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ABSTRACT

A generalization of the Fokker-Schwarzschild-Tetrode-Wheeler-Feynman electromag-
netic theory onto the superspace is considered. The classical vector and spinor fields

belonging to the Maxwell supermultiplet are built of the world-line coordinates of the
charged particles in superspace.
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The action at a distance approach developed by Fokker-Schwarzschild-Tetrode-
Wheeler-Feynman (FSTWF) revealed a deep connection between classical electro-
magnetic field and world-line coordinates of relativistic charged particles [1]. The
fundamental character of the connections between fields and world coordinates was
realized in a new light in string theory where the original classical string lagrangian
was formulated in terms of string world-sheet coordinates [2]. The unification of the
FSTWF approach with string theory performed by Ramond and Kalb resulted in the
discovery of antisymmetric gauge field [3]. It seems natural to expect that a detailed
study of the FSTWF approach in the frame of superstring theory may elucidate the
problems of building string field theory.

Here we consider the possibility of supersymmetrization for FSTWF approach
and show that the classical fields of the Maxwell supermultiplet may be constructed

of the world-line coordinates of particles in superspace.

As is known, in the FSTWF approach classical electromagnetic field a* is built

using the world-line coordinates z#(t) and y#(7) of interacting charged particles
a*(z) = e [ driP(1)8(s}), (1)

where sf = z* —y*(7) is the relativistic interval and 6(s2) is the Dirac é6-function. The
effective electromagnetic field in (1) satisfies the Maxwell equations and the Lorentz

gauge condition

B“f“,,(z) = —47Tj,,(1?), Euwwaufpa(x) = O’

au(z) =0, (2)
while the current j#(z) is given by the usual expression

() = e [ dri#s@(so), 3)




and e is the electric charge of the interacting particles.

In order to supersymmetrize the electromagnetic potential (1) and the current
(3) extend the original Minkowski space by introducing several additional Grassmann
spinor coordinates.

The superpartner of a, in (1) is photino, an electrically neutral particle. Therefore
choose the Weyl spinors 8%(t), 85(t) and £%(7), £4(7), which describe the world-lines
of particles in superspace (together with z#(t) and y#(7)) as additional Grassmann

coordinates. The supersymmetry transformations for the world-line coordinates M =

(z#(1),6°(t), 8a(t)) and (M = (y#(7),€%(7), (7)) are [4]
Sx* = 100" e — iea”0, 60° =€, 604 = &
Sy* = 1ot —ieo”E, 66 = €%, 664 = . (4)
The simplest generalizations of the interval s§ and the velocity () invariant under
global supersymmetry transformations (4) are the following
s* = z# — y* — i(fo*E — E0*0),
wh = = i(€*E — £04€). (5)
However, for the construction suggested below it is more convenient to use the
complex coordinates =7, 5 = (z)" [5, 6]
% = z* + 1000, yi =y*+ iEotE,
zh = z* —100%8, vy = y* — it (6)
and the intervals s, sp = (s7)*, A%, A, which are also invariant under the SUSY
transformations (4)

sh =k — ylh — 2004E = s* +iAd*A, A% = 6% - €°,

s = ol — yb + 20" = s* —iDo*A, A% = 8% ~ €%,

(7)




but satisfy the chirality conditions]f]

D,sh = (—a—g—; + i(a”é)aa,,> sh = DGAB =0,

Ddsi = (——% — i(00")6,6‘,) SZ = DdAﬁ =0. (8)
Due to the evident conditions
St|y o = Skl ay = 55 (9)

the intervals s2 and s% may be naturally used as the arguments of é-functions (8(s%)
and §(s%)) entering into the unknown integral fepresenta.tions for the gauge superfields
AM = (A#) A°, As). The strength components Fpn built of the superfields Ay and

are not independent superfields due to the standard constraints [6]

Fop=Fuy=F, ;=0 (10)

a

These constraints are automatically satisfied if the vector superfield A, has the form

Au = —%&ﬁa (Da/id + DdAa) (11)

and the spinor superfields A* and Ay are chiral ones
DoAs =0, DsA;=0. (12)

Since A = —(Aq)* the considered problem is reduced to the construction of a chiral
superfield A® as a function of the world-line coordinates in the given superspace.
Due to the invariant character of A, its dependence on the world-line coordinates
must be realized through the chiral invariants of supersymmetry, the intervals s%, Ag
and velocities wh(7), £(7), f_a(r) In view of the constraints (10) and the condition

that A, must be equal to zero at £,8 — 0, it is convenient to seek the discussed

representation for A, in the form of the power series of the invariant As



Ao(z,0,0) = e/dﬂcad(w,,é,g‘, A)AGS(s2), (13)

where KJ“‘*IA—O # 0[f]. The chiral supersymmetric invariant kernel K,4 may be deter-
mined by substituting (13) into the representation (11) and imposing the condition

that the superfield A, should coincide with the representation (1) when £,6 — 0, i.e.
Koi = 0k |wrs + 2i(A5,6)] . (14)

Then the spinor superfields A, and Ay = —(A,)* are presented in the required

integral form

A, =e / dr(wruat s A% + 26, AN)(s3),

As = —e dr(w,“A"a(‘,‘d - 2i§dAA)5(S%)- (15)

In accordance with the relation (11) the superfield generalization of the FSTWF

representation (1) may be written as

Au=ic [ dr [w,“ — et (Ac?A) +i((Ad,f)
A 1 _ -
—(€0,A)) + FOABAY (8.0, = 1,.0)

+(AA(E6,,4) + (€,,0)A4) aﬂ] 5(s2). (16)
Since the representation (16) automatically fixes the Lorentz gauge condition
J,A* =0,
the residual gauge symmetry
A, = A, +i0,A, A, = Ay +iD,A, A, = Ay +iDsA (17)
is defined by the real scalar superfield A(z,8,0) restricted by the conditions

OA =0, D°D,A=0, DsD*A=0. (18)
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The nonzero components of the strength F wmn(z,8,0) corresponding to the superpo-

tentials Apm(z,0,0) (15), (16) are built of the chiral superfields W, and Wi = (Wa)*
[6]
Foaevie = LDy phA= + Looa A,
yda - g ﬁ + '2_ oy
&= _gHeaf, = _%D"Dp/i"’ + %a""’Aa, (19)
where 8% = #429/9z*. In view of (15) these fields may be presented as the following
functions of the world-line coordinates
W = —ie / dr [g’a +i€°Ac*AD, + %é“AAAAD
+wr, (2(80*)*0, — %AA(A&,,)"(B“B”
_pem)) - iAA(f&,,)"B“] §(s%). (20)

The superfields W and W may be used for constructing a superfield generalization

of the electromagnetic current (3) if we consider the relation
_4x] = D°W, + DsWé = i** (DsAa — Do) (21)

The superfield current J is invariant under the residual gauge transformations (17)
since 6 = —Té;[DD,DD]A = 0. The right-hand side of Eq. (21), after the substi-
tution of the superpotentials (15), may be written in the form 0®(z,8,0), where ®

is a real scalar superfield
® = —2 / drA® (Kasb(sh) + Kisb(sh)) A (22)
with the kernel Koq given by (14). An equivalent form for @ (22) is

¢ = —4e/dr [w‘,‘ (AU“A)

+i(EA)AA —iAA(ER)]6(s?). (23)

The use of the fundamental property [7] of the interval (5)
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06(s?) = —4méW(s"), (24)

together with the representation (23) shows that Eq. (21) is presented in the form of

the superfield wave equation
0&(z,0,0) = —4rJ(z,0,0) (25)
with the superfield current J(z,0, 8) given by the integral

J = —4e/d’r(w¢(Aa“A)
+i(EA)AD — iAA(ER))6W(s). (26)

Eq. (25) is a superfield generalization of the Maxwell equations in the Lorentz gauge
and ®(z,0,0) has the physical interpretation of the prepotential V(z,0,0) [6] evalu-

ated in the gauge
{DD,DD}V =0 = V(z,6,0) = i—@(:c,@,é). (27)
This interpretation follows from the relations

1 - = = 1 _
Waz—— a*y = T Ta a®y 28
IGDDD o, W, 16DDD d (28)

which connect W, (19) and & (23). With the notations used in [6] the superfield

gauge condition (27) is split into the following component gauge conditions

0 xa(z) = iX3(z), 8 xa(z) = —iX*(2),
OC(z) = —D(z), M(z) = N(z) =0,

8,v*(z) =0 (29)

for the component fields x, x,C, M, N,v entering into the superfield V(z,O,é). The
use of the conditions (29) permits to present V(z,0,0) by the following component

decomposition



V = i@ =C +i0%xa — 1055 — (80,0)v°
+L1008,3 — L006° ), + 30080D, (30)
with the vector v#(z), spinors A*(z), Aa(z) and an auxiliary field D(z) forming the
Maxwell multiplet. The integral representations for these component fields may be

obtained after the expansion of the power series of 8 and 6 for the prepotential @

(23). This gives the following expansion for the electromagnetic potential v¥4(z)

vu(z) = iA“lo:o: € / dr [y# - 5#119/\3)”(60"’5)8/\
+ (ﬁf(g&upg) + (éanpé)gﬁ—) i
+§§§E£y” (8.0, — mwﬂ)] 8(s5), (31)

which is the zero term in the component expansion of the vector superpotential A,
(16). The representation (31) is the desired supersymmetric generalization of the
FSTWF potential (1). For the spin field A* which is the superpartner of the electro-

magnetic strength v#’(z) = 9#v¥ — 8“v* the discussed expansion gives

)=e [ dr|é - iée(€a,)0" + L eE(é5,)0"
~sénesten+ y'u(—‘z(éa“")“au

+EE(E8) (@0 — 1)) |8(s)) (32

The integral representation for the spinor A% follows from (32) after its complex

conjugation. Finally, for the auxiliary field D(z) derive the integral representation in

the form

D(z) = e [ dr[iu(eo") - i (€€(€0) - (€6)6€) | P6(5d) (33)

The obtained fields v* (31) and A*(x), Aa(z) (32) satisfy the Maxwell and Dirac

wave equations with currents



Ov¥(z) = —47j D4 (z), BasA(z) = —4mj)(2),

A, (z) = —ax ;W (g) (34)
and D(z) = —47j©. These equations follow from the decomposition of the superfield
equation (25) after the substitution of the representation (23) and the component
expansion of the superfield current (26)

J = (0) + 46%; (1) 49"656(1) 4(fo, 0) (2)e
—2000050°°5) + 2i600° 8,65V + 0066059,
(35)
The explicit form of the components (35) of the current multiplet 7 (z, 8, §) is obtained
from the integral representations (31), (32) after acting by the differential operators

of D’Alamber and Dirac. As a result, the following supersymmetric generalization for

the FSTWF electromagnetic current (3) is derived

i =e [ dr i — cpni (60610 + zeCET (0,0,
1 8) + (EE(E00E) + (0t EE) |69 (0.
(36)

The conservation of the generalized electromagnetic current (36), i.e. the equation
a“j‘(f) = 0, is an evident consequence of the representation (36). The spinor compo-

nent of the supercurrent (35) is given by the expression
i =e [ dr{iulo"E)a - Se.EE0" — i(0"),EE0))
+ibabE — 5(0°6)a8EEE0, |5 (). (37)

The complex conjugation of Eq. (37) leads to the current 3&1). Note that the expres-

sions (31)- (37) may be simplified by using the Dirac identities (24) with the interval

sy substituted instead of s*.




The physical consequences of the supersymmetrization process considered here
may be observed even in the simplest case when y = f = { = 0 and the reparametriza-
tion gauge is fixed by the condition yo = 7. In this case the scalar vy and vector v

components of the 4-potential v, (31) take the following form

Vo = ; + e7r£§§_§6(3)(r), r=x-y,

2 -
v=e-[—§i, 5 = (bwks), €5 =68

(38)

T=I0

Then the last Eq. (38) shows that the Grassmann variables describe the contribution
to the vector potential v of the magnetic moment s of the charged particle-source.
This explanation is consistent with the well- known interpretation of the Grassmann
variables as those describing the spin degrees of freedom of the particle in the classical
limit & +— 0. Concerning the first Eq. (38) we see that the scalar potential vy satisfies

the Laplace equation
Avo = —47r[%5(3)(r +3) + 289 - ). (39)

Eq. (39) shows that the correction (38) to the Coulomb law is caused by the “smear-
ing” of the particle’s electric charge e over the space region of the order of the Compton
wavelength of the particle. This “smearing” of the classical trajectory is related to
the effect of pair creation (“Zitterbewegung”- effect) (8], which does not disappear in
the limit & — 0, because in this case the spin degrees of freedom described by the
Grassmann spinors are conserved.

If we have the explicit form (15), (16) of the superpotentials AM = (A4#, A°, Ag)
it is easy to construct a superfield generalization of the FSTWF classical action for
interacting charged fermions. To this end note that the integrand of the interacting
term of the FSTWF action may be presented in the standard form e dz*A,, with A,

given by Eq. (1). The supersymmetrization of this 1-form is realized by means of
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the replace [?]: edz*A, — ew™(dz) Ay with the superfield AM = (A#, A%, As) given
by the expressions (??), (??7) and w™ = (w{dt, 9=dt, 8 4dt). Therefore the superfield
generalization of the FSTWF classical action for two charged interacting particles

with masses m; and m, and spins equal 1/2 has the form

gsusy
Sestwr = /dt + gtml /dT + g,m,)

te / di(whA, + 67 A, + otdAa). (40)

with the integrals (7?), (??) substituted instead of A#, A%, A4 and g, g, playing the
role of einbeins. It is not so difficult to verify that the action (??) is a symmetric one

under permutations of the particles.
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