

Searches for Exotic Higgs-like boson decays at LHCb

Lorenzo Sestini INFN Padova

on behalf of the LHCb Collaboration

Introduction

Quest for New Physics

Both approaches followed by LHCb

Direct searches

- → Dark Photons and Higgs-like resonances (Carlos talk)
- → Exotic Higgs decays (this talk!)

Indirect searches

e.g. hints of flavour anomalies:

- → b → s transitions
- → Lepton flavour universality violation

LHCb detector JINST 3 (2008) 508005

- Excellent vertex reconstruction: IP resolution = $(15+29/p_{_{T}}) \mu m$
- Lifetime resolution: 0.2 ps for τ = 100 ps
- Muon ID efficiency: 97% with 1-3% $\mu \to \pi$ mis-identification.

Complementarity with ATLAS and CMS in direct searches!

Higgs decays to Long Lived Particles

Istituto Nazionale di Fisica Nucleare

Higgs: portal to dark sector

Long Lived Particles decaying semileptonically

Eur. Phys. J. C77 (2017) 224

Dataset: full Run I → 3 fb⁻¹

· Selection:

- **y** 4-tracks SV, m(SV)>4.5 GeV, R_{xy} > 0.55 mm **p**_T(muon) > 12 GeV, IP(muon) > 0.25 mm $_{\odot}$
- Multi-layer Perceptron to further discriminate signal from background
- Background: dominated by bb events, characterized using simulation.
- Signal yield is obtained by fitting the SV mass distribution → Several signal masses and lifetime are tested

Long Lived Particles decaying semileptonically

Eur. Phys. J. C77 (2017) 224

- 95% Confidence Level (CL) upper limits on cross sections are set with the CLs method.
- Several masses and lifetime hypothesis are tested.

Long Lived Particles decaying to jet pairs

Eur. Phys. J. C77 (2017) 812

jet

 H^0

- **Event topology:** two jets associated to a displaced SV.
- Dataset: full Run I → 3 fb⁻¹

- Selection:
 Jet inputs selected by Particle Flow, IP(tracks) > 2 mm

- Signal event yield is obtained by fitting the dijet mass distribution.
- Fits are performed in several bins of displacement from beam axis R_{xv}(SV)

Long Lived Particles decaying to jet pairs

Eur. Phys. J. C77 (2017) 812

Several π masses and lifetime hypothesis are tested.

Competitive limit with ATLAS and CMS despite factor 10 less luminosity.

Higgs lepton flavour violating decays Eur. Phys. J. C78 (2018) 1008

Signature: prompt muon and displaced tau decay.

Dataset: 8 TeV, 2 fb⁻¹

Tau is reconstructed in 4 different decay channels:

Background is estimated from simulation and theoretical cross sections. Main contribution is given by $Z \rightarrow \tau \tau$.

 $m(\mu \tau_{\mu})$ [GeV/ c^2]

Higgs lepton flavour violating decays Eur. Phys. J. C78 (2018) 1008

- Limits on $\sigma(gg \to H \to \mu\tau)$ are set with different mass hypothesis
- For SM Higgs 95% CL limit of BR(H $\rightarrow \mu\tau$)<26%

Prospects for LLP searches at LHCb upgrades

Run I

efficiency

LHCD

LHCb-CONF-2018-006

Sensitivity is extrapolated starting from Run I results and assuming:

- → Conservative assumptions for HLT trigger and material interactions.
- Optimistic assumption on pile-up (rely on jet reconstruction).
- Removal of L0 hardware trigger (100% L0 efficiency).

		2011		2012	
	$\pi_{\rm v}$ mass	$10\mathrm{ps}$	$100\mathrm{ps}$	$10\mathrm{ps}$	$100\mathrm{ps}$
$\pi_{\rm v} \rightarrow b\bar{b}$	$25\mathrm{GeV}/c^2$	0.45	0.097	0.46	0.111
$\pi_{\rm v} \! \to b \bar{b}$	$35\mathrm{GeV}/c^2$	0.80	0.176	0.83	0.224
$\pi_{\rm v} \rightarrow b \bar{b}$	$43\mathrm{GeV}/c^2$	0.73	0.190	0.77	0.222
$\pi_{ m v}\! o bar{b}$	$50\mathrm{GeV}/c^2$	0.49	0.141	0.54	0.171
$\pi_{\rm v} \! \to c \overline{c}$	$35\mathrm{GeV}/c^2$	1.35		1.35	
$\pi_{\rm v}\!\to s\overline{s}$	$35\mathrm{GeV}/c^2$	1.30		1.19	

Upgrade extrapolation

$c au_{\pi_v} ext{ (mm)}$	Efficiency (%)	$m_{oldsymbol{\pi}_{oldsymbol{v}}}$ (GeV/ c^2)					
$ C_{i}\pi_{v} $ (IIIII)	Efficiency (70)	25	35	43	50		
3	Acceptance	26.8	21.2	17.4	14.6		
	Total	0.9	1.7	1.5	1.1		
30	Acceptance	16.1	15.1	13.7	12.3		
30	Total	0.2	0.4	0.4	0.3		

Prospects for LLP searches at LHCb upgrades

Istituto Nazionale di Fisica Nucleare

LHCb-CONF-2018-006

mSUGRA neutralino

Extrapolations

0.02 %

Prospects for LLP searches at LHCb upgrades

Istituto Nazionale di Fisica Nucleare

LHCb-CONF-2018-006

Hidden valley pion

Extrapolations

Conclusions

- LHCb is the game of NP direct searches, in a complementary phase space with respect to ATLAS and CMS.
- Search for Higgs exotic decays can be the portal for NP.
- LHCb can provide information on Lepton Flavour Violating Higgs decays.
- Strong LLP programme, it will improve in the future and with the next upgrades.
- Stay tuned for Run II results!

Backup

VErtex LOcator material

ArXiv:1803.07466

- Map of VELO material, including VELO silicon stations and RF foil.
- Mapped through hadron interactions with material in beam-gas events rather than near the pp collision region.
- SV associated to these interactions are reconstructed.
- Fundamental to veto material interactions in LLP searches.

Reconstructed SVs

