
Minimizing CPU
Utilization
Requirements to
Monitor an ATLAS
Data Transfer System

Georgios Leventis - CERN

Hello!

I AM GEORGIOS LEVENTIS
Technical Student at CERN
geoleven@outlook.com

2

ATLAS Experiment at CERN

LHC general purpose detector

◦ Constant stream of data
◦ Data reduced by 2 level of triggers
◦ Currently the readout system uses custom

electronics

3

4

Current TDAQ
The ATLAS Trigger and

Data Acquisition System
during Run 2

FELIX is the new readout system
for the ATLAS experiment
FELIX routes data coming from the ATLAS
detector front-end electronics to the DAQ network

◦ Servers with custom FPGA-based PCIe
cards

◦ Critical infrastructure:
▫ Control of ATLAS detector
▫ Data flow

◦ Every server - system is driven by the
FelixCore software application

5

6

TDAQ after FELIX
integration as

foreseen for Run 3

FelixCore
FelixCore is the application that routes the data
from the FELIX cards to commodity network.

◦ Needs to be able to handle up to ~1.5GiB/s
or ~5GiB/s of constant data streams (mode
depended)

◦ Needs to be able to monitor the FELIX
machine it runs on as these machines are
single point of failure components

7

The problem
Efficiently monitoring FelixCore

1

8

It is not an easy task

◦ A single FELIX computer receives
up to 40MHz of data fragments

◦ Routing within FelixCore is a
CPU-intensive task

◦ For efficient routing parallel
threads are used

◦ Statistics from these threads have
to be combined to be meaningful

9

What are we monitoring?

◦ Data counter:
▫ Data packet rates
▫ Throughput
▫ Error rates

◦ FELIX variables:
▫ Global buffer memory
▫ Thread buffer memory
▫ Queue sizes
▫ Interrupts
▫ Polls

◦ Etc

10

Statistics?

For the statistics to be useful,
individual thread’s statistics must be:
◦ Gathered
◦ Processed / Combined

The data routing threads have to
communicate with the statistics
thread.

11

12

Statistics

13

14

THE IMPACT
Extracting statistics has ~85%
performance hit!

15

The initial implementation

◦ Data routing threads:
▫ Push their individual monitoring data to concurrent queues
▫ Pushing at a rate multiple to the data rate

◦ Statistics thread:
▫ Retrieves monitoring data from the queues in set intervals
▫ Combines the data

16

The solution
Atomics

2

17

Efficiently synchronizing data from the routing threads

The new statistics module:
◦ Hardware supported (x86/amd64)

Atomic Operations
◦ Atomic variables

18

Three implementations

1) Central Atomics

19

A set of atomic
variables
accessible from all
the parallel routing
threads.

20

1) Central Atomics

Three implementations

1) Central
Atomics

2) Separate
Atomics - Push
Config

21

A set of atomic
variables
accessible from all
the parallel routing
threads.

A set of atomic
variables for each
thread.
The accumulated
values are held by
the statistics
thread.
The routing
threads push their
own set to the
statistics one.

22

2) Separate Atomics
- Push Config

23

2) Separate Atomics
- Push Config

Expected

24

2) Separate Atomics
- Push Config

Expected

25

2) Separate Atomics
- Push Config

Expected

26

2) Separate Atomics
- Push Config
Worst Case Scenario

Three implementations

1) Central
Atomics

2) Separate
Atomics - Push
Config

3) Separate
Atomics - Pull
Config

27

A set of atomic
variables
accessible from all
the parallel routing
threads.

A set of atomic
variables for each
thread.
The accumulated
values are held by
the statistics
thread.
The routing
threads push their
own set to the
statistics one.

A set of atomic
variables for each
thread.
The accumulated
values are held by
the statistics
thread.
The statistics
thread pulls the
partial sets from
the routing
threads.

28

3) Separate Atomics
- Pull Config

29

3) Separate Atomics
- Pull Config

Always executed serially

30

3) Separate Atomics
- Pull Config

Always executed serially

31

3) Separate Atomics
- Pull Config

Always executed serially

...

32

3) Separate Atomics
- Pull Config

Always executed serially

The results of the three implementations

1) Central
Atomics

Negligible
performance
gains (< 5%).

2) Separate
Atomics - Push
Config
~400% of
performance
compared to the
initial statistics
module. 60% to
70% of target
performance.

3) Separate
Atomics - Pull
Config
~500% of
performance
compared to the
initial statistics
module.

33

~5x
the initial throughput
performance.

34

Comparison of the final implementation to the initial one

35

Conclusions
Parallel processing: Concurrency optimization matters

3

36

Cache invalidation
Measurements through Intel® VTune™
Amplifier suggested that the “1) Central
Atomics” implementation was suffering
from performance issues which were
manifested as cache invalidation.

37

Result
The performance
gains were enough
for us to meet our
internal target.

What we did and what we learned.

Lesson
Change on the
concurrency while
using atomics could
yield totally
different results.

38

~500%
FELIX data throughput
performance gain when
using the final statistics module

39

Summary

ANY QUESTIONS?Thanks!

Concurrency Levels
A significant difference in results

CREDITS

Special thanks to all the people who wrote the
original software and helped with my work:

◦ Jörn Schumacher
◦ Mark Dönszelmann

40

https://www.linkedin.com/in/j%C3%B6rn-schumacher-7a43a1a2/
https://www.linkedin.com/in/markdonszelmann/

