

Design and performance of the LHCb trigger and full real-time reconstruction in Run 2 of the LHC

EPS 2019 Ghent, July 10 - 17

Michel De Cian, on behalf of the LHCb collaboration

LHCb detector & trigger in Run II

- LHCb detector designed to trigger on decay products of b or c hadrons: moderate $p_{\rm T}$ physics,
- Event Filter Farm in Run II consists of 1700 nodes, almost doubling the capacity compared to Run I.
- High trigger rate (12.5 kHz), but moderate event size (55kB).

HLT1 software trigger

- HLT 1 performs a partial event reconstruction by reconstructing the primary vertex and all long tracks with $p_{\rm T}$ > 500 MeV/ c
- Reoptimizing the pattern recognition and track fit allowed to lower the $p_{\rm T}$ threshold from 1300 MeV/ $c \rightarrow$ 500 MeV/c wrt to Run I.
- Low-momentum muons undergo a special reconstruction with a lower $p_{\rm T}$ threshold, to trigger on e.g. $K^0_{\rm S} \to \mu^+\mu^-$

3

Alignment & Calibration

- After HLT1, the event is buffered and an automatic (real-time) alignment and calibration for the subdetectors is performed.
 - Size of buffer: 10PB (\sim 2 weeks of data taking).
- The data for this task is collected with dedicated trigger lines in HLT1.
- Calibration process takes $\mathcal{O}(\min) \to \mathcal{O}(h)$, new constants are put in DB and used for HLT2 processing.
- Inter-fill periods / technical stops are used to empty the buffer.

- HLT 2 performs a full event reconstruction, without $p_{\rm T}$ thresholds, including all detectors (tracking & PID).
- Improvements in reconstruction speed / more CPUs available / automatic alignment & calibration allow to run offline-like event reconstruction.
 - 100% overlap between offline and triggered candidates.
- LHCb introduced the Turbo framework to perform an analysis on the output of HLT2 → See talk by B. Mitreska.

HLT reconstruction performance

Calorimeter calibration performance

- Frequent calibration needed due to ageing of calorimeters.
- After every fill: Compare value from LED monitoring system to reference value, update voltage if needed.
- Once a month:
 - ECAL: Calibration with \sim 300M minbias events, using the known π^0 mass.

Tracker alignment

- Kalman Filter based alignment for alignment of tracking detectors
 + muon chambers.
- Constants for Velo updated every few fills, for tracker mainly after magnetic field flip.

• See poster by B. Mitreska.

RICH mirror alignment

One more thing...

- See talks by M. Santimaria and V. Lisovskyi for LHCb analyses with electrons.
- Tracking efficiency for muons was determined with $J\!/\psi
 ightarrow \mu^+\mu^-.$
- Electrons behave differently than muons (bremsstrahlung).
- Use tag-and-probe technique with $B^+
 ightarrow (J/\psi
 ightarrow e^+e^-) K^+.$
 - Fully reconstruct K^+ and one electron.
 - Reconstruct Velo track for other electron, constrain momentum using known $J/\psi\,$ mass.

- Use invariant B^+ mass to separate signal from background.
- Determine efficiency by finding the long track with the same Velo segment.
- Velo reconstruction efficiency almost identical for muons and electrons.
 - Energy loss happens mostly when crossing the magnetic field region.

12

- Determine efficiency as a function η and p_{T} .
 - Need to consider tracks going parallel to RF foil differently.
- Generally very good agreement between data and simulation.
- Correction factors can be derived to correct for efficiencies in simulation.
 - Will profit precision of analyses with electrons.
- Systematic uncertainty on ratio on average 0.6% (but depending on kinematic region).

That's all, folks

- LHCb sucessfully implemented a real-time alignment & calibration in the software trigger.
- Consistently high performance of the detector, allowing to perform analyses on output of HLT.
- Upgrade of LHCb builds on this idea, removing the L0 trigger, implemeting a all-software trigger running at 30 MHz.
- First measurement of electron track reconstruction efficiency performed, good agreement with simulation.

//Backup//

L0 hardware trigger

- Hardware-based trigger, implemented on FPGAs.
- Trigger on p_{T} of muons, or E_{T} in calorimeters.
- Good efficiency for muons, but high occupancy in calorimeters necessitates high thresholds to reduce rate to 1 MHz (at which the detector can be read out).

Impact of alignment

- Clear impact of performing an alignment visible
- Before alignment: $\sigma = 92\,{
 m MeV}/c^2$
- After alignment: $\sigma = 49\,{\rm MeV}\!/c^2$

OT global time calibration

- OT is a drift-tube detector, need to calibrate a global time in order to translate drift time into position measurement.
- Fit difference between expected arrival time and measured time → difference is global time offset.

ECAL calibration with π^0 mass

HLT timing breakdown

- HLT1: \sim 35ms
- HLT2: ∼ 650ms

HLT2 efficiency (I)

• Any topological \Box 2-body topological \blacktriangle 3-body topological \bigtriangleup 4-body topological

HLT2 efficiency (II)

