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Abstract

The production of the A(1520) baryonic resonance has been measured at midrapidity in inelastic
pp collisions at /s = 7 TeV and in p—Pb collisions at \/sxy = 5.02 TeV for non-single diffractive
events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel
A(1520) — pK™ and the charge conjugate with the ALICE detector. The integrated yields and mean
transverse momenta are calculated from the measured transverse momentum distributions in pp and
p—Pb collisions. The mean transverse momenta follow mass ordering as previously observed for
other hyperons in the same collision systems. A Blast-Wave function constrained by other light
hadrons (7, K, K(s), p, A) describes the shape of the A(1520) transverse momentum distribution up
to 3.5 GeV/c in p—Pb collisions. In the framework of this model, this observation suggests that the
A(1520) resonance participates in the same collective radial flow as other light hadrons. The ratio
of the yield of A(1520) to the yield of the ground state particle A remains constant as a function
of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p—Pb
collisions on the A(1520) yield.
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Measurement of A(1520) production in pp and p—Pb collisions

1 Introduction

High-energy heavy-ion (A—A) collisions offer a unique possibility to study nuclear matter under extreme
temperature and density, in particular the properties of the deconfined quark—gluon plasma (QGP) [IH7]],
which was predicted by quantum chromodynamics (QCD) [8H12]. The interpretation of the heavy-ion
results depends crucially on the comparison with results from small collision systems such as proton—
proton (pp) or proton—nucleus (p—A). Measurements in pp collisions establish a reference for larger sys-
tems and are used to test perturbative QCD models. The p—A collisions, which are intermediate between
pp and A—A collisions in terms of system size and number of produced particles [13H15], are traditionally
used to separate initial and final-state effects [16, [17]. However, at the LHC the pseudorapidity density
(dNcn/dn) of final-state charged particles in pp and p—A collisions can reach values comparable to those
achieved in semi-peripheral Au—Au [[18]] and Pb—Pb collisions [[19] at the top energies of RHIC and the
LHC, respectively. Therefore, there exists a possibility of final-state effects due to the formation of dense
matter even in p—A collisions.

During the evolution of the systems formed in A—A or p—A collisions, the yields of short-lived resonances
may be influenced by interactions in the late hadronic phase. The re-scattering of the decay products in
the medium may prevent the detection of a fraction of the resonances, whereas pseudo-elastic hadron
scattering can regenerate them. The strengths of the re-scattering and regeneration effects depend on the
scattering cross sections of the decay products, the particle density of the produced medium, the lifetimes
of the resonances and the lifetime of the hadronic phase. The latter can be studied by comparing yields
of short-lived resonances with different lifetimes to yields of long-lived particles [20423]]. ALICE has
observed that in the most central p—Pb and Pb—Pb collisions [21}, 22, 24] the K*/K ratio is significantly
suppressed with respect to peripheral collisions, pp collisions, and predictions of statistical hadronization
models [25, 26]. A similar suppression is also observed for p®/x ratio in central Pb—Pb collisions
with respect to peripheral Pb—Pb collisions, pp collisions, and predictions of statistical hadronization
models [27]]. No suppression is observed for the ¢/K ratio, as the ¢ meson lives ten times longer than
the K**. To provide more insight into the properties of the hadronic phase, other resonances whose
lifetimes are in between those of the K*° (Tgo = 4.17 &= 0.04 fm/c [28]) and ¢ (7y = 46.4 £ 0.14
fm/c [28]) should be studied. The A(1520) resonance is a strongly decaying particle having x(;520) =
12.6 4+ 0.8 fm/c [28]]. This makes the study of the A(1520) resonance important for understanding the
evolution of the system. Previously, the STAR experiment at RHIC measured A(1520) production in pp,
d-Au and Au-Au collisions at a center-of-mass energy per nucleon pair (/sxn) of 200 GeV [23} 29]
and showed a hint of suppression of the A(1520)/A yield ratio in central Au—Au collisions compared to
the values observed in pp and d-Au collisions. A measurement of the A(1520) in Pb—Pb collisions at
V/SNN = 2.76 TeV was reported in [30]. The A(1520)/A yield ratio is found to be suppressed in central
(0-20%) Pb—Pb collisions relative to peripheral (50-80%) Pb—Pb collisions. The suppression factor is
found to be 0.54+0.08(stat)£0.12(sys). The EPOS3 [31433]] event generator, which incorporates the
UrQMD model [34] to simulate the hadronic phase, predicts a significant suppression of the A(1520)/A
yield ratio in central Pb—Pb collisions at /sy = 2.76 TeV [33]. However, the corresponding Pb—Pb
measurements show a stronger suppression than predicted by EPOS3. This motivates the study of the
A(1520) resonance in different collision systems at the LHC in order to better understand the properties
of the hadronic phase. The pp and p—Pb data studied in this paper thus provide important baseline
measurements for the corresponding results in Pb—Pb collisions.

In addition, several measurements [36438]] in p—A collisions indicate that these systems cannot be ex-
plained as an incoherent superposition of pp collisions, rather suggesting [39} 40] the presence of collec-
tive effects. In p—Pb collisions, a significant increase of the average transverse momentum as a function
of charged particle density has been observed [41] and this is reminiscent of the effect observed in Pb—Pb
collisions, where it is interpreted as a consequence of radial flow. The measurement of the pr spectra
of the A(1520) resonance can further confirm such effects, and thus can be used to better constrain the
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properties of the collective radial expansion.

Recently, the ALICE Collaboration reported measurements of multi-strange particles in p—Pb colli-
sions [42]. The hyperon-to-pion ratios increase with multiplicity in p—Pb collisions, and range from
the values measured in pp to the those in Pb—Pb collisions. The rate of the increase is more pronounced
for particles with higher strangeness content. Therefore, it will be interesting to study the production of
excited strange hadrons, like A(1520), £(1530), as a function of multiplicity. Doing so in p—Pb collisions
would help bridge the gap between the pp and Pb—Pb collision systems.

Throughout this paper, the A(1520) resonance will be referred as A*. The invariant mass of A* is re-
constructed through its hadronic decay channel A* — pK™, with a branching ratio of BR = (22.5 +
1)% [28]]. The invariant mass distributions of the pK~ and pK™ were combined to reduce the statistical
uncertainties. Therefore in this paper, unless specified, A* denotes A* +A". The paper is organized as fol-
lows. The experimental setup is briefly presented in Section[2] Section [3|describes the data samples and
event selection. Section []illustrates the analysis procedure as well the determination of the systematic
uncertainties. The results are discussed in Section[5] and a summary is provided in Section [6]

2 Experimental setup

The ALICE [43] 44]] detector is specifically designed to study a variety of observables in the high-
multiplicity environment achieved in central A—A collisions at LHC energies. The detector is optimized
to reconstruct and identify particles produced in the collisions over a wide momentum range.

In this analysis, only the central barrel sub-detectors were used for track reconstruction. These detectors
have a common pseudorapidity coverage in the laboratory frame of |1, < 0.9, and are placed in a
solenoidal 0.5 T magnetic field directed along the beam axis. The Inner Tracking System (ITS) [45]
provides high resolution tracking points close to the beam line. The ITS is composed of six cylindrical
layers of silicon detectors, located at radial distances between 3.9 and 43 cm from the beam axis. The two
innermost layers are Silicon Pixel Detectors (SPD), the two intermediate ones are Silicon Drift Detectors
(SDD), and the two outermost ones are Silicon Strip Detectors (SSD). The Time Projection Chamber
(TPC) [46] is the main tracking detector of the central barrel. The TPC is a cylindrical drift chamber, and
covers the radial distance 85 < r < 247 cm. In addition to tracking, the TPC is used for the identification
of particles via their specific ionization energy loss dE /dx as they pass through the active gas region
of the TPC. The separation power of particle identification in the TPC defined in terms of standard
deviations as a function of particle momentum is discussed in [44]]. This analysis uses charged tracks,
which are reconstructed using tracking information, both in the ITS and in the TPC. The Time-Of-Flight
(TOF) detector [47] is an array of Multi-gap Resistive Plate Chambers (MRPC). The time resolution of
TOF is about 85 ps, increasing to about 120 ps due to a worse start-time (collision-time) resolution in the
case of low multiplicity events [44]. The TOF is located at a radial distance of 370 < r < 399 cm from
the beam axis. The purpose of this detector is to identify particles using the time-of-flight, together with
the momentum and path length measured with the ITS and the TPC. The TOF can separate pions from
kaons and protons by twice its resolution, for momenta up to 2.5 and 4 GeV/c, respectively.

Forward detectors, such as the VO, TO, and Zero-Degree Calorimeters (ZDC) [48150], are used for
triggering and event characterization. The VO consists of two arrays of 32 scintillator detectors. They
cover the full azimuthal angle in the pseudorapidity regions 2.8 < Mjap < 5.1 (VOA) and —3.7 < nyp <
—1.7 (VOC). The VO can be used to define the event multiplicity interval. The TO consists of two arrays
of quartz Cherenkov counters, TOA (4.6 <1 <4.9) and TOC (—3.3 < 1 < —3.0), and provides the time
and the longitudinal position of the interaction. The ZDC is a hadronic calorimeter consisting of two
W-quartz neutron and two brass-quartz proton calorimeters, placed symmetrically at a distance of 113 m
on both sides of the interaction point. In this analysis the ZDC is used for background rejection.
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3 Data sample and event selection

The data samples analysed in this paper were recorded during the LHC pp run in 2010, and the p—Pb
run in 2013. For pp collisions, the center-of-mass energy is 7 TeV and the analysis is carried out within
the rapidity range —0.5 < y < 0.5. The instantaneous luminosity at the ALICE interaction point was
in the range 0.6-1.2x10%° cm~2s~!. This limited the collision pile-up probability to an average rate of
2.5% [31]. For p—Pb collisions at /snn = 5.02 TeV, the beam energies are 4 TeV for protons, and 1.577
TeV for Pb. For the analyzed data set, the Pb beam was circulated towards the positive rapidity direction
(labelled as ALICE “A” side); conversely, the proton beam was circulated towards negative rapidity
direction (labelled as ALICE “C” side). The asymmetry in the energies of the proton and Pb beam shifts
the nucleon—nucleon centre-of-mass system, relative to the laboratory frame, by 0.465 units of rapidity
along the proton beam direction. In the following, the variables yi,p, (M125) are used to indicate the rapidity
(pseudorapidity) in the laboratory reference frame, whereas y (1) denotes the same in the center-of-mass
frame. The analysis presented in this paper was performed in the rapidity window —0.5 <y < 0. The
peak luminosity during data taking was about 10> cm~2s~! with a probability of multiple interactions
below 3% [52]. The small fraction of pile-up events from the same bunch crossing was removed by
rejecting events with multiple vertices using the SPD. Pile-up of collisions from different bunch crossings
is negligible due to the bunch-crossing spacing (200 ns) being larger than the integration time of the ZDC.

The pp collision data were collected using a minimum-bias (MB) trigger. This trigger required a signal
in the SPD or in any one of the VO scintillator arrays in coincidence with a bunch crossing. With
this configuration about 85% of all inelastic events were triggered [S3]]. The VO detector measures the
event time with a resolution of about 1 ns. Using the timing information from the VO detector, the
contamination due to beam-induced background is removed offline. Selected events are further required
to have a reconstructed primary vertex within 4= 10 cm from the center of the ALICE detector, along the
beam axis to ensure a symmetric rapidity coverage of the barrel detectors, and to reduce the remaining
beam-gas contamination. The data analysis is carried out using a sample of ~125 million minimum-bias
pp collisions.

In the p—Pb data sample, the events were selected using the trigger condition requiring a logical AND
between signals in VOA and VOC. This reduces the contamination from single-diffractive and electro-
magnetic interactions. These non-single-diffractive (NSD) events include double-diffractive interactions,
where both colliding nucleons break up by producing particles separated by a large rapidity gap. The
trigger and event selection efficiency for NSD events is €ysp = 99.2% as described in Ref. [13,[14]. The
beam induced background was further reduced offline using timing cuts on the signals from the VO and
ZDC detectors [44]]. The same procedure as in pp collisions was used to reconstruct the primary vertex.
The event sample amounts to a total of about 100 million accepted events. The NSD events were further
divided into four multiplicity intervals according to the charge deposited in the forward VOA detector,
positioned along the direction of the Pb beam [14]]. The multiplicity intervals and their corresponding
mean charged-particle density ((dNgp,/dMap)) measured at midrapidity (|1y.| < 0.5) are given in Table

4 Analysis details
4.1 Track cuts and particle identification

This analysis uses tracks reconstructed in the TPC and ITS. Each track is required to have at least one
hit in one of the two layers of the SPD. The criteria for selecting a reconstructed track in the TPC are the
following: the track is required to cross at least 70, out of the maximum 159, horizontal readout segments
(or “rows”) along the transverse plane of the TPC; and the ratio of crossed rows over findable clusters
in the TPC has to be greater than 0.8. In addition to this, standard ALICE track quality cuts have been
applied [24]. These selections limit the contamination from secondary and fake tracks, while ensuring
a high efficiency, and good dE/dx resolution. Tracks with transverse momentum prt < 0.15 GeV/c and
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Table 1: Average charged-particle multiplicity density measured at midrapidity in the used event
multiplicity intervals in p—Pb collisions at /sy = 5.02 TeV [14] and in inelastic pp collisions at
Vs =7TeV [53].

System Event Class (dNch /AMab ) (1] <0.5
p—Pb 0-20% 35.6 = 0.8
20-40% 23.2+0.5
40-60% 16.1 £ 0.4
60-100% 7.1+£02
0-100% 17.4 4+ 0.7
pp INEL 46703

[Mab| > 0.8 are rejected to suppress boundary effects. Due to the small lifetime of A*, the daughter
particles should be reconstructed as primary tracks originating from the event vertex. For this purpose,
we used distance of closest approach (DCA) cuts, along the transverse and z directions of 76pca(pT)
and 2 cm, respectively. Here, opca is pr-dependent and parameterized as 0.0015 + 0.005/p! [44],
where pr is measured in units of GeV/c. The methods used for charged particle identification (PID) in
pp and p—Pb collisions are as follows. In pp collisions, low momentum protons (p < 1.1 GeV/c) and
K (p < 0.6 GeV/c) are selected using the TPC with a 3orpc PID cut on the measured dE /dx distribution.
Higher momentum tracks are identified by requiring that the measured time-of-flight and dE/dx do not
deviate from their expected values for each given mass hypothesis by more than 3c6ror and 56tpc,
respectively (see [51} [54]] for a discussion of the particle identification using TPC and TOF). For p—Pb
collisions, tracks of any momentum that have a hit in the active TOF region are identified with a 3orop
and Sorpc cut, on the measured time-of-flight and dE /dx values. If there is no hit in the active TOF
region, the dE /dx of low momentum (defined earlier) tracks are required to be within 3orpc of their
expected values for each given mass hypothesis. This PID selection reduces the misidentification of
particles over a large momentum region, hence reducing the combinatorial background under the signal
peak. The rapidity cuts for pK pairs in pp and p—Pb collisions are |y| < 0.5 and —0.5 < y < 0, respectively.

4.2 Invariant mass reconstruction

Invariant mass distributions are reconstructed by combining pairs of oppositely charged pK pairs in the
same event. Examples of pK invariant-mass distributions are presented in the panels (a) and (b) of Fig. ]
for pp and p-Pb collisions, respectively. Clear peaks of A* can be observed in the figures, which sit
on top of combinatorial backgrounds. The uncorrelated background is estimated using the mixed-event
technique (ME). However at low momentum, pt < 1 GeV/c ( 1.2 GeV/c) for pp (p—Pb) collisions, the
like-sign technique (LS) was used since it better described the background shape. In the ME approach,
each proton track in an event was combined with kaon tracks from 10 different events. In order to
minimize distortions, and to ensure a similar event structure, events with vertex position differences
within 1 cm in the z direction and charged-particle multiplicity differences within 10 have been chosen for
mixing. For the LS method, the background is constructed by combining like-charged pairs of pK (pK*
and pK™) from the same event to get the geometrical mean of the two distributions, 2 /Nyg+ X Npg-
in each invariant mass bin. These background distributions are normalized in the mass region 1.7 <
Mpk < 1.85 GeV/c? well outside the signal peak. The background-subtracted distributions are shown
in the panels (c) and (d) of Fig. (1| for MB pp collisions, and the 0-20% multiplicity interval of p—Pb
collisions, respectively. These distributions exhibit characteristic peaks on top of residual backgrounds.
These leftover backgrounds are mainly due to correlated pairs from jets, multi-body decays of heavier
particles or correlated pairs from real resonance decays, misidentified as p or K during PID selection. A
study of Monte Carlo simulations was performed to ensure that the shape of the correlated background
is a smooth function of mass which can be well described with a second order polynomial in the fitting
range. Each signal peak has been fitted with a Voigtian function (convolution of a Breit-Wigner and a
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Figure 1: Invariant-mass distributions of pK pairs for MB pp collisions at /s = 7 TeV (left panels) and
for p—Pb collisions in the 0-20% multiplicity interval at /syn = 5.02 TeV (right panels) for the momen-
tum interval 1.0 < pr < 1.2 GeV/c and 1.5 < pr < 1.8 GeV/c, respectively. Panels (a) and (b) show
the unlike-sign pK invariant-mass distribution from the same event and normalized combinatorial back-
ground for pp and p—Pb collisions, respectively. Panels (c) and (d) show the invariant-mass distribution
after subtraction of the combinatorial background. The solid curve represents the Voigtian fit, while the
dashed line describes the residual background. The statistical uncertainties are shown as bars.

Gaussian) on top of a second order polynomial in invariant mass as in [S5]]. This is shown in the lower
panels of Fig.[T] The polynomial is used to describe the residual background and the Voigtian function
gives the resonance mass, width and yield. The Gaussian component of the Voigtian function accounts
for the mass resolution of the experimental setup. A study of Monte Carlo simulations was done to
estimate this mass resolution.

The mass resolution was found to depend on pt. At low pr it shows a decreasing trend and reaches its
lowest value of 1 MeV/c? at pr = 1 GeV/c, then monotonically increases to a value of 1.6 MeV/c? at py
= 6 GeV/c. It is important to note that the mass resolution has very limited effect on the reconstructed
peak shape due to large intrinsic width of the A* resonance (I' = 15.73 MeV/c?) [28]. The raw yield
is calculated by integrating the invariant mass distribution after the subtraction of the combinatorial
background and subtracting the integral of the residual background function in the range (M — 21", M +
21"), where M is the mass peak position that comes from the Voigtian fit and I" is the PDG accepted value
for the width of A*. The fractions of the yields in the tails on both sides of the peak are calculated from
the fit function and applied as corrections to the measured yields.

4.3 Detector acceptance and efficiency

In order to evaluate the detector acceptance and reconstruction efficiency (A x €), Monte Carlo pp and
p—Pb events were simulated using the PYTHIA Perugia 2011 [56] and DPMJET 3.05 [57] event genera-
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tors, respectively. The detector geometry and material budget were modeled by GEANT?3 [S8]], which is
also used for the propagation of particles through detector material. The acceptance and efficiency cor-
rections were determined as the fractions of generated resonances that were reconstructed in the rapidity
interval |y| < 0.5 for pp events and —0.5 < y < 0 for p—Pb events. The selected primary p and K tracks
have to pass the same kinematic, track selection, and PID cuts as applied in the real data. Since the gen-
erated A* pr spectrum has a different shape than the measured pr spectrum, it is therefore necessary to
weight the generated pr spectrum so that it has the shape of the measured spectrum. The A x € obtained
after applying this re-weighting procedure is used to correct the raw pr spectrum. Fig.[2|shows the A x €
as a function of pr for minimum bias events in pp and in p—Pb collisions. The drop in efficiency is
seen at intermediate pr that arises due to the rejection of protons above p > 1.1 GeV/c and kaons above
p > 0.6 GeV/c when PID information is only available from the TPC. Since no significant variation of
A x € with event multiplicity was observed in p—Pb collisions, the A x € obtained in MB events was used
for all multiplicity intervals to have a better statistical precision.
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Figure 2: The geometrical acceptances times reconstruction efficiency (A x €) for A* in minimum bias
pp and p—Pb events. Uncertainties (bars) are statistical only.

4.4 Correction and normalization

The final pr spectra were calculated from the raw yields as

1 dzN _ 1 Nraw(pT) Strig Evert
Nev dydpr Nérv'tg Ay Apr Ax€(pr) BR &g

e/r(pr) - (1

The raw yields (N™V) were corrected for A x € of the detectors, branching ratio (BR) of the decay
channel, the trigger efficiency (&ig), GEANT3/FLUKA correction (&g /r), signal loss correction (&g)
and event loss correction due to the vertex reconstruction inefficiency (€yerr). A GEANT3-based [38]
simulation of the ALICE detector response was used to correct the yields for both collision systems.
The GEANT3 version used for correcting the yields from pp data overestimates the interactions of p
and K™ with the material, especially at low pr. Therefore the efficiency is scaled by a factor &g,
estimated with a dedicated FLUKA simulation [59, 60]. In pp collisions, the yields are normalized to the
number of inelastic collisions by applying a trigger efficiency correction (€yig) of 0.85f8:8§ [S3] to the

total number of triggered events (Nérvi{g). The correction due to vertex reconstruction inefficiency (Eyert)
in pp collision is negligible (~0.1%) and hence not applied. For MB p-Pb collisions, the yields are
normalized to the number of non-single diffractive (NSD) events after applying the correction factors of

Eyig Tor event selection and &er¢ due to the primary vertex reconstruction inefficiency, resulting in a total
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scaling factor of 0.964 [24]]. For the multiplicity dependent study of A*, the yields are normalized to
the number of events in the respective VOA multiplicity event class. Only events with a reconstructed
primary vertex were considered in the computation of A x €. Therefore, a correction for the vertex
reconstruction inefficiency (€yrt) has to be applied in each VOA multiplicity event class. The correction
is about 0.95 for the 60-100% multiplicity interval and is unity for other multiplicity intervals. The
signal loss correction, &, is measured as a function of pr and it corresponds to the resonances that are
not reconstructed in the events missing due to the trigger selection. This correction is significant (of the
order of few %) at low pt (< 2 GeV/c) in the lowest multiplicity interval for p—Pb collisions and in pp
collisions. The values of &;s(pr) are negligible for other multiplicity intervals in p—Pb collisions.

4.5 Sources of systematic uncertainties

The systematic uncertainties of the A* yields are summarized in Table 2] The main sources of systematic
uncertainty are signal extraction, track selection cuts, PID selection cuts, global tracking efficiency, the
material thickness traversed by the particles (material budget) and the hadronic interaction cross-section
in the detector material. No event multiplicity dependence of systematic effects was observed in p—Pb
data, thus the uncertainties estimated for minimum bias collisions were used for all multiplicity intervals.
One of the main sources of systematic uncertainties is the raw yield extraction procedure. This contri-
bution is labelled as “Signal extraction” and accounts for uncertainties mainly due to the choice of the
background normalization region, the fitting range, the residual background shape and variation of the
mass resolution in the fitting function. The normalization ranges have been varied between 1.7 GeV/c?
and 2.2 GeV/c?. The lower mass limit of the fitting range was varied within £20 MeV/c? while the
higher mass limit was varied within 4100 MeV/c? about the default fitting range of 1.45-1.65 GeV/c?.
A second order polynomial is used as the default function to describe the residual background and a third
order polynomial is used to estimate the systematic uncertainty. The mass resolution was varied within
the range of uncertainties observed in the simulation. Track selection uncertainties were estimated to be
2% for a single charged track in [13} [51]] and therefore correspond to a 4% uncertainty for A* decay-
ing into two daughter particles. In order to study the effect of the PID selection on signal extraction,
the cuts on the TPC dE /dx and TOF time-of-flight values were varied by 1. This results in average
uncertainties in the yields of 1.8% and 2.1% for pp and p—Pb collisions, respectively. The uncertainty
on the determination of the global tracking efficiency (ITS-TPC matching uncertainty) is independent of
pr and was evaluated to be 3% for a single charged particle [[13}51]], which results in a 6% uncertainty
when two tracks are combined in the invariant-mass analysis. The systematic uncertainties in the A*

Table 2: Sources of systematic uncertainties for A* yields (d°N/(dydpr)). For each source the average
relative uncertainties are listed.

Source p-Pb, /snn = 5.02 TeV pp, /s =7 TeV
Signal extraction 5.0% 4.0%
Track selection cuts 4.0% 4.0%
Particle identification 1.8% 2.1%
Global tracking efficiency 6.0% 6.0%
Material budget 1.5% (pr < 3.5 GeV/c) 1.4% (pt < 3.5 GeV/c)
Hadronic interaction 3.3% (pr < 3.5 GeV/c) 3.0% (pt < 3.5 GeV/c)
Total 9.7% 9.1%

yield due to the material budget and hadronic interaction cross section in the detector material have been
found to be constant up to pr = 3.5 GeV/c and negligible at higher pr. The uncertainties due to signal
extraction and PID are uncorrelated with pt, whereas the global tracking, track cuts, material budget
and hadronic cross-section uncertainties are correlated with pr. These pr-correlated uncertainties cancel
when calculating the uncertainties of the particle ratios.
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5 Results and discussion

This section presents the results obtained for the A*, which include the pr-differential spectra, integrated
yields (dN/dy) and mean transverse momentum ({pr)) values in MB pp collisions at /s = 7 TeV and
p—Pb collisions at /sy = 5.02 TeV in the NSD event class and different multiplicity intervals. This
section also describes a study of the radial flow effect in p—Pb collisions for the A* pr-spectra. The
results are also used to study strangeness enhancement as a function of the charged-particle multiplicity
at mid-pseudorapidity.

5.1 Transverse momentum spectra

The pr spectra of A* measured in the rapidity range |y| < 0.5 in inelastic pp collisions and —0.5 <y < 0
in p—Pb collisions for various event classes are shown in Fig. [3] The Lévy-Tsallis parameterization [61]]
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Figure 3: (Color online) pr spectra of A* measured with ALICE in the rapidity range |y| < 0.5 in pp
collisions at y/s = 7 TeV and in the rapidity range —0.5 <y < 0 in p—Pb collisions at \/syn = 5.02 TeV
for minimum bias and different multiplicity intervals (VOA estimator). The multiplicity-dependent spec-
tra are normalized to the visible cross-section, whereas the minimum bias spectrum is normalized to the
fraction of NSD events. The minimum bias spectrum in pp collisions is normalized to the number of in-
elastic events. Statistical and systematic uncertainties (pr-uncorrelated) are indicated as bars and boxes,
respectively. Dashed lines represent Lévy-Tsallis fits.

is used to fit the pr-differential spectra, d?N/(dprdy). The function provides a good description of the
measured points over the whole pr range with a y%/ndf less than 1. The fits are used to extrapolate the
spectra down to zero pr and to high pr (up to 10 GeV/c). The dN/dy and (pr) are obtained from the
spectra in the measured ranges and from the fits at lower and higher momenta. The pr-correlated uncer-
tainties are not considered for fitting, but propagated separately to the final results. Tablereports dN/dy
and (pr) for A* along with the extrapolation fraction and x2/ndf values obtained from the fits. The first
uncertainty is statistical and the second one is the total systematic uncertainty. The extrapolation fraction
in p—Pb collisions varies from 20% in the 0-20% multiplicity interval to 33% in the 60—100% multi-
plicity interval; in pp collisions it is below 16%. The systematic uncertainties on dN/dy are dominated
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Table 3: dN/dy and (pr) along with the extrapolation fraction (Extr.) and 2 /ndf from the fit to the pr
distribution. The values included in the table correspond to four multiplicity intervals (VO estimator) and
NSD events of p—Pb collisions at /sy = 5.02 TeV and inelastic pp collisions at /s = 7 TeV. The first

uncertainty is the statistical and the second one is the total systematic uncertainty.

System Event Class dN/dy {p1) (GeV/c) Extr. X% /ndf
p—Pb 0-20% 0.099 £ 0.004 £ 0.011 1.675 £ 0.036 £ 0.040 0.205 0.2
20-40% 0.065 + 0.002 4 0.007 1.607 + 0.032 4+ 0.043 0.225 0.4
40-60% 0.044 £ 0.002 + 0.005 1.475 £ 0.034 £+ 0.037 0.258 0.2
60-100% 0.018 + 0.001 4 0.002 1.405 + 0.093 + 0.074 0.332 0.6
p—Pb NSD 0.049 4+ 0.001 4 0.005 1.579 + 0.020 4+ 0.035 0.227 0.1
PP INEL 0.012 + 0.00034 0.0012 1.273 +0.021 £ 0.043 0.156 0.4

by the pr-uncorrelated uncertainties of the measured spectra (about 7.6% in p—Pb and 6.4% in pp), the
pr-correlated contributions from the global tracking efficiency (6% both in pp and p—Pb) [13}151]] and the
extrapolation of the yield (2.1-2.9% in p—Pb and 2.0% in pp). The uncertainties due to the extrapolation
of the yields are calculated using different functions: Blast-Wave [62]], mt-exponential, Boltzmann and
Fermi-Dirac functions [63]] and the standard deviation of the dN/dy values calculated using these func-
tions is used as the systematic uncertainty. Similarly, the major contributors to the systematic uncertainty
of (pr) are the pr-uncorrelated systematic uncertainties on the measured pr-differential yields (about
2.6% in p—Pb and 2.3% in pp) and the standard deviation of the (pt) values calculated using the different
extrapolation functions. The pr-correlated uncertainties are not included in the (pr) as the correlated
uncertainties act as the normalization constant and do not affect the spectral shape.

5.2 Average transverse momentum and mass ordering

In high-energy heavy-ion collisions, the expansion velocity of the medium drives the spectral shapes of
final-state particles. If an increase in (pr) with the mean charged-particle multiplicity density is observed
for different particles, then it may suggest collective (hydrodynamic) behavior of the system [41} |59].
Figure |4 shows the (pr) of different particle species as a function of the mean charged-particle mul-
tiplicity density (dN./dniap) within |Mys| < 0.5. The values for the A* are compared with those of
other hyperons and mesons observed in p—Pb collisions at /sy = 5.02 TeV; such as K0, 0, Yt 70,
Q™ [24, 42, 164]. An increasing trend of (pr) from low to high multiplicity is observed for all parti-
cles. This enhancement in (pt) of the A* is consistent, within uncertainties, with that observed for other
hadrons as shown in the figure. The change of the {pt) for the K** meson is the largest, which may be due
to the suppression of low pr particles due to re-scattering in the hadronic medium for the higher multi-
plicity intervals. A mass ordering of (pr) is observed among light-flavor baryons, including the A*. This
mass hierarchy including other light flavored hadrons is shown in Fig. [5| The figure shows the (pr) of
several hadron species as a function of mass for inelastic pp collisions at /s =7 TeV [51}/55 165] and for
the 0-20% multiplicity interval of p—Pb collisions at \/sny = 5.02 TeV [41,42,164]]. The (pr) increases
with increasing mass in both collision systems. The baryonic resonance A* follows the same trend as the
other baryons. We observe two different trends in the (pt) for mesons and baryons. These results reflect
the violation of mass ordering in the (pt) of the produced particles in pp and p—Pb collisions.

5.3 Collective radial expansion

In heavy-ion collisions, the flattening of transverse momentum distributions of hadrons and their (pr)
ordering with mass is explained by the collective radial expansion of the system [66]. Previously, the
Blast-Wave formalism [62] successfully described simultaneously the 7+, K*, K(S), p(p) and A(A) spectra
in different multiplicity intervals of p—Pb collisions [41]]. The pr ranges for the simultaneous fit of Tt
K*, K2, p(p) and A(A) are 0.5—1 GeV/c, 0.2—1.5 GeV/e, 0—1.5 GeV/e, 0.3—3 GeV/c and 0.6—3 GeV/e,
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Figure 4: (Color online) The (pr) of A* compared with previously measured (pr) values of K*, ¢,
¥**, 20 and Q= in p—Pb collisions at V/SNN = 5.02 TeV as a function of the mean charged-particle
multiplicity density (dNch/dMian), measured in the pseudorapidity range |Miab| < 0.5 [24} 142] [64]. The
=*0 points are slightly displaced along the abscissa for clarity. Statistical uncertainties are represented as

bars, whereas boxes indicate systematic uncertainties.
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Figure 5: Mass dependence of the (pr) of identified particles measured in inelastic pp collisions at
Vs =7 TeV [51, 55, 163] and in p—Pb collisions at /sy = 5.02 TeV for the 0-20% multiplicity inter-
vals [41},142164]. Statistical uncertainties are represented as bars, square brackets indicate total systematic
uncertainties.

respectively. The Blast-Wave model is not expected to be valid at high pr. Here we have used the same
Blast-Wave parameters as extracted in Ref. [41] to obtain a prediction for the pt spectra of the A*.
The parameters are listed in Table 4] The predicted Blast-Wave shapes are normalized to the data in
a momentum range up to 3 GeV/c in the 0-20% and 40-60% multiplicity intervals. The results are
shown in the upper panel of Fig.[6] The lower panel of the same figure shows the ratio of the measured
data points and the corresponding values from the functions. This shows that the Blast-Wave function
describes the shape of the A* spectra well up to pt = 3.5 GeV/c. Although the Blast-Wave function
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Figure 6: (Color online) The upper panel shows the pr distribution of A* in p—Pb collisions at
VSNN = 5.02 TeV in the 0-20% (red) and 40-60% (blue) multiplicity intervals. The dashed curves
represent predictions from the Blast-Wave model [41]], where the parameters are obtained from simul-
taneous fits to 7+, KT, Kg, p(P) and A(A) pr spectra and the shapes are normalized to the data. The
lower panel shows the ratios of the measured distributions to the values from the respective Blast-Wave
functions. The statistical uncertainties are shown as bars and the systematic uncertainties are shown as
boxes.

Table 4: Blast wave parameters from fits to 75, K*, Kg, p(P) and A(A) pr spectra in p—Pb collisions at
A/SNN = 5.02 TeV [41].

Centrality Tiin (GeV) Bs n
0-20% 0.147 +0.005 0.83340.0095 1.16 £0.035
40-60% 0.164 4-0.004 0.43540.011 1.734+0.07

underpredicts the pr-differential yields at high pr, the ratio of the measurement to the function is found
to be independent of event multiplicity in the measured region. This suggests that (1) the A* pt spectra
agree with the Blast-Wave shape constrained by other light hadrons (at least in the pt range where the
Blast-Wave model is expected to work); and (2) the A* participates in the same collective radial flow as
the other light hadrons. The measurements for the A* are also consistent with an increase of radial flow
with multiplicity. It may be noted that the A* spectral shape and (pr) were also found to be consistent
with a hydrodynamic evolution in Pb—Pb collisions at /sy = 2.76 TeV [30].

5.4 Ratios of integrated yields

The ratios of the yields of particles with varying strangeness content, mass and lifetime are key observ-
ables in the study of particle production mechanisms. Short-lived particles such as A*, 20, K** and ¢
are used to extract information on the lifetime of the hadronic phase in heavy-ion collisions and on mech-
anisms, such as re-scattering and regeneration, which affect resonance yields before kinetic freeze-out
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(when the constituents of the system cease to interact elastically). In Fig.[/| the yield ratios of resonances
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Figure 7: (Color online) Ratio of A*, K*0, %0 and ¢ to charged 7 (left) and K™ (right) in p—Pb collisions
at \/snn = 5.02 TeV as a function of the average charged-particle density (dN¢h/dMjap) measured at
midrapidity [24} [64]. Statistical uncertainties (bars) are shown together with total (hollow boxes) and
multiplicity-uncorrelated (shaded boxes) systematic uncertainties. The EPOS3 model predictions [31+-
335 with statistical uncertainties are shown as horizontal bars (pp collisions at /s = 7 TeV) and shaded
bands (p-Pb collisions at /sy = 5.02 TeV).

to charged w and K™ are compared. The yield ratios of strange resonances to the non-strange 7 show
a rise from low to high multiplicities (except for K** /). The A*/x ratio shows a hint of an increase
with increasing charged-particle multiplicity, but due to the large uncertainties a strong conclusion can-
not be drawn. This enhancement is more prominent for the 2*° /7 (the ratio of a doubly strange particle
to a non-strange particle) and ¢ /7 ratios. This yield enhancement is typically attributed to a reduced
canonical suppression of strangeness production in larger freeze-out volumes [[67] or to an enhanced
strangeness production in a quark—gluon plasma [68]. In contrast, the K** /7 ratio shows no enhance-
ment. This is connected to the negative slope of the K** /K~ ratio (see the right panel of Fig. [7)) which
may hint at the suppression of K** yields due to re-scattering effects in the hadronic medium in p—Pb
collisions [24]. The A* /K™ ratio shows no change with increasing charged-particle multiplicity and the
ratio is consistent with the value measured in pp collisions. Similar behaviour is seen for the ¢ /K~
ratio. The measured ratios are compared with the results from the EPOS3 model (version v3.107) with
a hadronic cascade phase (EPOS3 + UrQMD). The EPOS3 event generator is based on a 3+1D viscous
hydrodynamical evolution [31-33]]. The initial conditions are described by the Gribov-Regge multiple
scattering framework. The reaction volume consists of two parts: “core” and “corona”. The core part
constitutes the bulk matter simulated using 3+1D viscous hydrodynamics which thermalizes, flows and
hadronizes. The corona part constitutes the hadrons from the string decays. These hadrons from core and
corona part are fed into UrQMD [34], which includes the rescattering and regeneration effects. For pp
collisions, EPOS3 under-predicts the data (horizontal bars), however for p—Pb collisions, EPOS3 agrees
with the data (red shaded band) within uncertainties. EPOS3 also predicts a rise in the A* /7 ratio with
increasing charged-particle multiplicity.

Figure [8] shows the yield ratio of the A* to the ground state A as a function of the average charged-
particle density, (dNgp/dMiab), measured at midrapidity. The figure shows the ratio for inelastic pp
collisions at /s = 7 TeV and /s = 200 GeV (STAR Collaboration [23] [69]]) and for p-Pb colli-
sions at /sy = 5.02 TeV [41] as a function of charged particle multiplicity. The STAR measurement
is consistent with the ALICE results within uncertainties. The A*/A ratio does not change with in-
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Figure 8: (Color online) Ratio of A* to A in inelastic pp collisions at /s = 7 TeV, p—Pb collisions at
VSN = 5.02 TeV [41] and in NSD pp collisions at Vs =200 GeV [23,169]]. Statistical uncertainties
(bars) are shown together with total (hollow boxes) and multiplicity-uncorrelated (shaded boxes) sys-
tematic uncertainties. The results are compared with several model calculations (see text for details).

creasing charged-particle multiplicity. This is in contrast to the measurements in Pb—Pb collisions at
VSnN = 2.76 TeV [30] where the A* /A ratio is observed to be suppressed in central (0-20%) relative to
peripheral (50-80%) Pb—Pb collisions. The constant behavior of the A*/A ratios presented here along
with those for £** /A and Z*0/Z~ ratios reported in [64] as a function of (dN.,/dn,) indicates that
the strangeness enhancement observed in p—Pb collisions depends predominantly on the strangeness
content, rather than on the hyperon mass. The A*/A ratios in pp and p—Pb collisions reported here
are about a factor 2 higher than those measured in central Pb—Pb collisions. THERMUS [70l], GSI-
Heidelberg [[71] and SHARE3 [[72]] model calculations are able to describe the value of the ratio within
1.5 times the experimental uncertainty. The predictions of the three thermal models are for Pb—Pb col-
lisions at the chemical freeze-out temperature (when the constituents of the system cease to interact
inelastically) T, = 156 MeV and zero baryochemical potential. Among these models, SHARE3 (equi-
librium) at 7, = 156 MeV provides the best agreement with the data. EPOS3 with UrQMD agrees with
the data qualitatively and indicates that the A*/A ratio is independent of the average charged-particle den-
sity in p—Pb collisions. This is in contrary to the observation that in central Pb—Pb collisions the A* /A
ratio is suppressed compared to pp, p—Pb, peripheral (50-80%) Pb—Pb collisions and thermal model cal-
culations. The suppression of the A* /A ratio is consistent with the formation of a dense hadronic phase
and re-scattering effects in central Pb—Pb collisions.

6 Summary and conclusions

The transverse momentum spectra of the A* in pp collisions at /s = 7 TeV and in p—Pb collisions at
V/SNN = 5.02 TeV have been measured using the ALICE detector in the rapidity ranges |y| < 0.5 and
—0.5 <y < 0, respectively. The (pr) of this baryonic resonance increases with the mean charged-
particle multiplicity measured at mid-pseudorapidity (|Mi| < 0.5) and exhibits mass ordering when
compared with other baryons (2**, 20, Q™ etc.). The A* /& ratio may exhibit an enhancement consistent
with that observed for other strange hadrons [19]. The A* pr spectra agree with the Blast-Wave shape
constrained using other light hadrons, which, in the context of this particular model, can be interpreted

as the A* participating in the same collective radial flow as the other light hadrons. The ratio of the A*
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to the ground-state A shows no change with increasing charged-particle multiplicity in p—Pb collisions.
This ratio is consistent with the measurement in pp collisions at /s = 7 TeV and 200 GeV within
uncertainties. This measurement may indicate that the cumulative effect from the hadronic phase in
p—Pb collisions is not enough to have significant influence on the A* yield.

The current measurements represent a useful baseline for the results in Pb—Pb collisions [30]. The mea-
surements of the A* /A ratio in pp, p—Pb, and peripheral Pb—Pb collisions indicate that the re-scattering
effect plays an important role in central Pb—Pb collisions at /sy = 2.76 TeV. A complete set of such
measurements for many resonances with different lifetimes will allow the properties of the hadronic
phase to be studied in more detail.
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