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neutralino, masses up to 420 GeV are excluded for the production of the lightest-chargino pairs
assuming W -boson-mediated decays and up to 1 TeV for slepton-mediated decays, whereas
for slepton-pair production, masses up to 700 GeV are excluded assuming three generations of
mass-degenerate sleptons.
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1 Introduction

Weak-scale supersymmetry (SUSY) [1–6] is a theoretical extension to the Standard Model (SM) that, if
realised in nature, would solve the hierarchy problem [7–10] through the introduction of a new fermion
(boson) supersymmetric partner for each boson (fermion) in the SM. In SUSY models that conserve
R-parity [11], SUSY particles (sparticles) must be produced in pairs. The lightest supersymmetric particle
(LSP) is stable and weakly interacting, thus potentially providing a viable candidate for dark matter [12,
13]. Due to its stability, any LSP produced at the Large Hadron Collider (LHC) would escape detection
and give rise to momentum imbalance in the form of missing transverse momentum (pmiss

T ) in the final
state, which can be used to discriminate SUSY signals from the SM background.

The superpartners of the SM Higgs boson and the electroweak gauge bosons, known as the higgsinos,
winos and binos, are collectively labelled as electroweakinos. They mix to form chargino ( χ̃±i , i = 1, 2) and
neutralino ( χ̃0

j, j = 1, 2, 3, 4) mass eigenstates where the labels i and j refer to states of increasing mass.

Sparticle production cross-sections at the LHC are highly dependent on the sparticle masses as well as on
the production mechanism. The coloured sparticles (squarks and gluinos) are strongly produced and have
significantly larger production cross-sections than non-coloured sparticles of equal masses, such as the
sleptons (superpartners of the SM leptons) and the electroweakinos. If gluinos and squarks were much
heavier than low-mass electroweakinos, then SUSY production at the LHC would be dominated by direct
electroweakino production. The latest ATLAS and CMS limits on squark and gluino production [14–22]
extend well beyond the TeV scale, thus making electroweak production of sparticles a promising and
important probe in searches for SUSY at the LHC.

This paper presents a search for the electroweak production of charginos and sleptons decaying into final
states with two charged leptons (electrons and/or muons) using 139 fb−1 of proton–proton collision data
recorded by the ATLAS detector at the LHC at

√
s = 13 TeV. The analysis is optimised to target the direct
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production of χ̃+1 χ̃
−
1 , where each chargino decays into the LSP χ̃0

1 and an on-shell W boson. Signal events
are characterised by the presence of exactly two isolated leptons (e, µ) with opposite electric charge, and
significant pmiss

T (the magnitude of which is referred to as Emiss
T ), expected from neutrinos and LSPs in the

final states. The same analysis strategy is also applied to two other searches. One of them is the search for
the direct production of χ̃+1 χ̃

−
1 , where each chargino decays into a slepton (charged slepton ˜̀ or sneutrino

ν̃) via the emission of a lepton (neutrino ν or charged lepton `) and the slepton itself decays into a lepton
and the LSP. The other one is the search for the direct pair production of sleptons where each slepton
decays into a lepton and the LSP.

The search described here significantly extends the areas of the parameter space beyond those excluded by
previous searches by ATLAS [23, 24] and CMS [25–29] in the same channels.

After a description of the considered SUSY scenarios in Section 2 and of the ATLAS detector in Section 3,
the data and simulated Monte Carlo (MC) samples used in the analysis are detailed in Section 4. Section 5
and Section 6 present the event reconstruction and the search strategy. The SM background estimation and
the systematic uncertainties are discussed in Section 7 and Section 8, respectively. Finally, the results and
their interpretations are reported in Section 9. Section 10 summarises the conclusions.

2 SUSY scenarios

The design of the analysis and the interpretation of results are based on simplified models [30], where the
masses of relevant sparticles (in this case the χ̃±1 , ˜̀, ν̃ and χ̃0

1) are the only free parameters. The χ̃±1 is
assumed to be pure wino and two possible decay modes are considered. The first is a decay into the χ̃0

1
via emission of a W boson, which may decay into an electron or muon plus neutrino(s) either directly or
through the emission of a leptonically decaying τ-lepton (Figure 1(a)). The second decay mode proceeds
via a slepton–neutrino/sneutrino–lepton pair (Figure 1(b)). In this case it is assumed that the scalar partners
of the left-handed charged leptons and neutrinos are also light and thus accessible in the sparticle decay
chains. It is also assumed they are mass-degenerate, and their masses are chosen to be midway between the
mass of the chargino and that of the χ̃0

1, which is pure bino. Equal branching ratios for the three slepton
flavours are assumed and charginos decay into charged sleptons or sneutrinos with a branching ratio of
50% to each. Lepton flavour is conserved in all models. In models with direct ˜̀ ˜̀ production (Figure 1(c)),
each slepton decays into a lepton and a χ̃0

1 with a 100% branching ratio. Only ẽ and µ̃ are considered in
these models, and the superpartners of the left-handed and right-handed charged leptons, ẽL, ẽR, µ̃L and
µ̃R, are assumed to be mass-degenerate.

3 ATLAS detector

The ATLAS detector [31] at the LHC is a general-purpose detector with a forward–backward symmetric
cylindrical geometry and an almost complete coverage in solid angle around the collision point.1 It consists

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards.
Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity
is defined in terms of the polar angle θ as η = − ln tan(θ/2). Rapidity is defined as y = 0.5 ln[(E + pz )/(E − pz )], where E
and pz denote the energy and the component of the particle momentum along the beam direction, respectively.
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Figure 1: Diagrams of the supersymmetric models considered, with two leptons and weakly interacting particles in
the final state: (a) χ̃+1 χ̃

−
1 production with W -boson-mediated decays, (b) χ̃+1 χ̃

−
1 production with slepton/sneutrino-

mediated-decays and (c) slepton pair production. In the model with intermediate sleptons, all three flavours (ẽ, µ̃, τ̃)
are included, while only ẽ and µ̃ are included in the direct slepton model. In the final state, ` stands for an electron or
muon, which can be produced directly or, in the case of (a) and (b) only, via a leptonically decaying τ-lepton with
additional neutrinos.

of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic
calorimeters, and a muon spectrometer incorporating three large superconducting toroid magnets.

The inner-detector (ID) system is immersed in a 2 T axial magnetic field produced by the solenoid and
provides charged-particle tracking in the range |η | < 2.5. It consists of a high-granularity silicon pixel
detector, a silicon microstrip tracker and a transition radiation tracker, which enables radially extended
track reconstruction up to |η | = 2.0. The transition radiation tracker also provides electron identification
information. During the first LHC long shutdown, a new tracking layer, known as the Insertable B-Layer [32,
33], was added with an average sensor radius of 33 mm from the beam pipe to improve tracking and
b-tagging performance.

The calorimeter system covers the pseudorapidity range |η | < 4.9. Within the region |η | < 3.2,
electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr)
sampling calorimeters. Hadronic calorimetry is provided by an iron/scintillator-tile sampling calorimeter for
|η | < 1.7, and two copper/LAr hadronic endcap calorimeters. The solid angle coverage is completed with
forward copper/LAr and tungsten/LAr calorimeter modules optimised for electromagnetic and hadronic
measurements, respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring
the deflection of muons in a magnetic field generated by superconducting air-core toroids. The precision
chamber system covers the region |η | < 2.7 with three layers of monitored drift tubes, complemented by
cathode strip chambers in the forward region, where the background is higher. The muon trigger system
covers the range |η | < 2.4 with resistive plate chambers in the barrel, and thin gap chambers in the endcap
regions.

A two-level trigger system is used to select events. There is a low-level hardware trigger implemented
in custom electronics, which reduces the incoming data rate to a design value of 100 kHz using a subset
of detector information, and a high-level software trigger that selects interesting final-state events with
algorithms accessing the full detector information, and further reduces the rate to about 1 kHz [34].
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4 Data and simulated event samples

The analysis uses data collected by the ATLAS detector during pp collisions at a centre-of-mass energy of
√

s = 13 TeV from 2015 to 2018. The average number 〈µ〉 of additional pp interactions per bunch crossing
(pile-up) ranged from 14 in 2015 to about 38 in 2017–2018. After data-quality requirements, the data
sample amounts to a total integrated luminosity of 139 fb−1. The uncertainty in the combined 2015–2018
integrated luminosity is 1.7% [35], obtained using the LUCID-2 detector [36] for the primary luminosity
measurements.

Candidate events were selected by a trigger that required at least two leptons (electrons and/or muons). The
trigger-level thresholds for the transverse momentum, pT, of the leptons involved in the trigger decision
were different according to the data-taking periods. They were in the range 8–22 GeV for data collected in
2015 and 2016, and 8–24 GeV for data collected in 2017 and 2018. These thresholds are looser than those
applied in the lepton offline selection to ensure that trigger efficiencies are constant in the relevant phase
space.

Simulated event samples are used for the SM background estimate and to model the SUSY signal. The MC
samples were processed through a full simulation of the ATLAS detector [37] based on Geant 4 [38] or a
fast simulation using a parameterisation of the ATLAS calorimeter response and Geant 4 for the other
components of the detector [37]. They were reconstructed with the same algorithms as those used for the
data. To compensate for differences between data and simulation in the lepton reconstruction efficiency,
energy scale, energy resolution and modelling of the trigger [39, 40], and in the b-tagging efficiency [41],
correction factors are derived from data and applied as weights to the simulated events.

All SM backgrounds used are listed in Table 1 along with the relevant parton distribution function (PDF)
sets, the configuration of underlying-event and hadronisation parameters (tune), and the cross-section
order in αs used to normalise the event yields for these samples. Further information on the ATLAS
simulations of tt̄, single top (Wt), multiboson and boson plus jet processes can be found in the relevant
public notes [42–45].

The SUSY signal samples were generated from leading-order (LO) matrix elements with up to two extra
partons using MadGraph5_aMC@NLO 2.6.1 [46] interfaced to Pythia 8.186 [47], with the A14 tune [48],
for the modelling of the SUSY decay chain, parton showering, hadronisation and the description of the
underlying event. Parton luminosities were provided by the NNPDF2.3LO PDF set [49]. Jet–parton
matching was performed following the CKKW-L prescription [50], with a matching scale set to one quarter
of the mass of the pair-produced SUSY particles. Signal cross-sections were calculated to next-to-leading
order (NLO) in αs adding the resummation of soft gluon emission at next-to-leading-logarithm accuracy
(NLO+NLL) [51–57]. The nominal cross-sections and their uncertainties were taken from an envelope of
cross-section predictions using different PDF sets and factorisation and renormalisation scales, as described
in Ref. [58]. The cross-section for χ̃+1 χ̃

−
1 production, each with a mass of 400 GeV, is 58.6 ± 4.7 fb, while

the cross-section for ˜̀ ˜̀ production, each with a mass of 500 GeV, is 0.47 ± 0.03 fb for each generation of
left-handed sleptons and 0.18 ± 0.01 fb for each generation of right-handed sleptons.

Inelastic pp interactions were generated and overlaid onto the hard-scattering process to simulate the
effect of multiple proton–proton interactions occurring during the same (in-time) or a nearby (out-of-time)
bunch crossing. These were produced using Pythia 8.186 and EvtGen [59] with the NNPDF2.3LO set of
PDFs [49] and the A3 tune [60]. The MC samples were reweighted so that the distribution of the average
number of interactions per bunch crossing reproduces the observed distribution in the data.
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Table 1: Simulated background event samples with the corresponding matrix element and parton shower (PS)
generators, cross-section order in αs used to normalise the event yield, underlying-event tune and the generator PDF
sets used. Bibliographic references in this Table are not repeated only when they are the same for identical entries.

Physics process Generator Parton shower Normalisation Tune PDF (generator) PDF (PS)

t t̄ Powheg-Box v2 [61–64] Pythia8.230 [65] NNLO+NNLL [66] A14 [48] NNPDF3.0NLO [67] NNPDF2.3LO [49]
t t̄ +V (V =W, Z) MadGraph5_aMC@NLO [46] Pythia8.210 [65] NLO [46, 68] A14 NNPDF3.0NLO NNPDF2.3LO
t t̄ +WW MadGraph5_aMC@NLO Pythia8.186 [47] NLO [46] A14 NNPDF2.3LO NNPDF2.3LO
tZ, t t̄t t̄, t t̄t MadGraph5_aMC@NLO Pythia 8.230 NLO [46] A14 NNPDF3.0NLO NNPDF2.3LO
Single top (Wt) Powheg-Box v2 [62, 63, 69] Pythia 8.230 NLO+NNLL [70, 71] A14 NNPDF3.0NLO NNPDF2.3LO
Z/γ∗ (→ ll)+jets Sherpa 2.2.1 [72–74] Sherpa 2.2.1 NNLO [75] Sherpa default [74] NNPDF3.0NNLO [67] NNPDF3.0NNLO [67]
WW,WZ, ZZ Powheg-Box v2 [62, 63, 76, 77] Pythia 8.210 NLO [44, 76, 77] AZNLO [78] CT10 NLO [79] CTEQ6L1[80]
VVV (V =W, Z) Sherpa 2.2.2 [44, 72, 73] Sherpa 2.2.2 NLO [44, 73] Sherpa default [44] NNPDF3.0NNLO NNPDF3.0NNLO
Higgs boson Powheg-Box v2 [62, 63, 81–84] Pythia 8.186 NLO [85] AZNLO NNPDF3.0NLO2 CTEQ6L1

5 Object identification

Leptons selected for analysis are categorised as baseline or signal leptons according to various quality and
kinematic selection criteria. Baseline objects are used in the calculation of missing transverse momentum,
to resolve ambiguities between the analysis objects in the event and in the fake/non-prompt (FNP) lepton
background estimation described in Section 7. Leptons used for the final event selection must satisfy more
stringent signal requirements.

Baseline electron candidates are reconstructed using clusters of energy deposits in the electromagnetic
calorimeter that are matched to an ID track. They are required to satisfy a Loose likelihood-based
identification requirement [39], and to have pT > 10 GeV and |η | < 2.47. They are also required to be
within |z0 sin θ | = 0.5 mm of the primary vertex,3 where z0 is the longitudinal impact parameter relative to
the primary vertex. Signal electrons are required to satisfy a Tight identification requirement [39] and the
track associated with the signal electron is required to have |d0 |/σ(d0) < 5, where d0 is the transverse
impact parameter relative to the reconstructed primary vertex and σ(d0) is its error.

Baseline muon candidates are reconstructed in the pseudorapidity range |η | < 2.7 fromMS tracks matching
ID tracks. They are required to have pT > 10 GeV, to be within |z0 sin θ | = 0.5 mm of the primary vertex
and to satisfy the Medium identification requirements defined in Ref. [40]. The Medium identification
criterion defines requirements on the number of hits in the different ID and MS subsystems, and on the
significance of the charge-to-momentum ratio q/p. Finally, the track associated with the signal muon must
have |d0 |/σ(d0) < 3.

Isolation criteria are applied to signal electrons and muons. The scalar sum of the pT of tracks inside a
variable-size cone around the lepton (excluding its own track), must be less than 15% of the lepton pT.
The track isolation cone size for electrons (muons) ∆R =

√
(∆η)2 + (∆φ)2 is given by the minimum of

∆R = 10 GeV/pT and ∆R = 0.2 (0.3). In addition, for electrons (muons) the sum of the transverse energy
of the calorimeter energy clusters in a cone of ∆R = 0.2 around the lepton (excluding the energy from
the lepton itself) must be less than 20% (30%) of the lepton pT. For electrons with pT > 200 GeV these
isolation requirements are not applied, and instead an upper limit of max(0.015× pT, 3.5 GeV) is placed on
the transverse energy of the calorimeter energy clusters in a cone of ∆R = 0.2 around the electron.

Jets are reconstructed from topological clusters of energy in the calorimeter [86] using the anti-kt jet
clustering algorithm [87] as implemented in the FastJet package [88], with a radius parameter R = 0.4. The

2 The PDF4LHC15 set have been used for some Higgs production processes, as via gluon-gluon fusion, VBF and VH.
3 The primary vertex is defined as the vertex with the highest scalar sum of the squared transverse momentum of associated
tracks with pT > 500 MeV.
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reconstructed jets are then calibrated by the application of a jet energy scale derived from 13 TeV data and
simulation [89]. Only jet candidates with pT > 20 GeV and |η | < 2.4 are considered,4 although jets with
|η | < 4.9 are included in the missing transverse momentum calculation and are considered when applying
the procedure to remove reconstruction ambiguities, which is described later in this Section.

To reduce the effects of pile-up, for jets with |η | ≤ 2.5 and pT < 120 GeV a significant fraction of the
tracks associated with each jet are required to have an origin compatible with the primary vertex, as defined
by the jet vertex tagger [90]. This requirement reduces jets from pile-up to 1%, with an efficiency for pure
hard-scatter jets of about 90%. For jets with |η | > 2.5 and pT < 60 GeV, pile-up suppression is achieved
through the forward jet vertex tagger [91], which exploits topological correlations between jet pairs. Finally,
events containing a jet that does not satisfy the jet-quality requirements [92, 93] are rejected to remove
events impacted by detector noise and non-collision backgrounds.

The MV2C10 boosted decision tree algorithm [41] identifies jets containing b-hadrons (‘b-jets’) by using
quantities such as the impact parameters of associated tracks, and well-reconstructed secondary vertices. A
selection that provides 85% efficiency for tagging b-jets in simulated tt̄ events is used. The corresponding
rejection factors against jets originating from c-quarks, from τ-leptons, and from light quarks and gluons
in the same sample at this working point are 2.7, 6.1 and 25, respectively.

To avoid the double counting of analysis baseline objects, a procedure to remove reconstruction ambiguities
is applied as follows:

• jet candidates within ∆R′ =
√
∆y2 + ∆φ2 = 0.2 of an electron candidate are removed;

• jets with fewer than three tracks that lie within ∆R′ = 0.4 of a muon candidate are removed;

• electrons and muons within ∆R′ = 0.4 of the remaining jets are discarded, to reject leptons from the
decay of b- or c-hadrons;

• electron candidates are rejected if they are found to share an ID track with a muon.

The missing transverse momentum (pmiss
T ), which has the magnitude Emiss

T , is defined as the negative
vector sum of the transverse momenta of all identified physics objects (electrons, photons, muons and jets).
Low-momentum tracks from the primary vertex that are not associated with reconstructed analysis objects
(the ‘soft term’) are also included in the calculation, and the Emiss

T value is adjusted for the calibration
of the selected physics objects [94]. Linked to the Emiss

T value is the ‘object-based Emiss
T significance’,

referred to as Emiss
T significance in this paper, that helps to separate events with true Emiss

T (arising from
weakly interacting particles) from those where it is consistent with particle mismeasurement, resolution or
identification inefficiencies, as further detailed in Ref. [95].

6 Search strategy

Events are required to have exactly two oppositely charged signal leptons `1 and `2, both with pT > 25 GeV.
To remove contributions from low-mass resonances and to ensure good modelling of the SM background
in all relevant regions, the invariant mass of the two leptons must be m`1`2 > 100 GeV. Events are further
required to have no reconstructed b-jets, to suppress contributions from processes with top quarks. Selected
events must also satisfy Emiss

T > 110 GeV and Emiss
T significance > 10.

4 Hadronic τ-lepton decay products are treated as jets.
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The stransverse mass mT2 [96, 97] is a kinematic variable used to bound the masses of a pair of particles
that are assumed to have each decayed into one visible and one invisible particle. It is defined as

mT2(pT,1, pT,2, pmiss
T ) = min

qT,1+qT,2=pmiss
T

{
max[ mT(pT,1, qT,1),mT(pT,2, qT,2) ]

}
,

where mT indicates the transverse mass,5 pT,1 and pT,2 are the transverse-momentum vectors of the two
leptons, and qT,1 and qT,2 are vectors with pmiss

T = qT,1 + qT,2. The minimisation is performed over all the
possible decompositions of pmiss

T . For tt̄ or WW decays, assuming an ideal detector with perfect momentum
resolution, mT2(pT,`1, pT,`2, pmiss

T ) has a kinematic endpoint at the mass of the W boson [97]. Signal models
with significant mass splittings between the χ̃±1 and the χ̃0

1 feature mT2 distributions that extend beyond the
kinematic endpoint expected from the dominant SM backgrounds. Therefore, events are required to have
high mT2 values.

Events are separated into ‘same flavour’ (SF) events, i.e. e±e∓ and µ±µ∓, and ‘different flavour’ (DF)
events, i.e. e±µ∓, since the two classes of events have different background compositions. SF events are
required to have a dilepton invariant mass far from the Z peak, m`1`2 > 121.2 GeV, to reduce diboson and
Z+jets backgrounds.

Events are further classified by the multiplicity of non-b-tagged jets (nnon-b-tagged jets), i.e. the number of
jets not identified as b-jets by the MV2C10 boosted decision tree algorithm. All events are required to have
no more than one non-b-tagged jet. Following the classification of the events, two sets of signal regions
(SRs) are defined: a set of exclusive, ‘binned’ SRs, to maximise model-dependent search sensitivity, and a
set of ‘inclusive’ SRs, to be used for model-independent results. Among the second set of SRs two are
fully inclusive, with a different lower bound on mT2 to target different chargino or slepton mass regions,
while two have both lower and upper bounds on mT2 to target models with lower endpoints. The definitions
of these regions are shown in Table 2. Each SR is identified by the lepton flavour combination (DF or SF),
the number of non-b-tagged jets (0J,1J) and the range of the mT2 interval.

7 Background estimation and validation

The SM backgrounds can be classified into irreducible backgrounds, from processes with prompt leptons,
and reducible backgrounds, which contain one or more FNP leptons. The main irreducible backgrounds
come from SM diboson (WW , W Z , Z Z) and top-quark (tt̄ and Wt) production. These are estimated
from simulated events, normalised using a simultaneous likelihood fit to data (as described in Section 9)
in dedicated control regions (CRs). The CRs are designed to be enriched in the particular background
process under study while remaining kinematically similar to the SRs. The normalisations of the relevant
backgrounds are then validated in a set of validation regions (VRs), which are not used to constrain the fit,
but are used to verify that the data and predictions agree within uncertainties in regions of the parameter
space kinematically close to the SRs. Three CRs are used, as defined in Table 3: CR-WW, targeting WW
production; CR-VZ, targeting W Z and Z Z production, which are normalised by using a single parameter
in the likelihood fit to the data; and CR-top, targeting tt̄ and single-top-quark production, which are also
normalised by using a single parameter in the likelihood fit to the data. A single normalisation parameter is
used for tt̄ and single-top-quark (Wt) production as the relative amounts of each process are consistent
within uncertainties in the CR and SRs.
5 The transverse mass is defined as mT =

√
2 × |pT,1 | × |pT,2 | × (1 − cos(∆φ)), where ∆φ is the difference in azimuthal angle

between the particles with transverse momenta pT,1 and pT,2.
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Table 2: The definitions of the binned and inclusive signal regions. Relevant kinematic variables are defined in the
text. The bins labelled ‘DF’ or ‘SF’ refer to signal regions with different lepton flavour or same lepton flavour pair
combinations, respectively, and the ‘0J’ and ‘1J’ labels refer to the multiplicity of non-b-tagged jets.

Signal region (SR) SR-DF-0J SR-DF-1J SR-SF-0J SR-SF-1J
nnon-b-tagged jets = 0 = 1 = 0 = 1
m`1`2 [GeV] >100 >121.2
Emiss
T [GeV] >110

Emiss
T significance >10

nb-tagged jets = 0
Binned SRs

mT2 [GeV]

∈[100,105)
∈[105,110)
∈[110,120)
∈[120,140)
∈[140,160)
∈[160,180)
∈[180,220)
∈[220,260)
∈[260,∞)

Inclusive SRs

mT2 [GeV]
∈[100,∞)
∈[160,∞)
∈[100,120)
∈[120,160)

Table 3: Control region definitions for extracting normalisation factors for the dominant background processes. ‘DF’
or ‘SF’ refer to signal regions with different lepton flavour or same lepton flavour pair combinations, respectively.

Region CR-WW CR-VZ CR-top
Lepton flavour DF SF DF
nb-tagged jets = 0 = 0 = 1
nnon-b-tagged jets = 0 = 0 = 0
mT2 [GeV] ∈ [60,65] > 120 > 80
Emiss
T [GeV] ∈ [60,100] > 110 > 110

Emiss
T significance ∈ [5,10] > 10 > 10

m`1`2 [GeV] > 100 ∈ [61.2,121.2] > 100

The definitions of the VRs are shown in Table 4. For the WW background two validation regions are
considered (VR-WW-0J and VR-WW-1J), according to the multiplicity of non-b-tagged jets in the event.
As contributions from top-quark backgrounds in VR-WW-0J and VR-WW-1J are not negligible, three VRs
are defined for this background. VR-top-low requires a similar mT2 range as VR-WW-0J and VR-WW-1J,
thus allowing the modelling of top-quark production at lower values of mT2 to be validated. VR-top-high
requires mT2 > 100 GeV and provides validation in the high mT2 region where the SRs are also defined.
Finally, VR-top-WW requires the same Emiss

T , Emiss
T significance and mT2 ranges as CR-WW and provides

validation of the modelling of top-quark production in this region.
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Table 4: Validation region definitions used to study the modelling of the SM backgrounds. ‘DF’ or ‘SF’ refer to
regions with different lepton flavour or same lepton flavour pair combinations, respectively.

Region VR-WW-0J VR-WW-1J VR-VZ VR-top-low VR-top-high VR-top-WW
Lepton flavour DF DF SF DF DF DF
nb-tagged jets = 0 = 0 = 0 = 1 = 1 = 1
nnon-b-tagged jets = 0 = 1 = 0 = 0 = 1 = 1
mT2 [GeV] ∈ [65,100] ∈ [65,100] ∈ [100,120] ∈ [80,100] > 100 ∈ [60,65]
Emiss
T [GeV] > 60 > 60 > 110 > 110 > 110 ∈ [60,100]

Emiss
T significance > 5 > 5 > 10 ∈ [5,10] > 10 ∈ [5,10]

m`1`2 [GeV] > 100 > 100 ∈ [61.2,121.2] > 100 > 100 > 100

To obtain CRs and VRs of reasonable purity in WW production, CR-WW, VR-WW-0J and VR-WW-1J
all require lower mT2 values than the SRs. To validate the tails of the mT2 distribution, a method similar
to the one described in Ref. [29] is used. Three-lepton events, purely from W Z production, are selected
by requiring the absence of b-tagged jets and the presence of one same-flavour opposite-sign (SFOS)
lepton pair with an invariant mass consistent with that of the Z boson (|m`1`2 − mZ | < 10 GeV). To avoid
overlaps with portions of the phase space relevant for other searches, three-lepton events are also required
to satisfy Emiss

T ∈ [40, 170] GeV. To emulate the signal regions, events are also required to have zero or one
non-b-tagged jet. The transverse momentum of the lepton in the SFOS pair that has the same charge as the
remaining lepton is added to the pmiss

T vector, to mimic a neutrino. The mT2 value can then be calculated
using the remaining two leptons in the event. With this selection, there is a good agreement between the
shapes of the mT2 distributions observed in data and simulation, and no additional systematic uncertainty
is applied to the WW background at high mT2.

Sub-dominant irreducible SM background contributions come from Z+jets, Drell–Yan, tt̄ +V and Higgs
boson production. These processes, jointly referred to as ‘Other backgrounds’ (or ‘Others’ in the Figures)
are estimated directly from simulation using the samples described in Section 4. The remaining background
from FNP leptons is estimated from data using the matrix method (MM) [98]. This method considers two
types of lepton identification criteria: ‘signal’ leptons, corresponding to leptons passing the full analysis
selection, and ‘baseline’ leptons, as defined in Section 5. Probabilities for prompt leptons satisfying the
baseline selection to also satisfy the signal selection are measured as a function of lepton pT and η in
dedicated regions enriched in Z boson processes. Similar probabilities for FNP leptons are measured in
events dominated by leptons from the decays of heavy-flavour hadrons and from photon conversions. These
probabilities are used in the MM to extract data-driven estimates for the FNP lepton background in the
CRs, VRs, and SRs, comparing the numbers of events containing a pair of baseline leptons in which one
of the two leptons, both or none of them satisfy the signal selection in a given region. To avoid double
counting between the simulated samples used for background estimation and the FNP lepton background
estimate provided by the MM, all simulated events containing one or more FNP leptons are removed.

The number of observed events in each CR, as well as the predicted yield of each SM process, is shown in
Table 5. For backgrounds whose normalisation is extracted from the likelihood fit, the yield expected from
the simulation before the fit is also shown. After the fit, the central value of the total number of predicted
events in each CR matches the data, as expected from the normalisation procedure. The normalisation
factors returned by the fit for the WW , tt̄ and single-top-quark backgrounds, and W Z/Z Z backgrounds are
1.25 ± 0.11, 0.82 ± 0.06 and 1.18 ± 0.05 respectively, which for diboson backgrounds are applied to MC
samples scaled to NLO cross-sections (as detailed in Table 1). The shapes of kinematic distributions are
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Table 5: Observed event yields and predicted background yields from the fit in the CRs. For backgrounds with a
normalisation extracted from the fit, the yield expected from the simulation before the fit is also shown. ‘Other
backgrounds’ include the non-dominant background sources, i.e. Z+jets, tt̄+V , Higgs boson and Drell–Yan events.
A ‘–’ symbol indicates that the background contribution is negligible.

Region CR-WW CR-VZ CR-top

Observed events 962 811 321

Fitted backgrounds 962 ± 31 811 ± 28 321 ± 18

Fitted WW
Fitted W Z
Fitted Z Z
Fitted tt̄
Fitted single top
Other backgrounds
FNP leptons

670 ± 60
11.8 ± 0.7
0.29 ± 0.06
170 ± 50

88 ± 8
0.17 ± 0.06

21 ± 8

19.1 ± 1.9
188 ± 7
577 ± 23
1.8 ± 1.3

0.65 ± 0.35
19 ± 7
5+6
−5

5.5 ± 2.7
0.32 ± 0.15
−

270 ± 16
38.6 ± 2.6
2.21 ± 0.20

4.2 ± 2.2

Simulated WW
Simulated W Z
Simulated Z Z
Simulated tt̄
Simulated single top

528
9.9
0.24

210
107

15.1
158
487

2.2
0.8

4.3
0.27
−

327
46.7

well reproduced by the simulation in each CR. The distributions of mT2 in CR-VZ and CR-top and of Emiss
T

in CR-WW are shown in Figure 2.

The number of observed events and the predicted background in each VR are shown in Table 6. For
backgrounds with a normalisation extracted from the fit, the expected yield from simulated samples before
the fit is also shown. Figure 3 shows a selection of kinematic distributions for data and the estimated SM
background in the validation regions defined in Table 4. Good agreement is observed in all regions.

8 Systematic uncertainties

All relevant sources of experimental and theoretical systematic uncertainty affecting the SM background
estimates and the signal predictions are included in the likelihood fit described in Section 9. The dominant
sources of systematic uncertainty are related to theoretical uncertainties in the MC modelling, while
the largest sources of experimental uncertainty are related to the jet energy scale (JES) and jet energy
resolution (JER). The statistical uncertainty in the simulated event samples is also accounted for. Since the
normalisation of the predictions for the dominant background processes is extracted from dedicated control
regions, the systematic uncertainties only affect the extrapolation to the signal regions in these cases.

The JES and JER uncertainties are considered as a function of jet pT and η, the pile-up conditions and
the flavour composition of the selected jet sample. They are derived using a combination of data and
simulation, through measurements of the transverse momentum balance between a jet and a reference
object in dijet, Z+jets and γ+jets events [89]. An additional uncertainty in pmiss

T comes from the soft-term
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Figure 2: Distributions of mT2 in (a) CR-VZ and (b) CR-top and (c) Emiss
T in CR-WW for data and the estimated

SM backgrounds. The normalisation factors extracted from the corresponding CRs are used to rescale the tt̄,
single-top-quark, WW , W Z and Z Z backgrounds. The FNP lepton background is calculated using the data-driven
matrix method. Negligible background contributions are not included in the legends. The uncertainty band includes
systematic and statistical errors from all sources and the final bin in each histogram includes the overflow. Distributions
for three benchmark signal points are overlaid for comparison. The lower panels show the ratio of data to the SM
background estimate.

resolution and scale [94]. Uncertainties in the scale factors applied to the simulated samples to account
for differences between data and simulation in the b-jet identification efficiency are also included. The
remaining experimental systematic uncertainties, such as those in the lepton reconstruction efficiency,
lepton energy scale and lepton energy resolution and differences between the trigger efficiencies in data
and simulation are included and are found to be a few per mille in all channels. The reweighting procedure
(pile-up reweighting) applied to simulation to match the distribution of the number of interactions per
bunch crossing observed in data results in a negligible contribution to the total systematic uncertainty.

Several sources of theoretical uncertainty in the modelling of the dominant backgrounds are considered.
Uncertainties in the MC modelling of diboson events are estimated by varying the PDF sets as well as
the renormalisation and factorisation scales used to generate the samples. To account for effects due to
the choice of generator, the nominal Powheg-Box diboson samples are compared with Sherpa diboson
samples that have a different matrix element calculation and parton shower simulation.
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Table 6: Observed event yields and predicted background yields in the VRs. For backgrounds with a normalisation
extracted from the fit in the CRs, the yield expected from the simulation before the fit is also shown. ‘Other
backgrounds’ include the non-dominant background sources, i.e. Z+jets, tt̄+V , Higgs boson and Drell–Yan events.
A ‘–’ symbol indicates that the background contribution is negligible.

Regions VR-WW-0J VR-WW-1J VR-VZ VR-top-low VR-top-high VR-top-WW

Observed events 2742 2671 464 190 50 953

Fitted backgrounds 2760 ± 120 2840 ± 250 420 ± 40 185 ± 17 53 ± 7 850 ± 80

Fitted WW
Fitted W Z
Fitted Z Z
Fitted tt̄
Fitted single top
Other backgrounds
FNP leptons

1550 ± 150
34.2 ± 2.0
0.50 ± 0.06
790 ± 110
336 ± 32

0.92 ± 0.30
44 ± 23

990 ± 120
27.0 ± 2.3
0.39 ± 0.07
1400 ± 270

380 ± 40
2.1 ± 0.5
38 ± 21

17.6 ± 2.2
99 ± 9

268 ± 25
10.5 ± 3.2
2.2 ± 1.4
21+27
−21

0.2+2.1
−0.2

2.1 ± 0.7
0.05+0.17

−0.05
−

157 ± 15
24.3 ± 2.6
0.28 ± 0.06
2.3 ± 1.4

2.6 ± 1.4
0.2+0.6
−0.2
−

40 ± 7
4.6 ± 1.4

3.20 ± 0.20
1.8 ± 0.5

16.1 ± 2.5
0.53 ± 0.13
0.01+0.03

−0.01
650 ± 70
182 ± 15

0.39 ± 0.11
−

Simulated WW
Simulated W Z
Simulated Z Z
Simulated tt̄
Simulated single top

1230
28.8

0.42
960
406

790
22.8

0.33
1700

462

14.0
84

226
13
2.6

1.6
0.04
−

190
29.4

2.0
0.1
−

49
5.6

12.8
0.45
0.01

790
220

For tt̄ production, uncertainties in the parton shower simulation are estimated by comparing samples
generated with Powheg-Box interfaced to either Pythia 8.186 or Herwig 7.04 [99, 100]. Another
source of uncertainty comes from the modelling of initial- and final-state radiation, which is calculated by
comparing the predictions of the nominal sample with two alternative samples generated with Powheg-Box
interfaced to Pythia 8.186 but with the radiation settings varied [101]. The uncertainty associated with the
choice of event generator is estimated by comparing the nominal samples with samples generated with
aMC@NLO interfaced to Pythia 8.186 [102]. Finally, for single-top-quark production an uncertainty is
assigned to the treatment of the interference between the Wt and tt̄ samples. This is done by comparing the
nominal sample generated using the diagram removal method with a sample generated using the diagram
subtraction method [101].

There are several contributions to the uncertainty in the MM estimate of the FNP background. First,
an uncertainty is included to account for the observed differences between the probabilities for prompt
leptons to satisfy the signal selection in simulation and data. Furthermore, uncertainties in the expected
composition of the FNP leptons in the signal regions are included. Finally, two uncertainties associated with
the control regions used to derive the probabilities for baseline leptons to satisfy the signal requirements
are considered. The first accounts for limited numbers of events in these regions and the second for the
subtraction of prompt-lepton contamination.

Systematic uncertainties on the signal acceptance and shape due to scale and parton shower variations
are found to be negligible. The systematic uncertainty on the signal cross section has been described in
Section 4.

A summary of the impact of the systematic uncertainties on the background yields in the inclusive SRs
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Table 7: Summary of the dominant systematic uncertainties in the background estimates in the inclusive SRs requiring
mT2 > 100 GeV after performing the profile likelihood fit. The individual uncertainties can be correlated, and do not
necessarily add in quadrature to the total background uncertainty. The percentages show the size of the uncertainty
relative to the total expected background. ‘Top theoretical uncertainties’ refers to tt̄ theoretical uncertainties and the
uncertainty associated with Wt–tt̄ interference added in quadrature.

Region SR-DF-0J SR-DF-1J SR-SF-0J SR-SF-1J
mT2 [GeV] ∈[100,∞) ∈[100,∞) ∈[100,∞) ∈[100,∞)

Total background expectation 96 75 144 124

MC statistical uncertainties
WW normalisation
V Z normalisation
tt̄ normalisation
Diboson theoretical uncertainties
Top theoretical uncertainties
Emiss
T modelling

Jet energy scale
Jet energy resolution
Pile-up reweighting
b-tagging
Lepton modelling
FNP leptons

3%
7%

< 1%
1%
7%
7%
1%
2%
1%

< 1%
< 1%

1%
1%

3%
6%

< 1%
2%
7%
8%
1%
3%
2%
1%
2%
1%
1%

2%
4%
1%

< 1%
4%
3%

< 1%
2%
1%

< 1%
< 1%

1%
1%

3%
3%
1%
1%
3%
6%
2%
2%
2%

< 1%
1%
3%
1%

Total systematic uncertainties 15% 12% 8% 10%

with mT2 > 100 GeV, after performing the likelihood fit, is shown in Table 7. For the binned SRs defined
in Table 2, the impact of the uncertainties associated with the limited numbers of MC events is higher than
for the inclusive SRs.

9 Results

The statistical interpretation of the final results is performed using the HistFitter framework [103]. A
simultaneous likelihood fit is performed, which includes either just the CRs (in the case of the background-
only fit) or the CRs and one or more of the SRs (when calculating exclusion limits). The likelihood
is a product of Poisson probability density functions describing the observed number of events in each
CR/SR and Gaussian distributions that constrain the nuisance parameters associated with the systematic
uncertainties. Systematic uncertainties that are correlated between different samples are accounted for in
the fit configuration by using the same nuisance parameter. These include the diboson theory uncertainties,
for which a combined nuisance parameter is used for the WW, WZ and ZZ backgrounds. The uncertainties
are applied in each of the CRs and SRs and their effect is correlated for events across all regions in the fit.
Poisson distributions are used for MC statistical uncertainties.
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A background-only fit that uses data only in the CRs is performed to constrain the nuisance parameters of
the likelihood function, which include the background normalisation factors and parameters associated
with the systematic uncertainties. The results of the background-only fit are used to assess how well the
data agrees with the background estimates in the validation regions. Good agreement, within about one
standard deviation for all VRs, is observed, as described in Section 7 and shown in Figure 4.

The results of the background-only fit in the CRs together with the observed data in the binned SRs are
shown in Figure 5. The observed and predicted number of background events in the inclusive SRs are shown
in Tables 8 and 9. Figure 6 shows the mT2 distribution for the data and the estimated SM backgrounds for
events in the SRs.

No significant deviations from the SM expectations are observed in any of the SRs considered, as shown
in Figures 5 and 6. The CLs prescription [105] is used to set model-independent upper limits at 95%
confidence level (CL) on the visible signal cross-section σ0.95

obs , defined as the cross-section times acceptance
times efficiency, of processes beyond the SM. They are derived in each inclusive SR by performing a fit
that includes the observed yield in the SR as a constraint, and a signal yield in the SR as a free parameter
of interest. The observed (S0.95

obs ) and expected (S0.95
exp ) limits at 95% CL on the numbers of events from

processes beyond the SM in the inclusive SRs defined in Section 6 are calculated. The p0-values, which
represent the probability of the SM background alone to fluctuate to the observed number of events or
higher, are also provided and are capped at p0 = 0.50. These results are presented in Tables 8 and 9 for the
DF and SF inclusive SRs, respectively.

Exclusion limits at 95% CL are set on the masses of the chargino, neutralino and sleptons for the simplified
models shown in Figure 1. These also use the CLs prescription and include the exclusive SRs and the
CRs in the simultaneous likelihood fit. For the models of chargino pair production the SF and DF SRs
are included in the likelihood fit, whilst for direct slepton production only the SF SRs are included. The
results are shown in Figure 7. In the model of direct chargino pair production with decays via W bosons
with a massless χ̃0

1, χ̃
±
1 masses up to 420 GeV are excluded at 95% CL. In the model of direct chargino

pair production with decays via sleptons or sneutrinos with a massless χ̃0
1, χ̃

±
1 masses up to 1 TeV are

excluded at 95% CL. Finally, in the model of direct slepton pair production with a massless χ̃0
1, slepton

masses up to 700 GeV are excluded at 95% CL. For direct slepton production, exclusion limits are also
set for selectrons and smuons separately by including only the di-electron and di-muon SF SRs in the
likelihood fit respectively. These are shown in Figure 8 for single slepton species ẽR, µ̃R, ẽL, µ̃L along
with combined limits for mass-degenerate ẽL,R and µ̃L,R. These results significantly extend the previous
exclusion limits [23–29] for the same scenarios.
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(b) mT2 distribution in VR-top-high
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T distribution in VR-WW-0J
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Figure 3: Distributions of mT2 in (a) VR-top-low and (b) VR-top-high, Emiss
T in (c) VR-WW-0J and (d) VR-WW-1J,

and Emiss
T significance in (e) VR-VZ and (f) VR-top-WW, for data and the estimated SM backgrounds. The

normalisation factors extracted from the corresponding CRs are used to rescale the tt̄, single-top-quark, WW , W Z
and Z Z backgrounds. The FNP lepton background is calculated using the data-driven matrix method. Negligible
background contributions are not included in the legends. The uncertainty band includes systematic and statistical
errors from all sources and the last bin includes the overflow. Distributions for three benchmark signal points are
overlaid for comparison. The lower panels show the ratio of data to the SM background estimate.
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Figure 4: The upper panel shows the observed number of events in each of the VRs defined in Table 4, together with
the expected SM backgrounds obtained after the background-only fit in the CRs. The shaded band represents the
total uncertainty in the expected SM background. The lower panel shows the significance as defined in Ref. [104].
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Figure 5: The upper panel shows the observed number of events in each of the SRs defined in Table 2, together with
the expected SM backgrounds obtained after the background-only fit in the CRs. The shaded band represents the
total uncertainty in the expected SM background. The lower panel shows the significance as defined in Ref. [104].
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Figure 6: Distributions of mT2 in (a) SR-SF-0J, (b) SR-SF-1J, (c) SR-DF-0J and (d) SR-DF-1J, for data and the
estimated SM backgrounds. The normalisation factors extracted from the corresponding CRs are used to rescale the
tt̄, single-top-quark, WW , W Z and Z Z backgrounds. The FNP lepton background is calculated using the data-driven
matrix method. Negligible background contributions are not included in the legends. The uncertainty band includes
systematic and statistical errors from all sources and the last bin includes the overflow. Distributions for three
benchmark signal points are overlaid for comparison. The lower panels show the ratio of data to the SM background
estimate.

18



Table 8: Observed event yields and predicted background yields from the fit for the DF inclusive SRs. The
model-independent upper limits at 95% CL on the observed and expected numbers of beyond-the-SM events S0.95

obs/exp
and on the effective beyond-the-SM cross-section σ0.95

obs are also shown. The ±1σ variations on S0.95
exp are also provided.

The last row shows the p0-value of the SM-only hypothesis. For SRs where the data yield is smaller than expected,
the p0-value is capped at 0.50. ‘Other backgrounds’ include the non-dominant background sources, i.e. Z+jets, tt̄+V ,
Higgs boson and Drell–Yan events. A ‘–’ symbol indicates that the background contribution is negligible.

Region SR-DF-0J SR-DF-0J SR-DF-0J SR-DF-0J
mT2 [GeV] ∈[100,∞) ∈[160,∞) ∈[100,120) ∈[120,160)
Observed events 95 21 47 27

Fitted backgrounds 96 ± 15 18.8 ± 2.4 45 ± 9 33 ± 5

Fitted WW
Fitted W Z
Fitted Z Z
Fitted tt̄
Fitted single top
Other backgrounds
FNP leptons

76 ± 10
1.53 ± 0.17
0.00+0.19

−0.00
13 ± 7

3.7 ± 2.0
0.24 ± 0.08
1.8 ± 0.6

18.2 ± 2.4
0.40 ± 0.07
0.14 ± 0.03
−

−

0.07 ± 0.02
−

29 ± 4
0.66 ± 0.11
0.06+0.23

−0.06
11 ± 6

3.3 ± 1.8
0.08 ± 0.02
1.4 ± 0.4

29 ± 4
0.47 ± 0.07
< 0.04

2.1 ± 1.2
0.42 ± 0.25
0.09 ± 0.05
0.47 ± 0.17

S0.95
obs

S0.95
exp

σ0.95
obs [fb]

p0

34.1

35.2+13.9
−10.0

0.24

0.50

12.7

11.0+4.9
−3.2

0.09

0.33

23.8

22.8+9.1
−6.5

0.17

0.44

11.8

15.1+6.3
−4.5

0.08

0.50

Region SR-DF-1J SR-DF-1J SR-DF-1J SR-DF-1J
mT2 [GeV] ∈[100,∞) ∈[160,∞) ∈[100,120) ∈[120,160)
Observed events 75 15 38 22

Fitted backgrounds 75 ± 9 15.1 ± 2.7 39 ± 6 21.3 ± 2.8

Fitted WW
Fitted W Z
Fitted Z Z
Fitted tt̄
Fitted single top
Other backgrounds
FNP leptons

48 ± 8
1.54 ± 0.21
0.08 ± 0.01

20 ± 7
2.8 ± 1.4

0.80 ± 0.13
2.2 ± 0.6

13.4 ± 2.6
0.53 ± 0.12
0.07+0.24

−0.07
0.09 ± 0.03
−

0.25 ± 0.05
0.71 ± 0.16

17.7 ± 2.6
0.43 ± 0.09
< 0.04

17 ± 6
2.6 ± 1.3

0.19 ± 0.10
0.87 ± 0.29

17.1 ± 2.8
0.59 ± 0.11
0.01 ± 0.00
2.4 ± 0.9

0.21 ± 0.13
0.34 ± 0.04
0.59 ± 0.16

S0.95
obs

S0.95
exp

σ0.95
obs [fb]

p0

25.1

25.3+10.3
−7.2

0.18

0.50

10.2

10.3+4.6
−3.0

0.07

0.50

16.8

17.6+7.3
−5.1

0.12

0.50

12.3

11.9+5.2
−3.3

0.09

0.45
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Table 9: Observed event yields and predicted background yields from the fit for the SF inclusive SRs. The
model-independent upper limits at 95% CL on the observed and expected numbers of beyond-the-SM events S0.95

obs/exp
and on the effective beyond-the-SM cross-section σ0.95

obs are also shown. The ±1σ variations on S0.95
exp are also provided.

The last row shows the p0-value of the SM-only hypothesis. For SRs where the data yield is smaller than expected,
the p0-value is capped at 0.50. ‘Other backgrounds’ include the non-dominant background sources, i.e. Z+jets, tt̄+V ,
Higgs boson and Drell–Yan events. A ‘–’ symbol indicates that the background contribution is negligible.

Region SR-SF-0J SR-SF-0J SR-SF-0J SR-SF-0J
mT2 [GeV] ∈[100,∞) ∈[160,∞) ∈[100,120) ∈[120,160)
Observed events 147 37 53 57

Fitted backgrounds 144 ± 12 37.3 ± 3.0 56 ± 6 51 ± 5

Fitted WW
Fitted W Z
Fitted Z Z
Fitted tt̄
Fitted single top
Other backgrounds
FNP leptons

73 ± 8
10.8 ± 0.8
38.6 ± 2.6

13 ± 4
2.4 ± 1.4
2.1 ± 1.5
5.4 ± 1.4

18.1 ± 2.1
3.08 ± 0.27
13.8 ± 1.0
−

−

0.10+0.33
−0.10

2.2 ± 0.4

27.6 ± 3.0
3.55 ± 0.29
11.1 ± 0.8

11 ± 4
2.2 ± 1.3
0.2+1.4
−0.2

1.1 ± 0.6

27 ± 4
4.2 ± 0.5

13.7 ± 1.5
1.9 ± 0.7

0.15 ± 0.09
1.76 ± 0.30
2.0 ± 0.5

S0.95
obs

S0.95
exp

σ0.95
obs [fb]

p0

35.5

33.6+13.6
−9.3

0.25

0.44

14.3

14.5+6.3
−4.2

0.10

0.50

17.8

20.0+8.1
−5.6

0.13

0.50

23.5

18.7+7.8
−5.3

0.17

0.25

Region SR-SF-1J SR-SF-1J SR-SF-1J SR-SF-1J
mT2 [GeV] ∈[100,∞) ∈[160,∞) ∈[100,120) ∈[120,160)
Observed events 120 29 55 36

Fitted backgrounds 124 ± 12 36 ± 5 48 ± 8 40 ± 4

Fitted WW
Fitted W Z
Fitted Z Z
Fitted tt̄
Fitted single top
Other backgrounds
FNP leptons

48 ± 6
13.4 ± 1.1
22.2 ± 1.8

16 ± 8
3.3 ± 1.7

11.1 ± 4.0
10.3 ± 1.5

14.1 ± 2.1
5.2 ± 0.6
9.1 ± 1.1

0.07+0.10
−0.07
−

5.6 ± 2.1
1.80 ± 0.34

18.1 ± 2.4
3.62 ± 0.33
4.8 ± 0.5
14 ± 7

2.6 ± 1.4
1.7+2.4
−1.7

3.1 ± 0.6

16.0 ± 2.2
4.7 ± 0.5
8.2 ± 0.9
1.6 ± 0.8
0.7 ± 0.4
3.8 ± 1.3
5.3 ± 0.7

S0.95
obs

S0.95
exp

σ0.95
obs [fb]

p0

30.6

33.5+13.3
−9.3

0.22

0.50

11.2

15.3+6.5
−4.5

0.08

0.50

27.3

21.9+9.0
−6.2

0.19

0.26

12.6

15.5+6.5
−4.2

0.09

0.50
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Figure 7: Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with
(a) W -boson-mediated decays and (b) slepton/sneutrino-mediated decays, and (c) for slepton-pair production. In
Figure (b) all three slepton flavours (ẽ, µ̃, τ̃) are considered, while only ẽ and µ̃ are considered in Figure (c). The
observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The upper shaded band
corresponds to the ±1σ variations in the expected limit, including all uncertainties except theoretical uncertainties in
the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the
nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95%
CL. The observed limits obtained by ATLAS in previous searches are also shown (lower shaded areas) [23, 24].
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10 Conclusion

A search for the electroweak production of charginos and sleptons decaying into final states with exactly two
oppositely charged leptons and missing transverse momentum is presented. The analysis uses 139 fb−1 of
√

s = 13 TeV proton–proton collisions recorded by the ATLAS detector at the LHC between 2015 and 2018.
Three scenarios are considered: the production of lightest-chargino pairs, followed by their decays into
final states with leptons and the lightest neutralino via either W bosons or sleptons/sneutrinos, and direct
production of slepton pairs, where each slepton decays directly into the lightest neutralino and a lepton
and ẽL, ẽR, µ̃L and µ̃R are assumed to be mass-degenerate. No significant deviations from the Standard
Model expectations are observed and limits at 95% CL are set on the masses of relevant supersymmetric
particles in each of these scenarios. For a massless lightest neutralino, masses up to 420 GeV are excluded
for the production of the lightest-chargino pairs assuming W -boson-mediated decays and up to 1 TeV for
slepton-pair-mediated decays, whereas for slepton-pair production masses up to 700 GeV are excluded
assuming three generations of mass-degenerate sleptons. These results significantly extend the previous
exclusion limits for the same scenarios.
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