the C-I parametrisation (c.f. Sect. 2.4). These
are M_1, M_2, M_3, ReOm12, ReOm13, ReOm23, ImOm12,
ImOm13, ImOm23. To better explore the symmetry preserved
region (Sect. 2.5), a differential model, inheriting from
RightHandedNeutrinos, has been defined, RightHanded-
Neutrinos_diff. This model swaps the parameters M_2 for
delta_M21, and defines a translation function from the
parameters of the daughter model to the parent model as

M2 = M1 + δM21. (A.1)

Lastly, the parameter Rorder encodes the ordering of the
matrices Ri j in Eq. (30), which allows us to fully cover all
the parameter space with the C-I parametrisation.

There is a number of useful quantities and observ-
ables that can be constructed from the neutrino parame-
ters, and these are all implemented in NeutrinoBit.cpp.
In the active neutrino sector we calculate the neutrino
mass matrix, m_nu, and their mixing matrix, UPMNS, as
well as useful quantities such as the type of hierarchy,
ordering, the squared mass splittings, md21, md31 and
md32, and the minimal neutrino mass min_mass. It is worth
noting that it is possible to fix the hierarchy of a scan
by providing the option ordering to the capability m_nu

in the configuration file. For example, in order to scan
the normal hierarchy we would define in the YAML file

Rules:
- capability: m_nu
options:

ordering: 1
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Table 8 Capabilities and module functions implemented for active and sterile neutrino masses and mixings

Capability Function (return type): brief description Dependencies Options

ordering ordering(bool):
Calculates the hierarchy type

None

m_nu M_nu(Eigen::Matrix3cd):
Calculates the diagonalised LHN mass matrix

ordering ordering(bool)

md21 md21(double):
Calculates the square mass splitting Δm2

21

m_nu

md31 md31(double):
Calculates the square mass splitting Δm2

31

m_nu

md32 md32(double):
Calculates the square mass splitting Δm2

32

m_nu

min_mass min_mass(double):
Calculates the minimal neutrino mass

ordering, m_nu

UPMNS UPMNS(Eigen::Matrix3cd):
Calculates the PMNS matrix

None

SeesawI_Theta CI_Theta(Eigen::Matrix3cd): Calculates
the active-sterile mixing matrix in seesaw type-I
using the C-I parametrisation.

m_nu, UPMNS, SMINPUTS

SeesawI_Vnu Vnu(Eigen::Matrix3cd):
Calculates the active mixing matrix in seesaw type-I

UPMNS, SeesawI_Theta

Unitarity Unitarity_UPMNS(bool):
Checks for unitarity in the SM neutrino mixing matrix

m_nu, UPMNS

Unitarity_SeesawI(bool):
Checks for unitarity in the full neutrino mixing matrix
in seesaw type-I

m_nu, SeesawI_Theta,
↪→SeesawI_Vnu

The right-handed neutrino sector also contains a couple
of useful capabilities, SeesawI_Vnu, which is the active neu-
trino mixing matrix in type-I seesaw, effectively UPMNS cor-
rected by the presence of the right-handed neutrinos, and
SeesawI_Theta, the active-sterile mixing matrix in type-I
seesaw, currently implemented using the C-I parametrisa-
tion.

Another useful capability defined here is Unitarity,
which is fulfilled by two module functions according to
whether the model scanned is the SM or a RHN model, and
checks whether the full mixing matrix is unitary. All these
capabilities relating to neutrino masses and mixings and the
module functions that fulfill them, along with their depen-
dencies and options can be seen in Table 8.

Lastly, NeutrinoBit.cpp also contains likelihoods
for the active neutrinos, which are implemented following the
results from the NuFit collaboration (c.f. Sect. 3.1). The capa-
bilities associated with these aremd21_lnL,md3l_lnL for the
mass splittings, deltaCP_lnL, theta12_lnL, theta23_lnL
and theta13_lnL for the phases and mixing angles, and
sum_mnu_lnL for the cosmological limit on the sum of neu-
trino masses. All these capabilities, with their module func-
tions and dependencies are listed in Table 9.

A.2. Right-handed neutrino likelihood functions

Every observable and likelihood described in Sect. 3 has
an assigned capability within GAMBIT. Most of these have
been implemented in the newGAMBITmoduleNeutrinoBit,
since they concern mostly neutrino physics. Their module
functions are coded in the fileRightHandedNeutrinos.
cpp, to keep them separated from the likelihoods and observ-
ables concerning only active neutrinos in NeutrinoBit.
cpp. The exception to this is the LFV observables and
semileptonic lepton universality tests, which can be found
in FlavBit [215], implemented in FlavBit.cpp and the
electroweak precision observables, which are coded up in
PrecisionBit.cpp in PrecisionBit [216].

The implementation details for each specific observable
are as follows:

Electroweak precision observables

Mainly, the EWPO capabilities lie in the physics mod-
ule PrecisionBit and the associated module functions are
implemented in PrecisionBit.cpp. These capabilites,
prec_sinW2_eff and mW, can be seen in Table 10 along
with their module functions and dependencies. The log-
likelihoods are provided by the capabilities lnL_sinW2_eff
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Table 9 Capabilities and
module functions implemented
that calculate log-likelihoods for
the active neutrino parameters

Capability Function (return type): brief description Dependencies

md21_lnL md21_lnL(double):
Computes the log-likehood for Δm2

21

ordering, md21

md3l_lnL md3l_lnL(double):
Computes the log-likehood for Δm2

31 for normal
hierarchy or Δm2

32 for inverted

ordering, md31, md32

deltaCP_lnL deltaCP_lnL(double):
Computes the log-likehood for δCP

ordering, deltaCP

theta12_lnL theta12_lnL(double):
Computes the log-likehood for θ12

ordering, theta12

theta23_lnL theta23_lnL(double):
Computes the log-likehood for θ23

ordering, theta23

theta13_lnL theta13_lnL(double):
Computes the log-likehood for θ13

ordering, theta13

sum_mnu_lnL sum_mnu_lnL(double):
Computes the log-likehood for

∑
mν

None

Table 10 Capabilities and module functions that calculate electroweak precision observables and their likelihoods

Capability Function (return type): brief description Dependencies

prec_sinW2_eff RHN_sinW2_eff(triplet<double>):
Calculates s2

e f f

SeesawI_Theta

mW RHN_mW(triplet<double>):
Calculates mW

sinW2, SeesawI_Theta

Z_gamma_nu Z_gamma_nu_2l(triplet<double>):
Calculates the decay width of Z to neutrinos

SM_spectrum, SeesawI_Theta, SeesawI_Vnu

W_to_l_decays RHN_W_to_l_decays(vector<double>):
Calculates the decay width of the processes
W → lν

SMINPUTS, mw, SeesawI_Theta

lnL_sinW2_eff lnL_sinW2_eff_chi2(double):
Computes the log-likehood for s2

e f f

prec_sinW2_eff

lnL_W_mass lnL_W_mass_chi2(double):
Computes the log-likehood for mW

mW

lnL_Z_inv lnL_Z_inv(double):
Computes the log-likehood for Γinv

Z_gamma_nu

lnL_W_decays lnL_W_decays_chi2(double):
Computes the log-likehood for ΓW→lν

W_to_l_decays, W_plus_decay_rates

and lnL_W_mass can also be seen in the same Table.
Additionally, the module DecayBit contains the capabili-
ties for the invisible width of Z , which are Z_gamma_nu

and lnL_Z_inv, and leptonic decays of the W boson,
W_to_l_decays and lnL_W_decays, all of which can be
seen as well in Table 10.

Lepton flavour violation

The capabilities related to lepton flavour violation can be
found inFlavBit and aremuegamma,tauegamma,taumugamma,

mueee, taueee, taumumumu, taumuee, taueemu, tauemumu,
taumumue, mueTi, mueAu and muePb. Table 11 shows these
capabilities, the module functions that provide them, imple-
mented inFlavBit.cpp, and their dependencies. The like-
lihoods, shown in Table 12, are collated into three capabilites,
according to the type of process, l2lgamma_lnL for l → lγ ,
l2lll_lnL for l− → l−l−l+ and mu2e_lnL for μ − e con-
version in nuclei.

123



Eur. Phys. J. C           (2020) 80:569 Page 33 of 52   569 

Table 11 Capabilities and module functions to calculate LFV observables

Capability Function (return type): brief description Dependencies

muegamma RHN_muegamma(double):
Calculates BR(μ− → e−γ )

SMINPUTS, m_nu, SeesawI_Vnu,
↪→SeesawI_Theta, mu_minus_decay_rates

tauegamma RHN_tauegamma(double):
Calculates BR(τ− → e−γ ).

SMINPUTS, m_nu, SeesawI_Vnu,
↪→SeesawI_Thet, tau_minus_decay_rates

taumugamma RHN_taumugamma(double):
Calculates BR(τ− → μ−γ ).

SMINPUTS, m_nu, SeesawI_Vnu,
↪→SeesawI_Theta, tau_minus_decay_rates

mueee RHN_mueee(double):
Calculates BR(μ− → e−e−e+)

SMINPUTS, m_nu, SeesawI_Vnu,
↪→SeesawI_Theta, mu_minus_decay_rates

taueee RHN_taueee(double):
Calculates BR(τ− → e−e−e+).

SMINPUTS, m_nu, SeesawI_Vnu,
↪→SeesawI_Theta, tau_minus_decay_rates

taumumumu RHN_taumumumu(double):
Calculates BR(τ− → μ−μ−μ+).

SMINPUTS, m_nu, SeesawI_Vnu,
↪→SeesawI_Theta, tau_minus_decay_rates

taumuee RHN_taumuee(double):
Calculates BR(τ− → μ−e−e+).

SMINPUTS, m_nu, SeesawI_Vnu,
↪→SeesawI_Theta, tau_minus_decay_rates

taueemu RHN_taueemu(double):
Calculates BR(τ− → e−e−μ+).

SMINPUTS, m_nu, SeesawI_Vnu,
↪→SeesawI_Theta, tau_minus_decay_rates

tauemumu RHN_tauemumu(double):
Calculates BR(τ− → e−μ−μ+).

SMINPUTS, m_nu, SeesawI_Vnu,
↪→SeesawI_Theta, tau_minus_decay_rates

taumumue RHN_taumumue(double):
Calculates BR(τ− → μ−μ−e+).

SMINPUTS, m_nu, SeesawI_Vnu,
↪→SeesawI_Theta, tau_minus_decay_rates

mueTi RHN_mueTi(double):
Calculates R(μ − e) in a Ti nucleus

SMINPUTS, m_nu, SeesawI_Vnu, SeesawI_Theta

mueAu RHN_mueAu(double):
Calculates R(μ − e) in a Au nucleus

SMINPUTS, m_nu, SeesawI_Vnu, SeesawI_Theta

muePb RHN_muePb(double):
Calculates R(μ − e) in a Pb nucleus

SMINPUTS, m_nu, SeesawI_Vnu, SeesawI_Theta

Table 12 Capabilities and module functions for the likelihoods computed for the LFV observables

Capability Function (return type): brief description Dependencies

l2lgamma_lnL l2lgamma_likelihood(double):
Computes the log-likelihood for l− → l−γ

muegamma, tauegamma, taumugamma

l2lll_lnL l2lll_likelihood(double):
Computes the log-likelihood for l− → l−l−l+

mueee, taueee, taumumumu,
↪→taumumue, tauemumu

mu2e_lnL mu2e_likelihood(double):
Computes the log-likelihood associated with μ − e
conversion

mueTi, muAu, muePb

Lepton universality

The observables and likelihoods associated with lepton uni-
versality constraints are spread between the NeutrinoBit
and FlavBit modules. Those involving fully leptonic decays
are implemented in RightHandedNeutrinos.cpp and
those for semi-leptonic decays of B mesons are inFlavBit.
cpp. The capabilities for leptonic decays are R_pi, R_K,
R_tau and R_W, and for semi-leptonic RK, RKstar_0045_11
and RKstar_11_60. They can be seen in Table 13 together
with the module functions that provide them and their depen-
dencies. The capability LUV_M collates all semi-leptonic uni-
versality observables into the FlavBit-defined class

FlavBit::predictions_measurements_covariances.14

The capabilites that compute the likelihoods for lepton
universality tests are lnL_R_pi, lnL_R_K, lnL_R_tau and
lnL_R_W for leptonic decays, and LUV_LL for semi-leptonic,
and they, the module functions and dependencies, can be seen
in Table 14.

CKM unitarity

The NeutrinoBit capability calc_Vus, implemented in
RightHandedNeutrinos.cpp, calculates the value of
Vus that maximizes the likelihood for a given mixing matrix
Θ . The capabilities lnLckm_Vus and lnLckm_Vusmin com-

14 For more details about FlavBit types, see [215].
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Table 13 Capabilities and module functions that calculate lepton universality observables

Capability Function (return type): brief description Dependencies

R_pi RHN_R_pi(double):
Calculates the test of lepton universality Rπ

eμ

SMINPUTS, SeesawI_Theta, SeesawI_Vnu

R_K RHN_R_K(double):
Calculates the test of lepton universality RK

eμ

SMINPUTS, SeesawI_Theta, SeesawI_Vnu

R_tau RHN_R_tau(double):
Calculates the test of lepton universality Rτ

μe

SMINPUTS, SeesawI_Theta

R_W RHN_R_W(vector<double>):
Calculates the test of lepton universality RW

αβ

W_to_l_decays

RK RHN_RK(double):
Calculates the test of lepton universality RK

SMINPUTS, SeesawI_Theta

RKstar_0045_11 RHN_RKstar_0045_11(double):
Calculates the test of lepton universality RK ∗ for
the range 0.045 < q2 < 1.1GeV2

SMINPUTS, SeesawI_Theta

RKstar_11_60 RHN_RKstar_11_60(double):
Calculates the test of lepton universality RK ∗ for
the range 1.1 < q2 < 6.0GeV2

SMINPUTS, SeesawI_Theta

Table 14 Capabilities and module functions for the likelihoods computed for lepton universality tests

Capability Function (return type): brief description Dependencies

lnL_R_pi lnL_R_pi(double):
Calculates the total log-likelihood for lepton universality tests
on leptonic decays of π mesons

R_pi

lnL_R_K lnL_R_K(double):
Calculates the total log-likelihood for lepton universality tests
on leptonic decays of K mesons

R_K

lnL_R_tau lnL_R_tau(double):
Calculates the total log-likelihood for lepton universality tests
on leptonic decays of τ leptons

R_tau

lnL_R_W lnL_R_W(double):
Calculates the total log-likelihood for lepton universality tests
on leptonic decays of W bosons

R_W

LUV_M LUV_measurements():
Collates all measurements of semi-leptonic tests of lepton
universality in B meson decays

RK, RKstar_0045_11, RKstar_11_60

LUV_LL lnL_lepuniv(double):
Calculates the total log-likelihood for semi-leptonic tests of
lepton universality in B meson decays

LUV_M

pute the log-likelihood using Vus as a scan parameter and as
calculated by the profiling of calc_Vus, respectively. The
capabilities, module functions and dependencies defined in
GAMBIT for the calculation of the observable and the like-
lihood connected to CKM unitarity are listed in Table 15.

Neutrinoless double beta decay

In NeutrinoBit there are two computations of the like-
lihood for neutrinoless double beta decay, one based on
the half-life and one based on the invariant mass of the
two electrons mββ . The capabilities Thalf_0nubb_Xe and
Thalf_0nubb_Ge calculate the half-life of the 0νββ pro-
cess as studied with Xe and Ge detectors. Equivalently,

the capabilities mbb_0nubb_Xe and mbb_0nubb_Ge com-
pute mββ for the process in Xe and Ge detectors. The
log-likelihoods are computed according to the experiments:
lnL_0nubb_KamLAND_ZenandlnL_mbb_0nubb_KamLAND_Zen

calculate the log-likelihood for the KamLAND-Zen exper-
iment based on the half-life and mββ , respectively; and
lnL_0nubb_GERDA and lnL_mbb_0nubb_GERDA for the
GERDA experiment. Lastly, the total log-likelihood is given
by the capabilitieslnL_0nubb, constructed from the half-life,
and lnL_mbb_0nubb, from mββ . Table 16 shows the defined
capabilities, associated module functions and dependencies
related to neutrinoless double beta decay that are responsible
for the calculation of observables and likelihoods.
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Table 15 Capabilities and module functions implemented to calculate CKM unitarity and its likelihood

Capability Function (return type): brief description Dependencies

calc_Vus calc_Vus(double):
Calculates the profiling value of Vus for a particular Θ

SMINPUTS, SeesawI_Theta

lnLckm_Vus lnL_ckm_Vus(double):
Computes the total log-likelihood from CKM unitarity for a
given parameter Vus

SMINPUTS, SeesawI_Theta

lnLckm_Vusmin lnL_ckm_Vusmin(double):
Computes the total log-likelihood from CKM unitarity
profiling over Vus

SMINPUTS, SeesawI_Theta, calc_Vus

Table 16 Capabilities and module functions implemented to calculate neutrinoless double-beta decay observables and likelihood

Capability Function (return type): brief description Dependencies

Thalf_0nubb_Xe RHN_Thalf_0nubb_Xe(double):
Calculates the half-life for Xe detector

m_nu, UPMNS, SeesawI_Theta

Thalf_0nubb_Ge RHN_Thalf_0nubb_Ge(double):
Calculates the half-life for Ge detector

m_nu, UPMNS, SeesawI_Theta

mbb_0nubb_Xe RHN_mbb_0nubb_Xe(double):
Calculates mββ for Xe detector

m_nu, UPMNS, SeesawI_Theta

mbb_0nubb_Ge RHN_mbb_0nubb_Ge(double):
Calculates mββ for Ge detector

m_nu, UPMNS, SeesawI_Theta

lnL_0nubb_KamLAND_Zen lnL_0nubb_KamLAND_Zen(double):
Calculates KamLAND-Zen log-likelihood based
on half-life

Thalf_0nubb_Xe

lnL_0nubb_GERDA lnL_0nubb_GERDA(double):
Calculates GERDA log-likelihood based on half-lif

Thalf_0nubb_Ge

lnL_0nubb lnL_0nubb(double):
Calculates the total log-likelihood based on
half-life

lnL_0nubb_KamLAND_Zen,
↪→lnL_0nubb_GERDA

lnL_mbb_0nubb_KamLAND_Zen lnL_mbb_0nubb_KamLAND_Zen(double):
Calculates KamLAND-Zen log-likelihood based
on mββ

mbb_0nubb_Xe

lnL_mbb_0nubb_GERDA lnL_mbb_0nubb_GERDA(double):
Calculates GERDA log-likelihood based on mββ

mbb_0nubb_Ge

lnL_mbb_0nubb lnL_mbb_0nubb(double):
Calculates the total log-likelihood based on mββ

lnL_mbb_0nubb_KamLAND_Zen,
↪→lnL_mbb_0nubb_GERDA

Big Bang nucleosynthesis

There are a number of processes that contribute to
the decay width of the right-handed neutrinos, relevant
for Big Bang nucleosynthesis, and each of them is com-
puted by a capability. These are Gamma_RHN2piplusl,
Gamma_RHN2Kplusl,Gamma_RHN2Dplusl,Gamma_RHN2Dsl,
Gamma_RHN2Bplusl, Gamma_RHN2Bcl, Gamma_RHN2pi0nu,
Gamma_RHN2etanu, Gamma_RHN2etaprimenu,
Gamma_RHN2etacnu, Gamma_RHN2rhoplusl,
Gamma_RHN2Dstarplusl, Gamma_RHN2Dstarsl,
Gamma_RHN2rho0nu, Gamma_RHN2omeganu,
Gamma_RHN2phinu, Gamma_RHN2Jpsinu, Gamma_RHN23nu,
Gamma_RHN2llnu,Gamma_RHN2null,Gamma_RHN2nuuubar,
Gamma_RHN2nuddbar and Gamma_RHN2ludbar. The total
decay width of each of the right-handed neutrinos is given

by Gamma_BBN and the log-likehood for BBN by lnL_bbn.
Table 17 shows the capabilities, as defined in GAMBIT, that
pertain to Big Bang nucleosynthesis, and the module func-
tions that satisfy them, along with dependencies that other
module functions fulfill. The decay process considered in
each function is mentioned below its name.

Direct searches

As detailed in Sect. 3.3, the likelihoods for direct searchs
depend on the active-sterile matrix elements Uα I . Hence,
for simplicity the capabilities Ue1, Ue2, Ue3, Um1, Um2,
Um3, Ut1, Ut2 and Ut3 are implemented in Neutrino-
Bit, as well as the phases of each of the matrix ele-
ments Ue1_phase, Ue2_phase, Ue3_phase, Um1_phase,
Um2_phase, Um3_phase, Ut1_phase,Ut2_phase and
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Table 17 Capabilities and module functions implemented in NeutrinoBit to calculate BBN observables and likelihood for sterile neutrino models

Capability Function (return type): brief description Dependencies

Gamma_RHN2piplusl Gamma_RHN2piplusl(std::vector<double>):
Calculates Γ (NI → π+l−α )

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2Kplusl Gamma_RHN2Kplusl(std::vector<double>):
Calculates Γ (NI → K+l−α )

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2Dplusl Gamma_RHN2Dplusl(std::vector<double>):
Calculates Γ (NI → D+l−α )

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2Dsl Gamma_RHN2Dsl(std::vector<double>):
Calculates Γ (NI → Dsl−α )

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2Bplusl Gamma_RHN2Bplusl(std::vector<double>):
Calculates Γ (NI → B+l−α )

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2Bcl Gamma_RHN2Bcl(std::vector<double>):
Calculates Γ (NI → Bcl−α )

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2pi0nu Gamma_RHN2pi0nu(std::vector<double>):
Calculates Γ (NI → π0να)

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2etanu Gamma_RHN2etanu(std::vector<double>):
Calculates Γ (NI → ηνα)

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2etaprimenu Gamma_RHN2etaprimenu(std::vector<double>):
Calculates Γ (NI → η′να)

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2etacnu Gamma_RHN2etacnu(std::vector<double>):
Calculates Γ (NI → ηcνα)

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2rhoplusl Gamma_RHN2rhoplusl(std::vector<double>):
Calculates Γ (NI → ρ+l−α )

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2Dstarplusl Gamma_RHN2Dstarplusl(std::vector<double>):
Calculates Γ (NI → D∗+l−α )

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2Dstarsl Gamma_RHN2Dstarsl(std::vector<double>):
Calculates Γ (NI → D∗

s l
−
α )

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2rho0nu Gamma_RHN2rho0nu(std::vector<double>):
Calculates Γ (NI → ρ0να)

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2omeganu Gamma_RHN2omeganu(std::vector<double>):
Calculates Γ (NI → ωνα)

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2phinu Gamma_RHN2phinu(std::vector<double>):
Calculates Γ (NI → φνα)

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2Jpsinu Gamma_RHN2Jpsinu(std::vector<double>):
Calculates Γ (NI → J/ψνα)

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN23nu Gamma_RHN23nu(std::vector<double>):
Calculates Γ (NI → ναν̄βνβ)

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2llnu Gamma_RHN2llnu(std::vector<double>):
Calculates Γ (NI → l−α 	=β l

+
β νβ)

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2null Gamma_RHN2Kplusl(std::vector<double>):
Calculates Γ (NI → ναl

+
β l

−
β )

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2nuuubar Gamma_RHN2nuuubar(std::vector<double>):
Calculates Γ (NI → ναquq̄u

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2nuddbar Gamma_RHN2nuddbar(std::vector<double>):
Calculates Γ (NI → ναqd q̄d

SMINPUTS,
↪→SeesawI_Theta

Gamma_RHN2ludbar Gamma_RHN2ludbar(std::vector<double>):
Calculates Γ (NI → lαquβ q̄

d
γ

SMINPUTS,
↪→SeesawI_Theta

Gamma_BBN Gamma_BBN(std::vector<double>):
Calculates the total decay width for each RHN

Gamma_*, as listed above

lnL_bbn lnL_bbn(double):
Calculates the log-likelihood

Gamma_BBN

123



Eur. Phys. J. C           (2020) 80:569 Page 37 of 52   569 

Table 18 Capabilities and module functions that calculate the magnitude and argument of the matrix elements of Θ (I=1,2,3)

Capability Function (return type): brief description Dependencies Options

UeI UeI(double):
Magnitude of the matrix element
UeI = |ΘeI |

SeesawI_Theta upper_limit(double),
↪→lower_limit(double)

UmuI UmuI(double):
Magnitude of the matrix element
UμI = |ΘμI |

SeesawI_Theta upper_limit(double),
↪→lower_limit(double)

UtauI UtauI(double):
Magnitude of the matrix element
Uτ I = |Θτ I |

SeesawI_Theta upper_limit(double),
↪→lower_limit(double)

UeI_phase UeI_phase(double):
Argument of the matrix element ΘeI

SeesawI_Theta

UmuI_phase UmuI_phase(double):
Argument of the matrix element ΘμI

SeesawI_Theta

UtauI_phase UtauI_phase(double):
Argument of the matrix element Θτ I

SeesawI_Theta

Ut3_phase. These can be seen in Table 18 where I=1,2,3.
All the capabilitiesUaI can take a pair of optionsupper_limit
and lower_limit to force the values within the given
range. Using these quantities, the likelihoods for the different
direct search experiments are calculated, and their capabil-
ities are lnLpienu , lnLps191e, lnLps191mu, lnLcharme,
lnLcharmmu, lnLcharmtau, lnLdelphi_shortlived,
lnLdelphi_longlived,lnLatlase,lnLatlasmu,lnLe949
and lnLnutev. The capabilities, module functions and their
dependencies for all relevant direct search experiments are
tabulated in Table 19.

Other capabilities

The theoretical constraint for perturbativity of the Yukawa
couplings has been implemented in NeutrinoBit as well. The
capability perturbativity_lnL calculates a step function
likelihood for this constraint. Table 20 shows the module
function that provides this capability and its dependencies.

Lastly, the artificial coupling slide likelihood that was
introduced to drive the scan towards high couplings, as
described in Sect. 4, was also implemented in NeutrinoBit
with capability coupling_slide. The module function and
dependencies of this capability can also be seen in Table 20.

Appendix B: Full expressions for the relevant observ-
ables

B.1: Decay widths and form factors for LFV observables

The decay widths of LFV processes, as described in Sect. 3.2.2,
are given by [217,218]

Γl−α →l−β γ = αemm5
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Table 19 Capabilities and module functions implemented in NeutrinoBit to calculate direct search likelihoods for sterile neutrino models

Capability Function (return type): brief description Dependencies

lnLpienu lnL_pienu(double):
Calculates the log-likelihood for PIENU

Ue1, Ue2, Ue3

lnLps191e lnL_ps191_e(double):
Calculates the log-likelihood for PS-191 in the
electron sector

Ue1, Ue2, Ue3, Um1, Um2, Um3, Ut1,
↪→Ut2, Ut3

lnLps191mu lnL_ps191_mu(double):
Calculates the log-likelihood for PS-191 in the
muon sector

Ue1, Ue2, Ue3, Um1, Um2, Um3, Ut1,
↪→Ut2, Ut3

lnLcharme lnL_charm_e(double):
Calculates the log-likelihood for CHARM in the
electron sector

Ue1, Ue2, Ue3, Um1, Um2, Um3, Ut1,
↪→Ut2, Ut3

lnLcharmmu lnL_charm_mu(double):
Calculates the log-likelihood for CHARM in the
muon sector

Ue1, Ue2, Ue3, Um1, Um2, Um3, Ut1,
↪→Ut2, Ut3

lnLcharmtau lnL_charm_tau(double):
Calculates the log-likelihood for CHARM in the
tau sector

Ut1, Ut2, Ut3

lnLdelphi_shortlived lnL_delphi_short_lived(double):
Calculates the log-likelihood for DELPHI’s
short-lived RHN analyses

Ue1, Ue2, Ue3, Um1, Um2, Um3, Ut1,
↪→Ut2, Ut3

lnLdelphi_longlived lnL_delphi_long_lived(double):
Calculates the log-likelihood for DELPHI’s
long-lived RHN analyses

Ue1, Ue2, Ue3, Um1, Um2, Um3, Ut1,
↪→Ut2, Ut3

lnLatlase lnL_atlas_e(double):
Calculates the log-likelihood for ATLAS in the
electron sector

Ue1, Ue2, Ue3

lnLatlasmu lnL_atlas_mu(double):
Calculates the log-likelihood for ATLAS in the
muon sector

Um1, Um2, Um3

lnLlhce lnL_lhc_e(double):
Calculates the log-likelihood for CMS in the
electron sector

Ue1, Ue2, Ue3

lnLlhcmu lnL_lhc_mu(double):
Calculates the log-likelihood for CMS in the muon
sector

Um1, Um2, Um3

lnLe949 lnL_e949(double):
Calculates the log-likelihood for E949

Um1, Um2, Um3

lnLnutev lnL_nutev(double):
Calculates the log-likelihood for NuTeV

Um1, Um2, Um3

Table 20 Capabilities and module functions for perturbativity constraints and coupling slide

Capability Function (return type): brief description Dependencies

perturbativity_lnL perturbativity_likelihood(double):
Calculates the log-likelihood for the perturbativity
of Yukawa couplings

SMINPUTS, SeesawI_Theta

RHN_coupling_slide coupling_slide(double):
Calculates the log-likelihood for the coupling slide

SeesawI_Theta, Ut1, Ut2, Ut3

where we used ÂV
XY ≡ AV

XY + e2K X
1 . The couplings e, g1,

g2 correspond to the electromagnetic, hypercharge and weak
couplings of the SM.

The form factors K X
1 , K X

2 , AS
XY and AV

XY are taken in
the flavour basis where the charged lepton mass matrix is
diagonal.
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The dipole form factors K X
1 and K X

2 are given as [218]
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The four lepton form factors AV
XY and AS

XY corresponding to
the process l−α → l−β l−γ l

+
δ , with a vector or scalar mediator

respectively, are [218]
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where sum over a and c is assumed, xa = m2
νa

/m2
W , sw =

sin θw and g± = g1 sin θw ± g2 cos θw.

Table 21 Effective atomic number Zeff, nuclear form factor Fp and
capture rate Γcapt for the relevant nuclei

NZ+N
Z Zeff Fp Γcapt(106s−1)

Ti48
22 17.6 0.54 2.59

Au197
79 33.5 0.16 13.07

Pb208
82 34.0 0.15 13.45

The μ − e conversion ratio described in Sect. 3.2.2, for a
general nucleus N Z+N

Z , can be written as
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where BK
XY ↔ CK

XY for up-type quarks and the numerical
factors GK are given in [219]. The nuclear form factor Fp,
the effective atomic number Zeff and the capture rate Γcapt of
the nucleus [220] can be seen, for the cases we are studying,
Ti48

22, Au197
79 and Pb208

82 , in Table 21.
The form factors K X

1 , K X
2 are defined above and BK

XY and
CK
XY are given by
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16π2m2
W

× (
C0(xa, x

u
c ) + D0(xa, x

u
c ) − 3D27(xa, x

u
c )

)
(B.17)

BV
RL = −1

3

gd
g−

AV
RL (B.18)

BV
XR = 1

3
AV
XR (B.19)

BS
XY = Yd

γ

Y l
γ

AS
XY (B.20)

CV
LL = −1

3

gu
g−

[AV
LL ]penguin

+ g4
2ΘαaΘ

∗
βaVγ cVδc

4π2m2
W

D27(xa, x
d
c ) (B.21)

CV
RL = −1

3

gu
g−

AV
RL (B.22)

CV
XR = −2

3
AV
XR (B.23)

CS
XY = Yu

γ

Y l
γ

AS
XY (B.24)
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with gd = 3g2 cos θw + g1 sin θw, gu = −3g2 cos θ2 +
g1 sin θw, x (u,d)

c = m2
(u,d)c

/m2
W and Vi j is the CKM matrix

of quark mixing.
Lastly, the loop functions used in (B.7)–(B.24) are defined

as [218]

G(x) = −7 + 33x − 57x2 + 31x3 + 6x2(1 − 3x) log(x)

12(−1 + x)4

(B.25)

M(x) = 6x2(x − 3) log(x) − (x − 1)(5x2 − 22x + 5)

9(x − 1)4

(B.26)

B0(x) = 0.252183 − log x (B.27)

B1(x) = −1 + 4x − 3x2 + 0.504365(x − 1)2 + 2x2 log(x)

4(x − 1)2

(B.28)

C0(x, y) = (x − y) log(x) + (x − 1)y log
( y
x

)

(x − 1)(x − y)(y − 1)
(B.29)

C00(x, y) = 0.438046 − (xy − x − y) log(x)

4(x − 1)(y − 1)

+ y2 log
( y
x

)

4(x − y)(y − 1)
(B.30)

D0(x, y) = (xy − 1) log(x)

(x − 1)2(y − 1)2

+ y log
( y
x

)

(x − y)(y − 1)2 − 1

(x − 1)(y − 1)
(B.31)

D27(x, y) = (2xy − x − y) log(x)

4(x − 1)2(y − 1)2

+ y2 log
( y
x

)

4(x − y)(y − 1)2 − 1

4(x − 1)(y − 1)

(B.32)

B.2: Decay widths relevant for Big Bang Nucleosynthesis

The various decay widths of RHNs, relevant for the BBN as
described in Sect. 3.2.6, are listed here. These expressions
are taken from [14,141–144], among which there are slight
differences that will be commented upon when relevant. We
list here the decays for Majorana fermions, which differ by
a factor of 2 with respect to the rates for Dirac fermions as
shown, for instance, in [141].

The decay width of a RHN, NI , to a lepton, lα and
a charged pseudoscalar meson, P+ = π+, K+, D+, Ds,

B+, Bc, is [14,141,142,144]

ΓNI→P+l−α = G2
F |VP |2 f 2

PM
3
I |Θα I |2

8π

·
(
(1 − x2

l )
2 − x2

P (1 + x2
l )

)
λ1/2(1, x2

P , x2
l ),

(B.33)

with fP the decay constant of the meson P+, which can be
seen in Table 22, VP the CKM matrix element corresponding

Table 22 Decay constants (in MeV) of pseudoscalar charged (top left),
pseudoscalar neutral (top right), vector charged (bottom left) and vector
neutral (bottom right) mesons

fπ+ 130.2 [221] fπ0 130.2 [221]

fK+ 155.7 [221] fη 81.7 [141]

fD+ 212.6 [221] fη′ -94.7 [141]

fDs 249.9 [221] fηc 237 [141]

fB+ 190 [221]

fBc 434 [222]

fρ+ 209 [223] fρ0 209 [223]

fD∗+ 246.75 [224] fω 195 [14]

fD∗
s

284 [224] fφ 229 [223]

f J/ψ 418 [225]

to P+ and

xl = Mlα

MI
, (B.34)

xP = MP

MI
, (B.35)

λ(a, b, c) = a2 + b2 + c2 − 2ab − 2bc − 2ca. (B.36)

Similarly, the decay width of a RHN to a neutrino and a
neutral pseudoscalar meson, P0 = π0, η, η′, ηc, is [141,142,
144]

ΓNI→P0να
= G2

F f 2
PM

3
I |Θα I |2

16π

(
1 − x2

P

)2
, (B.37)

with fP the meson decay constant, Table 22, and xP as in
(B.35). The expression from [14] for this decay missed a
factor of 2, which was corrected by the later work [144].

The decay width of a RHN to a lepton and a charged vector
meson, V = ρ+, D∗+, D∗

s , is [14,141,144]

ΓNI→V+l−α = G2
F f 2

V |VV |2M3
I |Θα I |2

8π

·
(
(1 − x2

l )
2 + x2

V (1 + x2
l ) − 2x4

V )
)

λ1/2(1, x2
V , x2

l ), (B.38)

where fV is the decay constant of V+, in Table 22, VV is
the CKM matrix element associated with V+, λ is defined in
(B.36) and

xV = MV

MI
. (B.39)

The results from [141] use a different definition of decay
constant gV = mV fV , but the final values agree nevertheless.
The value of gρ in [142] differs from that of [141] and there is
a factor of 1

2 missing as well with respect to the other works.
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The last of the semileptonic decays of RHNs is the decay to
a neutrino and a neutral vector meson, V 0 = ρ0, ω, φ, J/ψ ,
with decay width [141]

ΓNI→V 0να
= G2

F f 2
V κ2

V M
3
I |Θα I |2

16π
(1 + 2x2

V )(1 − x2
V )2,

(B.40)

with fV the meson decay constant, Table 22, xV as in (B.39)
and κV a neutral current correction factor [141]

κρ0 =1 − 2 sin2 θW , κω = 4
3 sin2 θW ,

κφ = 4
3 sin2 θW − 1, κJ/ψ = 1 − 8

3 sin2 θW (B.41)

The expressions from [14,141,144] agree but for a dif-
ferent definition of κV , whereas [142] misses the κV factor
altogether.

The fully-leptonic three body decays of RHNs can be to
three neutrinos, with decay width given by [141,142]

ΓNI→∑
α,β ναν̄βνβ

= G2
FM

5
I

96π3

∑
α

|Θα I |2, (B.42)

and to two charged leptons and a neutrino. If the charged
leptons have the same flavour, the decay width is [141,142]

ΓNI→να l
+
β l−β

= G2
FM

5
I

96π3 |Θα I |2
[
(C1(1 − δαβ) + C3δαβ).

×
(

(1 − 14x2
l − 2x4

l − 12x6
l )

√
1 − 4x2

l + 12x4
l (x4

l − 1)L(xl )

)

+4(C2(1 − δαβ) + C4δαβ)

(
x2
l (2 + 10x2

l − 12x4
l )

√
1 − 4x2

l

+6x4
l (1 − 2x2

l + 2x4
l )L(xl )

)]
, (B.43)

with xl as in (B.34) with α ↔ β, the coefficients Ci are

C1 = 1

4
(1 − 4 sin2 θW + 8 sin4 θW ), (B.44)

C2 = 1

2
sin2 θW (2 sin2 θW − 1), (B.45)

C3 = 1

4
(1 + 4 sin2 θW + 8 sin4 θW ), (B.46)

C4 = 1

2
sin2 θW (2 sin2 θW + 1), (B.47)

and the functions S(x, y) and L(x)

S(x, y) =
√

(1 − (x + y)2)(1 − (x − y)2), (B.48)

L(x) = log

[
1 − 3x2 − (1 − x2)

√
1 − 4x2

x2(1 + √
1 − 4x2)

]
. (B.49)

If, on the other hand, the charged leptons are of different
flavour, the decay width is given by [143]

ΓNI→l−α 	=β l
+
β νβ

= G2
FM

5
I

96π3 |Θα I |2
(
S(xα, xβ)g(xα, xβ)

−12x4
αlog

[1 − S(xα, xβ)(1 + x2
α − x2

β)

2x2
α

−2x2
β + (x2

α − x2
β)2

2x2
α

]
− 12x4

β log

[
1

2x2
β

− S(xα, xβ)(1 − x2
α + x2

β) − 2x2
α + (x2

α − x2
β)2

2x2
β

]

+12x4
αx

4
β log

[1 − S(xα, xβ)(1 − x2
α − x2

β)

2x2
αx

2
β

−2x2
α − 2x2

β + x4
α + x4

β

2x2
αx

2
β

])
(B.50)

where xα and xβ are as in (B.34), S(x, y) is as in (B.48) and

g(x, y) = 1 − 7x2 − 7y2 − 7x4 − 7y4 + 12x2y2

− 7x2y4 − 7x4y2 + x6 + y6, (B.51)

The expressions for leptonic decays agree across all
works, except minor differences in the functional forms of
the decays to different flavour leptons between [141,143].
These differences are, however, numerically negligible.

For large masses, above the hadronisation scale, the full
hadronic decay width of the right-handed neutrinos is bet-
ter approximated by computing their decay to free quarks,
instead of the individual meson channels. Hence the decays
of RHNs to quarks through the neutral current is [141]

ΓNI→ναqq̄

= 3G2
FM

5
I

96π3 |Θα I |2

×
((

12Cq
1 x

4(x4 − 1) + 6Cq
2 x

4(1 − 2x2 + 2x4
)
L(x)

+Cq
1

(
(1 − 14x2 − 2x4 − 12x6)

√
1 − 4x2

)

+4Cq
2

(
x2(2 + 10x2 − 12x4)

√
1 − 4x2

))
(B.52)

where the 3 upfront accounts for the number of colours, x =
Mq/MI , L(x) as in Eq. (B.49), and

Cu
1 = 1

4

(
1 − 8

3 sin2 θW + 32
9 sin4 θW

)
, (B.53)

Cu
2 = 1

3 sin2 θW

(
4
3 sin2 θW − 1

)
, (B.54)
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for up-type quarks and

Cd
1 = 1

4

(
1 − 4

3 sin2 θW + 8
9 sin4 θW

)
, (B.55)

Cd
2 = 1

6 sin2 θW

(
2
3 sin2 θW − 1

)
, (B.56)

for down-type quarks.
And lastly, the decay of RHNs to free quarks through the

charged current can be written as [141]

ΓNI→lαun ¯dm = 3G2
FM

5
I

96π3 |Vnm |2|Θα I |2 I (xu, xd , xl) (B.57)

where xi = Mi/MI and the function I (xu, xd , xl) is

I (xu, xd , xl) = 12
∫ (1−xu)2

(xd+xl )2

dx

x
(x − x2

l − x2
d )(1 + x2

u − x)

√
λ(x, x2

l , x2
d )λ(1, x, x2

u ) (B.58)

The differences between the expressions for the decay to
free quarks between [141,143] mirror those of the leptonic
decays. In this case, however, the differences can be substan-
tial for decays to third generation quarks, in which case we
opt to use the expressions from [141].

Appendix C: Distinguishing symmetry protected from
tuned parameter choices

One goal of the present work is to fully understand the exper-
imentally allowed range of parameters for heavy neutrinos,
with minimal theoretical bias. To achieve this we employ the
Casas-Ibarra parametrisation (29) and adapt agnostic priors
for the parameters in Table 5. On the other hand it is also
instrictive to understand what fraction of the parameter space
can only be realised at the cost of fine tuning in the parame-
ters. This requires to distinguish fine-tuned parameter choices
from symmetry protected ones.

The Casas-Ibarra parametrisation (29) is inherently moti-
vated from “bottom up”, and it is not easy to see directly
from the values of its fundamental parameters whether they
exhibit a symmetry protection. A full analytic exploration
of all the possible solutions and their classification between
symmetric and fine-tuned would be a useful exercise, but lies
outside the scope of this work. In our numerical scan we take
a more pragmatic approach. We first generate a huge amount
of parameter choices by randomising the parameter values
and the order of the matrices Ri j to ensure a maximal cov-
erage of the parameter space. We then use the cuts (75) to
distinguish the symmetry protected points a posteriori. This
cut practically enforces the structure (38) on the masses and
couplings.

Using the cut (75) requires some care for two reasons.
First, the form (38) does not capture all symmetry protected
points, cf. footnote 6. We may therefore misidentify some
symmetry protected points as tuned. We find, however, that
the number of such points is small. Second, when using the
Casas-Ibarra parametrisation, it is possible to generate points
that mimic the form (38) and hence pass the cut (75), but in
fact exhibit a significant amount of tuning.

To illustrate the second point we work at tree level and
approximate M̃diag � MM , which yields

F ≈ iUν

√
mdiag

ν R
√
MM/v. (C.59)

For the inverted hierarchy, it is straightforward to show that
one qualitatively gets a pseudo-Dirac pair of heavy neutrinos
for

M1 = M2 = M̄ , (ω12, ω13, ω23) = (ω, 0, 0) (C.60)

with |Imω| � 1. In addition we have to set mν0 = 0 to
find the symmetry protected region, as a non-zero lightest
neutrino mass is not consistent with ε′

α → 0. In this case
the upper left block of the matrix R√

MM in (29) is large
and the third row that multiplies m3 = mν0 is small, thereby
mimicking the structure in (38). One can therefore interpret
the decoupling Fα3 = 0 and the vanishing mass of the lightest
neutrino physically as results of the symmetry.

If we choose normal ordering, then choosing (C.60) still
yields a structure that passes the cut (75), but it is in fact
a tuned solution that just mimics this structure. In that case
mν0 = m1 multiplies the large components of R√

MM
−1

in (29). Hence, the approximate symmetry makes the wrong
light neutrino mass small (m3 instead of mν0 = m1). Of
course one can set m1 = 0 by hand in (29), but this choice
cannot be justified by the symmetry. Though the limit (C.60)
leads to a pseudo-Dirac structure amongst the νRi as pre-
dicted by the B − L̄ symmetry, the vanishing mass of the
lightest neutrino is not a result of that symmetry.

The problem is that the Casas-Ibarra parametrisation
allows on to set mν0 = 0 by hand and gives no warning
if this leads to accidental cancellations.

Realising the symmetry requires to choose the eigenvalues
of MM and the non-zero ωi j consistently in a way that the

large block in the matrix R√
MM

−1
in (29) multiplies the

two non-zero light neutrino masses. For normal ordering this
is achieved with

M2 = M3 = M̄ , (ω12, ω13, ω23) = (0, 0, ω), (C.61)

again with mν0 = 0. In particular, one cannot choose νR3 to
be the particle that decouples. This is clearly no fundamen-
tal problem because the labels of the νRI have no physical
meaning, but it means that the labelling and the order of
the matrices Ri j have to be taken into consideration when
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applying a cut to identify symmetry protected points in the
numerical data.

The situation is yet more tricky if one considers small
perturbations around the choices (C.61) or (C.60). In our
numerical scan we randomise the order of the three matrices
Ri j in (30) to generate more points. If one exactly takes the
choice (C.61) or (C.60) for normal or inverted neutrino mass
ordering, respectively, then the approximate B − L̄ conserv-
ing limit is reproduced irrespectively of the ordering of the
Ri j . However, the effect that small perturbations around this
limit have strongly depends on this ordering. The effect of
perturbingR is the smallest if the matricesRi j are ordered in
a way that the one with large entries (controlled by ω) directly

multiplies
√
M−1

M in (C.59). For normal ordering this is the

case with R = R23R13R12, and for inverted ordering with
R = R12R13R23. This procedure was crucial to reproduce
the constraints on the heavy neutrino flavour mixing pattern
in the n = 2 model found in Ref. [190], cf. Fig. 13.

It is worth noting that (C.60) and (C.61) are not the only
combinations of parameters that yield the symmetry pro-
tected scenario, but rather the simplest. The non-trivial struc-
ture of the complex rotation matrix R yields many solutions
to the required block layout described before. In fact, we
will take advantage of this fact further below to recover the
n = 2 case from the n = 3 Lagrangian for normal ordering
by taking

M1 = M2 = M̄ , (ω12, ω13, ω23) = (0, π/2, ω), (C.62)

since in this work we will focus mainly on the case where
M1 and M2 are almost degenerate.

Appendix D: Partial likelihoods

The final result of a global fit shows the combined effect of all
likelihoods on the parameter space of the model. It is, how-
ever, often useful to understand the effect on the individual
partial likelihoods. Therefore, we show here a comprehen-
sive set of scatter plots that show the contribution of each
relevant partial likelihood in the MI vs |Uα I |2. In all figures
throughout this section the colourbar measures the relative
partial log likelihood for each observable with respect to the
global best fit value. As we have seen before, away from the
massless neutrino limit there is little difference between NH
and IH, and thus we will only show the partial likelihoods
for normal ordering.

Figures 19, 20, 21, 22, 23 and 24 show the most constrain-
ing likelihoods on the |UeI |2 coupling. The likelihood values
are normalised to the best fit value for each partial likelihood.
Consistently with the results above, various direct searches
constrain large values of the coupling, with PS191 dominat-
ing for MI � 0.45 GeV, CHARM for MI ∼ (0.45, 2) GeV,

Fig. 19 Partial likelihood from direct searches with PS191, e-channel,
in the MI − |UeI |2 plane

Fig. 20 Partial likelihood from direct searches with CHARM, e-
channel, in the MI − |UeI |2 plane

Fig. 21 Partial likelihood from the long-lived particle searches with
DELPHI, in the MI − |UeI |2 plane
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Fig. 22 Partial likelihood from prompt searches with DELPHI, in the
MI − |UeI |2 plane

Fig. 23 Partial likelihood from direct searches with CMS, e-channel,
in the MI − |UeI |2 plane

Fig. 24 Partial likelihood from sin θW , in the MI − |UeI |2 plane

Fig. 25 Partial likelihood from direct searches with E949, μ-channel,
in the MI − |UμI |2 plane

Fig. 26 Partial likelihood from direct searches with PS191, μ-channel,
in the MI − |UμI |2 plane

the long-lived particle search from DELPHI for MI ∼ (2, 4)

GeV and DELPHI prompt search for MI ∼ (4, 80) GeV.
As seen in Fig. 23, direct searches from CMS compete

in a small mass range with DELPHI prompt searches, the
statistical combination of the two setting stronger limits than
each of them individually. Recent and future results from
CMS and ATLAS not included in this study are expected to
dominate in this range.

Figure 24 shows that the larger mass range is uncon-
strained by direct searches, hence electroweak precision
observables, in particular sin θW , are responsible for the
upper limits in this range.

Similar to the case above, the coupling |UμI |2 is con-
strained from above by several direct and precision searches.
Figs. 25, 26, 27, 28, 29, 30 and 31 show the effect of
the individual likelihoods on the upper limit of |UμI |2. As
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Fig. 27 Partial likelihood from direct searches with CHARM, μ-
channel, in the MI − |UμI |2 plane

Fig. 28 Partial likelihood from direct searches with NuTeV, in the
MI − |UμI |2 plane

Fig. 29 Partial likelihood from the long-lived particle searches with
DELPHI, in the MI − |UμI |2 plane

Fig. 30 Partial likelihood from the prompt searches with DELPHI, in
the MI − |UμI |2 plane

Fig. 31 Partial likelihood from direct searches with CMS, μ-channel,
in the MI − |UμI |2 plane

opposed to the electron case, where for most mass ranges
only one constraint dominated, in this case several mass
ranges show competing effects from various constraints. For
MI < 0.45 GeV both PS191 and E949 are relevant; in
the range MI ∼ (0.45, 2) GeV searches at NuTeV are the
most constraining, with a small contribution from the results
from CHARM; the long-lived particle search from DELPHI
remains unchallenged for MI ∼ (2, 4) GeV whereas, as
before, the DELPHI prompt search competes in the range
MI ∼ (4, 80) GeV, with searches at CMS.

Larger masses are not constrained by direct searches,
but rather by a combination of precision limits. Contrary to
|UeI |2, where only sin θW dominated at large masses, upper
values of |UμI |2 are also mildly constrained by lepton flavour
violating decays, particularly μ → eγ . Hence, for MI � 80
GeV, the combination of EWPO, sin θW , and LFV decays, are
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Fig. 32 Partial likelihood from lepton flavour violating decays μ →
eγ , in the MI − |UμI |2 plane

Fig. 33 Partial likelihood from sin θW , in the MI − |UμI |2 plane

the most constraining, as seen in Figs. 32 and 33. The effect
of the LFV constraints can be better appreciated in Figs. 34
and 35 on the combination |UeIUμI | where μ → eγ is the
dominant constraint, supplemented slightly by μ−e conver-
sion.

The couplings of heavy neutrinos to the τ flavour, |Uτ I |2,
are not as strongly constrained from above by direct searches.
In Figs. 36 and 37, one can see that for low masses, MI � 0.3
GeV, only the direct searches from CHARM in the τ channel
set an upper limit on the couplings. In the mass range MI ∼
(0.5, 80) GeV, long-lived and prompt searches by DELPHI
dominate (Fig. 38). At low masses, the |Uτ I |2 coupling is
constrained from below, as seen in Fig. 39. This lower bound
is a consequence of BBN, which sets a lower limit on the
sum of couplings |UI |2, and PS191, which forces the e and
μ couplings to be small at low masses .

Fig. 34 Partial likelihood from lepton flavour violating decays μ →
eγ , in the MI − |UeIUμI | plane

Fig. 35 Partial likelihood from the lepton flavour violating μ− e con-
version, in the MI − |UeIUμI | plane

Fig. 36 Partial likelihood from direct searches with CHARM, τ -
channel, in the MI − |Uτ I |2 plane
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Fig. 37 Partial likelihood from the long-lived particle searches with
DELPHI, in the MI − |Uτ I |2 plane

Fig. 38 Partial likelihood from the prompt searches with DELPHI, on
the MI − |Uτ I |2 plane

Fig. 39 Partial likelihood from direct searches with PS191, e-channel,
in the MI − |Uτ I |2 plane

Fig. 40 Partial likelihood from the invisible decay width of the Z -
boson, in the MI − |Uτ I |2 plane

In the mass range MI ∼ (0.3, 0.5) GeV, as well as for
large masses MI � 80 GeV, direct searches do not con-
strain |Uτ I |2. Hence in these ranges, the strongest constraints
come from the invisible decay of the Z boson, as seen in
Fig. 40. This figure uses the "capped" likelihood defined pre-
viously, so the excesses in Γinv discussed in Sect. 5 will not be
visible.
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