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The inclusive cross-section for jet production in association with a Z boson decaying into an
electron–positron pair is measured as a function of the transverse momentum and the absolute
rapidity of jets using 19.9 fb−1 of

√
s = 8 TeV proton–proton collision data collected with

the ATLAS detector at the Large Hadron Collider. The measured Z + jets cross-section is
unfolded to the particle level. The cross-section is compared with state-of-the-art Standard
Model calculations, including the next-to-leading-order and next-to-next-to-leading-order
perturbative QCD calculations, corrected for non-perturbative and QED radiation effects. The
results of the measurements cover final-state jets with transverse momenta up to 1 TeV, and
show good agreement with fixed-order calculations.
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1 Introduction

The measurement of the production cross-section of jets, a collimated spray of hadrons, in association
with a Z boson (Z + jets), is an important process for testing the predictions of perturbative quantum
chromodynamics (pQCD). It provides a benchmark for fixed-order calculations and predictions from
Monte Carlo (MC) simulations, which are often used to estimate the Z + jets background in themeasurements
of Standard Model processes, such as Higgs boson production, and in searches for new physics beyond the
Standard Model.

Various properties of Z + jets production have been measured in proton–antiproton collisions at
√

s =
1.96 TeV at the Tevatron [1–4]. The differential Z + jets cross-section is measured as functions of the
Z boson transverse momentum and the jets’ transverse momenta and rapidities, and as a function of
the angular separation between the Z boson and jets in final states with different jet multiplicities. The
experiments at the Large Hadron Collider (LHC) [5] have an increased phase space compared to previous
measurements by using proton–proton collision data at

√
s = 7, 8 and 13 TeV [6–15]. The measurements

at the LHC allow state-of-the-art theoretical Z + jets predictions to be tested. These have recently been
calculated to next-to-next-to-leading-order (NNLO) accuracy in pQCD [16, 17].

This paper studies the double-differential cross-section of inclusive jet production in association with
a Z boson which decays into an electron–positron pair. The cross-section is measured as a function of
absolute jet rapidity, |yjet |, and jet transverse momentum, pjetT , using the proton–proton (pp) collision data
at
√

s = 8 TeV collected by the ATLAS experiment. The measured cross-section is unfolded to the particle
level.

The cross-section calculated at fixed order for Z + jets production in pp collisions at
√

s = 8 TeV is
dominated by quark–gluon scattering. The Z + jets cross-section is sensitive to the gluon and sea-quark
parton distribution functions (PDFs) in the proton. In the central |yjet | region the Z + jets cross-section
probes the PDFs in the low x range, where x is the proton momentum fraction, while in the forward |yjet |
region it examines the intermediate and high x values. The scale of the probe is set by pjetT .

The measured cross-section is compared with the next-to-leading-order (NLO) and NNLO Z + jets fixed-
order calculations, corrected for hadronisation and the underlying event. In addition, the data are compared
with the predictions from multi-leg matrix element (ME) MC event generators supplemented with parton
shower simulations.

The structure of the paper is as follows. The ATLAS detector is briefly described in Section 2. This is
followed by a description of the data in Section 3 and the simulated samples in Section 4. The definition of
the object reconstruction, calibration and identification procedures and a summary of the selection criteria
are given in Section 5. The Z + jets backgrounds are discussed in Section 6. The correction of the measured
spectrum to the particle level is described in Section 7. The experimental uncertainties are discussed in
Section 8. The fixed-order calculations together with parton-to-particle-level corrections are presented
in Section 9. Finally, the measured cross-section is presented and compared with the theory predictions
in Section 10. The quantitative comparisons with the fixed-order pQCD predictions are summarised in
Section 11.
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2 The ATLAS detector

The ATLAS experiment [18] at the LHC is a multipurpose particle detector with a forward–backward
symmetric cylindrical geometry and nearly 4π coverage in solid angle.1 It consists of an inner tracking
detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a
muon spectrometer incorporating three large superconducting toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle
tracking in the range |η | < 2.5. A high-granularity silicon pixel detector covers the pp interaction region
and typically provides three measurements per track. It is followed by a silicon microstrip tracker (SCT),
which usually provides four two-dimensional measurement points per track. These silicon detectors are
complemented by a transition radiation tracker (TRT), which provides electron identification information.

The calorimeter system covers the pseudorapidity range |η | < 4.9. In the region |η | < 3.2, electromagnetic
calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr) electromagnetic
calorimeters, with an additional thin LAr presampler covering |η | < 1.8 to correct for energy loss in material
upstream of the calorimeters. Hadronic calorimetry is provided by a steel/scintillator-tile calorimeter,
segmented into three barrel structures for |η | < 1.7, and two copper/LAr hadronic endcap calorimeters
in the range 1.5 < |η | < 3.2. The calorimetry in the forward pseudorapidity region, 3.1 < |η | < 4.9, is
provided by the copper-tungsten/LAr calorimeters.

Themuon spectrometer surrounds the calorimeters and contains three large air-core toroidal superconducting
magnets with eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 Tm across most
of the detector. The muon spectrometer includes a system of precision tracking chambers and fast detectors
for triggering.

A three-level trigger [19] was used to select events for offline analysis. The first-level trigger is implemented
in hardware and used a subset of the detector information to reduce the accepted rate to at most 75 kHz.
This was followed by two software-based trigger levels that together reduced the average accepted event
rate to 400Hz.

3 Data sample

The data used for this analysis are from proton–proton collisions at
√

s = 8 TeV that were collected by
the ATLAS detector in 2012 during stable beam conditions. Events recorded when any of the ATLAS
subsystems were defective or non-operational are excluded. Data were selected with a dielectron trigger,
which required two reconstructed electron candidates with transverse momenta greater than 12 GeV. Only
events with electron energy leakage of less than 1 GeV into the hadronic calorimeter were accepted. The
trigger required that reconstructed electron candidates were identified using the ‘loose1’ criteria [20].

The integrated luminosity of the analysis data sample after the trigger selection is 19.9 fb−1 measured with
an uncertainty of ±1.9% [21]. The average number of simultaneous proton–proton interactions per bunch
crossing is 20.7.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards.
Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity
is defined in terms of the polar angle θ as η = − ln tan(θ/2). Angular distance is measured in units of ∆R ≡

√
(∆η)2 + (∆φ)2.
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In addition, a special data sample was selected for a data-driven study of multijet and W+ jets backgrounds.
For this purpose, the analysis data sample was enlarged by including auxiliary events selected by a logical
OR of two single-electron triggers.

The first single-electron trigger required events with at least one reconstructed electron candidate with a
transverse momentum greater than 24 GeV and hadronic energy leakage less than 1 GeV. The electron
candidate satisfied the ‘medium1’ identification criteria [20], a tightened subset of ‘loose1’. The
reconstructed electron track was required to be isolated from other tracks in the event. The isolation
requirement rejected an event if the scalar sum of reconstructed track transverse momenta in a cone of size
∆R = 0.2 around the electron track exceeded 10% of the electron track’s transverse momentum.

The second single-electron trigger accepted events with at least one electron candidate with a transverse
momentum greater than 60 GeV and identified as ‘medium1’. This trigger reduced inefficiencies in events
with high-pT electrons that resulted from the isolation requirement used in the first trigger.

Events selected by single-electron triggers include a large number of background events that are normally
rejected by the Z + jets selection requirements, but these events are used in the data-driven background
studies.

4 Monte Carlo simulations

Simulated Z + jets signal events were generated using the Sherpa v. 1.4 [22] multi-leg matrix element
MC generator. The MEs were calculated at NLO accuracy for the inclusive Z production process, and
additionally with LO accuracy for up to five partons in the final state, using Amegic++ [23]. Sherpa MEs
were convolved with the CT10 [24] PDFs. Sherpa parton showers were matched to MEs following the
CKKW scheme [25]. The MENLOPS [26] prescription was used to combine different parton multiplicities
from matrix elements and parton showers. Sherpa predictions were normalised to the inclusive Z boson
production cross-section calculated at NNLO [27–29] and are used for the unfolding to particle level and
for the evaluation of systematic uncertainties.

An additional Z + jets signal sample with up to five partons in the final state at LO was generated using
Alpgen v. 2.14 [30]. The parton showers were generated using Pythia v. 6.426 [31] with the Perugia
2011C [32] set of tuned parameters to model the underlying event’s contribution. The Alpgen MEs were
matched to the parton showers following the MLM prescription [30]. The proton structure was described
by the CTEQ6L1 [33] PDF. Referred to as the Alpgen+Pythia sample, these predictions were normalised
to the NNLO cross-section. This sample is used in the analysis for the unfolding uncertainty evaluation
and for comparisons with the measurement.

The five-flavour scheme with massless quarks was used in both the Sherpa and Alpgen+Pythia
predictions.

Backgrounds from the Z → ττ, diboson (WW , W Z and Z Z), tt̄ and single-top-quark events are estimated
using MC simulations. The Z → ττ events were generated using Powheg-Box v. 1.0 [34, 35] interfaced to
Pythia v. 8.160 [36] for parton showering using the CT10 PDFs and the AU2 [37] set of tuned parameters.
The Z → ττ prediction was normalised to the NNLO cross-section [27–29]. The WW , W Z and Z Z events
were generated using Herwig v. 6.520.2 [38] with the CTEQ6L1 PDFs and the AUET2 [39] set of tuned
parameters. The diboson predictions were normalised to the NLO cross-sections [40, 41]. Samples of
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single-top-quark events, produced via the s-, t- andWt-channels, and tt̄ events were generated with Powheg-
Box v. 1.0 interfaced to Pythia v. 6.426, which used the CTEQ6L1 PDFs and the Perugia2011C set of tuned
parameters. The prediction for single-top-quark production in s-channel were normalised to the NNLO
calculations matched to the next-to-next-to-leading-logarithm (NNLL) calculations (NNLO+NNLL) [42],
while predictions in t- and Wt-channel are normalised to the NLO+NNLL calculations [43, 44]. The tt̄
samples were normalised to the NNLO+NNLL calculations [45].

The Photos [46] and Tauola [47] programs were interfaced to the MC generators, excluding Sherpa, to
model electromagnetic final-state radiation and τ-lepton decays, respectively.

Additional proton–proton interactions, generally called pile-up, were simulated using the Pythia v. 8.160
generator with the MSTW2008 [48] PDFs and the A2 [37] set of tuned parameters. The pile-up events were
overlaid onto the events from the hard-scattering physics processes. MC simulated events were reweighted
to match the distribution of the average number of interactions per bunch crossing in data.

All MC predictions were obtained from events processed with the ATLAS detector simulation [49] that is
based on Geant 4 [50].

5 Object definitions and event selection

The measured objects are the electrons and jets reconstructed in ATLAS. The methods used to reconstruct,
identify and calibrate electrons are presented in Section 5.1. The reconstruction of jets, their calibration,
and background suppression methods are discussed in Section 5.2. Finally, all selection requirements are
summarised in Section 5.3.

5.1 Electron reconstruction and identification

Electron reconstruction in the central region, |η | < 2.5, starts from energy deposits in calorimeter cells. A
sliding-window algorithm scans the central volume of the electromagnetic calorimeter in order to seed
three-dimensional clusters. The window has a size of 3 × 5 in units of 0.025 × 0.025 in η–φ space. Seeded
cells have an energy sum of the constituent calorimeter cells greater than 2.5 GeV. An electron candidate
is reconstructed if the cluster is matched to at least one track assigned to the primary vertex, as measured in
the inner detector. The energy of a reconstructed electron candidate is given by the energy of a cluster that
is enlarged to a size of 3 × 7 (5 × 5) in η–φ space in the central (endcap) electromagnetic calorimeter in
order to take into account the shape of electromagnetic shower energy deposits in different calorimeter
regions. The η and φ coordinates of a reconstructed electron candidate are taken from the matched track.
The details of the electron reconstruction are given in Ref. [51].

A multistep calibration is used to correct the electron energy scale to that of simulated electrons [52].
Cluster energies in data and in MC simulation are corrected for energy loss in the material upstream of
the electromagnetic calorimeter, energy lost outside of the cluster volume and energy leakage beyond
the electromagnetic calorimeter. The reconstructed electron energy in data is corrected as a function of
electron pseudorapidity using a multiplicative scale factor obtained from a comparison of Z → ee mass
distributions between data and simulation. In addition, the electron energy in the MC simulation is scaled
by a random number taken from a Gaussian distribution with a mean value of one and an η-dependent width,
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equal to the difference between the electron energy resolution in data and MC simulation, determined in
situ using Z → ee events.

A set of cut-based electron identification criteria, which use cluster shape and track properties, is applied to
reconstructed electrons to suppress the residual backgrounds from photon conversions, jets misidentified as
electrons and semileptonic heavy-hadron decays. There are three types of identification criteria, listed in
the order of increasing background-rejection strength but diminishing electron selection efficiency: ‘loose’,
‘medium’ and ‘tight’ [51]. The ‘loose’ criteria identify electrons using a set of thresholds applied to cluster
shape properties measured in the first and second LAr calorimeter layers, energy leakage into the hadronic
calorimeter, the number of hits in the pixel and SCT detectors, and the angular distance between the cluster
position in the first LAr calorimeter layer and the extrapolated track. The ‘medium’ selection tightens
‘loose’ requirements on shower shape variables. In addition, the ‘medium’ selection sets conditions on
the energy deposited in the third calorimeter layer, track properties in the TRT detector and the vertex
position. The ‘tight’ selection tightens the ‘medium’ identification criteria thresholds, sets conditions on
the measured ratio of cluster energy to track momentum and rejects reconstructed electron candidates
matched to photon conversions.

Each MC simulated event is reweighted by scale factors that make the trigger, reconstruction and
identification efficiencies the same in data and MC simulation. The scale factors are generally close to one
and are calculated in bins of electron transverse momenta and pseudorapidity [20, 51].

5.2 Jet reconstruction, pile-up suppression and quality criteria

Jets are reconstructed using the anti-kt algorithm [53] with a radius parameter R = 0.4, as implemented
in the FastJet software package [54]. Jet reconstruction uses topologically clustered cells from both the
electromagnetic and hadronic calorimeters [55]. The topological clustering algorithm groups cells with
statistically significant energy deposits as a method to suppress noise. The energy scale of calorimeter cells
is initially established for electromagnetic particles. The local cell weighting (LCW) [56] calibration is
applied to topological clusters to correct for the difference between the detector responses to electromagnetic
and hadronic particles, energy losses in inactive material and out-of-cluster energy deposits. The LCW
corrections are derived using the MC simulation of the detector response to single pions.

The jet energy scale (JES) calibration [57] corrects the energy scale of reconstructed jets to that of simulated
particle-level jets. The JES calibration includes origin correction, pile-up correction, MC-based correction
of the jet energy and pseudorapidity (MCJES), global sequential calibration (GSC) and residual in situ
calibration.

The origin correction forces the four-momentum of the jet to point to the hard-scatter primary vertex rather
than to the centre of the detector, while keeping the jet energy constant.

Pile-up contributions to the measured jet energies are accounted for by using a two-step procedure. First,
the reconstructed jet energy is corrected for the effect of pile-up by using the average energy density in
the event and the area of the jet [58]. Second, a residual correction is applied to remove the remaining
dependence of the jet energy on the number of reconstructed primary vertices, NPV, and the expected
average number of interactions per bunch crossing, 〈µ〉.

The MCJES corrects the reconstructed jet energy to the particle-level jet energy using MC simulation. In
addition, a correction is applied to the reconstructed jet pseudorapidity to account for the biases caused by
the transition between different calorimeter regions and the differences in calorimeter granularity.
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Next, the GSC corrects the jet four-momenta to reduce the response’s dependence on the flavour of the
parton that initiates the jet. The GSC is determined using the number of tracks assigned to a jet, the
pT-weighted transverse distance in the η–φ space between the jet axis and all tracks assigned to the jet
(track width), and the number of muon track segments assigned to the jet.

Finally, the residual in situ correction makes the jet response the same in data and MC simulation as
a function of detector pseudorapidity by using dijet events (η-intercalibration), and as a function of jet
transverse momentum by using well-calibrated reference objects in Z/γ and multijet events.

Jets originating from pile-up interactions are suppressed using the jet vertex fraction (JVF) [58]. The JVF
is calculated for each jet and each primary vertex in the event as a ratio of the scalar sum of pT of tracks,
matched to a jet and assigned to a given vertex, to the scalar sum of pT of all tracks matched to a jet.

Applying jet quality criteria suppresses jets from non-collision backgrounds that arise from proton
interactions with the residual gas in the beam pipe, beam interactions with the collimator upstream of
the ATLAS detector, cosmic rays overlapping in time with the proton–proton collision and noise in the
calorimeter. Jet quality criteria are used to distinguish jets by using the information about the quality of the
energy reconstruction in calorimeter cells, the direction of the shower development and the properties of
tracks matched to jets. There are four sets of selection criteria that establish jet quality: ‘looser’, ‘loose’,
‘medium’ and ‘tight’ [57]. They are listed in the order of increasing suppression of non-collision jet
background but decreasing jet selection efficiency.

5.3 Event selection

Events are required to have a primary vertex with at least three assigned tracks that have a transverse
momentum greater than 400 MeV. When several reconstructed primary vertices satisfy this requirement,
the hard-scatter vertex is taken to be the one with the highest sum of the squares of the transverse momenta
of its assigned tracks.

Each event is required to have exactly two reconstructed electrons, each with transverse momentum
greater than 20 GeV and an absolute pseudorapidity less than 2.47, excluding the detector transition
region, 1.37 < |ηe | < 1.52, between barrel and endcap electromagnetic calorimeters. The electrons
are required to have opposite charges, be identified using the ‘medium’ [51] criteria and be matched to
electron candidates that were selected by the trigger. The ‘medium’ identification ensures the electrons
originate from the hard-scatter vertex. The electron-pair invariant mass, mee, is required to be in the
66 GeV < mee < 116 GeV range.

Jets are required to have a transverse momentum greater than 25 GeV and an absolute jet rapidity less
than 3.4. Jets with pjetT < 50 GeV, |ηdet | < 2.4, where ηdet is reconstructed relative to the detector centre,
and |JVF| < 0.25 are considered to be from pile-up. Jets originating from pile-up are removed from
the measurement. MC simulations poorly describe the effects of high pile-up in the pjetT < 50 GeV and
|yjet | > 2.4 region, so this region is not included in the measurement. Jets reconstructed within ∆R = 0.4
of selected electrons are rejected in order to avoid overlap. Jets are required to satisfy the ‘medium’ [57]
quality criteria. In addition, jets in regions of the detector that are poorly modelled are rejected in data and
MC simulations in order to avoid biasing the measured jet energy [57]. Each jet that meets the selection
requirements is used in the measurement.

As a result, 1 486 415 events with two electrons and at least one jet were selected for the analysis.
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6 Backgrounds

The majority of irreducible backgrounds in this measurement are studied using MC samples that simulate
Z → ττ, diboson, tt̄ and single top-quark production. The Z → ττ process is a background if both
τ-leptons decay into an electron and neutrino. Diboson production constitutes a background to the Z + jets
signal if the W and/or Z boson decays into electrons. Since the top-quark decays predominantly via
t → Wb, the tt̄ and single top-quark constitute a background to the Z + jets signal when W bosons decay
into an electron or jets are misidentified as electrons.

Multijet production constitutes a background to the Z + jets signal when two jets are misidentified as
electrons. The W+ jets background is due to an electron from W boson decay and a jet misidentified as
electron. A combined background from multijet and W+ jets events is studied using a data-driven technique,
thus providing a model-independent background estimate.

A background-enriched data sample is used for the combined multijet and W+ jets background control
region. Its selection requires two reconstructed electrons with at least one electron that satisfies the
‘medium’ identification criteria, but not the ‘tight’ ones. This allows selection of events with at least one
jet misidentified as an electron. No identification criteria are applied to the second reconstructed electron,
in order to allow for the possibility of W+ jets events with a genuine electron from W boson decay, and
multijet events with a jet misidentified as another electron. Both selected electrons are required to have
the same charge to suppress the Z + jets signal events. The combined multijet and W+ jets background
template is constructed by subtracting the MC simulated Z + jets signal events and Z → ττ, diboson, tt̄
and single-top-quark background events in the control region from data.

The purity of the template is calculated as the fraction of multijet and W+ jets events in the data control
region. The purity is about 98% in the tails of the mee distribution and is about 80% near the mee peak at
91 GeV. The template purity is above 90% in all |yjet | and pjetT bins.

The combined multijet and W+ jets background template is normalised to data using the invariant mass
distribution of reconstructed electron pairs. A maximum-likelihood fit is used to adjust the normalisation of
the combined multijet and W+ jets background template relative to the measured Z + jets distribution. The
normalisations of MC simulated samples are fixed in the fit: the Z → ττ, diboson, tt̄ and single-top-quark
distributions are normalised by their fixed-order cross-sections, whereas the normalisation of the MC
simulated Z + jets signal events is scaled to data to give the same total number of events near the peak of the
Z mass spectrum in the 90 GeV < mee < 92 GeV range. The combined multijet and W+ jets background
is fit to data in an extended mee region, 60 GeV < mee < 140 GeV, excluding the bins under the Z peak
within the 80 GeV < mee < 100 GeV region. The extended mee region is used for the normalisation
extraction only, as it allows more background events in the tails of the Z mass spectrum. The normalisation
of the multijet and W+ jets background template, calculated in the fit, is used to adjust the templates,
obtained in the |yjet | and pjetT bins, to the Z + jets signal region.

The total number of jets in Z + jets events are shown as a function of |yjet | and pjetT bins in Figure 1. Data
are compared with the sum of signal MC events and all backgrounds.

The Sherpa Z + jets simulation, normalised to the NNLO cross-section, is lower than data by about 10% in
the pjetT < 200 GeV region. These differences are mostly covered by the variations within electron and jet
uncertainties introduced in Section 8. In the pjetT > 200 GeV region, agreement with data is within the
statistical uncertainties.
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The Alpgen+Pythia predictions are in agreement with data within 10% for jets with transverse momenta
below 100 GeV. However, the level of disagreement increases as a function of the jet transverse momenta,
reaching 30% in the 400 GeV < pjetT < 1050 GeV region.

The dominant background in the measurement is from tt̄ events. It is 0.3%–0.8% in the 25 GeV < pjetT <

50 GeV region and 1%–2.5% in the 50 GeV < pjetT < 100 GeV region, with the largest contribution in the
central rapidity region. In the 100 GeV < pjetT < 200 GeV region, this background is approximately 3%,
while in the 200 GeV < pjetT < 1050 GeV region it is 1.8%–8%, increasing for forward rapidity jets.

The combined multijet and W+ jets background and the diboson background are similar in size. The
contributions of these backgrounds are 0.5%–1%.

The Z → ττ and single-top-quark backgrounds are below 0.1%.
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Figure 1: The total number of jets in Z + jets events as a function of |yjet | in pjetT bins for the integrated luminosity of
19.9 fb−1. Data are presented with markers. The filled areas correspond to the backgrounds stacked. All backgrounds
are added to the Z + jets Sherpa and Alpgen+Pythia predictions. Lower panels show ratios of MC predictions to
data. The grey band shows the sum in quadrature of the electron and jet uncertainties. The statistical uncertainties
are shown with vertical error bars. In the lower panels the total data + MC statistical uncertainty is shown.
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7 Unfolding of detector effects

The experimental measurements are affected by the detector resolution and reconstruction inefficiencies.
In order to compare the measured cross-sections with the theoretical Z + jets predictions at the particle
level, the reconstructed spectrum is corrected for detector effects using the iterative Bayesian unfolding
method [59]. The unfolding is performed using the Sherpa Z + jets simulation.

The particle-level phase space in the MC simulation is defined using two dressed electrons and at least one
jet. For the dressed electron, the four-momenta of any photons within a cone of ∆R = 0.1 around its axis are
added to the four-momentum of the electron. Electrons are required to have |η | < 2.47 and pT > 20 GeV.
The electron pair’s invariant mass is required to be within the range 66 GeV < mee < 116 GeV.

Jets at the particle level are built by using the anti-kt jet algorithm with a radius parameter R = 0.4 to
cluster stable final-state particles with a decay length of cτ > 10 mm, excluding muons and neutrinos. Jets
are selected in the |yjet | < 3.4 and pjetT > 25 GeV region. Jets within ∆R = 0.4 of electrons are rejected.

The closest reconstructed and particle-level jets are considered matched if ∆R between their axes satisfies
∆R < 0.4.

The input for the unfolding is the transfer matrix, which maps reconstructed jets to the particle-level jets in
the |yjet |–pjetT plane, taking into account the bin-to-bin migrations that arise from limited detector resolution.
An additional pjetT bin, 17 GeV < pjetT < 25 GeV, is included in the reconstructed and particle-level jet
spectra to account for the migrations from the low pjetT range. This bin is not reported in the measurement.

Given the significant amount of migration between jet transverse momentum bins, the unfolding is
performed in all |yjet | and pjetT bins simultaneously. The migration between adjacent |yjet | bins is found to
be small.

The transfer matrix is defined for matched jets. Therefore, the reconstructed jet spectrum must be corrected
to account for matching efficiencies prior to unfolding. The reconstruction-level matching efficiency is
calculated as the fraction of reconstructed jets matching particle-level jets. This efficiency is 80%–90% in
the 25 GeV < pjetT < 100 GeV region and is above 99% in the pjetT > 100 GeV region. The particle-level
jet matching efficiency is calculated as the fraction of particle-level jets matching reconstructed jets.
This efficiency is 45%–55% in all bins of the measurement due to the inefficiency of the Z boson
reconstruction.

The backgrounds are subtracted from data prior to unfolding. The unfolded number of jets in data, NPi , in
each bin i of the measurement is obtained as

NPi =
1
EPi

∑
j

Ui jERj NRj , (1)

where NRj is the number of jets reconstructed in bin j after the background subtraction, Ui j is an element
of the unfolding matrix, and ERj and EPi are the reconstruction-level and particle-level jet matching
efficiencies, respectively.

The transfer matrix and the matching efficiencies are improved using three unfolding iterations to reduce
the impact of the particle-level jet spectra mis-modelling on the unfolded data.
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8 Experimental uncertainties

8.1 Electron uncertainties

The electron energy scale has associated statistical uncertainties and systematic uncertainties arising from a
possible bias in the calibration method, the choice of generator, the presampler energy scale, and imperfect
knowledge of the material in front of the EM calorimeter. The total energy-scale uncertainty is calculated
as the sum in quadrature of these components. It is varied by ±1σ in order to propagate the electron energy
scale uncertainty into the measured Z + jets cross-sections.

The electron energy resolution has uncertainties associated to the extraction of the resolution difference
between data and simulation using Z → ee events, to the knowledge of the sampling term of the calorimeter
energy resolution and to the pile-up noise modelling. These uncertainties are evaluated in situ using the
Z → ee events, and the total uncertainty is calculated as the sum in quadrature of the different uncertainties.
The scale factor for electron energy resolution in MC simulation is varied by ±1σ in the total uncertainty
in order to propagate this uncertainty into the Z + jets cross-section measurements.

The uncertainties in calculations of the electron trigger, reconstruction and identification efficiencies
are propagated into the measurements by ±1σ variations of the scale factors, used to reweight the MC
simulated events, within the total uncertainty of each efficiency [20, 51].

For each systematic variation a new transfer matrix and new matching efficiencies are calculated, and data
unfolding is performed. The deviation from the nominal unfolded result is assigned as the systematic
uncertainty in the measurements.

8.2 Jet uncertainties

The uncertainty in the jet energy measurement is described by 65 uncertainty components [57]. Of these, 56
JES uncertainty components are related to detector description, physics modelling and sample sizes of the
Z/γ and multijet MC samples used for JES in situ measurements. The single-hadron response studies are
used to describe the JES uncertainty in high-pT jet regions, where the in situ studies have few events. The
MC non-closure uncertainty takes into account the differences in the jet response due to different shower
models used in MC generators. Four uncertainty components are due to the pile-up corrections of the jet
kinematics, and take into account mis-modelling of NPV and 〈µ〉 distributions, the average energy density
and the residual pT dependence of the NPV and 〈µ〉 terms. Two flavour-based uncertainties take into account
the difference between the calorimeter responses to the quark- and gluon-initiated jets. One uncertainty
component describes the correction for the energy leakage beyond the calorimeter (‘punch-through’ effect).
All JES uncertainties are treated as bin-to-bin correlated and independent of each other.

A reduced set of uncertainties, which combines the uncertainties of the in situ methods into six components
with a small loss of correlation information, is used in this measurement. The JES uncertainties are
propagated into the measurements in the same way as done for electron uncertainties.

The uncertainty that accounts for the difference in JVF requirement efficiency between data and MC
simulation is evaluated by varying the nominal JVF requirement in MC simulation to represent a few
percent change in efficiency [60]. The unfolding transfer matrix and the matching efficiencies are re-derived,
and the results of varying the JVF requirement are propagated to the unfolded data. The deviations from
the nominal results are used as the systematic uncertainty.
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Pile-up jets are effectively suppressed by the selection requirements. The jet yields in events with low 〈µ〉
and high 〈µ〉 are compared with the jet yields in events without any requirements on 〈µ〉. These jet yields
agree with each other within the statistical uncertainties. The same result is achieved by comparing the
jet yields in events that have low or high numbers of reconstructed primary vertices with the jet yields in
events from the nominal selection. Consequently, no additional pile-up uncertainty is introduced.

The jet energy resolution (JER) uncertainty accounts for the mis-modelling of the detector jet energy
resolution by the MC simulation. To evaluate the JER uncertainty in the measured Z + jets cross-sections,
the energy of each jet in MC simulation is smeared by a random number taken from a Gaussian distribution
with a mean value of one and a width equal to the quadratic difference between the varied resolution and
the nominal resolution [61]. The smearing is repeated 100 times and then averaged. The transfer matrix
determined from the averaged smearing is used for unfolding. The result is compared with the nominal
measurement and the symmetrised difference is used as the JER uncertainty.

The uncertainty that accounts for the mis-modelling of the ‘medium’ jet quality criteria is evaluated using
jets, selected with the ‘loose’ and ‘tight’ criteria. The data-to-MC ratios of the reconstructed Z + jets
distributions, obtained with different jet quality criteria, is compared with the nominal. An uncertainty of
1%, which takes the observed differences into account, is assigned to the measured Z + jets cross-section in
all bins of |yjet | and pjetT .

8.3 Background uncertainties

The uncertainties in each background estimation are propagated to the measured Z + jets cross-sections.

The data contamination by the Z → ττ, diboson, tt̄ and single-top-quark backgrounds is estimated using
simulated spectra scaled to the corresponding total cross-sections. Each of these background cross-sections
has an uncertainty. The normalisation of each background is independently varied up and down by its
uncertainty and propagated to the final result. The MC simulation of the dominant tt̄ background describes
the shapes of the jet pjetT and yjet distributions in data to within a few percent [62], such that possible shape
mis-modellings of the jet kinematics in tt̄ events are covered by the uncertainty in the total tt̄ cross-section.
The shape mis-modellings in other backgrounds have negligible effect on the final results. Therefore, no
dedicated uncertainties due to the background shape mis-modelling are assigned.

The uncertainties in the combined multijet and W+ jets background arise from assumptions about the
template shape and normalisation. The shape of the template depends on the control region selection and
the control region contaminations by the other backgrounds. The template normalisation depends on the
mee range, used to fit the template to the measured Z + jets events, due to different amounts of background
contamination in the tails of the mee distribution.

To evaluate the template shape uncertainty due to the control region selection, a different set of electron
identification criteria is used to derive a modified template. The selection requires two reconstructed
electrons with at least one electron that satisfies the ‘loose’ identification criteria, but not the ‘medium’
ones. The difference between the nominal and modified templates is used to create a symmetric template
to provide up and down variations of this systematic uncertainty.

To estimate the template shape uncertainty due to the control region contaminations by the other backgrounds,
the Z → ττ, diboson, tt̄ and single-top-quark cross-sections are varied within their uncertainties. The
dominant change in the template shape is due to tt̄ cross-section variation, while the contributions from the
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variation of the other background cross-sections are small. The templates varied within the tt̄ cross-section
uncertainties are used to propagate this uncertainty into the measurement.

The uncertainty in the multijet and W+ jets background template normalisation to the measured Z + jets
events is evaluated by fitting the template in the 66 GeV < mee < 140 GeV and 60 GeV < mee < 116 GeV
regions, excluding the bins under the Z boson peak within the 80 GeV < mee < 100 GeV region, and in the
60 GeV < mee < 140 GeV region, excluding the bins within the 70 GeV < mee < 110 GeV. As a result,
the normalisation varies up and down depending on the number of background events in both tails of the
mee distribution. The templates with the largest change in the normalisation are used to propagate this
uncertainty into the measurement.

The data unfolding is repeated for each systematic variation of the backgrounds. The differences relative to
the nominal Z + jets cross-section are used as the systematic uncertainties.

8.4 Unfolding uncertainty

The accuracy of the unfolding procedure depends on the quality of the description of the measured spectrum
in the MC simulation used to build the unfolding matrix. Two effects are considered in order to estimate
the influence of MC modelling on the unfolding results: the shape of the particle-level spectrum and the
parton shower description.

The impact of the particle-level shape mis-modelling on the unfolding is estimated using a data-driven
closure test. For this test, the particle-level (|yjet |, pjetT ) distribution in Sherpa is reweighted using the
transfer matrix, such that the shape of the matched reconstructed (|yjet |, pjetT ) distribution agrees with
the measured spectrum corrected for the matching efficiency. The reweighted reconstructed (|yjet |, pjetT )
distributions are then unfolded using the nominal Sherpa transfer matrix. The results are compared
with the reweighted particle-level (|yjet |, pjetT ) spectrum and the relative differences are assigned as the
uncertainty.

The impact of the differences in the parton shower description between Sherpa and Alpgen+Pythia on
the unfolding results is estimated using the following test. The Alpgen+Pythia particle-level (|yjet |, pjetT )
spectrum is reweighted using the Alpgen+Pythia transfer matrix, such that its reconstruction-level
distribution agrees with the one in Sherpa. The original reconstructed (|yjet |, pjetT ) distribution in Sherpa
is then unfolded using the reweighted Alpgen+Pythia transfer matrix. The results are compared with the
original particle-level (|yjet |, pjetT ) spectrum in Sherpa and the differences are assigned as the uncertainty.

Both unfolding uncertainties are symmetrised at the cross-section level.

8.5 Reduction of statistical fluctuations in systematic uncertainties

The systematic uncertainties suffer from fluctuations of a statistical nature.

The statistical components in the electron and jet uncertainties are estimated using toy MC simulations
with 100 pseudo-experiments. Each Z + jets event in the systematically varied configurations is reweighted
by a random number taken from a Poisson distribution with a mean value of one. As a result, 100 replicas
of transfer matrix and matching efficiencies are created for a given systematic uncertainty variation, and
are used to unfold the data. The replicas of unfolded spectra are then divided by the nominal Z + jets
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distributions to create an ensemble of systematic uncertainty spectra. The statistical component in the
systematic uncertainties is calculated as the RMS across all replicas in an ensemble.

The pseudo-experiments are not performed for the JER systematic uncertainty. The statistical errors in the
JER systematic uncertainty are calculated, considering the unfolded data in the nominal and JER varied
configurations to be independent of each other.

Each component of the unfolding uncertainty is derived using 100 pseudo-experiments to calculate the
statistical error.

To reduce the statistical fluctuations, the bins are combined iteratively starting from both the right and left
sides of each systematic uncertainty spectrum until their significance satisfies σ > 1.5. The result with the
most bins remaining is used as the systematic uncertainty. A Gaussian kernel is then applied to regain the
fine binning and smooth out any additional statistical fluctuations.

If up and down systematic variations within a bin result in uncertainties with the same sign, then the smaller
uncertainty is set to zero.

8.6 Statistical uncertainties

Statistical uncertainties are derived using toy MC simulations with 100 pseudo-experiments performed
in both data and MC simulation. The data portion of the statistical uncertainty is evaluated by unfolding
the replicas of the data using the nominal transfer matrix and matching efficiencies. The MC portion is
calculated using the replicas of the transfer matrix and matching efficiencies to unfold the nominal data.
To calculate the total statistical uncertainty in the measurement, the Z + jets distributions, obtained from
pseudo-experiments drawn from the data yields, are unfolded using the transfer matrices and efficiency
corrections, calculated using pseudo-experiments in the MC simulation. The covariance matrices between
bins of the measurement are computed using the unfolded results. The total statistical uncertainties are
calculated using the diagonal elements of the covariance matrices.

8.7 Summary of experimental uncertainties

The Z + jets cross-section measurement has 39 systematic uncertainty components. All systematic
uncertainties are treated as being uncorrelated with each other and fully correlated among |yjet | and pjetT
bins.

The systematic uncertainties in the electron energy scale, electron energy resolution, and electron trigger,
reconstruction and identification efficiencies are found to be below 1%.

The JES in situ methods uncertainty is 2%–5% in most bins of the measurement. The η-intercalibration
uncertainty is below 1% in the |yjet | < 1.0 and pjetT < 200 GeV regions, but it increases with |yjet |, reaching
6%–14% in the most forward rapidity bins. The η-intercalibration uncertainty is below 1.5% for jets with
pjetT > 200 GeV. The flavour-based JES uncertainties are below 3%. The pile-up components of the JES
uncertainty are 0.5%–1.5%. Other components of the JES uncertainty are below 0.2%.

The JVF uncertainty is below 1%.
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The JER is the dominant source of uncertainty in the Z + jets cross-section in the 25 GeV < pjetT < 50 GeV
region with a 3%–10% contribution. In the 50 GeV < pjetT < 100 GeV region the JER uncertainty is
1%–3%, and below 1% for jets with higher transverse momenta.

The jet quality uncertainty is set constant at 1%.

The unfolding uncertainty due to the shape of the particle-level spectrum is 2%–5% in the first pjetT bin,
25 GeV < pjetT < 50 GeV. In the 50 GeV < pjetT < 200 GeV region, this uncertainty is about 1.5% for
central jets below |yjet | = 2, while for forward jets this uncertainty increases to 5%. In the pjetT > 200 GeV
region, this uncertainty is below 1.5%. The unfolding uncertainty due to the parton shower description
is 0.7% in the 400 GeV < pjetT < 1050 GeV region, while for jets with smaller transverse momenta this
uncertainty is negligible.

The tt̄ background uncertainty is 0.02%–0.6% in all bins of the measurement. The Z → ττ, diboson and
single-top-quark background uncertainties are below 0.05%.

The multijet andW+ jets background uncertainty is 0.1%–1.2% depending on |yjet | and pjetT . The uncertainty
in the background template normalisation is asymmetric due to different background contributions in the
tails of the mee distribution in the background normalisation evaluation procedure. This uncertainty is
+0.1
−0.4% in the low pjetT bins, increasing to +0.4

−1.2% in the high pjetT bins. The uncertainty in the multijet and
W+ jets background control region selection increases from 0.03% to 0.6% as a function of pjetT . The
contribution of the tt̄ cross-section variation to the multijet and W+ jets background uncertainty is below
0.1%.

The statistical uncertainties are 0.5%–4% in the pjetT < 100 GeV region, 2%–14% in the 100 GeV < pjetT <

300 GeV region, 8%–39% in the 300 GeV < pjetT < 400 GeV region and 11%–18% in the last pjetT bin,
400 GeV < pjetT < 1050 GeV. The smallest statistical uncertainty corresponds to central rapidity regions,
while the largest uncertainty corresponds to forward rapidity regions.

The experimental uncertainties are shown in Figure 2. The largest total systematic uncertainty of 7%–12%
is in the 25 GeV < pjetT < 50 GeV region, where the uncertainty increases from central rapidity jets to
the forward rapidity jets, and up to 15% for the forward rapidity jets in the 100 GeV < pjetT < 200 GeV
region. The total systematic uncertainty decreases with increasing pjetT . In the 400 GeV < pjetT < 1050 GeV
region the total systematic uncertainty is 2%–5%. The luminosity uncertainty of 1.9% is not shown and
not included in the total uncertainty and its components.
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Figure 2: Experimental uncertainties in the measured double-differential Z + jets production cross-section as a
function of |yjet | in pjetT bins. The jet energy scale, jet energy resolution, unfolding, ‘other’ and total systematic
uncertainties are shown with different colours overlaid. The jet energy scale uncertainty is the sum in quadrature of
the jet energy scale uncertainty components. The unfolding uncertainty is the sum in quadrature of two unfolding
uncertainties. The ‘other’ systematic uncertainty is the sum in quadrature of the electron uncertainties, background
uncertainties, JVF and jet quality uncertainties. The total systematic uncertainty is the sum in quadrature of all
systematic uncertainty components except for the luminosity uncertainty of 1.9%. The total statistical uncertainties
are shown with vertical error bars.
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9 Fixed-order predictions and theoretical uncertainties

9.1 Fixed-order calculations

Theoretical Z + jets predictions at NLO are calculated using MCFM [40] interfaced to APPLgrid [63] for
fast convolution with PDFs. The renormalisation and factorisation scales, µR and µF, are set to

µR = µF =

√
m2
ee + p2

T,Z +
∑

pT, partons

2
,

where mee is the electron pair’s invariant mass, pT,Z is the transverse momentum of the Z boson and∑
pT, partons is the sum of the transverse momenta of the partons.

The NLO Z + jets predictions are obtained using the CT14 NLO [64], NNPDF3.1 [65], JR14 NLO [66],
HERAPDF2.0 [67], MMHT2014 [68], ABMP16 [69] and ATLAS-epWZ16 [70] PDF sets. The PDFs are
determined by various groups using the experimental data and are provided with the uncertainties. The
PDF uncertainties in the Z + jets cross-sections are calculated at the 68% confidence level according to the
prescription recommended by the PDF4LHC group [71].

The following variations of factorisation and renormalisation scales are performed to assess the uncer-
tainty due to missing higher-order terms: {µR/2, µF}, {2µR, µF}, {µR, µF/2}, {µR, 2µF}, {µR/2, µF/2},
{2µR, 2µF}. The envelope of the cross-sections calculated with different scales is used as the uncertainty.

The uncertainty due to the strong coupling is estimated using additional PDF sets, calculated with
αS(m2

Z ) = 0.116 and αS(m2
Z ) = 0.120. The resulting uncertainty is scaled to the uncertainty of the world

average αS(m2
Z ) = 0.118 ± 0.0012, as recommended by the PDF4LHC group [71].

The state-of-the-art NNLO Z + jets cross-section is calculated by the authors of Ref. [16] using NNLO-
JET [72]. The NNLO predictions are convolved with the CT14 PDF. The renormalisation and factorisation
scales are set similarly to those in NLO calculations.

9.2 Non-perturbative correction

The fixed-order predictions are obtained at the parton level. Bringing fixed-order predictions to the particle
level for comparisons with the measured Z + jets cross-sections requires a non-perturbative correction (NPC)
that accounts for both the hadronisation and underlying-event effects.

The NPCs are studied using several MC generators to account for differences in the modelling of
hadronisation and the underlying event. The studies are done using the leading-logarithm parton shower
MC generators Pythia v. 8.210 with the A14 [73] underlying-event tune and Herwig++ v. 2.7.1 with the
UE-EE5 tune [74], and the multi-leg matrix element MC generators Sherpa v. 1.4.5 with the CT10 PDF,
Sherpa v. 2.2.0 with NNPDF 2.3 [75] and MadGraph v. 2.2.3 [76], supplemented with parton showers
from Pythia v. 8.210 with the A14 tune.

The NPCs are calculated using the ratios of Z + jets cross-sections obtained at the particle level to those at
the parton level. The correction derived using Sherpa v. 1.4.5 is the nominal one in this analysis. The
envelope of the non-perturbative corrections, calculated with other MC generators, is used as the systematic
uncertainty. The NPCs in different MC generators are shown in Figure 3. The nominal correction for jets
with low transverse momenta, 25 GeV < pjetT < 50 GeV, in the central rapidity regions, |yjet | < 1.5, is small,
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but it increases to 5% in the forward rapidity bins. The nominal correction for jets with higher transverse
momenta is below 2%. These corrections together with uncertainties are provided in HEPData [77].

9.3 QED radiation correction

The fixed-order Z + jets cross-section predictions must be corrected for the QED radiation in order to
be compared with data. The correction is determined as the ratio of two Z + jets cross-sections, one
calculated using dressed electrons after QED final-state radiation (FSR), with all photons clustered within
a cone of ∆R = 0.1 around the electron axis, and the other calculated using Born-level electrons at the
lowest order in the electromagnetic coupling αQED prior to QED FSR radiation. The baseline correction
is calculated using the Sherpa MC samples, while the correction calculated using Alpgen+Pythia is
used to estimate the uncertainty. The uncertainty is calculated as the width of the envelope of corrections
obtained with these two MC generators. The results are shown in Figure 4. The QED correction is largest
in the 25 GeV < pjetT < 50 GeV region. It is about 5% for jets in the central absolute rapidity regions. In
the pjetT > 50 GeV regions the QED correction is 1.5%–2.5%, decreasing as a function of jet transverse
momentum. The QED corrections calculated using Alpgen+Pythia are in good agreement with those
from Sherpa. These corrections together with uncertainties are provided in HEPData.

9.4 Summary of theoretical uncertainties

The total theoretical uncertainties are calculated as the sum in quadrature of the effects of the PDF, scale,
and αS uncertainties, and the uncertainties due to non-perturbative and QED radiation effects.

The uncertainties for the Z + jets cross-section calculated at NLO using the CT14 PDF as a function of |yjet |
in pjetT bins are shown in Figure 5. The total uncertainties are dominated by the scale and NPC uncertainties
in the pjetT < 100 GeV region, where they reach ±15% and −10%, respectively. In the pjetT > 100 GeV
region, the scale uncertainty alone dominates, as the NPC uncertainty decreases for high jet transverse
momenta. The total uncertainty in this region is 10%–20%. Other uncertainties are below 5%.

The NNLO uncertainties are shown in Figure 6. The scale uncertainty at NNLO is significantly
reduced. This uncertainty is below 1% in the 25 GeV < pjetT < 50 GeV bin, increasing to 5% in the
400 GeV < pjetT < 1050 GeV bin. In the pjetT < 200 GeV region, the negative part of the total uncertainty is
dominated by the NPC uncertainty and its absolute value reaches 7%–15% depending on the jet rapidity.
The positive part of the total uncertainty is within 5%, with about equal contributions from PDF, scale and
αS uncertainties. In the pjetT > 200 GeV region, both the negative and positive parts of the total uncertainty
are within 6% in most bins.

The uncertainty in theQED correction is below 0.5% and is negligible in the fixed-order theory predictions.
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Figure 3: The non-perturbative correction for the Z + jets production cross-section as a function of |yjet | in pjetT bins.
The spread of predictions represents the uncertainty.
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Figure 4: The correction for QED radiation effects for the Z + jets production cross-section as a function of |yjet | in
pjetT bins. The spread of predictions represents the uncertainty.
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Figure 5: The uncertainties in NLO pQCD predictions as a function of |yjet | in pjetT bins. Total pQCD uncertainty is
the sum in quadrature of the PDF, scale and αS uncertainties. Total theory uncertainty is the sum in quadrature of the
total pQCD uncertainty and the uncertainties from the non-perturbative and QED radiation corrections. The CT14
PDF is used in the calculations.
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Figure 6: The uncertainties in NNLO pQCD predictions as a function of |yjet | in pjetT bins. Total pQCD uncertainty is
the sum in quadrature of the PDF, scale and αS uncertainties. Total theory uncertainty is the sum in quadrature of the
total pQCD uncertainty and the uncertainties from the non-perturbative and QED radiation corrections. The CT14
PDF is used in the calculations.

24



10 Results

The double-differential Z + jets cross-section as a function of |yjet | and pjetT is calculated as

d2σ

dpjetT d|yjet |
=

1
L

NPi
∆pjetT ∆|yjet |

,

where L is the integrated luminosity, NPi is the number of jets in data at the particle level as given in
Eq. (1), and ∆pjetT and ∆|yjet | are the widths of the jet transverse momentum and absolute jet rapidity ranges
for bin i, respectively. The backgrounds are subtracted before data unfolding is performed to obtain NPi .

The measured Z + jets cross-section covers five orders of magnitude and falls steeply as a function of |yjet |
and pjetT . A summary of measured cross-sections, together with the systematic and statistical uncertainties,
is provided in Appendix A. The measured cross-sections with the full breakdown of all uncertainties are
provided in HEPData.

The comparisons with the theoretical predictions are shown in Figures 7–12. The fixed-order theoretical
predictions are corrected for the non-perturbative and QED radiation effects. The NLO predictions are lower
than the data by approximately 5%–10%. However, this difference is covered by the uncertainties. The
NNLO calculations compensate for the NLO-to-data differences in most bins of the measurement and show
better agreement with the central values of the cross-sections in data. The Sherpa v. 1.4 andAlpgen+Pythia
MC-to-data ratios are approximately constant across all |yjet | bins, but a dependence on pjetT is observed.
The Sherpa v. 1.4 predictions are lower than the data by about 10% in the 25 GeV < pjetT < 200 GeV region,
but in the pjetT > 200 GeV region they agree within a few percent. The Alpgen+Pythia predictions agree
with data in the 25 GeV < pjetT < 100 GeV region, but exceed the data as a function of pjetT , the largest
difference being about 20% in the highest pjetT bin, 400 GeV < pjetT < 1050 GeV.

Additionally, data is compared to the Sherpa v. 2.2 prediction. In this prediction, the matrix elements
are calculated with NLO accuracy for the inclusive Z production process up to two additional partons in
the final state, and with LO accuracy in the final states with up to four partons. Sherpa v. 2.2 MEs are
convolved with the NNPDF 3.0 [65] PDFs. The MEs are merged with Sherpa parton shower using the
ME+PS@NLO [78] prescription. This prediction shows a good agreement with data in all bins of the
measurement.

The ratios between the measured Z + jets production cross-sections and the NLO predictions, calculated
with various PDF sets, are shown in Figures 13–15. The calculations with MMHT2014 and NNPDF3.1
predict 1%–2% larger cross-sections compared to those using the CT14 PDF. The cross-sections calculated
with ATLAS-epWZ16 PDF are larger by 2%–3%. The ABMP16 and HERAPDF2.0 cross-section
predictions in the |yjet | < 2.0 and pjetT < 100 GeV regions are 3%–5% larger than those from the CT14
PDF, while in other bins of the measurement their predictions are up to 5% lower than those obtained
with the CT14 PDF. The JR14 PDF predictions are 2%–5% lower than those from the CT14 PDF in
the 25 GeV < pjetT < 200 GeV region and higher by 2% in the pjetT > 200 GeV region. The differences
between the cross-sections calculated at NLO accuracy with various PDF sets are covered by the theoretical
uncertainties. In the NNLO calculations, the difference between CT14 PDF and NNPDF3.1 predictions is
2%–5%, which is comparable to the size of the theoretical uncertainties, as shown in Figure 16.
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Figure 7: The double-differential Z + jets production cross-section as a function of |yjet | in the 25 GeV < pjetT < 50 GeV
range. The data are compared with the Sherpa v. 1.4, Sherpa v. 2.2 and Alpgen+Pythia parton shower MC generator
predictions and with the fixed-order theory predictions. The fixed-order theory predictions are corrected for the
non-perturbative and QED radiation effects. The fixed-order calculations are performed using the CT14 PDF. The
total statistical uncertainties are shown with error bars. The total uncertainties in the measurement and in the
fixed-order theory predictions are represented with shaded bands. The total uncertainty in the measurement is the
sum in quadrature of the statistical and systematic uncertainties except for the luminosity uncertainty of 1.9%. The
total uncertainty in the fixed-order theory predictions is the sum in quadrature of the effects of the PDF, scale, and αS
uncertainties, and the uncertainties from the non-perturbative and QED radiation corrections. Lower panels show the
ratios of predictions to data.
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Figure 8: The double-differential Z + jets production cross-section as a function of |yjet | in the 50 GeV < pjetT <
100 GeV range. The data are compared with the Sherpa v. 1.4, Sherpa v. 2.2 and Alpgen+Pythia parton shower MC
generator predictions and with the fixed-order theory predictions. The fixed-order theory predictions are corrected
for the non-perturbative and QED radiation effects. The fixed-order calculations are performed using the CT14 PDF.
The total statistical uncertainties are shown with error bars. The total uncertainties in the measurement and in the
fixed-order theory predictions are represented with shaded bands. The total uncertainty in the measurement is the
sum in quadrature of the statistical and systematic uncertainties except for the luminosity uncertainty of 1.9%. The
total uncertainty in the fixed-order theory predictions is the sum in quadrature of the effects of the PDF, scale, and αS
uncertainties, and the uncertainties from the non-perturbative and QED radiation corrections. Lower panels show the
ratios of predictions to data.
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Figure 9: The double-differential Z + jets production cross-section as a function of |yjet | in the 100 GeV < pjetT <
200 GeV range. The data are compared with the Sherpa v. 1.4, Sherpa v. 2.2 and Alpgen+Pythia parton shower MC
generator predictions and with the fixed-order theory predictions. The fixed-order theory predictions are corrected
for the non-perturbative and QED radiation effects. The fixed-order calculations are performed using the CT14 PDF.
The total statistical uncertainties are shown with error bars. The total uncertainties in the measurement and in the
fixed-order theory predictions are represented with shaded bands. The total uncertainty in the measurement is the
sum in quadrature of the statistical and systematic uncertainties except for the luminosity uncertainty of 1.9%. The
total uncertainty in the fixed-order theory predictions is the sum in quadrature of the effects of the PDF, scale, and αS
uncertainties, and the uncertainties from the non-perturbative and QED radiation corrections. Lower panels show the
ratios of predictions to data.
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Figure 10: The double-differential Z + jets production cross-section as a function of |yjet | in the 200 GeV < pjetT <
300 GeV range. The data are compared with the Sherpa v. 1.4, Sherpa v. 2.2 and Alpgen+Pythia parton shower MC
generator predictions and with the fixed-order theory predictions. The fixed-order theory predictions are corrected
for the non-perturbative and QED radiation effects. The fixed-order calculations are performed using the CT14 PDF.
The total statistical uncertainties are shown with error bars. The total uncertainties in the measurement and in the
fixed-order theory predictions are represented with shaded bands. The total uncertainty in the measurement is the
sum in quadrature of the statistical and systematic uncertainties except for the luminosity uncertainty of 1.9%. The
total uncertainty in the fixed-order theory predictions is the sum in quadrature of the effects of the PDF, scale, and αS
uncertainties, and the uncertainties from the non-perturbative and QED radiation corrections. Lower panels show the
ratios of predictions to data.
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Figure 11: The double-differential Z + jets production cross-section as a function of |yjet | in the 300 GeV < pjetT <
400 GeV range. The data are compared with the Sherpa v. 1.4, Sherpa v. 2.2 and Alpgen+Pythia parton shower MC
generator predictions and with the fixed-order theory predictions. The fixed-order theory predictions are corrected
for the non-perturbative and QED radiation effects. The fixed-order calculations are performed using the CT14 PDF.
The total statistical uncertainties are shown with error bars. The total uncertainties in the measurement and in the
fixed-order theory predictions are represented with shaded bands. The total uncertainty in the measurement is the
sum in quadrature of the statistical and systematic uncertainties except for the luminosity uncertainty of 1.9%. The
total uncertainty in the fixed-order theory predictions is the sum in quadrature of the effects of the PDF, scale, and αS
uncertainties, and the uncertainties from the non-perturbative and QED radiation corrections. Lower panels show the
ratios of predictions to data.
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Figure 12: The double-differential Z + jets production cross-section as a function of |yjet | in the 400 GeV < pjetT <
1050 GeV range. The data are compared with the Sherpa v. 1.4, Sherpa v. 2.2 and Alpgen+Pythia parton shower
MC generator predictions and with the fixed-order theory predictions. The fixed-order theory predictions are
corrected for the non-perturbative and QED radiation effects. The fixed-order calculations are performed using the
CT14 PDF. The total statistical uncertainties are shown with error bars. The total uncertainties in the measurement
and in the fixed-order theory predictions are represented with shaded bands. The total uncertainty in the measurement
is the sum in quadrature of the statistical and systematic uncertainties except for the luminosity uncertainty of 1.9%.
The total uncertainty in the fixed-order theory predictions is the sum in quadrature of the effects of the PDF, scale,
and αS uncertainties, and the uncertainties from the non-perturbative and QED radiation corrections. Lower panels
show the ratios of predictions to data.
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Figure 13: Ratio of the measured Z + jets production cross-section and the NLO QCD predictions, obtained using
MCFM, corrected for the non-perturbative and QED radiation effects as a function of |yjet | and pjetT bins. Theoretical
predictions are calculated using various PDF sets. The coloured error bars represent the sum in quadrature of the
effects of the PDF, scale, and αS uncertainties, and the uncertainties from the non-perturbative and QED radiation
corrections. The grey band shows the sum in quadrature of the statistical and systematic uncertainties in the
measurement except for the luminosity uncertainty of 1.9%.
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Figure 14: Ratio of the measured Z + jets production cross-section and the NLO QCD predictions, obtained using
MCFM, corrected for the non-perturbative and QED radiation effects as a function of |yjet | and pjetT bins. Theoretical
predictions are calculated using various PDF sets. The coloured error bars represent the sum in quadrature of the
effects of the PDF, scale, and αS uncertainties, and the uncertainties from the non-perturbative and QED radiation
corrections. The grey band shows the sum in quadrature of the statistical and systematic uncertainties in the
measurement except for the luminosity uncertainty of 1.9%.
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Figure 15: Ratio of the measured Z + jets production cross-section and the NLO QCD predictions, obtained using
MCFM, corrected for the non-perturbative and QED radiation effects as a function of |yjet | and pjetT bins. Theoretical
predictions are calculated using various PDF sets. The coloured error bars represent the sum in quadrature of the
effects of the PDF, scale, and αS uncertainties, and the uncertainties from the non-perturbative and QED radiation
corrections. The grey band shows the sum in quadrature of the statistical and systematic uncertainties in the
measurement except for the luminosity uncertainty of 1.9%.
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Figure 16: Ratio of the measured Z + jets production cross-section and the NNLO QCD predictions, obtained
using NNLOJET, corrected for the non-perturbative and QED radiation effects as a function of |yjet | and pjetT bins.
Theoretical predictions are calculated using various PDF sets. The coloured error bars represent the sum in quadrature
of the effects of the PDF, scale, and αS uncertainties, and the uncertainties from the non-perturbative and QED
radiation corrections. The grey band shows the sum in quadrature of the statistical and systematic uncertainties in the
measurement except for the luminosity uncertainty of 1.9%.
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11 Quantitative data and theory comparison

The fixed-order pQCD predictions at NNLO accuracy, corrected for electroweak and non-perturbative
effects, are quantitatively compared with the measured cross-section using a χ2 function that accounts for
both the experimental and theoretical uncertainties

χ2
(
βdata, βtheory

)
=

Nbins∑
i=1

(
σdata
i +

∑
µ Γ

data
i;µ βdataµ − σtheory

i −∑
ν Γ

theory
i;ν β

theory
ν

)2

∆2
i

+
∑
µ

(
βdataµ

)2
+
∑
ν

(
β
theory
ν

)2
,

(2)

where experimental (theoretical) uncertainties are included in the calculation using the nuisance parameter
vectors βdata

(
βtheory

)
and their influence on the data and the theory predictions is described by the

respective Γl;ρ matrices. The Latin indices run over bins of measurements and the Greek indices render
sources of uncertainties. The measured cross-sections and their theory predictions in each bin are
represented by σdata

i and σtheory
i , respectively. Uncorrelated uncertainties in data are denoted by ∆i. The

theoretical uncertainties include those arising from renormalisation and factorisation scales variations,
PDF uncertainties, uncertainties in calculations of non-perturbative and electroweak effects as well as
from the αS(mZ ) uncertainty. All experimental and theoretical systematic uncertainties are assumed to
be independent of each other, and fully correlated across the bins of the measurement. The negligible
correlations of statistical uncertainties are not included in the χ2 tests presented here.

The minimisation of Eq. (2), for the case of symmetric systematic uncertainties, results in a system of
linear equations for the shifts of systematic uncertainties, βρ. The asymmetries in systematic uncertainties
are accounted for using an iterative procedure. Here, the influences Γl;ρ are recalculated as

Γl;ρ → Γl;ρ +Ωl;ρβρ,

where Γl;ρ = 1
2

(
Γ+
l;ρ − Γ

−
l;ρ

)
and Ωl;ρ =

1
2

(
Γ+
l;ρ + Γ

−
l;ρ

)
, after each iteration using the shifts βρ from the

previous iteration. The Γ+
l;ρ and Γ

−
l;ρ are positive and negative components of systematic uncertainties,

respectively. The χ2 values at the minimum provide a measure of the probability of compatibility between
the measurements and the predictions.

Table 1 shows a summary of the calculated χ2
uncorr, the first term in Eq. (2), together with χ2

corr, the
sum of squared shifts of nuisance parameters, for each pjetT bin separately. A good agreement between
measurements and theory is seen for the fits in individual pjetT bins in the pjetT > 50 GeV range, with not so
good agreement in the 25 < pjetT < 50 GeV range. The level of agreement between data and predictions is
very similar for different PDF sets.

In addition to fits of the predictions to measured cross-sections in the individual pjetT bins, all measured
data points are fitted simultaneously. Several ranges of pjetT are considered. The results of the global fits
are presented in Table 2. Very good agreement between measurement and calculation is observed when
using the pjetT > 50 GeV bins, while not so good agreement is observed when the 25 < pjetT < 50 GeV bin is
included in the global fit.
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Table 1: Values of χ2
uncorr and χ2

corr evaluated for theory predictions corrected for non-perturbative and electroweak
effects and measured Z + jets cross-sections. The total χ2 is equal to the sum of χ2

uncorr and χ2
corr. The fits are

performed individually in each pjetT bin. The predictions are calculated using several NNLO QCD PDF sets and one
NLO QCD PDF set, CT14nlo.

CT14nlo CT14 NNPDF3.1 MMHT2014 ABMP16
pjetT range [GeV] nbins χ2

uncorr χ2
corr χ2

uncorr χ2
corr χ2

uncorr χ2
corr χ2

uncorr χ2
corr χ2

uncorr χ2
corr

25 < pjetT < 50 12 31.5 14.7 32.2 15.6 33.6 15.7 32.7 15.9 31.8 13.8
50 < pjetT < 100 17 23.6 2.6 24.2 2.3 27.1 2.3 26.3 2.1 24.9 2.5
100 < pjetT < 200 17 24.9 3.6 24.8 2.5 26.1 1.8 27.2 2.8 22.6 1.5
200 < pjetT < 300 7 3.1 0.9 2.9 0.7 3.6 0.1 4.5 0.5 2.7 0.2
300 < pjetT < 400 6 2.7 0.1 2.7 0.1 2.9 0.1 3.2 0.0 2.5 0.3
400 < pjetT < 1050 4 1.9 0.4 1.9 0.4 1.9 0.5 2.0 0.3 1.7 0.8

The results of the χ2 tests strongly depend on what is assumed about the correlation of systematic
uncertainties. In general, the correlations of uncertainties related to detector measurements are carefully
studied and well known [57, 79]. In contrast, the assumption of 100% correlations of uncertainties resulting
from simple comparisons of two (or more) different MC simulations (two-point systematic uncertainties)
are less justified. In order to investigate the impact of these assumptions on the results of χ2 tests performed
in this section, the uncertainties that are derived from comparisons of two different MC models, namely
uncertainties in the jet flavour composition and jet flavour response, were split into two subcomponents
[80, 81]. The first subcomponent is derived by multiplying the original nuisance parameter with a linear
function of pjetT and jet absolute rapidity and the second subcomponent is constructed such that the sum in
quadrature of both subcomponents is equal to the original nuisance parameter. These decorrelations did
not result in a large improvement in the χ2 values.
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Table 2: Values of χ2 evaluated from the comparison of theory predictions corrected for non-perturbative and
electroweak effects with the measured Z + jets cross-sections. The fits are performed globally in all bins of the
measurement within several pjetT ranges. The predictions are calculated using several NNLO QCD PDF sets and one
NLO QCD PDF set, CT14nlo.

pjetT range [GeV] CT14nlo CT14 NNPDF3.1 MMHT2014 ABMP16
pjetT > 25 GeV

χ2
uncorr

25 < pjetT < 50 38.9 40.5 42.3 41.3 38.7
50 < pjetT < 100 32.1 33.0 37.5 39.2 31.6
100 < pjetT < 200 26.4 27.8 31.0 31.7 27.8
200 < pjetT < 300 6.3 6.3 5.1 5.6 4.1
300 < pjetT < 400 2.9 3.0 2.9 3.1 2.5
400 < pjetT < 1050 2.2 2.4 2.2 2.3 1.7

χ2
corr 21.2 19.8 19.3 18.7 17.8
χ2/nbins 129.9/63 132.6/63 140.0/63 141.9/63 124.3/63

pjetT > 50 GeV

χ2
uncorr

50 < pjetT < 100 24.4 24.8 26.9 27.1 24.8
100 < pjetT < 200 24.4 24.6 26.6 27.7 22.7
200 < pjetT < 300 4.4 4.2 4.4 4.7 3.4
300 < pjetT < 400 2.7 2.8 3.0 3.1 2.5
400 < pjetT < 1050 3.6 4.0 3.8 3.9 2.9

χ2
corr 6.5 4.7 4.3 5.1 4.1
χ2/nbins 66.1/51 65.2/51 69.0/51 71.6/51 60.4/51

pjetT > 100 GeV

χ2
uncorr

100 < pjetT < 200 24.8 25.0 25.9 26.6 22.4
200 < pjetT < 300 3.2 3.3 4.1 4.4 3.3
300 < pjetT < 400 2.7 2.8 3.0 3.1 2.6
400 < pjetT < 1050 3.4 3.8 3.6 3.6 3.3

χ2
corr 4.9 3.7 2.7 4.1 2.3
χ2/nbins 39.0/34 38.5/34 39.3/34 41.8/34 33.8/34

12 Conclusions

The double-differential Z + jets cross-section, with the Z boson decaying into an electron–positron pair,
is measured using proton–proton collision data with an integrated luminosity 19.9 fb−1 collected by the
ATLAS experiment at the LHC in 2012 at

√
s = 8 TeV centre-of-mass energy. The measurement is

performed as a function of the absolute jet rapidity and the jet transverse momentum.

The measured cross-section is corrected for detector effects and the results are provided at the particle level.
The measurements are compared with theory predictions, calculated using the multi-leg matrix element
MC generators Sherpa and Alpgen+Pythia, supplemented with parton shower simulations. Sherpa v. 1.4
and Alpgen+Pythia describe well the shape of the Z + jets distribution as a function of |yjet |, but not so
well as a function of pjetT . Sherpa v. 2.2 is in good agreement with data in all bins of the measurement.

The parton-level fixed-order Z + jets predictions, corrected for hadronisation, underlying-event and QED
radiation effects, agree with the data within the uncertainties.
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The uncertainties in the measured cross-sections are about half of the theoretical uncertainties in the NLO
calculations in most bins of the measurement and are approximately similar to the uncertainties in the
NNLO calculations.

The measured double-differential Z + jets cross-section provides a precision input to constrain the parton
distribution functions.
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Appendix

A Tables of measured cross-sections

40



Table 3: The measured double-differential Z + jets production cross-sections as a function of |yjet | in the 25 GeV < pjetT < 50 GeV range. δstatdata and δ
stat
MC are the

statistical uncertainties in data and MC simulation, respectively. δsystot is the total systematic uncertainty and includes the following components: uncertainties
due to electron reconstruction (δelrec), identification (δelID) and trigger (δ

el
trig) efficiencies; electron energy scale (δelscale) and energy resolution (δ

el
res) uncertainties;

sum in quadrature of the uncertainties from JES in situ methods (δJESin situ); sum in quadrature of the uncertainties from JES η-intercalibration methods (δJESη-int);
an uncertainty of the measured single-hadron response (δJEShadron); MC non-closure uncertainty (δJESclosure); sum in quadrature of the uncertainties due to pile-up
corrections of the jet kinematics (δJESpile-up); sum in quadrature of the flavour-based uncertainties (δJESflavour); punch-through uncertainty (δ

JES
pthrough); JER uncertainty

(δJER); JVF uncertainty (δJVF); sum in quadrature of the unfolding uncertainties (δunf); sum in quadrature of the uncertainties due to MC generated backgrounds
normalisation (δbgMC); sum in quadrature of the uncertainty due to combined multijet and W+ jets backgrounds (δbgmult); uncertainty due to jet quality selection
(δqual). All uncertainties are given in %. The luminosity uncertainty of 1.9% is not shown and not included in the total uncertainty and its components.

|yjet | d2σ
d|yjet |dp

jet
T

δstatdata δstatMC δ
sys
tot δelrec δelID δeltrig δelscale δelres δJESin situ δJESη-int δJEShadron δJESclosure δJESpile-up δJESflavour δJESpthrough δJER δJVF δunf δ

bg
MC δ

bg
mult δqual

[fb/GeV] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

0.0–0.2 1643.603 0.42 0.51 +7.28
−7.37

+0.08
−0.08

+0.23
−0.27

+0.31
−0.44

−0.16
+0.14

+0.01
−0.01

+3.04
−3.04

+0.30
−0.49

+0.00
−0.01

+0.01
−0.01

+1.63
−1.68

+2.95
−3.04

+0.00
−0.02

−3.83
+3.83

+0.47
−0.72

+2.84
−2.84

+0.06
−0.05

+0.14
−0.38

+1.00
−1.00

0.2–0.4 1595.690 0.34 0.60 +7.19
−7.17

+0.08
−0.08

+0.23
−0.27

+0.31
−0.44

−0.16
+0.14

+0.01
−0.01

+3.16
−3.02

+0.30
−0.49

+0.00
−0.01

+0.01
−0.01

+1.65
−1.60

+3.04
−3.05

+0.00
−0.02

−3.89
+3.89

+0.47
−0.72

+2.55
−2.55

+0.06
−0.05

+0.14
−0.39

+1.00
−1.00

0.4–0.6 1587.440 0.37 0.60 +7.57
−7.69

+0.08
−0.08

+0.23
−0.27

+0.31
−0.44

−0.16
+0.14

+0.01
−0.01

+3.17
−3.14

+0.30
−0.49

+0.00
−0.01

+0.01
−0.01

+1.59
−1.72

+3.08
−3.23

+0.00
−0.02

−4.17
+4.17

+0.46
−0.67

+2.86
−2.86

+0.06
−0.05

+0.15
−0.39

+1.00
−1.00

0.6–0.8 1569.884 0.38 0.60 +7.72
−7.92

+0.08
−0.08

+0.23
−0.27

+0.31
−0.44

−0.16
+0.14

+0.01
−0.01

+3.19
−3.25

+0.30
−0.49

+0.00
−0.01

+0.01
−0.01

+1.62
−1.82

+3.26
−3.46

+0.00
−0.02

−3.74
+3.74

+0.46
−0.67

+3.22
−3.22

+0.05
−0.05

+0.15
−0.40

+1.00
−1.00

0.8–1.0 1520.883 0.36 0.59 +7.80
−7.85

+0.08
−0.08

+0.23
−0.27

+0.31
−0.33

−0.16
+0.14

+0.01
−0.01

+3.33
−3.25

+0.30
−0.49

+0.00
−0.01

+0.01
−0.01

+1.80
−1.88

+3.54
−3.61

+0.00
−0.02

−2.88
+2.88

+0.46
−0.56

+3.48
−3.48

+0.05
−0.05

+0.15
−0.39

+1.00
−1.00

1.0–1.2 1393.139 0.38 0.64 +9.12
−8.96

+0.08
−0.08

+0.23
−0.27

+0.31
−0.33

−0.16
+0.14

+0.01
−0.01

+3.60
−3.35

+0.76
−0.49

+0.00
−0.01

+0.01
−0.01

+1.97
−1.81

+3.93
−3.87

+0.00
−0.02

−5.18
+5.18

+0.46
−0.56

+3.32
−3.32

+0.05
−0.05

+0.16
−0.41

+1.00
−1.00

1.2–1.4 1377.328 0.47 0.57 +12.60
−12.33

+0.08
−0.08

+0.23
−0.27

+0.31
−0.33

−0.16
+0.14

+0.01
−0.01

+3.69
−3.29

+0.76
−0.69

+0.00
−0.01

+0.01
−0.01

+2.04
−1.78

+4.49
−4.14

+0.00
−0.02

−8.88
+8.88

+0.46
−0.56

+4.47
−4.47

+0.05
−0.05

+0.17
−0.41

+1.00
−1.00

1.4–1.6 1228.213 0.42 0.60 +12.88
−12.59

+0.08
−0.08

+0.23
−0.27

+0.31
−0.33

−0.16
+0.14

+0.01
−0.01

+3.65
−3.22

+1.44
−1.14

+0.00
−0.01

+0.01
−0.01

+2.00
−1.74

+4.37
−4.02

+0.00
−0.02

−9.07
+9.07

+0.71
−0.69

+4.67
−4.67

+0.05
−0.05

+0.18
−0.42

+1.00
−1.00

1.6–1.8 987.654 0.48 0.64 +12.31
−12.17

+0.08
−0.08

+0.23
−0.27

+0.31
−0.33

−0.16
+0.14

+0.01
−0.01

+3.37
−3.10

+1.42
−1.25

+0.00
−0.01

+0.01
−0.01

+1.83
−1.62

+3.60
−3.51

+0.00
−0.02

−10.46
+10.46

+0.71
−0.69

+2.32
−2.32

+0.06
−0.05

+0.17
−0.43

+1.00
−1.00

1.8–2.0 944.560 0.45 0.65 +10.50
−10.28

+0.08
−0.08

+0.23
−0.27

+0.40
−0.33

−0.16
+0.14

+0.01
−0.01

+3.38
−3.09

+1.58
−1.25

+0.00
−0.01

+0.01
−0.01

+1.90
−1.66

+3.38
−3.23

+0.00
−0.02

−8.31
+8.31

+0.55
−0.55

+2.32
−2.32

+0.05
−0.05

+0.16
−0.43

+1.00
−1.00

2.0–2.2 871.035 0.49 0.85 +11.46
−11.35

+0.08
−0.08

+0.23
−0.27

+0.40
−0.33

−0.16
+0.14

+0.01
−0.01

+3.65
−3.41

+1.96
−1.74

+0.00
−0.01

+0.01
−0.01

+2.05
−1.94

+3.56
−3.60

+0.00
−0.02

−6.74
+6.74

+0.55
−0.55

+5.01
−5.01

+0.05
−0.05

+0.17
−0.43

+1.00
−1.00

2.2–2.4 749.498 0.54 0.80 +11.98
−11.78

+0.08
−0.08

+0.23
−0.27

+0.40
−0.33

−0.16
+0.14

+0.01
−0.01

+4.23
−3.95

+2.57
−2.33

+0.00
−0.01

+0.01
−0.01

+2.70
−2.50

+3.91
−3.85

+0.00
−0.02

−7.48
+7.48

+0.55
−0.55

+4.42
−4.42

+0.05
−0.05

+0.18
−0.42

+1.00
−1.00
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Table 4: The measured double-differential Z + jets production cross-sections as a function of |yjet | in the 50 GeV < pjetT < 100 GeV range. δstatdata and δ
stat
MC are the

statistical uncertainties in data and MC simulation, respectively. δsystot is the total systematic uncertainty and includes the following components: uncertainties
due to electron reconstruction (δelrec), identification (δelID) and trigger (δ

el
trig) efficiencies; electron energy scale (δelscale) and energy resolution (δ

el
res) uncertainties;

sum in quadrature of the uncertainties from JES in situ methods (δJESin situ); sum in quadrature of the uncertainties from JES η-intercalibration methods (δJESη-int);
an uncertainty of the measured single-hadron response (δJEShadron); MC non-closure uncertainty (δJESclosure); sum in quadrature of the uncertainties due to pile-up
corrections of the jet kinematics (δJESpile-up); sum in quadrature of the flavour-based uncertainties (δJESflavour); punch-through uncertainty (δ

JES
pthrough); JER uncertainty

(δJER); JVF uncertainty (δJVF); sum in quadrature of the unfolding uncertainties (δunf); sum in quadrature of the uncertainties due to MC generated backgrounds
normalisation (δbgMC); sum in quadrature of the uncertainty due to combined multijet and W+ jets backgrounds (δbgmult); uncertainty due to jet quality selection
(δqual). All uncertainties are given in %. The luminosity uncertainty of 1.9% is not shown and not included in the total uncertainty and its components.

|yjet | d2σ
d|yjet |dp

jet
T

δstatdata δstatMC δ
sys
tot δelrec δelID δeltrig δelscale δelres δJESin situ δJESη-int δJEShadron δJESclosure δJESpile-up δJESflavour δJESpthrough δJER δJVF δunf δ

bg
MC δ

bg
mult δqual

[fb/GeV] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

0.0–0.2 349.964 0.56 0.80 +3.97
−3.92

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+2.67
−2.61

+0.31
−0.26

+0.00
−0.03

+0.00
−0.02

+1.02
−0.92

+0.81
−0.77

+0.00
−0.02

−1.47
+1.47

−0.46
+0.49

+1.28
−1.28

+0.17
−0.15

+0.15
−0.42

+1.00
−1.00

0.2–0.4 352.217 0.71 0.80 +3.90
−3.98

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+2.56
−2.70

+0.31
−0.26

+0.00
−0.03

+0.00
−0.02

+1.02
−0.92

+0.81
−0.77

+0.00
−0.02

−1.47
+1.47

−0.46
+0.49

+1.28
−1.28

+0.16
−0.15

+0.15
−0.42

+1.00
−1.00

0.4–0.6 338.924 0.74 0.81 +4.04
−4.24

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+2.52
−2.86

+0.31
−0.26

+0.00
−0.03

+0.00
−0.02

+1.07
−0.92

+0.81
−0.77

+0.00
−0.02

−1.60
+1.60

−0.46
+0.49

+1.43
−1.43

+0.16
−0.15

+0.15
−0.43

+1.00
−1.00

0.6–0.8 328.606 0.72 0.93 +4.23
−4.38

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+2.75
−2.86

+0.31
−0.26

+0.00
−0.03

+0.00
−0.02

+1.07
−1.08

+1.28
−1.44

+0.00
−0.02

−1.47
+1.47

−0.46
+0.49

+1.41
−1.41

+0.16
−0.14

+0.16
−0.43

+1.00
−1.00

0.8–1.0 303.475 0.69 0.87 +4.19
−4.03

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+2.98
−2.76

+0.31
−0.26

+0.00
−0.03

+0.00
−0.02

+1.07
−1.08

+1.50
−1.44

+0.00
−0.02

−1.21
+1.21

−0.46
+0.49

+1.07
−1.07

+0.15
−0.14

+0.17
−0.45

+1.00
−1.00

1.0–1.2 274.407 0.71 1.05 +4.00
−4.22

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+2.74
−2.83

+0.31
−0.96

+0.00
−0.03

+0.00
−0.02

+1.01
−1.19

+1.49
−1.44

+0.00
−0.02

−1.21
+1.21

−0.46
+0.49

+1.07
−1.07

+0.15
−0.14

+0.19
−0.46

+1.00
−1.00

1.2–1.4 261.553 0.81 0.84 +4.28
−4.44

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+2.86
−2.86

+1.25
−0.96

+0.00
−0.03

+0.00
−0.02

+1.01
−1.19

+1.54
−1.94

+0.00
−0.02

−1.21
+1.21

−0.46
+0.49

+1.07
−1.07

+0.14
−0.13

+0.21
−0.49

+1.00
−1.00

1.4–1.6 233.170 0.75 1.02 +4.81
−4.71

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+2.82
−2.74

+1.25
−0.96

+0.00
−0.03

+0.00
−0.02

+1.01
−1.05

+1.78
−1.69

+0.00
−0.02

−1.42
+1.42

−0.46
+0.40

+1.73
−1.73

+0.13
−0.12

+0.37
−0.60

+1.00
−1.00

1.6–1.8 192.405 0.92 1.16 +5.40
−5.11

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+3.09
−2.92

+2.10
−1.97

+0.00
−0.03

+0.00
−0.02

+1.34
−1.05

+2.01
−1.69

+0.00
−0.02

−1.42
+1.42

−0.46
+0.40

+1.73
−1.73

+0.13
−0.12

+0.19
−0.51

+1.00
−1.00

1.8–2.0 174.081 0.90 1.18 +6.01
−5.43

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+3.38
−3.05

+2.61
−2.27

+0.00
−0.03

+0.00
−0.02

+1.34
−1.05

+2.25
−1.66

+0.00
−0.02

−1.89
+1.89

−0.34
+0.40

+1.73
−1.73

+0.12
−0.11

+0.20
−0.55

+1.00
−1.00

2.0–2.2 145.578 0.94 1.11 +6.30
−5.73

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+3.48
−3.02

+2.80
−2.36

+0.00
−0.03

+0.00
−0.02

+1.40
−0.92

+1.91
−1.66

+0.00
−0.02

−1.89
+1.89

−0.34
+0.40

+2.16
−2.16

+0.11
−0.10

+0.20
−0.56

+1.00
−1.00

2.2–2.4 117.333 1.08 1.37 +6.63
−5.91

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+3.56
−2.83

+2.78
−2.23

+0.00
−0.03

+0.00
−0.02

+1.40
−0.92

+1.91
−1.66

+0.00
−0.02

−0.76
+0.76

−0.34
+0.40

+2.83
−2.83

+0.11
−0.10

+0.21
−0.58

+1.00
−1.00

2.4–2.6 98.813 1.31 1.42 +6.32
−5.97

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+3.32
−2.87

+2.56
−2.20

+0.00
−0.03

+0.00
−0.02

+0.87
−0.92

+1.91
−1.82

+0.00
−0.02

−0.76
+0.76

−0.34
+0.40

+2.83
−2.83

+0.11
−0.10

+0.23
−0.64

+1.00
−1.00

2.6–2.8 75.900 1.47 1.67 +7.88
−7.43

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+3.21
−2.85

+2.88
−2.20

+0.00
−0.03

+0.00
−0.02

+0.87
−0.92

+2.25
−1.82

+0.00
−0.02

−0.76
+0.76

−0.34
+0.40

+4.23
−4.23

+0.10
−0.10

+0.24
−0.67

+1.00
−1.00

2.8–3.0 58.038 1.59 2.21 +7.67
−7.89

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+3.08
−2.85

+2.88
−3.79

+0.00
−0.03

+0.00
−0.02

+0.87
−0.92

+2.25
−1.82

+0.00
−0.02

−0.76
+0.76

−0.34
+0.40

+4.08
−4.08

+0.10
−0.09

+0.25
−0.69

+1.00
−1.00

3.0–3.2 44.324 1.58 2.56 +9.22
−8.78

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+3.08
−2.72

+4.36
−3.79

+0.00
−0.03

+0.00
−0.02

+0.87
−0.92

+2.25
−1.82

+0.00
−0.02

−0.76
+0.76

−0.34
+0.40

+4.94
−4.94

+0.09
−0.09

+0.26
−0.70

+1.00
−1.00

3.2–3.4 32.909 2.09 2.91 +9.89
−10.65

+0.03
−0.08

+0.15
−0.21

+0.24
−0.29

−0.25
+0.19

+0.00
−0.05

+3.08
−2.72

+4.91
−6.55

+0.00
−0.03

+0.00
−0.02

+0.87
−0.92

+2.25
−1.82

+0.00
−0.02

−0.76
+0.76

−0.34
+0.40

+5.32
−5.32

+0.09
−0.09

+0.25
−0.70

+1.00
−1.00

42



Table 5: The measured double-differential Z + jets production cross-sections as a function of |yjet | in the 100 GeV < pjetT < 200 GeV range. δstatdata and δ
stat
MC are the

statistical uncertainties in data and MC simulation, respectively. δsystot is the total systematic uncertainty and includes the following components: uncertainties
due to electron reconstruction (δelrec), identification (δelID) and trigger (δ

el
trig) efficiencies; electron energy scale (δelscale) and energy resolution (δ

el
res) uncertainties;

sum in quadrature of the uncertainties from JES in situ methods (δJESin situ); sum in quadrature of the uncertainties from JES η-intercalibration methods (δJESη-int);
an uncertainty of the measured single-hadron response (δJEShadron); MC non-closure uncertainty (δJESclosure); sum in quadrature of the uncertainties due to pile-up
corrections of the jet kinematics (δJESpile-up); sum in quadrature of the flavour-based uncertainties (δJESflavour); punch-through uncertainty (δ

JES
pthrough); JER uncertainty

(δJER); JVF uncertainty (δJVF); sum in quadrature of the unfolding uncertainties (δunf); sum in quadrature of the uncertainties due to MC generated backgrounds
normalisation (δbgMC); sum in quadrature of the uncertainty due to combined multijet and W+ jets backgrounds (δbgmult); uncertainty due to jet quality selection
(δqual). All uncertainties are given in %. The luminosity uncertainty of 1.9% is not shown and not included in the total uncertainty and its components.

|yjet | d2σ
d|yjet |dp

jet
T

δstatdata δstatMC δ
sys
tot δelrec δelID δeltrig δelscale δelres δJESin situ δJESη-int δJEShadron δJESclosure δJESpile-up δJESflavour δJESpthrough δJER δJVF δunf δ

bg
MC δ

bg
mult δqual

[fb/GeV] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

0.0–0.2 45.769 1.28 1.29 +2.59
−3.54

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+1.44
−2.11

+0.50
−0.67

+0.00
−0.06

+0.00
−0.03

+0.83
−1.13

+1.51
−2.20

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+0.14
−0.14

+0.19
−0.18

+0.18
−0.43

+1.00
−1.00

0.2–0.4 46.342 1.22 1.39 +2.59
−3.54

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+1.44
−2.11

+0.50
−0.67

+0.00
−0.06

+0.00
−0.03

+0.83
−1.13

+1.51
−2.20

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+0.14
−0.14

+0.18
−0.17

+0.18
−0.44

+1.00
−1.00

0.4–0.6 43.964 1.25 1.47 +2.59
−3.21

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+1.44
−1.93

+0.50
−0.67

+0.00
−0.06

+0.00
−0.03

+0.83
−1.13

+1.51
−1.84

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+0.14
−0.14

+0.19
−0.17

+0.17
−0.43

+1.00
−1.00

0.6–0.8 40.076 1.40 1.67 +2.59
−3.15

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+1.44
−1.93

+0.50
−0.67

+0.00
−0.06

+0.00
−0.03

+0.83
−1.13

+1.51
−1.73

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+0.14
−0.14

+0.18
−0.17

+0.20
−0.47

+1.00
−1.00

0.8–1.0 37.981 1.40 1.38 +2.50
−3.15

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+1.44
−1.93

+0.50
−0.67

+0.00
−0.06

+0.00
−0.03

+0.83
−1.13

+1.37
−1.73

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+0.14
−0.14

+0.17
−0.16

+0.17
−0.46

+1.00
−1.00

1.0–1.2 32.122 1.63 1.68 +2.96
−3.28

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+1.44
−1.82

+0.50
−0.67

+0.00
−0.06

+0.00
−0.03

+0.83
−0.92

+1.37
−1.45

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+1.13
−1.13

+0.18
−0.16

+0.18
−0.48

+1.00
−1.00

1.2–1.4 31.772 1.33 1.53 +3.20
−3.29

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+1.87
−1.82

+0.50
−0.67

+0.00
−0.06

+0.00
−0.03

+0.83
−0.92

+1.37
−1.45

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+1.13
−1.13

+0.17
−0.15

+0.19
−0.53

+1.00
−1.00

1.4–1.6 27.737 1.34 1.85 +3.39
−3.34

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+1.87
−1.82

+0.50
−0.67

+0.00
−0.06

+0.00
−0.03

+0.83
−0.92

+1.70
−1.45

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+1.13
−1.13

+0.17
−0.16

+0.52
−0.79

+1.00
−1.00

1.6–1.8 21.873 1.85 2.01 +3.36
−3.30

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+1.87
−1.82

+0.50
−0.67

+0.00
−0.06

+0.00
−0.03

+0.83
−0.92

+1.70
−1.45

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+1.13
−1.13

+0.16
−0.15

+0.24
−0.60

+1.00
−1.00

1.8–2.0 17.806 1.88 2.00 +3.52
−3.48

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+1.98
−1.95

+0.50
−0.67

+0.00
−0.06

+0.00
−0.03

+1.17
−0.92

+1.70
−1.66

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+1.13
−1.13

+0.15
−0.14

+0.26
−0.68

+1.00
−1.00

2.0–2.2 13.820 2.26 2.26 +3.52
−3.48

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+1.98
−1.95

+0.50
−0.67

+0.00
−0.06

+0.00
−0.03

+1.17
−0.92

+1.70
−1.66

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+1.13
−1.13

+0.15
−0.14

+0.26
−0.70

+1.00
−1.00

2.2–2.4 10.613 2.55 2.81 +4.14
−4.52

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+2.23
−1.95

+0.50
−2.96

+0.00
−0.06

+0.00
−0.03

+1.17
−0.92

+2.57
−1.66

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+1.13
−1.13

+0.15
−0.14

+0.25
−0.70

+1.00
−1.00

2.4–2.6 8.152 3.12 2.94 +5.83
−4.55

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+2.23
−1.95

+4.14
−2.96

+0.00
−0.06

+0.00
−0.03

+1.17
−0.92

+2.57
−1.66

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+1.13
−1.13

+0.15
−0.14

+0.32
−0.87

+1.00
−1.00

2.6–2.8 5.663 3.22 3.91 +5.84
−4.59

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+2.23
−1.95

+4.14
−2.96

+0.00
−0.06

+0.00
−0.03

+1.17
−0.92

+2.57
−1.66

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+1.13
−1.13

+0.17
−0.16

+0.44
−1.04

+1.00
−1.00

2.8–3.0 3.248 3.91 4.78 +9.49
−9.52

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+2.23
−1.95

+8.54
−7.71

+0.00
−0.06

+0.00
−0.03

+1.17
−0.92

+2.57
−4.65

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+1.13
−1.13

+0.18
−0.17

+0.40
−1.07

+1.00
−1.00

3.0–3.2 2.169 5.43 5.73 +9.55
−9.53

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+2.47
−1.95

+8.54
−7.71

+0.00
−0.06

+0.00
−0.03

+1.17
−0.92

+2.57
−4.65

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+1.13
−1.13

+0.18
−0.17

+0.46
−1.09

+1.00
−1.00

3.2–3.4 1.234 7.36 9.27 +15.91
−13.62

−0.04
+0.00

+0.02
−0.08

+0.11
−0.15

−0.29
+0.38

+0.06
+0.00

+2.47
−1.95

+15.33
−12.42

+0.00
−0.06

+0.00
−0.03

+1.17
−0.92

+2.57
−4.65

+0.00
−0.06

−0.36
+0.36

−0.04
+0.00

+1.13
−1.13

+0.15
−0.13

+0.41
−1.07

+1.00
−1.00

43



Table 6: The measured double-differential Z + jets production cross-sections as a function of |yjet | in the 200 GeV < pjetT < 300 GeV range. δstatdata and δ
stat
MC are the

statistical uncertainties in data and MC simulation, respectively. δsystot is the total systematic uncertainty and includes the following components: uncertainties
due to electron reconstruction (δelrec), identification (δelID) and trigger (δ

el
trig) efficiencies; electron energy scale (δelscale) and energy resolution (δ

el
res) uncertainties;

sum in quadrature of the uncertainties from JES in situ methods (δJESin situ); sum in quadrature of the uncertainties from JES η-intercalibration methods (δJESη-int);
an uncertainty of the measured single-hadron response (δJEShadron); MC non-closure uncertainty (δJESclosure); sum in quadrature of the uncertainties due to pile-up
corrections of the jet kinematics (δJESpile-up); sum in quadrature of the flavour-based uncertainties (δJESflavour); punch-through uncertainty (δ

JES
pthrough); JER uncertainty

(δJER); JVF uncertainty (δJVF); sum in quadrature of the unfolding uncertainties (δunf); sum in quadrature of the uncertainties due to MC generated backgrounds
normalisation (δbgMC); sum in quadrature of the uncertainty due to combined multijet and W+ jets backgrounds (δbgmult); uncertainty due to jet quality selection
(δqual). All uncertainties are given in %. The luminosity uncertainty of 1.9% is not shown and not included in the total uncertainty and its components.

|yjet | d2σ
d|yjet |dp

jet
T

δstatdata δstatMC δ
sys
tot δelrec δelID δeltrig δelscale δelres δJESin situ δJESη-int δJEShadron δJESclosure δJESpile-up δJESflavour δJESpthrough δJER δJVF δunf δ

bg
MC δ

bg
mult δqual

[fb/GeV] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

0.0–0.4 5.561 2.50 2.63 +3.82
−4.55

−0.05
+0.04

+0.12
+0.00

+0.10
−0.01

−0.18
+0.18

−0.06
+0.05

+2.62
−3.10

+0.39
−0.77

+0.04
+0.00

+0.15
+0.00

+0.36
−0.75

+1.40
−2.08

+0.20
−0.06

−0.58
+0.58

−0.04
+0.09

+1.40
−1.40

+0.09
−0.08

+0.28
−0.54

+1.00
−1.00

0.4–0.8 4.889 2.36 2.93 +3.81
−4.55

−0.05
+0.04

+0.12
+0.00

+0.10
−0.01

−0.18
+0.18

−0.06
+0.05

+2.62
−3.10

+0.39
−0.77

+0.04
+0.00

+0.15
+0.00

+0.36
−0.75

+1.40
−2.08

+0.20
−0.06

−0.58
+0.58

−0.04
+0.09

+1.40
−1.40

+0.10
−0.09

+0.25
−0.55

+1.00
−1.00

0.8–1.2 4.260 3.18 3.41 +3.81
−4.55

−0.05
+0.04

+0.12
+0.00

+0.10
−0.01

−0.18
+0.18

−0.06
+0.05

+2.62
−3.10

+0.39
−0.77

+0.04
+0.00

+0.15
+0.00

+0.36
−0.75

+1.40
−2.08

+0.20
−0.06

−0.58
+0.58

−0.04
+0.09

+1.40
−1.40

+0.11
−0.10

+0.21
−0.57

+1.00
−1.00

1.2–1.6 3.055 3.61 3.17 +3.82
−4.57

−0.05
+0.04

+0.12
+0.00

+0.10
−0.01

−0.18
+0.18

−0.06
+0.05

+2.62
−3.10

+0.39
−0.77

+0.04
+0.00

+0.15
+0.00

+0.36
−0.75

+1.40
−2.08

+0.20
−0.06

−0.58
+0.58

−0.04
+0.09

+1.40
−1.40

+0.14
−0.13

+0.27
−0.71

+1.00
−1.00

1.6–2.0 1.780 4.43 4.42 +3.83
−4.60

−0.05
+0.04

+0.12
+0.00

+0.10
−0.01

−0.18
+0.18

−0.06
+0.05

+2.62
−3.10

+0.39
−0.77

+0.04
+0.00

+0.15
+0.00

+0.36
−0.75

+1.40
−2.08

+0.20
−0.06

−0.58
+0.58

−0.04
+0.09

+1.40
−1.40

+0.17
−0.16

+0.39
−0.84

+1.00
−1.00

2.0–2.4 0.831 6.45 7.17 +3.87
−6.41

−0.05
+0.04

+0.12
+0.00

+0.10
−0.01

−0.18
+0.18

−0.06
+0.05

+2.62
−5.37

+0.39
−0.77

+0.04
+0.00

+0.15
+0.00

+0.36
−0.75

+1.40
−2.08

+0.20
−0.06

−0.58
+0.58

−0.04
+0.09

+1.40
−1.40

+0.22
−0.20

+0.65
−1.19

+1.00
−1.00

2.4–3.4 0.136 9.48 11.75 +3.84
−6.40

−0.05
+0.04

+0.12
+0.00

+0.10
−0.01

−0.18
+0.18

−0.06
+0.05

+2.62
−5.37

+0.39
−0.77

+0.04
+0.00

+0.15
+0.00

+0.36
−0.75

+1.40
−2.08

+0.20
−0.06

−0.58
+0.58

−0.04
+0.09

+1.40
−1.40

+0.32
−0.29

+0.42
−1.12

+1.00
−1.00

44



Table 7: The measured double-differential Z + jets production cross-sections as a function of |yjet | in the 300 GeV < pjetT < 400 GeV range. δstatdata and δ
stat
MC are the

statistical uncertainties in data and MC simulation, respectively. δsystot is the total systematic uncertainty and includes the following components: uncertainties
due to electron reconstruction (δelrec), identification (δelID) and trigger (δ

el
trig) efficiencies; electron energy scale (δelscale) and energy resolution (δ

el
res) uncertainties;

sum in quadrature of the uncertainties from JES in situ methods (δJESin situ); sum in quadrature of the uncertainties from JES η-intercalibration methods (δJESη-int);
an uncertainty of the measured single-hadron response (δJEShadron); MC non-closure uncertainty (δJESclosure); sum in quadrature of the uncertainties due to pile-up
corrections of the jet kinematics (δJESpile-up); sum in quadrature of the flavour-based uncertainties (δJESflavour); punch-through uncertainty (δ

JES
pthrough); JER uncertainty

(δJER); JVF uncertainty (δJVF); sum in quadrature of the unfolding uncertainties (δunf); sum in quadrature of the uncertainties due to MC generated backgrounds
normalisation (δbgMC); sum in quadrature of the uncertainty due to combined multijet and W+ jets backgrounds (δbgmult); uncertainty due to jet quality selection
(δqual). All uncertainties are given in %. The luminosity uncertainty of 1.9% is not shown and not included in the total uncertainty and its components.

|yjet | d2σ
d|yjet |dp

jet
T

δstatdata δstatMC δ
sys
tot δelrec δelID δeltrig δelscale δelres δJESin situ δJESη-int δJEShadron δJESclosure δJESpile-up δJESflavour δJESpthrough δJER δJVF δunf δ

bg
MC δ

bg
mult δqual

[fb/GeV] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

0.0–0.4 1.190 5.83 6.75 +5.95
−2.33

+0.74
+0.00

+0.56
+0.00

+0.00
+0.51

+0.00
+0.72

+0.76
+0.00

+4.03
−1.63

+1.41
+0.00

+0.68
+0.00

+0.46
+0.00

+2.42
−0.13

+2.24
+0.00

+0.54
+0.00

−1.16
+1.16

+0.79
+0.00

+0.08
−0.08

+0.10
−0.09

+0.30
−0.65

+1.00
−1.00

0.4–0.8 1.083 5.52 5.50 +5.94
−2.31

+0.74
+0.00

+0.56
+0.00

+0.00
+0.51

+0.00
+0.72

+0.76
+0.00

+4.03
−1.63

+1.41
+0.00

+0.68
+0.00

+0.46
+0.00

+2.42
−0.13

+2.24
+0.00

+0.54
+0.00

−1.16
+1.16

+0.79
+0.00

+0.08
−0.08

+0.11
−0.10

+0.23
−0.55

+1.00
−1.00

0.8–1.2 0.946 6.68 6.87 +5.95
−2.34

+0.74
+0.00

+0.56
+0.00

+0.00
+0.51

+0.00
+0.72

+0.76
+0.00

+4.03
−1.63

+1.41
+0.00

+0.68
+0.00

+0.46
+0.00

+2.42
−0.13

+2.24
+0.00

+0.54
+0.00

−1.16
+1.16

+0.79
+0.00

+0.08
−0.08

+0.12
−0.11

+0.30
−0.68

+1.00
−1.00

1.2–1.6 0.628 8.15 8.34 +5.96
−2.44

+0.74
+0.00

+0.56
+0.00

+0.00
+0.51

+0.00
+0.72

+0.76
+0.00

+4.03
−1.63

+1.41
+0.00

+0.68
+0.00

+0.46
+0.00

+2.42
−0.13

+2.24
+0.00

+0.54
+0.00

−1.16
+1.16

+0.79
+0.00

+0.08
−0.08

+0.19
−0.17

+0.45
−0.95

+1.00
−1.00

1.6–2.0 0.322 11.56 11.42 +5.97
−2.46

+0.74
+0.00

+0.56
+0.00

+0.00
+0.51

+0.00
+0.72

+0.76
+0.00

+4.03
−1.63

+1.41
+0.00

+0.68
+0.00

+0.46
+0.00

+2.42
−0.13

+2.24
+0.00

+0.54
+0.00

−1.16
+1.16

+0.79
+0.00

+0.08
−0.08

+0.26
−0.24

+0.51
−1.00

+1.00
−1.00

2.0–3.0 0.032 26.98 24.63 +6.01
−2.64

+0.74
+0.00

+0.56
+0.00

+0.00
+0.51

+0.00
+0.72

+0.76
+0.00

+4.03
−1.63

+1.41
+0.00

+0.68
+0.00

+0.46
+0.00

+2.42
−0.13

+2.24
+0.00

+0.54
+0.00

−1.16
+1.16

+0.79
+0.00

+0.08
−0.08

+0.69
−0.63

+0.63
−1.25

+1.00
−1.00

45



Table 8: The measured double-differential Z + jets production cross-sections as a function of |yjet | in the 400 GeV < pjetT < 1050 GeV range. δstatdata and δ
stat
MC are the

statistical uncertainties in data and MC simulation, respectively. δsystot is the total systematic uncertainty and includes the following components: uncertainties
due to electron reconstruction (δelrec), identification (δelID) and trigger (δ

el
trig) efficiencies; electron energy scale (δelscale) and energy resolution (δ

el
res) uncertainties;

sum in quadrature of the uncertainties from JES in situ methods (δJESin situ); sum in quadrature of the uncertainties from JES η-intercalibration methods (δJESη-int);
an uncertainty of the measured single-hadron response (δJEShadron); MC non-closure uncertainty (δJESclosure); sum in quadrature of the uncertainties due to pile-up
corrections of the jet kinematics (δJESpile-up); sum in quadrature of the flavour-based uncertainties (δJESflavour); punch-through uncertainty (δ

JES
pthrough); JER uncertainty

(δJER); JVF uncertainty (δJVF); sum in quadrature of the unfolding uncertainties (δunf); sum in quadrature of the uncertainties due to MC generated backgrounds
normalisation (δbgMC); sum in quadrature of the uncertainty due to combined multijet and W+ jets backgrounds (δbgmult); uncertainty due to jet quality selection
(δqual). All uncertainties are given in %. The luminosity uncertainty of 1.9% is not shown and not included in the total uncertainty and its components.

|yjet | d2σ
d|yjet |dp

jet
T

δstatdata δstatMC δ
sys
tot δelrec δelID δeltrig δelscale δelres δJESin situ δJESη-int δJEShadron δJESclosure δJESpile-up δJESflavour δJESpthrough δJER δJVF δunf δ

bg
MC δ

bg
mult δqual

[fb/GeV] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

0.0–0.4 0.110 6.84 8.88 +3.15
−6.01

−0.34
+0.00

+0.00
−0.26

+0.00
−0.43

−0.82
+0.00

−0.41
+0.00

+2.01
−4.74

+0.22
−0.50

+0.00
−0.36

+0.00
−0.33

+0.10
−0.91

+0.33
−2.13

+0.13
−0.58

−0.14
+0.14

+0.01
−0.32

+1.47
−1.47

+0.15
−0.14

+0.59
−0.84

+1.00
−1.00

0.4–0.8 0.076 9.45 9.66 +3.13
−5.99

−0.34
+0.00

+0.00
−0.26

+0.00
−0.43

−0.82
+0.00

−0.41
+0.00

+2.01
−4.74

+0.22
−0.50

+0.00
−0.36

+0.00
−0.33

+0.10
−0.91

+0.33
−2.13

+0.13
−0.58

−0.14
+0.14

+0.01
−0.32

+1.47
−1.47

+0.18
−0.16

+0.42
−0.71

+1.00
−1.00

0.8–1.2 0.058 11.67 11.68 +3.15
−6.01

−0.34
+0.00

+0.00
−0.26

+0.00
−0.43

−0.82
+0.00

−0.41
+0.00

+2.01
−4.74

+0.22
−0.50

+0.00
−0.36

+0.00
−0.33

+0.10
−0.91

+0.33
−2.13

+0.13
−0.58

−0.14
+0.14

+0.01
−0.32

+1.47
−1.47

+0.21
−0.20

+0.54
−0.86

+1.00
−1.00

1.2–2.6 0.012 12.84 13.36 +3.20
−6.08

−0.34
+0.00

+0.00
−0.26

+0.00
−0.43

−0.82
+0.00

−0.41
+0.00

+2.01
−4.74

+0.22
−0.50

+0.00
−0.36

+0.00
−0.33

+0.10
−0.91

+0.33
−2.13

+0.13
−0.58

−0.14
+0.14

+0.01
−0.32

+1.47
−1.47

+0.37
−0.34

+0.73
−1.24

+1.00
−1.00
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