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Abstract: We present a novel method to combine QCD calculations at next-to-next-to-
leading order (NNLO) with parton shower (PS) simulations, that can be applied to the
production of heavy systems in hadronic collisions, such as colour singlets or a tt̄ pair.
The NNLO corrections are included by connecting the MiNLO′ method with transverse-
momentum resummation, and they are calculated at generation time without any additional
reweighting, making the algorithm considerably efficient. Moreover, the combination of dif-
ferent jet multiplicities does not require any unphysical merging scale, and the matching
preserves the structure of the leading logarithmic corrections of the Monte Carlo simu-
lation for parton showers ordered in transverse momentum. We present proof-of-concept
applications to hadronic Higgs production and the Drell-Yan process at the LHC.
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1 Introduction

Particle phenomenology at the Large Hadron Collider (LHC) has entered the precision era.
After the landmark discovery of the Higgs boson [1, 2], which explains the electroweak
(EW) symmetry breaking and completes the particle content predicted by the Standard
Model (SM), the LHC is now focussing upon the search for hints of new-physics phenom-
ena. Despite several indications that there must be physics beyond the SM (BSM) at
relatively low scales, as of now new-physics searches at the LHC have been unsuccessful.
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In this scenario, precision measurements have become of foremost importance, as they en-
hance the sensitivity of indirect searches for new physics through small deviations from SM
predictions.

Modifications of the electroweak sector, induced by many BSM theories, can be un-
ravelled through precision studies of electroweak interactions. Both the production of a
Higgs-boson and of EW vector bosons play a crucial role in this respect. Notably, for
the Drell-Yan process the experimental uncertainties have already surpassed the percent
level [3–5]. On the theory side, predictions have to be controlled at the same level of
precision, which demands calculations with at least next-to-next-to-leading order (NNLO)
accuracy in QCD perturbation theory. Furthermore, the experimental measurements op-
erate at the level of hadronic events and require full-fledged Monte Carlo simulations in
their analyses. The inclusion of NNLO QCD corrections in event generators is therefore
mandatory to fully exploit LHC data.

In this paper, we present a novel method to perform the consistent matching of NNLO
calculations and parton showers (hereafter NNLO+PS), based on the structure of transverse-
momentum resummation. Our method builds upon MiNLO [6], a procedure for improving
NLO multijet calculations with the appropriate choice of scales and with the inclusion of
Sudakov form factors, that is particularly suited to be interfaced with parton-shower gen-
erators using the POWHEG method. In ref. [7] the MiNLO procedure was refined in such
a way that, in processes involving the production of a massive colour singlet system in as-
sociation with one jet, the NLO accuracy is formally retained also for observables inclusive
in the jet. Such procedure, dubbed MiNLO′, yields an NLO multi-jet merging method
that does not use a merging scale. Notably, a numerical method to extend the MiNLO′

procedure to more complex processes, and its application to Higgs production in association
with up to two jets, was presented in ref. [8].

In this article we extend the MiNLO′ method to achieve NNLO accuracy at the fully
differential level in the zero-jet phase space, while retaining NLO accuracy for the one-jet
configurations. Our method will be referred to as MiNNLOPS in the following, and it has
the following features:

• NNLO corrections are calculated directly during the generation of the events, with
no need for further reweighting.

• No merging scale is required to separate different multiplicities in the generated event
samples.

• When combined with transverse-momentum ordered parton showers, the matching
preserves the leading logarithmic structure of the shower simulation.

Maintaining the logarithmic accuracy of the shower is a crucial requirement of all NLO+PS,
and a fortiori NNLO+PS approaches. We stress that this requirement is immediately met
by the MiNNLOPS approach, that works by generating the first two hardest emissions and
letting the shower generate all the remaining ones. We also recall that, if the shower ordering
variable differs from the NLO+PS one, maintaining the Leading Logarithmic accuracy of
the shower becomes a delicate issue. An example is given by a POWHEG based generator
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interfaced to an angular-ordered shower. To preserve the accuracy of the shower, not only
one needs to veto shower radiation that has relative transverse momentum greater than the
one generated by POWHEG, but also one has to resort to truncated showers to compensate
for missing collinear-soft radiation. Failing to do so spoils the shower accuracy at leading-
logarithmic level (in fact, at the double-logarithmic level).1

Three different NNLO+PS approaches have been previously formulated in the litera-
ture [7, 14, 15] and applied to the simplest LHC processes, namely Higgs-boson produc-
tion [16, 17] and the Drell-Yan process [15, 18, 19]. The approach of ref. [7] shares all
features listed above except the first one, i.e. it requires a multi-dimensional reweight-
ing of the MiNLO’ samples in the Born phase space to achieve NNLO accuracy. It has
been recently applied to more complicated LHC processes, such as the two Higgs-strahlung
reactions [20, 21], and the production of two opposite-charge leptons and two neutrinos
(W+W−) [22].2 These computations have employed the reweighting procedure to its ex-
treme. Despite yielding physically sound results, the reweighting in the high-dimensional
Born phase space of these processes poses substantial technical limitations. Apart from the
numerical demand of the reweighting itself and certain approximations that had to be made
in these calculations, the discretisation of the Born phase space through finite bin sizes of
the reweighted observables reduces the applicability of the results in phase-space regions
with coarse binning, usually located in the least populated regions of phase space (e.g. in
the tails of the kinematic distributions). In fact, the numerical limitation of the reweight-
ing constitutes a problem already for the simpler Drell-Yan process, since the experiments
require a considerably large number of generated events for the current and future LHC
analyses.

The MiNNLOPS method presented in this paper lifts these shortcomings, while re-
taining the same advantages of a MiNLO′ computation. The terms relevant to achieve
NNLO accuracy are obtained by connecting the MiNLO′ formula with the momentum-
space resummation of the transverse-momentum spectrum formulated in refs. [26, 27]. This
allows us to make a direct link between the resummation and the POWHEG procedure [9],
resulting in a consistent NNLO+PS formulation.

Due to the substantially improved numerical efficiency compared to the reweighting
approach, the MiNNLOPS method allows us to tackle without any approximations the full
class of complex color-singlet final states, such as the highly relevant four-lepton (vector-
boson pair production) processes. As proof-of-concept applications, we consider hadronic
Higgs production and the Drell-Yan process at the LHC, and compare our results against
previous predictions. These computations are implemented and will be made publicly avail-
able within the POWHEG-BOX framework [9, 28, 29].3 All-order, higher-twist, and non-
perturbative QCD effects are modelled through the interface to a parton shower generator

1Truncated shower were first discussed in ref. [9], and first implemented in the Herwig++ context in
ref. [10]. Currently Herwig++ implements them in its internal NLO+PS, POWHEG-scheme processes
(see ref. [11]). They have also been used in a slightly different context in refs. [12, 13].

2The W+W− simulation is based on the MiNLO′ calculation of ref. [23], and the NNLO calculation of
ref. [24] performed within the Matrix framework [25].

3Instructions to download the code will be soon made available at http://powhegbox.mib.infn.it.
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which provides a realistic simulation of hadronic events.
Despite the fact that the formulae presented here are limited to the hadro-production

of heavy colour-singlet systems, our formalism is quite general, and can be applied to other
processes, such as the production of heavy quarks.

The manuscript is organized as follows: In section 2 we describe in general terms the
main idea behind the MiNNLOPS approach, and determine the relevant corrections to the
MiNLO′ formulation necessary to reach NNLO accuracy. Practical aspects of the imple-
mentation of these new terms within the MiNLO′ framework are discussed in section 3. In
section 4 we provide a more rigorous derivation of the MiNNLOPS method by starting from
the momentum-space resummation formula for the transverse-momentum spectrum. Our
proof-of-concept computations for Higgs and Z-boson production are presented in section 5,
where we provide a full validation against existing results. We summarize our findings in
section 6. A number of technical details and explicit formulae are summarized in appen-
dices A to E.

2 Description of the procedure

In this section we describe the procedure to perform a consistent matching of a NNLO
QCD calculation for the production of a heavy colour-singlet system to a fully exclusive
parton-shower simulation. We start by recalling the necessary elements of the MiNLO′

method in section 2.1 and 2.2, while in section 2.3 we derive the additional terms necessary
to achieve NNLO accuracy.

2.1 The MiNLO′ method

We review now the basic elements of the MiNLO′ method, and how it achieves NLO
accuracy. We formulate it in a way that is as independent as possible from the details of
the implementation.

We consider the production of a generic colour-singlet system F of invariant mass Q and
transverse momentum pT in hadronic collisions. We start with the MiNLO′ formula [7, 9]
for an arbitrary infrared-safe observable O, embedded in the POWHEG method [9, 28] as
follows

〈O〉 =

∫
dΦFJdΦradB̄(ΦFJ)

[
∆pwg(Λpwg)O(ΦFJ) + ∆pwg(pT,rad)

R(ΦFJ,Φrad)

B(ΦFJ)
O(ΦFJJ)

]
,

(2.1)

where

B̄(ΦFJ) = e−S̃(pT)

[
B(ΦFJ)

(
1 +

αs(pT)

2π
[S̃(pT)](1)

)
+ V (ΦFJ)

]
+

∫
dΦradR(ΦFJ,Φrad)e−S̃(pT) . (2.2)

Equation (2.1) is accurate up to NLO both in the zero and one jet configurations. B de-
notes the differential cross section for the production of F plus one light parton (FJ), and
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V and R are the UV-renormalised virtual and real corrections to this process, respectively.
The V (ΦFJ) term in eq. (2.2) is infrared divergent, and so is the integral of R. These diver-
gences cancel in their sum, so that B̄ is infrared finite. ∆pwg denotes the usual POWHEG
Sudakov form factor, Λpwg is an infrared cutoff of the order of a typical hadronic scale,
and pT,rad corresponds to the transverse momentum of the secondary emission associated
with the radiation variables Φrad. S̃(pT) stands for the MiNLO′ Sudakov form factor [7],
that is evaluated using the kinematics ΦFJ in the Born and virtual terms, and with the full
real kinematics ΦFJJ in the real term. The factor (1 + αs(pT)

2π [S̃(pT)](1)) is the first order
expansion of the inverse of the MiNLO′ Sudakov form factor, necessary to avoid any source
of double counting in eq. (2.1). The MiNLO′ procedure specifies that the scale at which
the strong coupling constant and the parton densities are evaluated should be equal to that
contained in the Sudakov form factor, that we take to be the transverse momentum pT of
the colour-singlet system F.4 It also specifies that the transverse momentum appearing in
the Sudakov form factor that multiplies R in eq. (2.2) should be the one of the real kine-
matics configuration ΦFJJ, which differs from the one appearing elsewhere in the formula,
that is relative to the underlying Born kinematics ΦFJ. It turns out that in the singular
regions of the secondary emission the transverse momentum of F in the real and underlying
Born kinematics become identical, so that the cancellation between the collinear and soft
singularities can occur.

For simplicity of notation, eqs. (2.1) and (2.2) refer to the case in which there is only
one singular region for the secondary emission. In general, there are singularities both
in the initial-state (POWHEG handles the two initial-state regions together), and in the
final-state. POWHEG deals with the multiple singular regions by partitioning the real
matrix elements, as discussed in detail in ref. [28].

To simplify the discussion that follows, without loss of generality, we ignore the first
(Sudakov suppressed) term on the right-hand side of eq. (2.1) (this is simply done for the
sake of clarity; this term is always included in the POWHEG implementations), and rewrite
the equation as

〈O〉 =

∫
dΦFJdΦradB̄(ΦFJ)∆pwg(pT,rad)

R(ΦFJ,Φrad)

B(ΦFJ)
O(ΦFJ)

+

∫
dΦFJdΦradB̄(ΦFJ)∆pwg(pT,rad)

R(ΦFJ,Φrad)

B(ΦFJ)
{O(ΦFJJ)−O(ΦFJ)}, (2.3)

or equivalently

〈O〉 =

∫
dΦFJ

{
e−S̃(pT)

[
B(ΦFJ)

(
1 +

αs(pT)

2π
[S̃(pT)](1)

)
+ V (ΦFJ)

]
+

∫
dΦradR(ΦFJ,Φrad)e−S̃(pT)

}
O(ΦFJ)

+

∫
dΦFJdΦrade

−S̃(pT)R(ΦFJ,Φrad){O(ΦFJJ)−O(ΦFJ)}+O(α3
s). (2.4)

4If the colourless system is produced via strong interactions, as it is the case for Higgs-boson production,
the extra powers of αs are evaluated at a scale related to the mass of the heavy colourless system. For
the sake of simplicity, and to avoid confusion, for the time being we will focus upon cases in which the
production is of electroweak origin.
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In the first two lines of eq. (2.4), the radiation integral has been evaluated according to the
usual unitarity condition ∫

dΦrad∆pwg(pT,rad)
R(ΦFJ,Φrad)

B(ΦFJ)
= 1, (2.5)

that is possible because the observable O(ΦFJ) does not depend upon the radiation phase
space Φrad. Owing to the infrared safety of the observable, the last line of eq. (2.4) has no
singularities. This is obvious as far as the secondary emission is concerned, since the differ-
ence between the observables vanishes when it becomes unresolved. Singularities associated
with the first emission, on the other hand, are suppressed by the fact that the separation
of regions in POWHEG [28] ensures that the secondary emission is always more singular
than the first one. Therefore, the contribution of the last line of eq. (2.4) is of pure order
α2
s, and it is dominated by large scales.

We conclude that in order to achieve NNLO accuracy it is sufficient to correct eq. (2.1)
in such a way that it remains unaltered at large pT (where it already has O(α2

s) accuracy),
and is NNLO accurate for observables of the form O(Φ) = g(ΦF(Φ)), where g is an arbitrary
function, and ΦF(Φ) represents an infrared-safe projection of the kinematic configuration
corresponding to a generic phase space Φ to the one where the transverse momentum of
the colour singlet vanishes (ΦF). For instance, ΦF involves the rapidity of the colour-singlet
system and its internal variables.

According to the MiNLO′ method, NLO accuracy is guaranteed if the B̄(ΦFJ) function
in eq. (2.2) is defined as a total derivative up to the relevant perturbative order [7]. As
we will show in the next section, achieving NNLO accuracy will require the inclusion of
additional terms in the B̄(ΦFJ) function.

2.2 MiNLO′ accuracy

In the NNLO+PS approach of ref. [16], NNLO accuracy is achieved by a reweighting proce-
dure. This is carried out by first computing the inclusive cross section at fixed kinematics
of the colourless system in the MiNLO′ approach and at NNLO, and then by reweighting
the events by the ratio of the latter result to the former. This procedure works regardless
of the corrections that the MiNLO′ approach already provides at the NNLO level, since
this is eventually divided out and replaced by the correct one.

In the present work we are not relying upon a reweighting procedure, and thus we need
to develop an analytic understanding of what MiNLO′ provides at the NNLO order. We
do this by noticing that eq. (2.4) is equivalent to the following equation:

〈O(Φ)〉 =

∫
dΦFJe

−S̃(pT)

[
B(ΦFJ)

(
1 +

αs(pT)

2π
[S̃(pT)](1)

)
+ V (ΦFJ)

]
O(ΦFJ)

+

∫
dΦFJJR(ΦFJJ)e

−S̃(pT)O(ΦFJJ). (2.6)

up to terms of N3LO order. This result follows from the fact that the term involving R in
the second line of (2.4) cancels exactly the last term in the curly bracket in the last line
of (2.4). On the other hand, eq. (2.4) is derived from the full MiNLO′ result using only
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the exact unitarity of the shower and of the POWHEG radiation implementation, and thus
does not introduce any fixed order approximation.

Therefore eq. (2.6) represents analytically what MiNLO′ provides at the α2
s level.

It has unavoidably a formal character, with the virtual and real contributions that are
separately infrared divergent. As such, it is independent of the specific method used to
cancel infrared divergences. In particular, it does not depend upon the details of the
POWHEG implementation, such as the mapping between the real cross section and the
underlying Born, and it can thus be used to make direct contact with analytic resummation
formulae.

2.3 Reaching NNLO accuracy: the MiNNLOPS method

In this section we present a simple derivation of the missing terms needed to reach NNLO
accuracy in the MiNLO′ formula. For the interested reader, we report a detailed and more
rigorous derivation in section 4.

As it will be shown in section 4 (and also appendix E), up to the second perturbative
order, the differential cross section in pT and in the Born phase space ΦF is described by
the following formula

dσ

dΦFdpT
=

d

dpT

{
exp[−S̃(pT)]L(pT)

}
+Rf (pT) , (2.7)

where Rf contains terms that are non-singular in the small pT limit. We notice that ΦF on
the left-hand side of eq. (2.7) is defined through a projection of the full phase space with
multiple emissions, in particular ΦFJ and ΦFJJ, onto the ΦF phase space. We denote this
projection by

ΦF,res(Φ) , (2.8)

and Φ stands for ΦFJ, ΦFJJ, and so on. The suffix “res” in ΦF,res stands for “resummation”,
to make clear that the projection is relative to how the recoil of the colour-singlet system
is treated in the resummation approach. The Sudakov form factor S̃ reads

S̃(pT) = 2

∫ Q

pT

dq

q

(
A(αs(q)) ln

Q2

q2
+ B̃(αs(q))

)
, (2.9)

with

A(αs) =
(αs

2π

)
A(1) +

(αs
2π

)2
A(2) +

(αs
2π

)3
A(3) ,

B̃(αs) =
(αs

2π

)
B(1) +

(αs
2π

)2
B̃(2) . (2.10)

where all coefficients are defined in section 4 and appendix B. The factor L, defined in
eq. (4.31) of section 4, involves the parton luminosities, the Born squared amplitude for
the production of the colour-singlet system F, the hard-virtual corrections up to two loops
and the collinear coefficient functions up to second order. These constitute some of the in-
gredients necessary for the next-to-next-to-next-to-leading logarithm (N3LL) resummation.
Here, for ease of notation, we do not indicate explicitly the ΦF dependence of L and Rf .
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As it stands, eq. (2.7) is such that its integral over pT between an infrared cutoff Λ (more
precisely, the scale value when the Sudakov form factor S̃(pT) vanishes) and Q reproduces
the NNLO total cross section for the production of the colour-singlet system. We can recast
eq. (2.7) as

dσ

dΦFdpT
=

dσsing

dΦFdpT
+Rf (pT),

dσsing

dΦFdpT
= exp[−S̃(pT)]D(pT) , (2.11)

with

D(pT) ≡ −dS̃(pT)

dpT
L(pT) +

dL(pT)

dpT
, (2.12)

and
dS̃(pT)

dpT
= − 2

pT

(
A(αs(pT)) ln

Q2

pT
2

+ B̃(αs(pT))

)
. (2.13)

We now make contact with the MiNLO′ procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
dσ

(NLO)
FJ

dΦFdpT
− αs(pT)

2π

[
dσsing

dΦFdpT

](1)

−
(
αs(pT)

2π

)2 [ dσsing

dΦFdpT

](2)

, (2.14)

where the notation [X](i) stands for the coefficient of the i-th term in the perturbative
expansion of the quantity X. The first term on the right-hand side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

dσ
(NLO)
FJ

dΦFdpT
=
αs(pT)

2π

[
dσFJ

dΦFdpT

](1)

+

(
αs(pT)

2π

)2 [ dσFJ

dΦFdpT

](2)

. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (2.11) and obtain

dσ

dΦFdpT
= exp[−S̃(pT)]

{
D(pT) +

Rf (pT)

exp[−S̃(pT)]

}
. (2.16)

We notice that in order to preserve the perturbative accuracy of the integral of eq. (2.16),
it is sufficient to expand the curly bracket in powers of αs(pT) up to a certain order. In fact,
when expanded in powers of αs(pT), all terms in the curly brackets of eq. (2.16) contain
at most a 1/pT singularity and (for the terms arising from the derivative of S̃) a single
logarithm of pT. The contribution of the terms of order αms (pT) lnn Q

pT
to the total integral

of eq. (2.16) between the infrared scale Λ and Q is of order [7]∫ Q

Λ
dpT

1

pT
αms (pT) lnn

Q

pT
exp(−S̃(pT)) ≈ O

(
α
m−n+1

2
s (Q)

)
. (2.17)

This crucially implies that, for the integral to be NLO accurate, i.e. O(αs(Q)), one has
to include all terms up to order α2

s(pT) in the curly brackets of eq. (2.16). This guarantees
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that the perturbative left-over is of formal order O(α2
s(Q)) in the total cross section. After

performing this expansion in eq. (2.16) we obtain

dσ

dΦFdpT
= exp[−S̃(pT)]

{
αs(pT)

2π

[
dσFJ

dΦFdpT

](1)(
1 +

αs(pT)

2π
[S̃(pT)](1)

)
+

(
αs(pT)

2π

)2 [ dσFJ

dΦFdpT

](2)}
. (2.18)

We notice that this formula is what we would obtain by integrating formula (2.6) for an
observable of the type

O(Φ) = δ(ΦF,res(Φ)− ΦF)δ(pT(Φ)− pT), (2.19)

where ΦF,res(Φ) was introduced in eq. (2.8). It is thus equivalent to the MiNLO′ formula.
This equivalence relies upon the fact that the MiNLO′ result can be cast in the form of
eq. (2.6), that is independent of any particular phase space projection.

We stress again that, in order for eq. (2.18) to have NLO accuracy, S must include
correctly terms of order up to α2

s which exactly reproduce the singular part of the cross
section and hence ensure that eq. (2.18) can be reassembled back as a total derivative to
the desired perturbative order.

In order to achieve NNLO accuracy, it is now sufficient to guarantee that eq. (2.18) has
O(α2

s(Q)) accuracy at fixed ΦF after integration over pT. This requires the inclusion of all
terms up to O(α3

s(pT)) in the curly brackets of eq. (2.16), and we obtain

dσ

dΦFdpT
= exp[−S̃(pT)]

{
αs(pT)

2π

[
dσFJ

dΦFdpT

](1)(
1 +

αs(pT)

2π
[S̃(pT)](1)

)
+

(
αs(pT)

2π

)2 [ dσFJ

dΦFdpT

](2)

+

(
αs(pT)

2π

)3

[D(pT)](3) + regular terms

}
, (2.20)

where [D(pT)](3) is the third-order term in the expansion of the D(pT) function (2.12).
The regular terms that we omitted in eq. (2.20) arise from the O(α3

s(pT)) expansion of the
term Rf (pT)/ exp[−S̃(pT)] in eq. (2.16), which vanish in the limit pT → 0. The absence
of a 1/pT singularity ensures that such terms give a N3LO contribution to the total cross
section, and therefore can be ignored. We explicitly verified that their inclusion yields a
subleading numerical effect. Equation (2.20) constitutes the reference formula to build the
MiNNLOPS generator. This simply amounts to adding to the MiNLO′ formula the new
term

[D(pT)](3) = −

[
dS̃(pT)

dpT

](1)

[L(pT)](2) −

[
dS̃(pT)

dpT

](2)

[L(pT)](1)

−

[
dS̃(pT)

dpT

](3)

[L(pT)](0) +

[
dL(pT)

dpT

](3)

(2.21)

=
2

pT

(
A(1) ln

Q2

pT
2

+B(1)

)
[L(pT)](2) +

2

pT

(
A(2) ln

Q2

pT
2

+ B̃(2)

)
[L(pT)](1)

+
2

pT
A(3) ln

Q2

pT
2

[L(pT)](0) +

[
dL(pT)

dpT

](3)

,
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where all coefficients are defined in appendices B and C.

3 Implementation of the [D(pT)]
(3) term in the MiNLO′ framework

The MiNLO′ method based on eq. (2.18) has been implemented within the POWHEG-
BOX framework [29] and it has been thoroughly tested. In order to achieve NNLO accuracy,
we therefore include the new terms discussed in the previous section as a correction to the
existing implementation.

We recall that all terms in the MiNLO′ formula (2.18) are directly related to the phase
space of the production of the colour singlet F together with either one (ΦFJ) or two jets
(ΦFJJ). Conversely, in the MiNNLOPS master formula (2.20), the new term [D(pT)](3)

arises from a resummed calculation in the pT → 0 limit where the information about the
rapidity of the radiation has been integrated out inclusively. As such it depends on the
phase space ΦF of the colour singlet with no additional radiation, and carries an explicit
dependence on the pT of the system. This dependence, however, does not correspond
to a well-defined phase-space point for the full event kinematics (neither ΦFJ nor ΦFJJ),
since the presence of a pT requires at least one parton recoiling against F, but we have no
information on the kinematics of such a parton. This has no consequence on the accuracy of
the MiNNLOPS formula, since at finite transverse momentum [D(pT)](3) contributes with
a O(α3

s(Q)) correction to the integrated cross section. It follows that at large values of pT

the kinematics associated with the [D(pT)](3) terms can be completed in an arbitrary way,
implying variations beyond NNLO accuracy. In particular, we observe that a ΦF phase-
space point can be obtained from a ΦFJ phase-space point through a suitable mapping,
while the pT corresponds to that of the ΦFJ kinematics. The mapping should project ΦFJ

to ΦF smoothly when pT → 0.
In order to embed the new MiNNLOPS formulation of eq. (2.20) into the MiNLO′

framework, one must therefore associate each value of [D(pT)](3) to a specific point in the
ΦFJ phase space. This requires supplementing the ΦF and pT information of the [D(pT)](3)

term with the remaining kinematics of the radiation that has been previously lost. In other
words, [D(pT)](3) should be spread over the ΦFJ phase space in such a way that, upon
integration, eq. (2.20) is eventually reproduced.

The most obvious way to spread the [D(pT)](3) term in the ΦFJ phase space is either
uniformly, or according to some distribution of choice. To this end, we multiply [D(pT)](3)

by the following factor

F corr
` (ΦFJ) =

J`(ΦFJ)∑
l′
∫

dΦ′FJJl′(Φ
′
FJ)δ(pT − pT

′)δ(ΦF − Φ′F)
, (3.1)

where ΦF (Φ′F) is a projection of the ΦFJ (Φ′FJ) phase space into the phase space for the
production of the colour singlet F alone (for instance performed according to the FKS
mapping for initial-state radiation (ISR) discussed in section 5.5.1 of ref. [28], that preserves
the rapidity of the colour-singlet system). J` is an arbitrary function of ΦFJ, and ` labels
the flavour structure of the FJ production process. Finally, pT is the transverse momentum
of the radiation (hence that of the colour singlet) in the ΦFJ phase space. The factor F corr

` is
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such that upon integration over the ΦFJ phase space together with a function that depends
only on pT and ΦF, the result reduces to the integral of that function over ΦF and pT. In
formulae, for an arbitrary function G(ΦF, pT), we have∑

`

∫
dΦ′FJG(Φ′F, pT

′)F corr
` (Φ′FJ) =

∫
dΦF dpTG(ΦF, pT)

×
∑
`

∫
dΦ′FJδ(ΦF − Φ′F)δ(pT − pT

′)F corr
` (Φ′FJ) =

∫
dΦF dpTG(ΦF, pT) . (3.2)

The full phase-space parametrisation and the ΦFJ → ΦF mapping are given in appendix A.
The function J`(ΦFJ) in eq. (3.1) gives us some freedom in choosing how to spread

[D(pT)](3) in the radiation phase space. Among the sensible choices, one could simply use
a uniform distribution by setting

J`(ΦFJ) = 1 . (3.3)

For this trivial choice an analytic solution for the integral in the denominator of eq. (3.1) is
given for illustration in appendix A. However, we found that this choice generates a spurious
behaviour when the jet is produced at very large rapidities. A more natural choice is to
spread [D(pT)](3) according to the actual rapidity distribution of the radiation, by setting

J`(ΦFJ) = |MFJ
` (ΦFJ)|2(f [a]f [b])` , (3.4)

where |MFJ
` (ΦFJ)|2 is the tree-level matrix element squared for the FJ process, and the

quantity (f [a]f [b])` represents the product of the parton densities in the initial-state flavour
configuration given by the index `. This choice provides a more physical distribution of
[D(pT)](3), but it can become computationally expensive for complex processes with several
degrees of freedom as the integral in the denominator of eq. (3.1) has to be evaluated for
every phase-space point numerically. A convenient compromise is to take the collinear limit
of the squared amplitude of eq. (3.4), namely

|MFJ
` (ΦFJ)|2 ' |MF(ΦF)|2P`(Φrad) , (3.5)

where |MF(ΦF)|2 is the Born matrix element squared for the production of the colour singlet
F, and P`(Φrad) is the collinear splitting function. After noticing that the Born squared
amplitude |MF(ΦF)|2 cancels in the ratio of eq. (3.1), we can simply set

J`(ΦFJ) = P`(Φrad)(f [a]f [b])` , (3.6)

where the full expression is reported in eqs. (A.14), (A.13). This prescription is computa-
tionally faster, since the integral in the denominator of eq. (3.1) has a better convergence,
and it does not change for more involved processes.

With these considerations, eq. (2.20) can be recast in a way that is differential in the
entire ΦFJ phase space as

dσ

dΦFJ

= exp[−S̃(pT)]

{
αs(pT)

2π

[
dσFJ

dΦFJ

](1)(
1 +

αs(pT)

2π
[S̃(pT)](1)

)
(3.7)

+

(
αs(pT)

2π

)2 [ dσFJ

dΦFJ

](2)

+

(
αs(pT)

2π

)3

[D(pT)](3)F corr(ΦFJ)

}
,
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where the sum over flavour configurations is understood, and pT is meant to be defined in
the ΦFJ phase space.

A second aspect relevant to the implementation of the MiNNLOPS procedure is re-
lated to how one switches off the Sudakov form factor, as well as the terms [S̃(pT)](1) and
[D(pT)](3) in eq. (3.7), in the large pT region of the spectrum. We stress that the details
of this operation do not modify the accuracy of the result. This is because in the large pT

region eq. (3.7) differs from the NLO FJ distribution only by O(α3
s) corrections relative to

the Born. This implies that one has some freedom in choosing how to turn off the loga-
rithmic terms at scales pT & Q. One important constraint to keep in mind is that in the
regime pT � Q the logarithmic structure has to be preserved in order to retain the NNLO
accuracy in the total (inclusive) cross section.

There are of course different sensible ways to switch off the logarithmic terms at large
pT. One possibility is to set the quantities S̃(pT), [S̃(pT)](1), and [D(pT)](3) to zero at
pT ≥ Q. This prescription is adopted in the original MiNLO′ implementation of ref. [7]. A
second possibility, closer in spirit to what is done in resummed calculations, is to modify
the logarithms contained in S̃(pT), [S̃(pT)](1), and [D(pT)](3), so that they vanish in the
large pT limit. This is done by means of the following replacement

ln
Q

pT
→ 1

p
ln

(
1 +

(
Q

pT

)p)
, (3.8)

where p is a free positive parameter. Larger values of p correspond to logarithms that tend
to zero at a faster rate at large pT. With this modification we also include the Jacobian
factor

(Q/pT)p

1 + (Q/pT)p
. (3.9)

in front of the [D(pT)](3) term, which has the effect of switching it off its 1/pT terms when
pT goes above Q.

It is easy to convince ourselves that this modification does not alter the MiNNLOPS

accuracy. In fact, the modified logarithms only play a role when pT & Q. In this regime,
the counting of the orders in the MiNNLOPS formula simplifies, since there are no en-
hancements due to large logarithms. Under these circumstances, the [D(pT)](3) term is
subleading, and the Sudakov form factor also leads to subleading effects once combined
with its first order expansion in formula (3.7). Thus, as long as the modified logarithms
are used consistently in both S̃ and [S̃(pT)](1), only terms beyond the relevant accuracy are
generated.

4 Derivation of the MiNNLOPS master formula

In this section we present a more rigorous derivation of the MiNNLOPS formalism that
has been outlined in section 2.3. Our starting point is the calculation of the cumulative
transverse-momentum spectrum

dσ(pT)

dΦF

=

∫ pT

0
dp⊥

dσ

dΦFdp⊥
, (4.1)
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for a colour singlet produced in the collision of two hadrons. More precisely, we consider the
second-order perturbative expansion of the above cumulative cross section in the limit pT →
0 (i.e. the singular part), with up to two emissions. This information can be directly accessed
in the momentum space formulation of transverse-momentum resummation presented in
refs. [26, 27].5 The singular part expressed in this way reads6

dσsing(pT)

dΦF

=

{∫
〈dk1〉e−S(kT,1)

[
S′(kT,1) 1 +

αs(kT,1)

π
P̂ + 2β(αs(kT,1))

d lnC

dαs

]
⊗
[
∆(C)(kT,1,Λ)L(C)(kT,1) Θ(pT − kT,1) +

∫
〈dk2〉

[
S′(kT,2) 1 +

αs(kT,2)

π
P̂

+2β(αs(kT,2))
d lnC

dαs

]
⊗
(

∆(C)(kT,1, kT,2)L(C)(kT,1)
)

×Θ(kT,1 − kT,2)Θ(pT − |~kT,1 + ~kT,2|)
]}

+
{
C → G;L(C) → L(G)

}
+O(α3

s) ,

(4.2)

where we have defined

kT,i = |~kT,i| , (4.3)

〈dki〉 =
dkT,i

kT,i

dφi
2π

, (4.4)

S′(kT,i) =
dS(kT,i)

dL
, L = ln

Q

kT,i
. (4.5)

The various terms of eq. (4.2) are explained in the following. We defined the following
notation in terms of the initial-state legs a and b:

1 = 1[a] 1[b] ,

P̂ = P̂ [a]1[b] + P [b]1[a] ,

C = C [a]1[b] + C [b]1[a] ,

G = G[a]1[b] +G[b]1[a] , (4.6)

where the identity matrix indicates a trivial dependence on the momentum fraction z, i.e.

1[a/b] ≡ δ(1− z[a/b]) . (4.7)

5Our starting point follows from eqs. (2.58) and (2.59) of ref. [27], by considering only the first two
emissions.

6The convolution between two functions f(z) and g(z) is defined as (f ⊗ g)(z) ≡
∫ 1

z
dx
x
f(x)g

(
z
x

)
.
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The regularised splitting function P̂ [a/b] and the coefficient functions C [a/b] and G[a/b] are
defined as

P̂ [a/b](z) = P̂ (0)(z) +
αs(kT,i)

2π
P̂ (1)(z) +

(
αs(kT,i)

2π

)2

P̂ (2)(z) + . . . (4.8)

C [a/b](z) = δ(1− z) +
αs(kT,i)

2π
C(1)(z) +

(
αs(kT,i)

2π

)2

C(2)(z) + . . . (4.9)

G[a/b](z) =
αs(kT,i)

2π
G(1)(z) + . . . (4.10)

The L factors contain the parton luminosities convoluted with the coefficient functions
and multiplied by the virtual corrections. They read

L(C)(kT,i) =
∑
c,c′

d|MF|2cc′
dΦF

∑
i,j

(
C

[a]
ci ⊗ f

[a]
i

)
H(Q)

(
C

[b]
c′j ⊗ f

[b]
j

)
, (4.11)

L(G)(kT,i) =
∑
c,c′

d|MF|2cc′
dΦF

∑
i,j

(
G

[a]
ci ⊗ f

[a]
i

)
H(Q)

(
G

[b]
c′j ⊗ f

[b]
j

)
. (4.12)

The last term in eq. (4.2) accounts for azimuthal correlations and it is non-zero only for
processes that are gg-initiated at the Born level. Its structure is identical to the one of
the first term, provided one replaces the coefficient functions C with the corresponding G
functions [30]. The quantity ∆(C)(Q1, Q2) represents the no emission probability between
the scales Q1 and Q2 < Q1, and it is given by

∆(C)(Q1, Q2) =
e−S(Q2)L(C)(Q2)

e−S(Q1)L(C)(Q1)
, (4.13)

and an analogous definition holds for ∆(G).
All considerations beyond this point hold identically for both the C and G terms,

and therefore we omit the latter in the following equations for the sake of simplicity (but
its contribution is understood). The function H contains the contribution of the virtual
corrections to the colour-singlet process under consideration

H(Q) = 1 +
αs(Q)

2π
H(1) +

(
αs(Q)

2π

)2

H(2) + . . . (4.14)

Note that, when working directly in momentum space, the term H(2) differs from the
second-order coefficient of the form factor in the MS scheme [27] (cf. eq. (B.14) below).
The various coefficients used in the above equations are reported in appendix B.

Finally, the Sudakov radiator S is defined as in eq. (2.9), but with the anomalous
dimension B̃(αs) replaced by

B(αs) =
(αs

2π

)
B(1) +

(αs
2π

)2
B(2) . (4.15)

The first order coefficient B(1) is identical to the one of eq. (2.9), while the difference between
the second order coefficients B(2) and B̃(2) will be explained shortly in this section. All
explicit formulae are reported in appendix B.
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Figure 1. Example of decomposition into correlated clusters for emissions off a quark line. The
left configuration corresponds to the emission of two independent gluons, and it is mapped onto
two separate clusters. The right configuration corresponds to the emission of the second gluon off
the first one, and it is mapped onto a single cluster. The correlated clusters are not to be confused
with partonic jets.

Equation (4.2) reproduces the correct logarithmic structure at O(α2
s), including the

NNLO constant terms. The evolution, in principle, continues with extra emissions down
to the infrared cutoff of the theory Λ � Q, that is the scale at which the Sudakov form
factor vanishes. However, for the time being we are only considering the first two of such
emissions, as the additional radiation will be included by the parton shower via a consistent
matching at a later stage.

The formulation that led to eq. (4.2) is based on an organisation of the perturbative
series that aims at the resummation of the logarithmic terms to all orders. In particular,
each evolution step in eq. (4.2) describes the emission of an inclusive correlated cluster of
emissions [27]. In an illustrative picture, it is convenient to think of each inclusive cluster
as describing the emission of an initial-state radiation and its subsequent branchings. The
cluster is defined by integrating inclusively over the branching variables and retaining only
the information about the total transverse momentum of the radiation emitted within. An
illustrative example of the separation into correlated clusters for two typical configurations
is reported in fig. 1.

In a slightly more technical picture, limiting ourselves to the O(α2
s) case we are inter-

ested in, the correlated clusters originate from the fact that, in the soft limit, the squared
amplitude for the emission of up to 2 partons can be decomposed as

|M(k1)|2 ≡ M̃2(k1) ,

|M(k1, k2)|2 = M̃2(k1)M̃2(k2) + M̃2(k1, k2) . (4.16)

The term M̃2(k1, k2) is defined as the correlated part of the squared amplitude that cannot
be decomposed as the product of two squared amplitudes for the emission of a single
parton.7 We point out that, in the collinear limit, a decomposition of the type (4.16)

7These coincide with the webs in the soft limit [31, 32].
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requires keeping track of all the possible flavour structures of a 1→ 3 collinear branching.
Each of the correlated terms M̃2 admits a perturbative expansion in powers of αs defined by
including the virtual corrections while keeping the number of emissions fixed. The inclusive
correlated cluster is defined as

M2
incl(k) =M2(k) (4.17)

+

∫
[dka][dkb]M̃2(ka, kb)δ

(2)(~kta + ~ktb − ~kt)δ(Yab − Y ) +O(α3
s) ,

Yab denotes the rapidity of the ka + kb system in the centre-of-mass frame of the collision,
and [dk] denotes the phase-space measure for the emission k. Moreover, the strong coupling
constant in eq. (4.17) is evaluated at the transverse momentum of the inclusive cluster. For
an inclusive observable such as pT, the only quantity that matters is the total transverse
momentum of each inclusive cluster. Therefore, one can integrate over the rapidity of each
cluster, and analytically cancel the infrared and collinear singularities. This results in a
simplified picture, in which each inclusive cluster of transverse momentum kT,i is emitted
according to the kernel

S′(kT,i) 1 +
αs(kT,i)

π
P̂ + 2β(αs(kT,i))

d lnC

dαs
, (4.18)

and analogously for the term involving the G coefficient function. In eq. (4.18) we implicitly
sum over the two initial-state legs a and b, and we observe that the first two terms start
at order O(αs), while the third term proportional to β(αs), defined in eq. (B.1), starts at
O(α2

s).
Equation (4.2) describes the emission of two subsequent clusters with transverse mo-

menta kT,1 and kT,2 ≤ kT,1. The first line of eq. (4.2) encodes the emission of the first
cluster, while the remaining lines describe the emission of the second one. The latter is
split into a no-emission probability term (that excludes configurations with more than one
cluster), and a term proportional to the real kernel (4.18) that actually describes the sec-
ond emission. We stress that, in the present treatment, we are not interested in retaining a
given logarithmic accuracy in the pT spectrum, but rather in describing the correct singular
structure at O(α2

s). However, one should bear in mind that the evolution beyond the second
emission will be subsequently generated by a parton shower generator, which will guarantee
a fully exclusive treatment of the radiation. We finally observe that the term

2β(αs(kT,2))
d lnC

dαs
, (4.19)

in the second emission’s probability contributes at most to O(α3
s) and therefore can be

ignored.
We now proceed by adding and subtracting Θ(pT − kT,1) to the second Θ function in

eq. (4.2) as

Θ(pT − |~kT,1 + ~kT,2|)→ Θ(pT − kT,1)

+
(

Θ(pT − |~kT,1 + ~kT,2|)−Θ(pT − kT,1)
)
. (4.20)
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We can then recast eq. (4.2), with O(α2
s) accuracy, as

dσsing(pT)

dΦF

=

∫
〈dk1〉e−S(kT,1)

[
S′(kT,1) 1 +

αs(kT,1)

π
P̂ + 2β(αs(kT,1))

d lnC

dαs

]
⊗
{

∆(C)(kT,1,Λ)L(C)(kT,1) +

∫
〈dk2〉

[
S′(kT,2) 1 +

αs(kT,2)

π
P̂

]
Θ(kT,1 − kT,2)

⊗
(

∆(C)(kT,1, kT,2)L(C)(kT,1)
)}

Θ(pT − kT,1)

+

∫
〈dk1〉

∫
〈dk2〉Θ(kT,1 − kT,2)

×
{
S′(kT,1)S′(kT,2)L(C)(kT,2) + S′(kT,1)

αs(kT,2)

π
P̂ ⊗ L(C)(kT,2)

+ S′(kT,2)
αs(kT,1)

π
P̂ ⊗ L(C)(kT,2) +

αs(kT,1)

π

αs(kT,2)

π
P̂ ⊗ P̂ ⊗ L(C)(kT,2)

}
×
(

Θ(pT − |~kT,1 + ~kT,2|)−Θ(pT − kT,1)
)

+O(α3
s) , (4.21)

where we neglected the Sudakov form factors in the integral containing the difference be-
tween the two Θ functions, as the first non-trivial contribution generates O(α3

s) corrections.
The resulting integral is finite at fixed pT. In order to evaluate such an integral, and since
we are only interested in the O(α2

s) result, we can expand the content of the curly brackets
about kT,1 = pT and kT,2 = pT as follows{

S′(kT,1)S′(kT,2)L(C)(kT,2) + S′(kT,1)
αs(kT,2)

π
P̂ ⊗ L(C)(kT,2)

+ S′(kT,2)
αs(kT,1)

π
P̂ ⊗ L(C)(kT,2) +

αs(kT,1)

π

αs(kT,2)

π
P̂ ⊗ P̂ ⊗ L(C)(kT,2)

}
=

{
S′(pT)S′(pT)L(C)(pT) + S′(pT)

αs(pT)

π
P̂ ⊗ L(C)(pT)

+ S′(pT)
αs(pT)

π
P̂ ⊗ L(C)(pT) +

αs(pT)

π

αs(pT)

π
P̂ ⊗ P̂ ⊗ L(C)(pT)

}
+

{
S′(pT)S′′(pT)L(C)(pT) +

αs(pT)

π
S′′(pT)P̂ ⊗ L(C)(pT)

}(
ln

pT

kT,1
+ ln

pT

kT,2

)
+O(α3

s) . (4.22)

When performing the integration, we notice that the first term on the right-hand side of
the above equation vanishes upon azimuthal integration, and we are left with the integral
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of the second term, obtaining

dσsing(pT)

dΦF

=

∫
〈dk1〉e−S(kT,1)

[
S′(kT,1) 1 +

αs(kT,1)

π
P̂ + 2β(αs(kT,1))

d lnC

dαs

]
⊗
{

∆(C)(kT,1,Λ)L(C)(kT,1) +

∫
〈dk2〉

[
S′(kT,2) 1 +

αs(kT,2)

π
P̂

]
Θ(kT,1 − kT,2)

⊗
(

∆(C)(kT,1, kT,2)L(C)(kT,1)
)}

Θ(pT − kT,1)

− ζ3

4

(
S′(pT)S′′(pT)L(C)(pT) +

αs(pT)

π
S′′(pT)P̂ ⊗ L(C)(pT)

)
+O(α3

s) , (4.23)

where S′′(pT) = dS′(pT)/dL.
We now incorporate the terms generated by the latter integration into the first term

of eq. (4.23). Retaining O(α2
s) accuracy, this can be done by redefining some of the resum-

mation coefficients as follows (an alternative derivation of such redefinitions is performed
using an impact-parameter space formulation in appendix E)

B(2) → B(2) + 2ζ3(A(1))2,

H(2) → H(2) − 2ζ3A
(1)B(1),

C(2)(z)→ C(2)(z)− 2ζ3A
(1)P̂ (0)(z) . (4.24)

In order to use eq. (4.23) in the context of the MiNLO′ algorithm, we perform a
resummation-scheme transformation to evaluate the virtual corrections (4.14) that appear
in L(C)(kT,1) (4.11) at a scale kT,1. This implies the further replacements [7]

H(Q)→ H(kT,1) ,

B(2) → B(2) + 2πβ0H
(1) . (4.25)

We thus define

B(2) → B̃(2) = B(2) + 2ζ3(A(1))2 + 2πβ0H
(1),

H(2) → H̃(2) = H(2) − 2ζ3A
(1)B(1),

C(2)(z)→ C̃(2)(z) = C(2)(z)− 2ζ3A
(1)P̂ (0)(z) , (4.26)

and we redefine all ingredients in our calculation as S → S̃, ∆(C) → ∆̃(C), C → C̃, and
L(C) → L̃(C) to take the above replacements into account. We therefore recast eq. (4.23)
as

dσsing(pT)

dΦF

=

∫
〈dk1〉e−S̃(kT,1)

[
S̃′(kT,1) 1 +

αs(kT,1)

π
P̂ + 2β(αs(kT,1))

d ln C̃

dαs

]

⊗
{

∆̃(C)(kT,1,Λ)L̃(C)(kT,1) +

∫
〈dk2〉

[
S̃′(kT,2) 1 +

αs(kT,2)

π
P̂

]
Θ(kT,1 − kT,2)

⊗
(

∆̃(C)(kT,1, kT,2)L̃(C)(kT,1)
)}

Θ(pT − kT,1) +O(α3
s) . (4.27)
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Finally, we take the derivative in pT in order to obtain the singular structure of the differ-
ential pT distribution, that reads

dσsing

dΦFdpT
=

∫
〈dk1〉e−S̃(kT,1)

[
S̃′(kT,1) 1 +

αs(kT,1)

π
P̂ + 2β(αs(kT,1))

d ln C̃

dαs

]

⊗
{

∆̃(C)(kT,1,Λ)L̃(C)(kT,1) +

∫
〈dk2〉

[
S̃′(kT,2) 1 +

αs(kT,2)

π
P̂

]
Θ(kT,1 − kT,2)

⊗
(

∆̃(C)(kT,1, kT,2)L̃(C)(kT,1)
)}

δ(pT − kT,1) +O(α3
s) . (4.28)

In order to be accurate across the whole pT spectrum, we need to match eq. (4.28) to the
NLO differential cross section for the production of the colour-singlet system in association
with one jet. This can be performed in two steps.

The first step is to observe that the second emission is distributed in a way that closely
mimics the treatment of the radiation in the POWHEG method [9] discussed in section 2.1,
that is generated according to the probability

∆pwg(Λpwg) +

∫
dΦrad∆pwg(pT,rad)

R(ΦFJ,Φrad)

B(ΦFJ)
, (4.29)

where the factor Φrad represents the full FKS [33] radiation phase space for the second
emission k2.8 The quantities R and B represent the tree-level squared amplitudes for FJJ

(double emission) and FJ (single emission), respectively. Therefore, the second emission can
be directly generated according to the POWHEG method, which guarantees an accurate
description at tree level for k2 over the whole radiation phase space Φrad.

We can then focus on the first cluster contribution. For simplicity we can integrate
eq. (4.28) explicitly over the second emission k2, stressing that the latter can be restored
fully differentially by closely following the POWHEG procedure as previously discussed.
We obtain

dσsing

dΦFdpT
= e−S̃(pT)

[
S̃′(pT) 1 +

αs(pT)

π
P̂ + 2β(αs(pT))

d ln C̃

dαs

]
⊗ L̃(C)(pT) +O(α3

s(Q))

=
d
[
e−S̃(pT)L̃(C)(pT)

]
dpT

+O(α3
s) , (4.30)

where in the second line we recast the result in a more compact form. We can at last restore
the contribution of the G coefficient functions by replacing L̃(C) with the full luminosity
factor as

L̃(C)(kT,1)→ L(kT,1) =
∑
c,c′

d|MF|2cc′
dΦF

∑
i,j

{(
C̃

[a]
ci ⊗ f

[a]
i

)
H̃(kT,1)

(
C̃

[b]
c′j ⊗ f

[b]
j

)
+
(
G

[a]
ci ⊗ f

[a]
i

)
H̃(kT,1)

(
G

[b]
c′j ⊗ f

[b]
j

)}
. (4.31)

8We point out that the parton densities are included in the POWHEG Sudakov ∆pwg, yielding a
contribution analogous to the luminosity factor L.
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Equation (4.30), when expanded, correctly reproduces up to O(α2
s) the divergent (logarith-

mic) structure of the differential spectrum in the small pT limit. However, eq. (4.30) does
not yet include the regular terms in the pT distribution (i.e. those which vanish in the
pT → 0 limit).

The second step to include the regular terms (i.e. that vanish in the pT → 0 limit) in
the above formula is to add the full NLO result for the production of the colour singlet F

and one additional jet, and subtract the NLO expansion of the total derivative in eq. (4.30),
which leads to

dσ

dΦFdpT
=

d
[
e−S̃(pT)L(pT)

]
dpT

+Rf (pT) +O(α3
s) , (4.32)

where we used eq. (2.14), namely

Rf (pT) =
dσ

(NLO)
FJ

dΦFdpT
− αs(pT)

2π

[
dσsing

dΦFdpT

](1)

−
(
αs(pT)

2π

)2 [ dσsing

dΦFdpT

](2)

. (4.33)

The first term on the right-hand side of eq. (4.32) constitutes the starting point (2.7)
for the discussion in section 2.3. In particular, following the considerations that led from
eq. (2.7) to eq. (3.7), and restoring the generation of the second radiation via the POWHEG
mechanism we obtain

dσ

dΦFJ

= exp[−S̃(pT)]

{
αs(pT)

2π

[
dσFJ

dΦFJ

](1)(
1 +

αs(pT)

2π
[S̃(pT)](1)

)
+

(
αs(pT)

2π

)2 [ dσFJ

dΦFJ

](2)

+

(
αs(pT)

2π

)3

[D(pT)](3)F corr(ΦFJ)

}
×
{

∆pwg(Λpwg) +

∫
dΦrad∆pwg(pT,rad)

R(ΦFJ,Φrad)

B(ΦFJ)

}
+O(α3

s) , (4.34)

where pT is defined in the ΦFJ phase space. Equation (4.34) constitutes the master formula
for the MiNNLOPS method, to match a fully differential NNLO calculation to a parton
shower.

The NNLO subtraction in eq. (4.34) is accomplished thanks to the Sudakov form factor
that exponentially suppresses the pT → 0 limit. We stress that this fact does not imply that
the transverse-momentum spectrum of the colour singlet will be exponentially suppressed
at small pT. The extra emissions beyond the second one, generated by the parton shower,
will eventually modify the scaling of the transverse-momentum distribution and restore the
correct O(pT) scaling in this regime [27, 34]. This, for sufficiently accurate parton showers
ordered in transverse momentum, effectively corresponds to leading logarithmic accuracy
in the pT spectrum.9

5 Application to Higgs-boson and Drell-Yan production at the LHC

In this section we apply the MiNNLOPS method to hadronic Higgs-boson production
through gluon fusion in the approximation of an infinitely heavy top quark (pp → H),

9We point out that transverse-momentum-ordered dipole showers of the type considered in this article
are leading-logarithmic accurate for the pT distribution [35].
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and to the Drell-Yan (DY) process (pp → Z → `+`−) for an on-shell Z boson. Rather
than presenting an extensive phenomenological study for these two processes at the LHC,
our goal is to perform a thorough validation and numerically demonstrate the NNLO+PS
accuracy of the MiNNLOPS formula. This requires us to verify two aspects of the results:
firstly, that NNLO accuracy is reached for Born-level (ΦF) observables, in particular for
the total inclusive cross section and for distributions in the Born phase space, such as the
rapidity distribution of the colour-neutral boson or, in case of DY, the leptonic variables.
Secondly, it has to be shown that the NLO accuracy of one-jet (ΦFJ) observables is pre-
served, in particular for distributions related to the leading jet. To this end, we compare
our MiNNLOPS results to MiNLO′ and to NNLO predictions. We stress that the results
produced by the MiNNLOPS method differ from the previous NNLOPS [16, 18] by higher-
order terms. In particular, the latter agree by construction with the full NNLO for Born
variables, therefore we validate our results by directly comparing to the nominal NNLO.
After defining the general setup, we discuss the validation in the following.

5.1 Setup

We consider 13TeV LHC collisions. For the EW parameters we employ the Gµ scheme with
real Z andW masses, since we consider on-shell Z bosons. Thus, the EW mixing angles are
given by cos2 θW = mW

2/mZ
2 and α =

√
2GµmW

2 sin2 θW/π. The following values are used
as input parameters: GF = 1.16639 × 10−5 GeV−2, mW = 80.385GeV, mZ = 91.1876GeV,
and mH = 125GeV. We obtain a branching fraction of BR(Z → `+`−) = 0.0336310 from
these inputs for the Z-boson decay into massless leptons. With an on-shell top-quark mass
of mt = 172.5GeV and nf = 5 massless quark flavours, we use the corresponding NNLO
PDF set with αs(mZ) = 0.118 of PDF4LHC15 [36] for Higgs-boson production and of
NNPDF3.0 [37] for the DY results.

For MiNLO′ and MiNNLOPS, the factorisation scale (µF) and renormalisation scale
(µR) are determined by the underlying formalism to be proportional to the transverse
momentum of the colour singlet, as discussed in section 2. Upon integration over radiation
this corresponds to effective scales (µR, µF) of the order of mH and mZ for Higgs-boson and
DY production, respectively. The latter scales are used to obtain the fixed-order results.
We stress that the MiNLO′ and MiNNLOPS methods adopt a dynamical scale during the
phase-space integration. As a consequence, the correspondence between such scales and
those used in the fixed-order predictions presented below is only approximate, and for this
reason one does not expect a perfect agreement between the two calculations.

Uncertainties from missing higher-order contributions are estimated from customary
7-point variations, i.e. through changing the scales by a factor of two around their central
values µF = KF pT, µR = KR pT (µF = KFM , µR = KRM withM = mH orM = mZ for the
fixed-order results) while requiring 0.5 ≤ KF/KR ≤ 2. This implies taking the minimum
and maximum values of the cross section for variations (KF,KR) = (2, 2), (2, 1), (1, 2),
(1, 1), (1, 1

2), (1
2 , 1), (1

2 ,
1
2). The formulae for the scale variation are reported in appendix D.

When the scales µR (µF) are too small, we freeze them consistently everywhere, both
as arguments of the strong coupling constant and partons densities, and in the terms of the
cross section that depend explicitly on them. Our choice for the freezing scale is 1.8 GeV
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for Drell-Yan, and 2.5 GeV for Higgs-boson production. The choice of these freezing scales
is determined from two opposite requirements: one is to stay above the lower bound of
the PDF parametrization (which is a scale of the order of 1 GeV), and the other is to
remain close to the region where the Sudakov form factor is negligible, in order to make
sure that the contribution at the lower integration bound of the quantity defined in (2.7)
stays indeed negligible. This allows for a larger value in the Higgs case, where the Sudakov
suppression is stronger. We note that our implementation preserves scale compensation
and that the transverse momentum is not affected by this procedure. We stress again that
the aforementioned scales are only used to freeze the values of µR and µF , and they don’t
act as a cutoff on the phase space ΦFJ.

We notice that, at the freezing scale, the Sudakov form factor is already quite small:
in the Higgs case, already at pT = 3 GeV its value is 0.01. In the Drell-Yan case, when
pT = 1.8 GeV the value of the Sudakov form factor is 0.1, when pT = 1 GeV it is 0.03, and
it reaches the value 0.01 for pT = 500 MeV. We remark that, if we were to exclude from
our calculation scale variation points with KF = 1/2, the freezing scale could be taken as
low as 1 GeV, which is the PDF cutoff, without a relevant change in the result, as shown
in table 1.

MiNNLOPS pp→ H (on-shell) pp→ Z → `+`− (on-shell)

freezing scale σtot [pb] freezing scale σtot [fb]

default 2.5 GeV 36.52(2) 1.8 GeV 1849(1)

lower freezing scale 1.25 GeV 36.46(4) 1 GeV 1845(1)

Table 1. Total inclusive cross sections for Higgs-boson production and DY production using the
MiNNLOPS calculations, for different values of the freezing scale.

Finally, we stress that the region affected by the choice of the freezing scale is at
transverse momenta where non-perturbative effects start to play a role, and in a realistic
simulation these effects are taken into account by the parton shower Monte Carlo and its
hadronization model.

It is important to bear in mind that we implement the scale variation in all terms of
eq. (4.34), including the Sudakov S̃. The latter variation is not present in a standard NNLO
calculation, and therefore probes additional sources of higher-order corrections. Hence, we
expect the resulting scale dependence to be moderately larger than the one of the NNLO
fixed-order predictions, reflecting the additional sources of perturbative uncertainties in
the MiNNLOPS matching procedure. Although such extra sources could be avoided, we
reckon that their inclusion is more appropriate to reflect the actual uncertainties of the
MiNNLOPS method.

We have employed the POWHEG-BOX framework [9, 28, 29] to implement the
MiNNLOPS formalism for the HJ [38] and ZJ [39] processes. We compare against the
original MiNLO′ calculations of refs. [6, 7]. Fixed-order results (LO, NLO, NNLO) for
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on-shell pp → H and pp → Z production are obtained with the Matrix framework [25].
The PDFs are evaluated with the LHAPDF [40] package and all convolutions are handled
with HOPPET [41]. Moreover, the evaluation of polylogarithms is carried out with the hplog
package [42].

As a cross-check we have produced NNLO results for pp → H [43–46] and pp → Z →
`+`− [47–51] also with the HNNLO [52] and DYNNLO [53] codes, which we found to be
fully compatible with the Matrix predictions within their respective systematic uncertain-
ties. For lepton-related observables we use the results from DYNNLO in our comparison.
Unless otherwise stated, all results presented throughout this section are subject to no cuts
in the phase space of the final-state particles. All showered results are obtained through
matching to the Pythia8 parton shower [54], and they are shown at parton level, without
hadronization or underlying-event effects. Finally, the value of the parameter p of the mod-
ified logarithms of eq. (3.8) has to be chosen such that the logarithmic terms are switched
off sufficiently quickly at large transverse momentum, in order to avoid spurious effects in
the region dominated by hard radiation. We adopt p = 6 in the following, that is slightly
larger than the values used in standard resummations [27, 55], and verified that variations
of p lead to very moderate effects that are well within the quoted uncertainties.

5.2 Inclusive cross section

pp→ H (on-shell) pp→ Z → `+`− (on-shell)

σinclusive [pb] σ/σNNLO σinclusive [fb] σ/σNNLO

LO 12.89(0)+23.5%
−17.3% 0.325 1658(0)+11.3%

−12.3% 0.881

NLO 29.55(0)+19.8%
−15.3% 0.745 1897(0)+3.0%

−4.7% 1.008

NNLO 39.63(3)+10.7%
−10.4% 1.000 1882(1)+1.1%

−0.9% 1.000

MiNLO′ 30.40(3)+33.3%
−15.0% 0.767 1774(1)+14.2%

−14.8% 0.943

MiNNLOPS 36.52(2)+13.9%
−13.4% 0.921 1849(1)+1.8%

−2.3% 0.983

Table 2. Predictions of the total inclusive cross section for Higgs-boson production and the DY
process at the LO, NLO, and NNLO, as well as using the MiNLO′ and MiNNLOPS calculations.
For comparison also a column with the ratio to the NNLO cross section is shown.

We report MiNNLOPS results for the total inclusive cross section in table 2, together
with the LO, NLO, NNLO, and MiNLO′ predictions. We start by discussing the Higgs
cross sections: Compared to MiNLO′ we find a +19% effect by including NNLO corrections
through the MiNNLOPS procedure. Furthermore, as expected from including an additional
order in the perturbative series, the size of the uncertainties due to scale variations are
reduced. In particular the upper variation bound is almost a factor of three smaller for
MiNNLOPS in comparison to MiNLO′. The MiNNLOPS and NNLO results agree well
within their respective scale-uncertainty bands, which largely overlap. The central values
of the two calculations differ by 7.9% as can be seen from the ratio, and they are included
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in the uncertainty bands of each of the two calculations. The size of the difference is
justified by the large perturbative corrections that characterise Higgs-boson production,
which implies that subleading terms can be sizable. For processes with smaller corrections
these differences will reduce, as we will see in the context of the DY process below. As
already mentioned above, it is not expected that MiNNLOPS reproduces the NNLO result
exactly, as subleading corrections are treated differently in the two calculations and the
the renormalisation and factorisation scales are set differently. Consistency between the
two NNLO-accurate predictions within perturbative uncertainties is therefore sufficient,
and shows that the MiNNLOPS procedure induces the expected corrections. The scale
uncertainties of MiNNLOPS for the total cross section (∼ 13%) are slightly larger than
the NNLO ones (∼ 10%). There are two main reasons for this behaviour: On the one
hand, MiNNLOPS probes scales in both the PDFs and in αs that in the bulk-region of the
cross section are much lower (∼ pT) than in the fixed-order computation, which naturally
induces a larger scale dependence. On the other hand, we include additional scale-dependent
terms (as pointed out before) that originate from the analytic Sudakov form factor in the
MiNNLOPS procedure, which are absent in a fixed-order calculation, see appendix D.
This induces a more conservative estimate for the theory uncertainties of the MiNNLOPS

predictions.
In the case of the DY results in table 2, we observe that conclusions similar to the case

of Higgs production can be drawn, albeit with significantly smaller corrections: The effect
of the MiNNLOPS procedure is to increase the MiNLO′ cross section by about 5%. Again
the scale uncertainties are vastly reduced, in the case of DY by almost a factor of 10. The
MiNNLOPS result is only 1.7% below the NNLO prediction and they are in good agreement
within their respective scale uncertainties, which are extremely small. Roughly speaking,
scale uncertainties are 2% for MiNNLOPS, which is a bit larger than the 1% uncertainties at
NNLO. Given the above discussion about the formal differences between MiNNLOPS and
NNLO fixed-order computations, these results are very compelling and provide a numerical
proof of the accuracy of the total inclusive cross section of the MiNNLOPS procedure. We
will now turn to validating the MiNNLOPS results also for differential observables.

5.3 Distributions for Higgs-boson production

We first consider the case of Higgs-boson production. The figures of this section are or-
ganized as follows: the main frame shows the results from MiNNLOPS (blue,solid) and
MiNLO′ (black, dotted) after parton showering, as well as NNLO predictions (red, dashed),
and all results are reported in units of cross section per bin (namely, the sum of the values of
the bins is equal to the total cross section, possibly within cuts). In an inset we display the
bin-by-bin ratio of all the histograms which appear in the main frame to the MiNNLOPS

curve. The bands correspond to the residual uncertainties that are computed from scale
variations as indicated in section 5.1.

The transverse-momentum distribution of the Higgs boson (pT,H) is shown in the left
panel of figure 2. At fixed order this distribution diverges in the pT,H → 0 limit, and the
accuracy is effectively reduced to NLO across the spectrum. By comparing MiNNLOPS

and MiNLO′ curves, we observe that the NNLO corrections are included consistently in
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Figure 2. Distribution in the transverse momentum (left) and rapidity (right) of the Higgs boson
for MiNNLOPS (blue, solid), MiNLO′ (black, dotted), and NNLO (red, dashed).

the low-pT,H region through the MiNNLOPS procedure. The additional NNLO (two-loop)
contributions in the MiNNLOPS matching are spread in a way that is similar in spirit to
how analytic resummations are combined with fixed order. This is enforced through the use
of the modified logarithms in eq. (3.8). At large pT,H, where the MiNNLOPS and MiNLO′

predictions have both NLO accuracy, we expect the MiNNLOPS procedure not to alter the
MiNLO′ distribution, as can be seen from the figure. The harder tail of the NNLO curve
is due to the different (less appropriate) scale choice in the fixed-order calculation, set to
the Higgs-boson mass rather than to pT,H.

The rapidity distribution of the Higgs boson (yH) in the right panel of figure 2 is the
most relevant observable for which MiNNLOPS needs to be validated against the NNLO
result. Indeed, we find that up to statistical fluctuations the NNLO/MiNNLOPS ratio of
the distribution is completely flat, which shows their equivalence. Henceforth, the difference
of the two results is purely due to the normalisation, i.e. the total inclusive cross section,
which has been discussed in detail in section 5.2 and requires no further comments. In
particular, the conclusions about the uncertainty bands and the size of the corrections
drawn from table 2 hold also for the rapidity distribution shown in figure 2.

We conclude our discussion of the results for Higgs-boson production by looking at jet-
related distributions. We note that the transverse-momentum distribution of the leading
jet is very similar to the one of the Higgs boson which is why we refrain from showing it here
and refer to the discussion for pT,H. Figure 3 shows the rapidity distribution of the leading
jet in the left panel, and the rapidity difference between the leading jet and the Higgs boson
in the right panel. Jets in this case are defined using the anti-kT clustering [56] with a ra-
dius R = 0.4, and a minimum transverse momentum of pT,J = 30GeV. For such observables
both MiNNLOPS and MiNLO′ are NLO accurate, and one expects that the MiNNLOPS
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Figure 3. Distribution in the rapidity of the leading-jet (left) and its rapidity difference with the
Higgs boson (right) for MiNNLOPS (blue, solid) and MiNLO′ (black, dotted).

result does not differ from the MiNLO′ prediction significantly, i.e. beyond perturbative
uncertainties. In particular, this numerical check is important to ensure that the imple-
mentation and spreading of the [D(pT)](3) terms in the ΦFJ phase space, as described in
section 3, is appropriate. We refrain from showing the NNLO curve for these distributions,
as it does not add any relevant information to these tests. Indeed, we observe that, by
and large, the MiNLO′/MiNNLOPS ratio is flat for both distributions in figure 3, and that
the two results agree very well within perturbative uncertainties. We have repeated these
checks for various pT,J thresholds in the jet definition, with the same conclusions. In partic-
ular, we found that for hard configurations (pT,J & 60GeV) the MiNNLOPS and MiNLO′

results become essentially identical, as expected from the fact that MiNNLOPS induces no
additional corrections in phase-space regions where the radiation is hard. Furthermore, a
similar level of agreement is found also for the azimuthal angle between the leading jet and
the Higgs boson.

5.4 Distributions for Drell-Yan production

We now move on to discuss distributions for the DY process. Since most of the conclusions
are similar to the ones for Higgs-boson production, we keep the discussion rather brief. In
addition to the results discussed for the Higgs, we also study the kinematics of the leptons
arising from the decay of the Z boson.

Figure 4 shows the transverse-momentum distribution of the Z boson (pT,Z) in the left
panel, and its rapidity distribution (yZ) in the right panel. As seen before, the corrections
are smaller in the case of the DY process, but the general behaviour is the same as for
Higgs-boson production: At large pT,Z the MiNNLOPS result is essentially identical to
the MiNLO′ one, while the additional NNLO terms enter at smaller values of pT,Z. The
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Figure 4. Distribution in the transverse momentum (left) and rapidity (right) of the Z boson for
MiNNLOPS (blue, solid), MiNLO′ (black, dotted), and NNLO (red, dashed).

NNLO spectrum diverges at small pT,Z, and is harder in the tail due to the different scale
setting. For the yZ distribution, the MiNNLOPS uncertainties are significantly reduced
with respect to the MiNLO′ ones. In the central region (|yZ| < 3) the NNLO/MiNNLOPS

ratio is nicely flat up to statistical fluctuations, and the two results agree within their
respective uncertainties. For very forward Z bosons (|yZ| > 3), on the other hand, we
observe a slight increase of the NNLO/MiNNLOPS ratio. We have checked explicitly that
without the Pythia8 parton shower, i.e. at the level of Les Houches events, this effect is
more moderate and the NNLO and MiNNLOPS uncertainty bands overlap in the forward
region. In fact, we noticed that already for the MiNLO′ prediction, Pythia8 has the same
effect, making the Z-boson rapidity distribution slightly more central.10

Next, we consider the transverse-momentum distribution of the negatively charged lep-
ton (pT,`−) and its rapidity distribution (y`−) in the left and right panels of figure 5, respec-
tively. For the rapidity distribution the relative behaviour between MiNNLOPS, MiNLO′,
and NNLO is essentially identical to the one of the Z-boson rapidity and does not require
any further discussion. As far as the transverse-momentum spectrum is concerned, the
NNLO result shows a very peculiar behaviour for pT,`− = mZ/2, which reflects the pertur-
bative instability associated with the fact that the leptons at LO are back-to-back and can
share only the available partonic centre-of-mass energy

√
ŝ = mZ, so that their transverse

momenta can be at most pT,`− ≤ mZ/2. Beyond this value the NNLO result is therefore
effectively only NLO accurate, which can be also seen from the increased uncertainty band.
Since such an instability is related to soft-gluon effects, this feature is cured in both the

10We observed that part of this effect can be attributed to the global recoil adopted by Pythia8 for ISR.
The difference from the NNLO prediction is reduced if one uses a more local scheme for the parton-shower
recoil, e.g. via the flag SpaceShower:dipoleRecoil=1.
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Figure 5. Distribution in the transverse momentum (left) and rapidity (right) of the negatively
charged lepton for MiNNLOPS (blue, solid), MiNLO′ (black, dotted), and NNLO (red, dashed).
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Figure 6. Distribution in the rapidity of the leading-jet (left) and its rapidity difference with the
Z boson (right) for MiNNLOPS (blue, solid) and MiNLO′ (black, dotted).

MiNNLOPS and MiNLO′ results, which are in good agreement with each other in terms of
shape. Again the MiNNLOPS uncertainty band is significantly smaller than the MiNLO′

one, and we observe a rather constant correction, of the order of ∼ 5 − 10%, due to the
additional NNLO terms.

Finally, also for the DY process the jet-related observables are fully consistent within
uncertainties when comparing MiNNLOPS and MiNLO′ predictions, as can be seen in
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figure 6. However, the size of their uncertainty bands is very different. This is due to the
fact that in the original MiNLO′ prediction a different prescription for the scale variation
was adopted, that also involved the integration boundaries of the Sudakov form factor.
We have checked that by using our prescription in MiNLO′ the uncertainty band becomes
comparable to the MiNNLOPS one. We stress again that we have tested a variety of pT,J

thresholds in the jet definition, and also looked at the azimuthal angle between the leading
jet and the Z boson, and found consistent results throughout.

6 Summary

In this article we have presented a novel approach, dubbed MiNNLOPS, to combine NNLO
QCD calculations with parton showers for colour-singlet production at the LHC. The
method is based on the MiNLO′ procedure, which achieves NLO accurate predictions simul-
taneously in the zero-jet phase space ΦF and in the one-jet phase space ΦFJ. The necessary
terms to achieve NNLO accuracy are derived by establishing a connection of the MiNLO′

and POWHEG methods with the structure of transverse-momentum resummation in di-
rect space. The consistent inclusion of these terms on top of a MiNLO′ computation allows
us to achieve NNLO+PS accuracy for a variety of collider reactions.

We have discussed in detail a suitable implementation of the NNLO corrections within
the MiNLO′ formalism, and their spreading in the ΦFJ phase space. The resulting matching
preserves the leading logarithmic structure of the shower Monte Carlo for showers ordered
in the transverse momentum, and the final result is NNLO accurate in the zero-jet phase
space while being NLO accurate in the one-jet phase space. The combination of the two
multiplicities does not require any unphysical merging scale.

As a proof of concept, we have applied the approach to hadronic Higgs production in
the heavy-top limit and to the DY process, where a pair of leptons is produced via the decay
of an on-shell Z boson. Our results show that NNLO accuracy is reached both for the total
inclusive cross section and for Born-level distributions. Differences with NNLO fixed-order
results arise only from terms beyond the nominal accuracy, and the two calculations agree
well for such observables within the respective perturbative uncertainties estimated from
scale variations. As expected, we observe a significant reduction of the scale dependence
with respect to the MiNLO′ results, in line with the inclusion of the NNLO corrections.
It was further verified that for jet-related observables in the ΦFJ phase space, where the
accuracy of MiNNLOPS and MiNLO′ is formally identical, no significant effects are induced
by the MiNNLOPS corrections.

The algorithm is very efficient, and NNLO accuracy is achieved directly at generation
time without any additional reweighting. The total MiNNLOPS simulation requires just
50% more CPU time than the usual MiNLO′ computation. This makes it suitable for
the application to more involved colour-singlet processes, such as vector-boson pair pro-
duction, which is of significant phenomenological interest. A potential limitation of the
algorithm concerns systems with very low invariant mass, such as low-mass diphoton pro-
duction, whose pT distribution is peaked towards non-perturbative scales. In this situation,
the Sudakov form factor, which is responsible for the NNLO subtraction of the infrared
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singularities, can become intrinsically non-perturbative. Nevertheless, such scenarios are
commonly not of experimental interest. Finally, the MiNNLOPS approach could be gener-
alized to the production of massive coloured final states, such as top-quark pair production.
Detailed studies of further applications of the MiNNLOPS method are left for future work.
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A Phase-space parametrisation for the [D(pT)]
(3) term

In this appendix we define the phase-space mapping from ΦFJ to ΦF adopted for initial-
state radiation in POWHEG, and discussed in section 5.5.1 of ref. [28]. The projection is
defined by performing a longitudinal boost of the FJ system to a frame where F has zero
rapidity, followed by a perpendicular boost that modifies the transverse momentum of F

so that it is equal to zero, followed by a longitudinal boost, exactly opposite to the first
one, that restores the original rapidity of F. After this sequence of boosts, the rapidity
of F remains unchanged, but its transverse momentum has become zero, thus yielding a
kinematic configuration in the Born phase space ΦF. The ΦFJ phase space can then be
expressed in a factorised form:

dΦFJ = dΦFdΦrad, dΦrad =
s

(4π)3

ξ

1− ξ
dξdφdy, (A.1)

where s is the square of the total incoming energy, and

ξ =
2k0

√
s
, k0 = energy of the radiated parton, (A.2)

y = cos θ, θ = scattering angle of the radiated parton, (A.3)

φ, φ = azimuth of the radiated parton, (A.4)

which are all defined in the centre-of-mass frame of the FJ system. The transverse momen-
tum is given by

pT
2 =

s

4
ξ2(1− y2).

Denoting Φ̄′FJ ≡ Φ′FJ|Φ′F=ΦF
, the F corr

` factor (3.1) becomes

F corr
` (ΦFJ) =

J`(ΦFJ)∑
l′
∫

dΦ′radJl′(Φ̄
′
FJ)δ(pT − pT

′)
. (A.5)

So, we get

(F corr
` (ΦFJ))

−1 = J−1
` (ΦFJ)

∫
dξ dφ dy

s

(4π)3

ξ

1− ξ
J`(Φ̄

′
FJ) δ

(√
s

4
ξ2(1− y2)− pT

)
.

(A.6)
We now replace s̄ = s(1− ξ), where s̄ is the virtuality of the FJ system, and multiply and
divide by 2pT. After rearranging the delta function we get

(F corr
` (ΦFJ))

−1 = J−1
` (ΦFJ)

s̄

(4π)3

∫
dξ dφ dy

ξ

(1− ξ)2
J`(Φ̄

′
FJ) 2pTδ

(
s̄

4

ξ2(1− y2)

1− ξ
− pT

2

)
.

(A.7)
We introduce a variable

t =
ξ2

1− ξ
, (A.8)

which is a monotonically increasing function of ξ in the range [0,∞] for ξ ∈ [0, 1]. We have

dt =
2ξ − ξ2

(1− ξ)2
dξ,
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and obtain

(F corr
` (ΦFJ))

−1 = J−1
` (ΦFJ)

s̄

(4π)3

∫
dtdφdy

(1− ξ)2

ξ(2− ξ)
ξ

(1− ξ)2
J`(Φ̄

′
FJ)2pTδ

( s̄
4
t(1− y2)− pT

2
)

= J−1
` (ΦFJ)

4pT

(4π)2

∫
dy

1

1− y2

1

2− ξ
J`(Φ̄

′
FJ) Θ

(
tmax(1− y2)− 4pT

2

s̄

)
, (A.9)

where

t =
4pT

2

s̄(1− y2)
, ξ = − t

2
+

√
t2

4
+ t ,

and tmax is defined as the t value corresponding to ξmax, namely

ξmax = 1−max

{
2(1 + y)x̄2

1√
(1 + x̄2

1)2(1− y)2 + 16yx̄2
1 + (1− y)(1− x̄2

1)
, (y → −y, 1→ 2)

}
.

The variables x̄1,2 are the momentum fractions of the two initial-state partons in the ΦF

phase space, and are defined as [28]

x̄1 ≡ x1

√
1− ξ

√
2− ξ(1 + y)

2− ξ(1− y)
, x̄2 ≡ x2

√
1− ξ

√
2− ξ(1− y)

2− ξ(1 + y)
, (A.10)

with x1,2 being the momentum fractions of the two initial-state partons in the ΦFJ phase
space. For most choices of the function J`(ΦFJ) discussed in section 3, the above inte-
gral must be evaluated numerically via usual Monte Carlo techniques. However, for the
choice J`(ΦFJ) = 1, we can perform the y integration analytically. We need the following
elementary integral

I(y) =

∫
dy

1

(1− y2)
(

2 + K
2(1−y2)

−
√

K
1−y2 + K2

4(1−y2)2

)
=

1

2
ln

(
1 + y

1− y

)
+

1

4
ln

√
K−1(1− y2) + 1

4 + 1
2 + 2K−1(1− y)√

K−1(1− y2) + 1
4 + 1

2 + 2K−1(1 + y)
. (A.11)

The limits of integration have to be computed numerically, by finding the minimum and
maximum value such that the Θ function in eq. (A.9) is 1. Denoting by y1 and y2 the lower
and upper integration boundaries, respectively, we simply find that

(F corr
` (ΦFJ))

−1 =
pT

4π2
(I(y2)− I(y1)) . (A.12)

Finally, we conclude this appendix by reporting the collinear approximation for J`(ΦFJ)

discussed in section 3. Its expressions are taken from ref. [57] and adapted to the notation
of this appendix. For gluon-initiated processes, the different flavour configurations read

Jqg(ΦFJ) =CF
αs
2π

1 + ξ2

(1− ξ)(1− y)ξ
f [a]
q f [b]

g ,

Jgq(ΦFJ) =CF
αs
2π

1 + ξ2

(1− ξ)(1 + y)ξ
f [a]
g f [b]

q ,

Jgg(ΦFJ) = 2CA
αs
2π

[
1− ξ
ξ

+
ξ

1− ξ
+ ξ(1− ξ)

]
2

(1− y2)ξ
f [a]
g f [b]

g . (A.13)
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For quark-initiated reactions we have

Jqq̄(ΦFJ) =CF
αs
2π

[
1 + (1− ξ)2

ξ

]
2

(1− y2)ξ
f [a]
q f

[b]
q̄ ,

Jqg(ΦFJ) =TF
αs
2π

ξ2 + (1− ξ)2

(1 + y)ξ
f [a]
q f [b]

g ,

Jgq(ΦFJ) =TF
αs
2π

ξ2 + (1− ξ)2

(1− y)ξ
f [a]
g f [b]

q . (A.14)

B Resummation formulae

In this section we report the expressions of the quantities appearing in the calculation of
the analytic transverse-momentum spectrum that we have used throughout this article.

First of all we report our convention for the renormalisation-group equation of the
strong coupling:

dαs(µ)

d lnµ2
= β(αs) ≡ −αs

(
β0αs + β1α

2
s + β2α

3
s + . . .

)
, (B.1)

where the coefficients of the β-function are

β0 =
11CA − 2nf

12π
, β1 =

17C2
A − 5CAnf − 3CFnf

24π2
, (B.2)

β2 =
2857C3

A + (54C2
F − 615CFCA − 1415C2

A)nf + (66CF + 79CA)n2
f

3456π3
, (B.3)

with CA = Nc, CF = N2
c−1

2Nc
, Nc = 3, and the number of light flavours nf = 5.

The Sudakov radiator S̃(pT) in eq. (2.9), with the accuracy considered in this article,
can be expressed as

S̃(pT) = −Lg1(λ)− g2(λ)− αs(Q)

π
g3(λ) (B.4)

with λ = αs(Q)β0 ln(Q/pT), and

g1(λ) =
A(1)

πβ0

2λ+ ln(1− 2λ)

2λ
, (B.5)

g2(λ) =
1

2πβ0
ln(1− 2λ)B(1) − A(2)

4π2β2
0

2λ+ (1− 2λ) ln(1− 2λ)

1− 2λ

−A(1) β1

4πβ3
0

ln(1− 2λ)((2λ− 1) ln(1− 2λ)− 2)− 4λ

1− 2λ
, (B.6)

g3(λ) =B(1) β1

2β2
0

2λ+ ln(1− 2λ)

1− 2λ
− 1

2πβ0

λ

1− 2λ
B̃(2) − A(3)

4π2β2
0

λ2

(1− 2λ)2

+A(2) β1

4πβ3
0

2λ(3λ− 1) + (4λ− 1) ln(1− 2λ)

(1− 2λ)2

+A(1)

(
λ
(
β0β2(1− 3λ) + β2

1λ
)

β4
0(1− 2λ)2

+
(1− 2λ) ln(1− 2λ)

(
β0β2(1− 2λ) + 2β2

1λ
)

2β4
0(1− 2λ)2

+
β2

1

4β4
0

(1− 4λ) ln2(1− 2λ)

(1− 2λ)2

)
. (B.7)
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The resummation coefficient B̃(2) is defined as according to eqs. (4.24), (4.25), namely

B̃(2) =B(2) + 2ζ3(A(1))2 + 2πβ0H
(1) . (B.8)

For Higgs-boson production in gluon fusion, the coefficients A(i) and B(i) which enter the
formulae above are

A
(1)
ggH = 2CA,

A
(2)
ggH =

(
67

9
− π2

3

)
C2
A −

10

9
CAnf ,

A
(3)
ggH =

(
−22ζ3 −

67π2

27
+

11π4

90
+

15503

324

)
C3
A +

(
10π2

27
− 2051

162

)
C2
Anf

+

(
4ζ3 −

55

12

)
CACFnf +

50

81
CAn

2
f ,

B
(1)
ggH =− 11

3
CA +

2

3
nf ,

B
(2)
ggH =

(
11ζ2

6
− 6ζ3 −

16

3

)
C2
A +

(
4

3
− ζ2

3

)
CAnf + nfCF . (B.9)

Similarly, for Drell-Yan production they read

A
(1)
DY = 2CF ,

A
(2)
DY =

(
67

9
− π2

3

)
CACF −

10

9
CFnf ,

A
(3)
DY =

(
15503

324
− 67π2

27
+

11π4

90
− 22ζ3

)
C2
ACF +

(
−2051

162
+

10π2

27

)
CACFnf

+

(
−55

12
+ 4ζ3

)
C2
Fnf +

50

81
CFn

2
f ,

B
(1)
DY =− 3CF ,

B
(2)
DY =

(
−17

12
− 11π2

12
+ 6ζ3

)
CACF +

(
−3

4
+ π2 − 12ζ3

)
C2
F +

(
1

6
+
π2

6

)
CFnf . (B.10)

The expressions for the coefficients A(i) and B(i) are extracted from ref. [58, 59] for Higgs-
boson production and ref. [60] for DY production. The hard-virtual coefficient functions H
and H̃ up to two loops are given by

H(Q) = 1 +

(
αs(Q)

2π

)
H(1) +

(
αs(Q)

2π

)2

H(2),

H̃(Q) = 1 +

(
αs(Q)

2π

)
H(1) +

(
αs(Q)

2π

)2

H̃(2), (B.11)

with

H
(1)
ggH =CA

(
5 +

7

6
π2

)
− 3CF ,

H
(2)
ggH =

5359

54
+

137

6
ln
mH

2

m2
T

+
1679

24
π2 +

37

8
π4 − 499

6
ζ3 + CA∆H(2) , for nf = 5,

(B.12)
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for Higgs-boson prodcution, and

H
(1)
DY =CF

(
−8 +

7

6
π2

)
,

H
(2)
DY =− 57433

972
+

281

162
π2 +

22

27
π4 +

1178

27
ζ3 + CF∆H(2) , for nf = 5. (B.13)

for the DY process. The extra term

∆H(2) =
16

3
πβ0ζ3, (B.14)

is a feature of performing the resummation in momentum space, and does not appear in the
impact-parameter (b) space formulation of transverse-momentum resummation (see ref. [27]
for details). The coefficient H̃(2), that appears in eqs. (4.26) and (4.31) reads

H̃(2) = H(2) − 2ζ3A
(1)B(1) . (B.15)

Finally, we report the expansion of the collinear coefficient functions Cab, C̃ab, Gab

Cab(z) = δ(1− z)δab +

(
αs(µ)

2π

)
C

(1)
ab (z) +

(
αs(µ)

2π

)2

C
(2)
ab (z),

C̃ab(z) = δ(1− z)δab +

(
αs(µ)

2π

)
C

(1)
ab (z) +

(
αs(µ)

2π

)2

C̃
(2)
ab (z),

Gab(z) =

(
αs(µ)

2π

)
G

(1)
ab (z), (B.16)

where µ is the same scale that enters parton densities. The first-order expansion has been
known for a long time and reads

C
(1)
ab (z) = −P̂ (0),ε

ab (z)− δabδ(1− z)
π2

12
, (B.17)

where P̂ (0),ε
ab (z) is the O(ε) part of the leading-order regularised splitting functions P̂ (0)

ab (z)

P̂ (0)
qq (z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
, P̂ (0),ε

qq (z) = −CF (1− z),

P̂ (0)
qg (z) =

1

2

[
z2 + (1− z)2

]
, P̂ (0),ε

qg (z) = −z(1− z),

P̂ (0)
gq (z) = CF

1 + (1− z)2

z
, P̂ (0),ε

gq (z) = −CF z,

P̂ (0)
gg (z) = 2CA

[
z

(1− z)+
+

1− z
z

+ z(1− z)
]

+ 2πβ0δ(1− z), P̂ (0),ε
gg (z) = 0.

(B.18)

The second-order collinear coefficient functions C(2)
ab (z), as well as the G coefficients for

gluon-fusion processes are obtained in refs. [61–63], while for quark-induced processes they
are derived in ref. [64]. In the present work we extract their expressions using the results
of refs. [61, 64]. For gluon-fusion processes, the C(2)

gq and C
(2)
gg coefficients normalised as

– 35 –



in eq. (B.16) are extracted from eqs. (30) and (32) of ref. [61], respectively, where we use
the hard coefficients of eqs. (B.12) without the momentum-space term ∆H(2) in the expres-
sion for the H(2)(Q) coefficient.11 The coefficient G(1) is taken from eq. (13) of ref. [61].
Similarly, for quark-initiated processes, we extract C(2)

qg and C
(2)
qq from eqs. (32) and (34)

of ref. [64], respectively, where we use the hard coefficients from eqs. (B.13) without the
momentum-space term ∆H(2) in the expression for the H(2)(Q) coefficient. The remaining
quark coefficient functions C(2)

qq̄ , C
(2)
qq̄′ and C

(2)
qq′ are extracted from eq. (35) of the same

article. The coefficient C̃(2)(z), that appears in eqs. (4.26) and (4.31) finally reads

C̃(2)(z) = C(2)(z)− 2ζ3A
(1)P̂ (0)(z) . (B.19)

C Explicit expression for the [D(pT)]
(3) term

The [D(pT)](3) term necessary to achieve NNLO accuracy is defined in eq. (2.21), its ex-
pression reads

[D(pT)](3) = −

[
dS̃(pT)

dpT

](1)

[L(pT)](2) −

[
dS̃(pT)

dpT

](2)

[L(pT)](1)

−

[
dS̃(pT)

dpT

](3)

[L(pT)](0) +

[
dL(pT)

dpT

](3)

(C.1)

=
2

pT

(
A(1) ln

Q2

pT
2

+B(1)

)
[L(pT)](2) +

2

pT

(
A(2) ln

Q2

pT
2

+ B̃(2)

)
[L(pT)](1)

+
2

pT
A(3) ln

Q2

pT
2

[L(pT)](0) +

[
dL(pT)

dpT

](3)

,

where the resummation coefficients are reported in appendix B, while the expansion of the
luminosity factors reads

[L(pT)](0) =
∑
c,c′

d|MF|2cc′
dΦB

f [a]
c f

[b]
c′ , (C.2)

[L(pT)](1) =
∑
c,c′

d|MF|2cc′
dΦB

{
H(1)f [a]

c f
[b]
c′ + (C(1) ⊗ f)[a]

c f
[b]
c′ + f [a]

c (C(1) ⊗ f)
[b]
c′

}
, (C.3)

[L(pT)](2) =
∑
c,c′

d|MF|2cc′
dΦB

{
H̃(2)f [a]

c f
[b]
c′ + (C̃(2) ⊗ f)[a]

c f
[b]
c′ + f [a]

c (C̃(2) ⊗ f)
[b]
c′

+H(1)(C(1) ⊗ f)[a]
c f

[b]
c′ +H(1)f [a]

c (C(1) ⊗ f)
[b]
c′

+ (C(1) ⊗ f)[a]
c (C(1) ⊗ f)

[b]
c′ + (G(1) ⊗ f)[a]

c (G(1) ⊗ f)
[b]
c′

}
, (C.4)

11Additionally, we have to do the replacementH(1) → H(1)/2 andH(2) → H(2)/4 to match the convention
of refs. [61, 64].
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[
dL(pT)

dpT

](3)

=
∑
c,c′

d|MF|2cc′
dΦB

2

pT

{
H̃(2)

[
(P̂ (0) ⊗ f)[a]

c f
[b]
c′ + f [a]

c (P̂ (0) ⊗ f)
[b]
c′

]
+H(1)

[
(P̂ (1) ⊗ f)[a]

c f
[b]
c′ + f [a]

c (P̂ (1) ⊗ f)
[b]
c′

+ (C(1) ⊗ f)[a]
c (P̂ (0) ⊗ f)

[b]
c′ + (P̂ (0) ⊗ f)[a]

c (C(1) ⊗ f)
[b]
c′

+ f [a]
c (P̂ (0) ⊗ C(1) ⊗ f)

[b]
c′ + (P̂ (0) ⊗ C(1) ⊗ f)[a]

c f
[b]
c′

]
+ (P̂ (2) ⊗ f)[a]

c f
[b]
c′ + f [a]

c (P̂ (2) ⊗ f)
[b]
c′

+ (C̃(2) ⊗ f)[a]
c (P̂ (0) ⊗ f)

[b]
c′ + (P̂ (0) ⊗ f)[a]

c (C̃(2) ⊗ f)
[b]
c′

+ f [a]
c (P̂ (0) ⊗ C̃(2) ⊗ f)

[b]
c′ + (P̂ (0) ⊗ C̃(2) ⊗ f)[a]

c f
[b]
c′

+ (C(1) ⊗ f)[a]
c (P̂ (1) ⊗ f)

[b]
c′ + (P̂ (1) ⊗ f)[a]

c (C(1) ⊗ f)
[b]
c′

+ f [a]
c (P̂ (1) ⊗ C(1) ⊗ f)

[b]
c′ + (P̂ (1) ⊗ C(1) ⊗ f)[a]

c f
[b]
c′

+ (C(1) ⊗ f)[a]
c (P̂ (0) ⊗ C(1) ⊗ f)

[b]
c′ + (P̂ (0) ⊗ C(1) ⊗ f)[a]

c (C(1) ⊗ f)
[b]
c′

+ (G(1) ⊗ f)[a]
c (P̂ (0) ⊗G(1) ⊗ f)

[b]
c′ + (P̂ (0) ⊗G(1) ⊗ f)[a]

c (G(1) ⊗ f)
[b]
c′

− 4β0π
[
H̃(2)f [a]

c f
[b]
c′ + (C̃(2) ⊗ f)[a]

c f
[b]
c′ + f [a]

c (C̃(2) ⊗ f)
[b]
c′

+H(1)(C(1) ⊗ f)[a]
c f

[b]
c′ +H(1)f [a]

c (C(1) ⊗ f)
[b]
c′

+ (C(1) ⊗ f)[a]
c (C(1) ⊗ f)

[b]
c′ + (G(1) ⊗ f)[a]

c (G(1) ⊗ f)
[b]
c′

]
− 4β1π

2
[
H(1)f [a]

c f
[b]
c′ + (C(1) ⊗ f)[a]

c f
[b]
c′ + f [a]

c (C(1) ⊗ f)
[b]
c′

]}
. (C.5)

D Scale dependence of the MiNNLOPS formula

In this appendix we discuss the renormalisation and factorisation scale dependence of the
MiNNLOPS formula (4.34). Our starting formula is

dσ

dΦFdpT
=

d

dpT

{
exp[−S̃(pT)]L(ΦF, pT)

}
+Rf (ΦF, pT) , (D.1)

where all ingredients are introduced in section 2.3. The scales appearing in the strong
coupling constant and in the parton densities, µR and µF, are set to pT. After integration
over the transverse momentum we get

dσ

dΦF

= L(ΦF, Q) +

∫
dpTRf (ΦF, pT) , (D.2)

that corresponds to the inclusive NNLO cross section at fixed kinematics of the colour
singlet system F. The scale dependence is introduced by evaluating the PDFs and αs at
µR = KRpT and µF = KFpT, and by adding appropriate scale-compensating KF and KR

dependent terms in L and Rf , thus redefining

L(ΦF, pT)→ L(ΦF, pT,KR,KF) +O(α3
s) , (D.3)

Rf (ΦF, pT)→ Rf (ΦF, pT,KR,KF) +O(α3
s) . (D.4)
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Accordingly, eq. (D.1) becomes

dσ

dΦFdpT
=

d

dpT

{
exp[−S̃(pT)]L(ΦF, pT,KR,KF)

}
+Rf (ΦF, pT,KR,KF) , (D.5)

and includes all relevant scale-dependent terms at NNLO.
Formula (D.5) retains its NNLO accuracy whether or not we include also scale-

dependent terms in the Sudakov form factor S̃. However, in order to make contact with
the POWHEG formula, the scale dependence in S̃ must be included. In fact, if we take
the derivative in eq. (D.5) we obtain

dσ

dΦFdpT
= exp[−S̃(pT)]

{
−dS̃(pT)

dpT
L(ΦF, pT,KR,KF) +

dL(ΦF, pT,KR,KF)

dpT

+ exp[S̃(pT)]Rf (ΦF, pT,KR,KF)
}

= exp[−S̃(pT)]

{
−dS̃(pT)

dpT
L(ΦF, pT,KR,KF) +

dL(ΦF, pT,KR,KF)

dpT

+

(
1 +

αs(KRpT)

2π
[S̃(pT)](1)

)
R

(1)
f (ΦF, pT,KR,KF)

+

(
αs(KRpT)

2π

)2

R
(2)
f (ΦF, pT,KR,KF)

}
+O

(
α3
s

)
.

Since in POWHEG we do not have access separately to the terms arising from the derivative
of S̃, and all terms in the curly bracket are evaluated with the same scale choice, we must
make sure that also the derivative of S̃ is given in terms of αs(KRpT). This is achieved by
writing S̃ as

S̃(pT) = 2

∫ Q

pT

dq

q

(
A(αs(KRq),KR) ln

Q2

q2
+ B̃(αs(KRq),KR)

)
, (D.6)

where the A and B coefficients include scale-compensating terms in such a way that they
are formally independent upon KR when summed up to all orders in perturbation theory.
It is easy to see that, with this replacement, the form of S̃ given in eq. (B.4) remains the
same provided that the A(i) and B(i) coefficients are replaced by the KR dependent ones,
and that αs(Q) is replaced by αs(KRQ).

We now present in detail the formulae needed to implement the scale variation. We
start by discussing the L factor, defined in eq. (4.31). The coefficientsH(1) and H̃(2) become

H(1)(KR) =H(1) + (2πβ0)nB lnK2
R ,

H̃(2)(KR) =H̃(2) + 4nB

(
1 + nB

2
π2β2

0 ln2K2
R + π2β1 lnK2

R

)
+ 2H(1) (1 + nB)πβ0 lnK2

R , (D.7)
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with nB being the αs power of the Born cross section for the production of the colour singlet
F. The coefficient functions C receive the following scale dependence:

C(1)(z,KF) = C(1)(z)− P̂ (0)(z) lnK2
F,

C̃(2)(z,KF,KR) = C̃(2)(z) + πβ0P̂
(0)(z)

(
ln2K2

F − 2 lnK2
F lnK2

R

)
− P̂ (1)(z) lnK2

F

+
1

2
(P̂ (0) ⊗ P̂ (0))(z) ln2K2

F − (P̂ (0) ⊗ C(1))(z) lnK2
F + 2πβ0C

(1)(z) lnK2
R , (D.8)

while G (which is present only in the case of gluon-induced reactions) remains unchanged.
We then consider the Sudakov radiator S̃, defined in eq. (2.9). We change the scale

of the strong coupling in its integrand (2.9) from pT to KRpT, and modify the A and B

coefficients as follows12

A(2)(KR) =A(2) + (2πβ0)A(1) lnK2
R,

B̃(2)(KR) =B̃(2) + (2πβ0)B(1) lnK2
R + (2πβ0)2 nB lnK2

R . (D.9)

The term proportional to nB (the power of αs at LO), is induced by the presence of H(1)

in the B̃(2) coefficient, that in turn originates from evaluating the hard virtual corrections
at pT in the factor L, see eq. (4.25).

The scale dependence also propagates into the constituents of the [D(pT)](3) term,
whose α3

s prefactor in eq. (4.34) is evaluated at KRpT. Besides the dependence in the
coefficients reported above (which is understood in the equation that follows), [D(pT)](3)

acquires additional explicit scale-dependent terms:

[D(pT)](3)(KF,KR) = [D(pT)](3)

−
∑
c,c′

d|MF|2cc′
dΦB

4π

pT

{
2πβ1

(
f [a]
c (P̂ (0) ⊗ f)

[b]
c′ + (P̂ (0) ⊗ f)[a]

c f
[b]
c′

)
ln
K2

F

K2
R

+ β0

(
H(1)(KR)

(
f [a]
c (P̂ (0) ⊗ f)

[b]
c′ + (P̂ (0) ⊗ f)[a]

c f
[b]
c′

)
+ 2

(
f [a]
c (P̂ (1) ⊗ f)

[b]
c′ + (P̂ (1) ⊗ f)[a]

c f
[b]
c′

)
+ (C(1)(KF)⊗ f)[a]

c (P̂ (0) ⊗ f)
[b]
c′ + (P̂ (0) ⊗ f)[a]

c (C(1)(KF)⊗ f)
[b]
c′

+ f [a]
c (P̂ (0) ⊗ C(1)(KF)⊗ f)

[b]
c′ + (P̂ (0) ⊗ C(1)(KF)⊗ f)[a]

c f
[b]
c′

)
ln
K2

F

K2
R

− 2πβ2
0

(
f [a]
c (P̂ (0) ⊗ f)

[b]
c′ + (P̂ (0) ⊗ f)[a]

c f
[b]
c′

)
ln2 K

2
F

K2
R

}
. (D.10)

12We stress that, formally, the perturbative coefficient A(3) gives a subleading contribution to the NNLO
cross section, and it is included in [D(pT)](3) to ensure consistency with the Sudakov radiator S̃. Since
its scale dependence would add information beyond the desired perturbative order, we explicitly decide to
omit it in our implementation.
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E Considerations from impact-parameter space formulation

In this section, we derive the form of the starting equation (2.7) using the impact-parameter
space formulation of transverse-momentum resummation. We start from the formula

dσ(pT)

dΦF

= pT

∫ ∞
0

dbJ1(b pT) e−S(b0/b)Lb(b0/b) , (E.1)

where
S(b0/b) = − ln(Qb/b0)g1(λb)− g2(λb)−

αs
π
ḡ3(λb) , (E.2)

and λb = αs(Q)β0 ln(Qb/b0), b0 = 2e−γE . The gi functions are analogous to those used in
momentum space (B.7), and [65]

ḡ3 ≡ g3 +
2ζ3(A(1))2

2πβ0

λb
1− 2λb

. (E.3)

The factor Lb is defined as

Lb(b0/b) =
∑
c,c′

d|MF|2cc′
dΦF

∑
i,j

{(
C

[a]
ci ⊗ f

[a]
i

)
H̄(b0/b)

(
C

[b]
c′j ⊗ f

[b]
j

)
+
(
G

[a]
ci ⊗ f

[a]
i

)
H̄(b0/b)

(
G

[b]
c′j ⊗ f

[b]
j

)}
, (E.4)

where H̄ is identical to H of eq. (B.11), with the only difference being that the H̄(2)

coefficient does not contain the term ∆H(2) (B.14).
We evaluate the b integral by expanding b0/b about pT in the integrand. While this

procedure is known to generate a geometric singularity in the pT space resummation, in this
article we are only interested in retaining O(α2

s) accuracy and therefore this is not an issue
for the present discussion. We follow the appendix of ref. [55], and by neglecting terms that
contribute beyond O(α2

s), we obtain

dσ(pT)

dΦF

= e−S(pT)

{
Lb(pT)

(
1− 1

2
S′′(pT)∂2

S′ +
1

6
S′′′(pT)∂3

S′

)
+

1

2
S′′(pT)

dLb(pT)

d ln(Q/pT)
∂3
S′

}
× e−γES′

Γ(1− S′

2 )

Γ(1 + S′

2 )
+O(α3

s(Q)) , (E.5)

where S′′′(pT) = dS′′(pT)/d ln(Qb/b0). After performing the derivatives, we observe that,
retaining O(α2

s) accuracy, we can approximate the above equation as follows

dσ(pT)

dΦF

= e−S(pT)

{
Lb(pT)

(
1− ζ3

4
S′′(pT)S′(pT) +

ζ3

12
S′′′(pT)

)
− ζ3

4

αs(pT)

π
S′′(pT)P̂ ⊗ Lb(pT)

}
+O(α3

s(Q)) . (E.6)

We directly observe that the two terms proportional to S′′ are analogous to those produced
in the last line of eq. (4.23). These two terms can be incorporated in the master formula via
the replacements (4.26). On the other hand, the term proportional to S′′′ is a new feature
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of the b-space formulation, and it is not present in the momentum space formulation. Using
the expression

S′′′(pT) = 32A(1)πβ0
α2
s

(2π)2
+O(α3

s) (E.7)

we observe that the new O(α2
s) constant term 8/3 ζ3A

(1)πβ0 can be absorbed into the
coefficient H̄(2) as

H̄(2) → H(2) = H̄(2) +
8

3
ζ3A

(1)πβ0 . (E.8)

This is precisely the difference between the H̄(2) coefficient (defined in b space) and the H(2)

coefficient present in the momentum-space formulation. Therefore, the O(α2
s) expansion of

eq. (E.6) coincides with that of eq. (2.7).
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